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Abstract Ribosome stalling during translation has recently been shown to cause

neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are

unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2nmf205-/- mice in

which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a

tRNAArg
UCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of

phosphorylation of eIF2a (Ser51) were detected prior to neurodegeneration in these mice and

transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated

stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the

eIF2a kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that

the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2nmf205-/- mice, underscoring the

importance of cellular and stress context on the outcome of activation of this pathway. These

results demonstrate the critical interplay between translation elongation and initiation in regulating

neuron survival during cellular stress.

DOI: 10.7554/eLife.14295.001

Introduction
Protein translation cycles through the phases of initiation, elongation, termination, and ribosome

recycling. Translation has been thought to be predominantly regulated at the initiation step in which

the 40S small ribosome subunit, preloaded with Met-tRNAi, binds to the 5’ end of mRNA. This com-

plex then scans the mRNA for the AUG initiation codon where the 60S large ribosome subunit joins

to form the 80S monosome (Aitken and Lorsch, 2012; Hinnebusch, 2014). A major control point of

initiation is the reversible phosphorylation of the eukaryotic initiation factor 2 (eIF2), which in its

active form binds GTP and Met-tRNAi
Met and delivers the initiator tRNA to the 40S subunit of the

ribosome (Baird and Wek, 2012; Donnelly et al., 2013). A variety of stress responses regulate

translation initiation by converging on phosphorylation of Ser51 of the a subunit of eIF2, which pre-

vents formation of the ternary complex and thus translation initiation (Dalton et al., 2012). In addi-

tion to globally repressing translation, phosphorylation of eIF2a also enhances translation of specific

mRNAs with open reading frames in their 5’ leaders, such as ATF4 (Lu et al., 2004; Vattem and
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Wek, 2004). This transcription factor promotes transcription of genes involved in a wide range of

adaptive functions including amino acid metabolism, redox control, and translational control

(Harding et al., 2003; Huang et al., 2009; Kilberg et al., 2012).

The eIF2a subunit is the common target of four protein kinases, the activation of which is induced

by distinct and specific extracellular and intracellular stresses. PKR-like ER kinase (PERK, EIF2AK3) is

generally activated by the accumulation of misfolded proteins in the endoplasmic reticulum

(Ron and Harding, 2012; Zhao and Ackerman, 2006). Heme-regulated inhibitor (HRI, EIF2AK1) and

protein kinase R (PKR, EIF2AK2) are activated in erythroid cells by heme deprivation and viral infec-

tions, respectively (Chen, 2014; Marchal et al., 2014). Finally, GCN2 (General Control Non-dere-

pressible 2, EIF2AK4) is activated by low intracellular levels of amino acids (Castilho et al., 2014).

Amino acid deficiency results in an increase of deacylated tRNA species, which bind the histidyl-

tRNA synthetase-related domain of GCN2 and the C-terminus, domains that are essential for GCN2

activation (Dong et al., 2000; Wek et al., 1995; Zhu et al., 1996).

Elongation has recently emerged as a translation phase that is also subject to elaborate regula-

tory and surveillance mechanisms (Richter and Coller, 2015). During elongation the ribosome

moves in a codon-dependent fashion down the mRNA while amino acids are cyclically presented to

the A site of ribosomes by EF-1/EF-T-bound aminoacylated tRNAs and added to the nascent pep-

tide chain by the formation of peptide bonds. The rate of elongation is a function of ribosome transit

rate, i.e. the time the translating ribosome spends on each codon, which is influenced by the second-

ary structure of the mRNA, nascent peptide:ribosome interactions, as well as codon identity and the

availability of properly modified, cognate tRNAs for these codons (Chen et al., 2013;

Ishimura et al., 2014; Ito and Chiba, 2013; Koutmou et al., 2015; Lu and Deutsch, 2008;

Nedialkova and Leidel, 2015; Quax et al., 2015; Wen et al., 2008). Elongation rates are now con-

sidered important factors in gene expression that determine the fate of mRNA undergoing transla-

tion and the functioning of the nascent proteins (Elvekrog and Walter, 2015; Inada, 2013;

Pelechano et al., 2015; Presnyak et al., 2015; Quax et al., 2015; Sherman and Qian, 2013). Paus-

ing of translating ribosomes can be induced by cellular stress including temperature and oxidative

stress (Knight et al., 2015; Liu et al., 2013; Shalgi et al., 2013; Zhong et al., 2015). Furthermore,

misregulation of elongation may contribute to disease pathology resulting in neurological

eLife digest Information stored in DNA is used to make proteins in a two-step process. First,

the DNA is copied to make molecules of messenger ribonucleic acid (or messenger RNA for short).

Next, machines called ribosomes use the messenger RNAs as templates to assemble chains of

amino acids – the building blocks of proteins – in a process called translation. Another type of RNA

molecule called transfer RNA carries each amino acid to the ribosomes. If a specific transfer RNA is

not available for translation at the right time, the ribosome might stall as it moves along the

messenger RNA. At this point, the ribosome needs to be restarted or it will fall off the mRNA

without finishing the protein.

In 2014, a group of researchers reported that certain types of brain cells are very sensitive to

ribosome stalling, and tend to die if translation does not continue. A protein called GTPBP2 was

shown to play an important role in restarting stalled ribosomes in these cells. Here, Ishimura, Nagy

et al. – including some of the researchers from the earlier work – investigated the molecular

pathways that ribosome stalling triggers in brain cells using mutant mice that lacked the GTPBP2

protein. The experiments show that ribosome stalling activates an enzyme known as GCN2, which

was already known to sense other types of malfunctions in cellular processes.

Ishimura, Nagy et al. also show that GCN2 triggers stress responses in the cells by activating a

communication system called the ATF4 pathway. This pathway protects the cells from damage, and

its absence results in more rapid cell deterioration and death. The next challenges are to understand

the exact mechanism by which GCN2 senses stalled ribosomes, and to find out how ribosome

stalling causes the death of brain cells.

DOI: 10.7554/eLife.14295.002
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dysfunction such as observed in Fragile X syndrome (Chen et al., 2014; Darnell et al., 2011;

Udagawa et al., 2013).

Recently we reported that ribosome stalling is intimately associated with cerebellar and retinal

degeneration in the C57BL6/J (B6J)-nmf205 mutant mouse (Ishimura et al., 2014). In this mouse

model, two mutations are necessary to induce neuron loss: a loss of function mutation

(Gtpbp2nmf205-/-) in a translational GTPase GTPBP2 (guanosine triphosphate-binding protein 2) and a

hypomorphic mutation in the nervous system-specific n-Tr20 (nTRtct5) tRNAArg
UCU gene. Ribosomal

profiling of cerebella from mice with the n-Tr20 mutation revealed an increase in ribosome occu-

pancy at AGA codons that dramatically increased in the absence of GTPBP2. These studies demon-

strated that GTPBP2 likely functions as a ribosome rescue factor and that ribosome stalling, i.e.

abnormally long ribosome transit rates, could lead to neuron death. Recently, a mutation in the

GTPBP2 gene was suggested to underlie cerebellar and retinal degeneration and intellectual disabil-

ity in humans, supporting an essential role of GTPBP2 in neuronal homeostasis (Jaberi et al., 2015).

Here, we take advantage of unique mouse models with the Gtpbp2nmf205-/- mutation to assess

the signaling events that are triggered by ribosome stalling. We show that GCN2 is activated in the

B6J-Gtpbp2nmf205-/- mutant brain in a tRNAdeacyl-independent manner prior to the onset of neurode-

generation. Activation of this kinase results in eIF2a phosphorylation and induction of ATF4-target

genes in the cerebellum and hippocampus of B6J-Gtpbp2nmf205-/- mice. Further, our genetic studies

demonstrate that GCN2 activation functions to attenuate neurodegeneration in the B6J-

Gtpbp2nmf205-/- brain. These results suggest that ribosome stalling activates GCN2 as a previously

unknown regulatory mechanism that links the elongation and initiation steps of translation.

Results

ATF4 target genes are induced in the B6J-Gtpbp2nmf205-/- brain
To begin to elucidate the molecular pathways activated by ribosome stalling, we performed gene

expression studies on cerebella isolated from B6J (n-Tr20, also known as nTRtct5, mutant) and B6J-

Gtpbp2nmf205-/- (n-Tr20 mutant; Gtpbp2nmf205-/- ) mice at 5 weeks of age, a time when many granule

cells are undergoing apoptosis in mutant mice (Figure 1A and Figure 1—figure supplement 1). To

separate changes in gene expression caused by ribosome stalling from more general changes

caused by neuron damage, gene expression analysis was also performed on the hippocampus of 5-

week-old mutant mice (which has low numbers of apoptotic neurons relative to the mutant cerebel-

lum) and from both brain regions in 3-week-old mice (a time when no neuron death is observed)

(Figure 1A and Figure 1—figure supplements 1 and 2). Gene Chip expression arrays (Affymetrix

Mouse Gene 1.0 ST Arrays) were performed with three biological replicates for each age, genotype,

and tissue. Genes whose expression differed between B6J and B6J-Gtpbp2nmf205-/- by at least 1.5

fold with a q-value < 0.05 were selected for further analysis (Figure 1—figure supplement 3 and

Figure 1—source data 1). Using these criteria, 583 genes were upregulated and 327 genes were

downregulated in the cerebellum from 5-week-old mutant mice. Fewer genes in the hippocampus of

5-week-old mutant mice exhibited altered expression (78, upregulated; 26, downregulated). In the

cerebellum of 3-week-old B6J-Gtpbp2nmf205-/- mice 225 genes were upregulated and 100 downregu-

lated, while only 10 genes were upregulated and 1 downregulated in the hippocampus of mutant

mice at this age.

Neuron damage induces activation of microglia and astrocytes and these inflammatory reactions

are commonly observed in acute and chronic neurodegeneration. Indeed, Kegg pathway analysis

and upstream regulator pathway analysis (Ingenuity Pathway Analysis) on differentially expressed

genes in the B6J-Gtpbp2nmf205-/- brain revealed enrichment of inflammation/immune pathways (e.g.,

hematopoietic cell lineage and cytokine-cytokine receptor interactions) (Figure 1B,C and Figure 1—

source data 2). We compared our differentially regulated gene set to genes that were activated in

microglia and/or astrocytes in the spinal cord of transgenic mice for mutant G93A SOD1, a model of

amyotrophic lateral sclerosis (Chiu et al., 2013), or the cortex of mice transgenic for both the

APPSwe and PS1dE9 genes, a commonly used Alzheimer’s Disease model (Orre et al., 2014) (Glia

Open Access Database) (Holtman et al., 2015). Overlap in our gene set was observed with genes

expressed in activated microglia or astrocytes (150 and 60 genes, respectively) or both cell types (39

genes) (Figure 1D and Figure 1—source data 3). Upregulation of these genes was highest in the 5-
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Figure 1. Transcriptional profiling of B6J-Gtpbp2nmf205-/- mutant mice. (A) To segregate genes associated with

ribosome stalling from genes nonspecifically induced during neurodegeneration, microarray analysis was

performed on the cerebellum (Cb) and hippocampus (Hp) from B6J and B6J-Gtpbp2nmf205-/- (B6J-nmf205-/-) mice

at 3-weeks (3W) and 5-weeks (5W) of age. (B) Enriched pathways among genes that were up or downregulated in

the B6J-Gtpbp2nmf205-/- brain were obtained by Kegg pathway analysis. Note that upregulated gene pathways

exhibited more robust p-values. (C) Ingenuity Pathway Analysis (IPA) upstream regulator analysis of B6J-

Figure 1 continued on next page

Ishimura et al. eLife 2016;5:e14295. DOI: 10.7554/eLife.14295 4 of 22

Research Article Genes and chromosomes Neuroscience

http://dx.doi.org/10.7554/eLife.14295


week-old B6J-Gtpbp2nmf205-/- cerebellum consistent with the robust signal from immunofluorescence

on mutant and wild type brains with antibodies to Iba1 and GFAP, markers for activated microglial

and astrocytes, respectively (Figure 1E and Figure 1—figure supplement 4).

In addition to upregulation of inflammation/immune genes, Gene Ontology and Kegg analysis of

upregulated genes identified enrichment of genes in aminoacyl-tRNA biosynthesis and amino acid

metabolic pathways in the mutant cerebellum and hippocampus from 3- and 5-week-old mice

(Figure 1B and Figure 1—source data 2). Consistent with this result, upstream regulator analysis of

differentially expressed genes in the mutant brain demonstrated enrichment for EIF2AK3 (PERK), an

eIF2a kinase, and its downstream effector, activating transcription factor 4 (ATF4), a key component

of the integrated stress response and activator of aminoacyl-tRNA synthetases and amino acid meta-

bolic pathways (Figure 1C and Figure 1—source data 2). P-values for pathways that were enriched

in downregulated genes in the mutant brain tended to be lower, but were consistent with dysfunc-

tion of terminally differentiated neurons (e.g., calcium signaling and amyotrophic lateral sclerosis

pathways).

To further investigate ATF4 activation in the B6J-Gtpbp2nmf205-/- cerebellum we compared our

differentially expressed gene sets to 472 ATF4 target genes identified by chromatin immunoprecipi-

tation sequencing (ChIP-seq) from tunicamycin-treated mouse embryonic fibroblasts (Han et al.,

2013). Ninety-nine of these known target genes were upregulated in the cerebellum and/or hippo-

campus of mutant mice (Figure 2A and Figure 2—source data 1). ATF4 target genes were upregu-

lated in both the cerebellum and hippocampus; of the 56 genes that were upregulated in both the

3- and 5-week mutant cerebellum and in the 5-week mutant hippocampus, 73% of genes were

known ATF4 target genes (Figure 2B and Figure 2—source data 2). Although fewer genes were

significantly upregulated in the 3-week mutant hippocampus, 6 of 10 of these genes were known

ATF4 targets (Figure 2C). ATF4 target genes were among the most highly upregulated genes in the

cerebellum and hippocampus (Figure 2D and Figure 2—source data 1). Together, these data sug-

gested that ATF4 activation is an early and robust event in both the hippocampus and cerebellum of

B6J-Gtpbp2nmf205-/- mice.

Figure 1 continued

Gtpbp2nmf205-/- upregulated genes demonstrates ATF4 and EIF2AK3 activation in the 3- and 5-week hippocampus

and cerebellum. Inflammatory-related upstream regulators are also strongly activated of in the 5-week-old mutant

cerebellum. (D) Volcano plots of –log10q-values and relative fold changes of all genes. Genes previously shown to

be expressed in microglia (red), astrocytes (green), or in both microglia and astrocytes (blue) are indicated, with all

other genes shown in gray. Genes with very high levels of induction are shown in boxes to fit on the scale. The

horizontal dashed lines indicate a false discovery rate of 0.1. Note the strong induction of genes activated in both

microglia and astrocytes in the 5-week-old B6-Gtpbp2nmf205-/- cerebellum. (E) Immunofluorescence using

antibodies to Iba1 (microglia) and GFAP (astrocytes) was performed on sections of B6J and B6J-Gtpbp2nmf205-/-

cerebellum at indicated ages. Microglia and astrocytes were activated in the mutant cerebellum with highest levels

of activation at 5 weeks of age. Sections were counterstained with Hoechst 33342 to visualize nuclei as shown in

merged. Scale bar, 50 mm.

DOI: 10.7554/eLife.14295.003

The following source data and figure supplements are available for figure 1:

Source data 1. Significantly changed genes.

DOI: 10.7554/eLife.14295.004

Source data 2. GO & IPA analysis.

DOI: 10.7554/eLife.14295.005

Source data 3. Inflammatory genes.

DOI: 10.7554/eLife.14295.006

Figure supplement 1. Progressive neurodegeneration in B6J-Gtpbp2nmf205-/-mice.

DOI: 10.7554/eLife.14295.007

Figure supplement 2. Neurodegeneration is reduced in hippocampus of B6J-Gtpbp2nmf205-/- mice.

DOI: 10.7554/eLife.14295.008

Figure supplement 3. Microarray analysis of the B6J and B6J-Gtpbp2nmf205-/- cerebellum.

DOI: 10.7554/eLife.14295.009

Figure supplement 4. The inflammatory response in the B6J-Gtpbp2nmf205-/- hippocampus.

DOI: 10.7554/eLife.14295.010
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Figure 2. ATF4 downstream genes are robustly activated in B6J-Gtpbp2nmf205-/- mutant brain. (A) Volcano plots of ATF4 downstream genes

demonstrating activation of the ATF4 pathway in the B6J- Gtpbp2nmf205-/- (B6J-nmf205-/-) brain. Fold change and q values of all genes are shown and

ATF4 target genes, obtained from previous ChIP-Seq studies as described in the text, are red. Genes with very high levels of induction are shown in

boxes to fit on the scale. Note that although induction of ATF4 downstream genes is observed in all groups, upregulation of these genes occurs earlier

and is most robust in the cerebellum. (B) Venn diagram of differentially expressed genes between B6J and B6J-Gtpbp2nmf205-/- 3-and 5-week

cerebellum and 5-week hippocampus. Note that a large number of genes (56 genes) are consistently upregulated between cerebellum and

hippocampus and that most of these genes are known ATF4 target genes. (C) The distribution of ATF4 target genes in the upregulated gene set from

the B6J-Gtpbp2nmf205-/- 3-week hippocampus. (D) The relative fold change (RFC) of the top ten upregulated genes in the 3-week-old B6J-

Gtpbp2nmf205-/- cerebellum for each time point and brain region. RFCs depicted with solid bars were significant changes (p<0.05) and those depicted

by hatched bars were not.

DOI: 10.7554/eLife.14295.011

The following source data is available for figure 2:

Figure 2 continued on next page
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Activation of the eIF2a kinase GCN2 in the B6J-Gtpbp2nmf205-/- brain
Preferential translation of ATF4 and activation of the integrated stress response is initiated by phos-

phorylation of Ser51 of eIF2a. Thus, we examined the eIF2a phosphorylation status in the cerebellar

extracts of 3-week-old B6J, B6J.B6Nn-Tr20 (B6J mice in which the wild-type n-Tr20 gene was trans-

ferred to B6J by repeated backcrossing), and B6J-Gtpbp2nmf205-/- mice by Western blot analysis

(Figure 3A). Consistent with our ribosome occupancy studies at AGA codons (Ishimura et al.,

2014), the ratio of p-eIF2a to total eIF2a was significantly higher in the B6J cerebellum relative to

the B6J.B6Nn-Tr20 cerebellum, and the level of phosphorylated eIF2a further increased in the cere-

bellum of B6J-Gtpbp2nmf205-/- mice. Levels of total eIF2a did not differ significantly between

genotypes.

Pathway analysis suggested activation of PERK, the kinase coupling eIF2a phosphorylation and

ATF4 translation during the unfolded protein response (UPR). To determine if the UPR is activated in

the B6J-Gtpbp2nmf205-/- cerebellum, we examined transcripts of Hspa5, also known as BiP/GRP78,

and Xbp1, genes that are sensitive markers of the UPR and not under ATF4 regulation

(Kozutsumi et al., 1988; Yoshida et al., 2001). During UPR activation, an intron in Xbp1 is removed

by the serine/threonine kinase/endoribonuclease, IRE1. This splicing, and activation of the ATF6

transcription factor lead to transcriptional upregulation of the ER chaperone BiP. Neither Xbp1 splic-

ing nor BiP levels were upregulated in the B6J-Gtpbp2nmf205-/- cerebellum (Figure 3—figure supple-

ment 1, and data not shown) suggesting eIF2a phosphorylation and ATF4 activation was regulated

by a eIF2a kinase other than PERK.

The eIF2a kinase GCN2 is activated by amino acid deprivation and other conditions that increase

levels of uncharged tRNAs. Amino acid deprivation would be expected to also result in ribosome

stalling. Thus we hypothesized that GCN2 is the primary effector of eIF2a phosphorylation in the

B6J-Gtpbp2nmf205-/- brain. To test this, B6J.Gcn2-/- and B6J-Gtpbp2nmf205-/- mice were crossed to

generate B6J-Gtpbp2nmf205-/-; Gcn2-/- mice and phosphorylation of eIF2a in cerebellar extracts from

these mice and B6J.Gcn2-/- mice was examined. Levels of p-eIF2a (Ser51) in the cerebellum from

B6J-Gtpbp2nmf205-/-; Gcn2-/- mice were similar to those observed in the cerebellum of B6J.B6Nn-Tr20

and B6J.Gcn2-/- mice demonstrating that GCN2 is the kinase responsible for the increase in p-eIF2a

levels (Figure 3A).

To determine if loss of Gcn2 also impacts ATF4 activation in the B6J-Gtpbp2nmf205-/- cerebellum,

we first analyzed several known ATF4-target genes that were highly induced in the B6J-

Gtpbp2nmf205-/- cerebellum. RT-qPCR was performed on cerebellar cDNA generated from 3-week-

old B6J, B6J-Gtpbp2nmf205-/-, B6J.Gcn2-/-, and B6J-Gtpbp2nmf205-/-; Gcn2-/- mice (Figure 3—figure

supplement 2). As expected, we observed significant induction of these genes in B6J-

Gtpbp2nmf205-/- relative to levels in the B6J cerebellum. However, in the absence of GCN2, upregula-

tion of these genes was dramatically attenuated suggesting ATF4 activation was also regulated by

GCN2 in the B6J-Gtpbp2nmf205-/- cerebellum.

To further define GCN2-dependent changes in gene expression, we performed RNA-Seq analysis

from cerebella isolated from 3-week-old B6J, B6J-Gtpbp2nmf205-/-, B6J.Gcn2-/-, and B6J-

Gtpbp2nmf205-/-; Gcn2-/- mice. Three biological replicates were analyzed for each genotype and

genes with expression differences � 1.5 fold (padj < 0.01) were chosen for further analysis (Fig-

ure 3—figure supplement 3). Significant upregulation of 146 genes, many (57%) of which were also

found to be upregulated by our microarray studies, was observed in B6J-Gtpbp2nmf205-/- cerebellum

relative to the B6J cerebellum (Figure 3B). RNA-Seq also identified 191 genes that were significantly

downregulated in B6J-Gtpbp2nmf205-/- mice, many (45%) of which were also identified by microarray

(Figure 3B).

Loss of GCN2 reverted the expression of 83 of the 146 genes upregulated in the B6J-

Gtpbp2nmf205-/- cerebellum to B6J levels, or near-B6J levels, including those genes with the highest

fold induction in the B6J-Gtpbp2nmf205-/- cerebellum (Figures 3B, Figure 3—source data 1). Kegg

Figure 2 continued

Source data 1. Differentially expressed ATF4 target genes.

DOI: 10.7554/eLife.14295.012

Source data 2. Common differentially expressed genes.

DOI: 10.7554/eLife.14295.013
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Figure 3. GCN2 mediates eIF2a phosphorylation and ATF4 activation in the B6J-Gtpbp2nmf205-/- brain. (A) Western blot analysis of cerebellar extracts

from 3-week-old mice incubated with the antibodies shown (left panel). The relative abundance of phospho-eIF2a (Ser51) to total eIF2a was averaged

for three biological replicates (right panel). Values are shown relative to B6J. (B) The effect of Gcn2 deletion on the 146 genes upregulated or the 191

genes downregulated by 1.5 fold (padj < 0.01) in the cerebellum of B6J-Gtpbp2nmf205-/- (B6J-nmf205-/-) relative to that of B6J (left and right diagram,

respectively). ATF4 target status of the 83 genes that are upregulated in the B6J-Gtpbp2nmf205-/- cerebellum relative to B6J and that also have a

significant decrease in expression in the B6J-Gtpbp2nmf205-/-; Gcn2-/- cerebellum relative to B6J- Gtpbp2nmf205-/- (middle diagram). (C) Fold change of

upregulated ATF4 downstream genes from B6J-Gcn2-/-, B6J-Gtpbp2nmf205-/-, and B6J-Gtpbp2nmf205-/-; Gcn2-/-mice relative to B6J expression. The 10

most upregulated genes in cerebellum of B6J-Gtpbp2nmf205-/-mice relative to that B6J are shown. Note that the increased expression of these GCN2-

ATF4 downstream genes in the B6J-Gtpbp2nmf205-/- cerebellum was completely suppressed by deletion of Gcn2. Error bars = SEM. *p<0.05, **p<0.01,

and ***p<0.001 (one-way ANOVA, A, C).

DOI: 10.7554/eLife.14295.014

The following source data and figure supplements are available for figure 3:

Source data 1. GCN2 RNA-Seq.

DOI: 10.7554/eLife.14295.015

Source data 2. GCN2-regulated ATF4 target genes.

DOI: 10.7554/eLife.14295.016

Source data 3. GCN2 RNA-Seq GO & KEGG analysis.

DOI: 10.7554/eLife.14295.017

Figure 3 continued on next page
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pathway analysis of the 83 genes that reverted to wild type levels revealed enrichment for aminoacyl

tRNA biosynthesis. IPA analysis also yielded several upstream regulators indicative of ATF4 activa-

tion including PERK and GCN2, compounds that induce the UPR (thapsigargin, tunicamycin) or cause

amino acid deprivation (histidinol) (Figure 3—source data 2). Of these 83 genes, 48 genes had

been previously shown to be ATF4 target genes by ChIP-Seq analysis (Figure 3B and Figure 3—

source data 2) (Han et al., 2013). Eight additional genes had been previously shown to be downre-

gulated in Atf4-/- cells suggesting that they may also be under ATF4 control (Ebert et al., 2012;

Harding et al., 2003; Lange et al., 2008). Analysis of the remaining 27 genes, which may be direct

or indirect targets of ATF4 genes, failed to reveal enriched pathways, perhaps due to the small sam-

ple size (Figure 3B, and Figure 3—source data 2). Of the genes that were downregulated in the

B6J-Gtpbp2nmf205-/- cerebellum relative to B6J, the majority were not affected by Gcn2 loss, and

Kegg pathway analysis of those that did change also failed to reveal enriched pathways (Figure 3B,

Figure 3—source data 3).

In the Gtpbp2nmf205-/-; B6J.Gcn2-/-; cerebellum, we also observed a further increase in expression

of 21 genes that were upregulated in the B6J-Gtpbp2nmf205-/- cerebellum. GO and Kegg Pathway

analysis revealed this gene set was enriched in inflammatory response genes and also contained

genes targeted to the nucleolus that were involved in ribosome and ribonucleoprotein biogenesis

(Figure 3—source data 3). Similarly, nucleolar genes, RNA processing genes and ribosome biogen-

esis genes were enriched in the 580 genes that were upregulated in the B6J-Gtpbp2nmf205-/-; Gcn2-/-

cerebellum, but not in the B6J-Gtpbp2nmf205-/- cerebellum. A number (547) of genes were also

uniquely downregulated in the B6J-Gtpbp2nmf205-/-; Gcn2-/- cerebellum. GO analysis of this gene set

revealed moderate enrichment for neuronal and synaptic genes. Together these data suggest that in

addition to attenuating the ISR, loss of Gcn2 in the B6J-Gtpbp2nmf205-/- cerebellum results in upregu-

lation of genes involved in nucleolar function and downregulation of neuron specific genes sugges-

tive of nucleolar dysfunction and neuronal damage, respectively.

Although there was a difference in levels of p-eIF2a, our RNA-Seq experiments showed no signifi-

cant changes in gene expression between the cerebellum of B6J and B6J.Gcn2-/- mice (Figure 3—

source data 1). We suspected these changes may be subtle and below the detection limits of these

experiments. To test this idea, we used RT-qPCR to determine the relative expression of the top 10

ATF4 targets that were upregulated in the B6J-Gtpbp2nmf205-/- cerebellum in the cerebellum of B6J,

B6J.B6Nn-Tr20, and B6J.Gcn2-/-mice (Figure 3—figure supplement 4). Indeed, we found that six of

these genes were upregulated in the B6J cerebellum relative to expression levels in the B6J.B6Nn-

Tr20 cerebellum, demonstrating that loss of n-Tr20 function leads to minor changes in the expression

of ATF4-target genes. In agreement with our results from analysis of B6-Gtpbp2nmf205-/- mice, dele-

tion of Gcn2 reduced the expression of these genes back to B6J.B6Nn-Tr20 levels.

Activation of GCN2 under conditions of nutrient deficiency has been attributed in part to binding

of uncharged tRNAs to a histidyl-tRNA synthetase (HisRS)-like domain in the carboxyl (C)-terminus.

Ribosome footprinting of the 3-week-old B6J-Gtpbp2nmf205-/- cerebellum revealed ribosome stalling

only at AGA codons, as predicted by the decrease in processed n-Tr20 (Ishimura et al., 2014). Lev-

els of tRNAArg
UCU in the cerebellum of 3-week-old B6J-Gtpbp2nmf205-/- were 40% lower than in B6J

mice (Figure 4A; n=3, p<0.05). However, the ratio of uncharged to charged tRNAArg
UCU did not dif-

fer between the B6J and B6J-Gtpbp2nmf205-/- cerebellum (Figure 4B; n=3, p>0.5).

Disruption of 5’ tRNA processing has previously been shown to stimulate translation of GCN4,

the yeast equivalent of ATF4, although in a p-eIF2a-independent manner (Qiu et al., 2000). To

explore whether ATF4 activation may be induced by unprocessed n-Tr20 generated from the B6J

Figure 3 continued

Figure supplement 1. Absence of changes in Xbp1 splicing in the B6J-Gtpbp2nmf205-/- brain.

DOI: 10.7554/eLife.14295.018

Figure supplement 2. Quantitative RT-PCR showing the induction of ATF4 downstream genes is under the control of GCN2.

DOI: 10.7554/eLife.14295.019

Figure supplement 3. RNA-Seq analysis.

DOI: 10.7554/eLife.14295.020

Figure supplement 4. Deletion of Gcn2 decreases expression of ATF4 target genes in the B6J cerebellum.

DOI: 10.7554/eLife.14295.021
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Figure 4. GCN2 activation in the B6J-Gtpbp2nmf205-/- brain is independent of uncharged tRNAArg
UCU and

unprocessed n-Tr20 tRNA. (A) Northern blot analysis of cerebellar RNA from 3-week-old B6J and B6J-

Gtpbp2nmf205-/- (B6J-nmf205-/-) mice using pooled probes to n-Tr21/22/23/25 tRNAs to assess the expression levels

of the tRNAArg
UCU isodecoder family. 5S was used as internal control. (B) Charged (pH 5) and uncharged (pH 9)

tRNAArg
UCU levels in the 3-week-old B6J and B6J-Gtpbp2nmf205-/- cerebellum. Note that the levels of uncharged

tRNAArg
UCU are negligible in both the B6J-Gtpbp2nmf205-/- and B6J cerebellum. A short (right) and a longer (left)

exposure are shown. (C–E) RT-qPCR analysis of expression of ATF4 target genes. (C) Overexpression of the mutant

n-Tr20 tRNA does not change expression of ATF4 targets in the 3-week-old cerebellum although increased levels

of unprocessed n-Tr20 are present. (n=3 mice per genotype) (D) Overexpression of the mutant n-Tr20 tRNA does

not change expression of ATF4 targets even in the Gtpbp2nmf205-/- mutant cerebellum at 3 weeks of age. (n=3) (E)

Figure 4 continued on next page
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allele, we generated transgenic B6N mice that expressed the mutant n-Tr20 gene (B6N-Tg-nTr20mut)

at levels 6-fold above that observed in B6J brain (Figure 4—figure supplement 1). Quantitative

PCR using cerebellar cDNA from B6N and B6N-Tg-nTr20mut mice was performed for the ATF4 tar-

get genes that showed highest fold expression changes between the B6J and B6J-Gtpbp2nmf205-/-

cerebellum. As shown in Figure 4C, overexpression of the unprocessed n-Tr20 did not result in upre-

gulation of these genes.

To determine if ATF4 activation was influenced by interaction between overexpression of the

unprocessed tRNA and loss of Gtpbp2, we crossed B6N mice (wild type for n-Tr20) that transgeni-

cally overexpress mutant n-Tr20 (B6N-Tg-n-Tr20mut) mice to B6J.B6Nn-Tr20-Gtpbp2nmf205-/- mice

(wildtype for n-Tr20, mutant for Gtpbp2). RT-qPCR for the ATF4-target genes analyzed above was

performed on cerebella from 3-week-old B6J.B6Nn-Tr20-Gtpbp2nmf205-/- with, and without, the

mutant transgene, and B6J.B6Nn-Tr20 (n-Tr20 wild type), B6J (n-Tr20 mutant) and B6J-Gtpbp2nmf205-/-

(mutant for n-Tr20; Gtpbp2-/-) mice. As expected, the expression of ATF4 target genes was dramati-

cally upregulated in the B6J-Gtpbp2nmf205-/- cerebellum relative to the other strains. However, the

expression of the mutant n-Tr20 transgene, even in the presence of the Gtpbp2 mutation, did not

alter expression of ATF4 target genes (Figure 4D). Together, these results suggest that the induc-

tion of ATF4 target gene expression in B6J-Gtpbp2nmf205-/- is not due to expression of the unpro-

cessed n-Tr20 tRNA.

For further evidence that loss of mature n-Tr20 causes GCN2 activation in the absence of

Gtpbp2, we generated B6J mice in which the n-Tr20 gene was deleted by homologous recombina-

tion (B6J-n-Tr20-/-; Figure 4—figure supplement 2). Mice heterozygous or homozygous for this

deletion were born at expected Mendelian ratios. However when these mice were crossed with

Gtpbp2nmf205-/- mice, mice that were homozygous for both the n-Tr20 deletion and the nmf205

mutation died shortly after birth, demonstrating that residual levels of aminoacylated n-Tr20 in the

B6J brain allows postnatal survival of B6J-Gtpbp2nmf205-/- mice.

RT-qPCR for the 10 most highly induced ATF4-target genes were performed on cDNA generated

from the brain of P0 B6J, B6J-Gtpbp2nmf205-/-, B6J-n-Tr20-/-, and B6J-n-Tr20-/-; Gtpbp2nmf205-/- mice

(Figure 4E). Overall, these genes were expressed at higher levels in the B6J-Gtpbp2nmf205-/- brain

relative to that of B6J mice (p<0.002; Student’s pairwise t test), however expression differences for

individual genes were not significant between these genotypes. This result correlates with higher lev-

els of mature n-Tr20 in the brains of B6J P0 mice relative to brains of P30 B6J mice (Ishimura et al.,

2014). However in the P0 B6J-n-Tr20-/-; Gtpbp2nmf205-/- brain, 6 of these 10 genes were significantly

upregulated relative to the B6J-n-Tr20-/- brain. These results demonstrate that complete loss of n-

Tr20 on the Gtpbp2-deficient background results in ATF4 activation.

GCN2-ATF4 signaling pathway promotes survival for B6J-
Gtpbp2nmf205-/- neurons
The effects of GCN2-ATF4 pathway on cell survival vary in an apparently context-dependent manner.

To determine the effect of GCN2-ATF4 pathway on the progression of neurodegeneration induced

by ribosome stalling, we compared locomotion and cerebellar pathology in B6J-Gtpbp2nmf205-/-;

Gcn2-/- and B6J-Gtpbp2nmf205-/- mice. As expected, B6J-Gtpbp2nmf205-/- mice exhibited mild ataxia

and tremors at 45 days of age, and no motor defects were observed in B6J.Gcn2-/- or B6J mice.

However, ataxia and tremors were much more profound in B6J-Gtpbp2nmf205-/-; Gcn2-/- mice than in

B6J-Gtpbp2nmf205-/- mice (data not shown). Consistent with the increased severity of the locomotor

Figure 4 continued

ATF4 targets are significantly upregulated in the P0 brain of B6J-n-Tr20-/-; Gtpbp2nmf205-/- mice, although no

unprocessed or uncharged forms of n-Tr20 are present. (n=4 mice per genotype) Error bars = SEM. *p<0.05,

**p<0.01, and ***p<0.001 (Student’s unpaired two-tailed t tests, C, E; one-way ANOVA, D).

DOI: 10.7554/eLife.14295.022

The following figure supplements are available for figure 4:

Figure supplement 1. Generation of mice overexpressing mutant n-Tr20.

DOI: 10.7554/eLife.14295.023

Figure supplement 2. Generation of mice with the deleted n-Tr20 allele.

DOI: 10.7554/eLife.14295.024
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phenotype, histological examination showed an increase in loss of granule cells in the B6J-

Gtpbp2nmf205-/-; Gcn2-/- cerebellum relative to the degeneration of these neurons in the B6J-

Gtpbp2nmf205-/- mice (Figure 5). No neuropathology was observed in B6J.Gcn2-/- or B6J mice as

expected. Furthermore, like B6J-Gtpbp2nmf205-/- mice, neurodegeneration was not observed in the

cerebellum of B6J-Gtpbp2nmf205-/-; Gcn2-/- mice at 3-weeks of age (data not shown), suggesting that

the accelerated neurodegeneration in B6J-Gtpbp2nmf205-/-; Gcn2-/- was not due to a change in the

onset of neurodegeneration but due to acceleration in progression of cerebellar granule cell loss.

In addition to accelerating cerebellar neuron loss, loss of GCN2 in B6J-Gtpbp2nmf205-/- mice leads

to novel sites of neuron loss. Degeneration of CA1 pyramidal neurons does not occur in B6J-

Gtpbp2nmf205-/- mice. However extensive death of these neurons was observed in the B6J-

Gtpbp2nmf205-/-; Gcn2-/- hippocampus further supporting that activation of GCN2 is protective

against neuron death in B6J-Gtpbp2nmf205-/- mice (Figure 6).

Figure 5. Loss of GCN2 accelerates B6J-Gtpbp2nmf205-/- cerebellar degeneration. (A) Hematoxylin and eosin- stained sagittal sections of B6J.Gcn2-/-,

B6J-Gtpbp2nmf205-/- (B6J-nmf205-/-), B6J-Gtpbp2nmf205-/-; Gcn2-/- and B6J cerebella. Higher-magnification images of cerebellar lobule IX and lobule VI

are shown on lower panels. Scale bars, 1 mm (top row), and 50 mm (bottom two rows). (B) Numbers of granule cells (n=3 mice/genotype). Means ± SEM

are shown. *p<0.05, **p<0.01, and ***p< 0.001 (one-way ANOVA).

DOI: 10.7554/eLife.14295.025
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Discussion
Failure to resolve stalled elongation complexes in mammalian neurons results in degeneration of

these cells, but the signaling pathways evoked by these complexes are unknown. Here we show that

GCN2 activates the integrated stress response in the brain of mice with stalled ribosomes, clearly

demonstrating an important feedback loop between elongation defects, in particular ribosome stall-

ing, and translation initiation. A recent study demonstrated that ribosomes bound to rare and thus

slowly decoded codons near the initiation codon of yeast reporter genes prevent the binding of sub-

sequent initiation complexes and decrease protein production (Chu et al., 2014). Our studies further

connect translation elongation and translation initiation by showing that stalled ribosomes can be

sensed by GCN2 leading to reprogramming of initiation.

Both mouse and yeast GCN2 are activated by deprivation of any amino acid or by conditions that

mimic low amino acid availability such as aminoacyl-tRNA synthetase inhibitors and amino acid ana-

logs, demonstrating that GCN2 is an important monitor of cellular amino acid levels. GCN2 is also

activated by glucose deprivation, proteasome inhibition, and other conditions, many of which also

decrease the amino acid pool, though in less obvious ways (Castilho et al., 2014; Deng et al.,

2002; Jiang and Wek, 2005; Yang et al., 2000). A decrease in the intracellular amino acid pool in

turn can lead to increased levels of deacylated tRNA. Competition assays have indicated that amino-

acylated tRNAPhe binds the enzymatically inactive HisRS-like domain of GCN2 less efficiently than

deacylated tRNAPhe, suggesting GCN2 preferentially binds uncharged tRNAs (Dong et al., 2000).

While not as efficient as acylated tRNAs, deacylated tRNA has been demonstrated to enter the A-

site of the ribosome (Murchie and Leader, 1978) where models of GCN2 activation suggest that it

is transferred to GCN2, possibly with the assistance of the GCN2 effector protein GCN1 to activate

the kinase activity of GCN2 (Marton et al., 1997; Ramirez et al., 1991; Wek et al., 1989).

Figure 6. GCN2 protects against loss of B6J-Gtpbp2nmf205-/- CA1 hippocampal neurons. (A) Hematoxylin and

eosin stained sagittal sections of 6-week-old B6J.Gcn2-/-, B6J-Gtpbp2nmf205-/- (B6J-nmf205-/-), B6J- Gtpbp2nmf205-/-;

Gcn2-/-, and B6J hippocampi. Higher magnification images of hippocampal CA1 are also shown. Scale bars, 250

mm (left panels), 100 mm (middle panels), and 20 mm (right panels).

DOI: 10.7554/eLife.14295.026
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Interestingly, our results suggest that ribosome stalling, in the absence of changes in levels of

deacylated tRNAs, is sufficient to activate GCN2. We examined tRNAArg
UCU (the corresponding iso-

acceptor for AGA, the only codon at which we observe stalled ribosomes upon ribosome profiling)

and failed to detect changes in uncharged levels of n-Tr20 isodecoders in B6J-Gtpbp2nmf205-/-

mutant cerebellum compared with that of B6J. Unprocessed tRNAs have also been shown to acti-

vate yeast ATF4, although this appears to occur independently of GCN2 (Qiu et al., 2000). Thus we

tested if ATF4 activation is modulated by cerebellar overexpression of the unprocessed B6J-associ-

ated n-Tr20 tRNA with or without the Gtpbp2 mutation and found no change in ATF4 activation.

Finally, ATF4 activation also occurs in the brains of B6J-Gtpbp2nmf205-/- mice in which the n-Tr20 is

entirely deleted and thus no unprocessed tRNA is produced. These results raise the intriguing possi-

bility that ribosome stalling may also contribute to GCN2 activation in other conditions, such as

amino acid deprivation, in which like B6J-Gtpbp2nmf205-/- neurons, lower levels of acylated tRNA are

present.

The exact mechanism for GCN2 activation by ribosome stalling remains unclear. Yeast GCN2

loosely binds to ribosomes via its C-terminus and ribosome association is required for GCN2 activa-

tion during amino acid deprivation (Narasimhan et al., 2004; Ramirez et al., 1991; Zhu and Wek,

1998). Thus GCN2 activation may occur upon association with stalled ribosomes. However, multiple

reports have failed to detect changes in the steady state ribosome association of yeast GCN2 during

amino acid starvation (Castilho et al., 2014). Further, studies suggest that association of mouse

GCN2 with ribosomes is lower, perhaps due to differences in the structures of yeast and mammalian

GCN2 (He et al., 2014). In agreement, we failed to observe changes in the low levels of ribosome-

associated GCN2 in the mouse brain of wild type or B6J-Gtpbp2nmf205-/- mice (Ishimura, unpub-

lished). As an alternative to alterations in ribosome binding, ribosome stalling may activate either

cytoplasmic or ribosome-associated positive (e.g., GCN1 or GCN20) or inactivate negative (e.g.,

Yih1/IMPACT or eEF1A) regulators of GCN2 (Castilho et al., 2014). Lastly, ribosome stalling could

alter cellular amino acid pools via unknown feedback mechanisms that in turn lead to GCN2 activa-

tion. Indeed, amino acid scarcity has been reported in cells during proteasome inhibition or after UV

treatment, both of which have been shown to activate GCN2 (Siegel and Swenson, 1964;

Suraweera et al., 2012).

Translational reprogramming mediated by the eIF2a kinases is thought to be adaptive during

stress by transiently shutting protein synthesis to prevent waste of cellular resources until manage-

ment of stress has occurred. However recent evidence suggests that under several stress conditions,

phospho-eIF2a/ATF4 may facilitate apoptosis. For example, Atf4-deficiency reduced oxidative

stress-induced neuron death and death of ER-stressed mouse embryonic fibroblasts and b-cells

(Han et al., 2013; Krokowski et al., 2013; Lange et al., 2008). Knockdown of Atf4 also attenuated

neuronal loss induced by locally applied Ab peptide (Baleriola et al., 2014). Recently, reports sug-

gest that increased levels of eIF2a phosphorylation observed in transgenic mouse models of Alz-

heimer’s disease and frontotemporal dementia and mice with prion disease amplifies

neurodegeneration and defects in synaptic function (Devi and Ohno, 2014; Ma et al., 2013;

Moreno et al., 2012; Radford et al., 2015; Segev et al., 2015), although other studies have failed

to confirm some of these findings (Devi and Ohno, 2013; Paesler et al., 2015; Sadleir et al.,

2014).

In contrast, we show that GCN2 activation protects neurons against death mediated by ribosome

stalling. Deletion of Gcn2 in B6J-Gtpbp2nmf205-/- mice resulted in accelerated progression of cerebel-

lar granule cell death. Furthermore in the hippocampus of B6J-Gtpbp2nmf205-/-; Gcn2-/-mice, we

observed degeneration of CA1 pyramidal cells that is not observed in B6J-Gtpbp2nmf205-/-, suggest-

ing the eIF2a/ATF4 pathway is vital for survival of these neurons during ribosome stalling. Our find-

ings are similar to those found by Harding et al in which induction of ATF4 downstream genes,

particularly genes encoding various antioxidant enzymes, attenuated death of mouse embryonic

fibroblast cells during amino acid starvation (Harding et al., 2003). Similarly this pathway was shown

to be critical for survival of tumor cells under nutrient deprivation conditions and in cultured dopami-

nergic neurons against toxin-induced cell death. (Sun et al., 2013; Ye et al., 2010). These results

suggest that the type of stress may influence the response of cells to reduction in initiation. Indeed,

under mild amino acid stress conditions (two–five fold decrease in tRNAs) a decrease in initiation has

been predicted to also decrease protein production via yeast whole-cell modeling simulations in

which ribosomes have been suggested to be rate limiting for protein production (Shah et al., 2013).
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However, under severe amino acid stress, reducing initiation is predicted to have the opposite effect

and significantly increase protein production. This latter model suggests that under severe stress,

cellular protein production is limited by elongation rather than initiation rates, and reducing the rate

of initiation increases the pools of free ribosomes and free tRNAs that correspond to the depleted

amino acid. While it is not clear if this model also applies to mammalian cells (and/or neurons) or

other types of proteotoxic stress, such alternative consequences on protein production in different

stress conditions may account for differential responses upon loss of the eIF2a/ATF pathway. It is

tempting to suggest that protection by GCN2 is conferred by phosphorylation of eIF2a and the

resulting decrease in the translational burden. However, recent findings have shown that cellular

stress can cause downregulation of global translation during cellular stress independently of eIF2a

phosphorylation (Knutsen et al., 2015), raising the possibility that eIF2a is not necessarily directly

causative in ameliorating neuron death in the B6J- Gtpbp2nmf205-/- brain.

Loss of Gcn2 in the B6J-Gtpbp2nmf205-/- cerebellum not only resulted in reduction of eIF2a phos-

phorylation and attenuated upregulation of ATF4 target genes, but also caused increased expres-

sion of genes that regulate nucleolar function, including those involved in ribosome biogenesis and

processing of non-coding RNAs. Several of these genes were also upregulated, albeit at lower levels,

in the B6J-Gtpbp2nmf205-/- cerebellum suggesting that neurons may sense a deficiency of functional

ribosomes and correspondingly activate genes involved in ribosome biogenesis. The failure to

decrease protein synthesis via GCN2-mediated eIF2a phosphorylation may result in a further deple-

tion of functional ribosomes necessitating additional compensatory increases in expression of genes

controlling nucleolar function. Interestingly, human mutations in genes that control ribosome bio-

genesis have been shown to induce nucleolar stress and a variety of pathologies (Armistead and

Triggs-Raine, 2014; Danilova and Gazda, 2015; Yelick and Trainor, 2015). More experiments are

necessary to test whether nucleolar stress contributes to death of neurons during conditions of ribo-

some stalling.

Materials and methods

Mouse strains
The Gtpbp2nmf205-/- mutant strain was generated by ENU-treatment of C57BL/6J (B6J) mice as

described previously (Ishimura et al., 2014). B6J.B6Nn-Tr20 mice and B6J.B6Nn-Tr20; Gtpbp2nmf205-/-

were described previously (Ishimura et al., 2014). B6J.Gcn2-/- mice (Eif2ak4tm1.2Dron) were obtained

from The Jackson Laboratory. To generate Tg(n-Tr20B6J) transgenic mice a 1.2-kb PCR fragment

containing the mutant n-Tr20 gene was amplified from B6J genomic DNA and injected into the pro-

nuclei of B6N zygotes. Founders were identified by PCR using primers specific for the B6J n-Tr20

allele (mutant tRNA forward, 5’ggacttctaatccagaggttgt3’; common reverse,

5’tatcccatcacgaagcaaaac3’).

To generate a targeting construct for the deletion of the n-Tr20 gene, a 251-bp DNA fragment

consisting of the wild-type n-Tr20 gene and 80-bp upstream and a 21-bp downstream genomic

sequence followed by a loxP site was PCR amplified. This amplicon was cloned into a vector contain-

ing a loxP-FRT-neo-FRT cassette, downstream of the second FRT site. For recombineering the tRNA

locus, this construct was amplified with overhangs and electroporated into E. coli SW105 cells carry-

ing a BAC (RP24-205L18). The modified BAC was then linearized at BsiWI sites in the BAC backbone

and electroporated into C57BL/6J ES cells. Southern blot and loss-of-allele (LOA) analysis were per-

formed to identify clones with the targeted allele, and clones were injected into C57BL/6J Perfect

Host blastocysts (Taft et al., 2013). For germline transmission of the mutant alleles, male chimeras

were mated to C57BL/6J females. The floxed n-Tr20 tRNA locus was deleted by mating heterozy-

gous mice mice with B6J.EIIa-Cre mice obtained from The Jackson Laboratory. Deletion of the n-

Tr20 locus was confirmed by PCR analysis of tail genomic DNA using primers flanking the locus for-

ward 1, 5’ggcgcgcctagtcgacataact3’; forward 2, 5’gcaggatgctgagatggctc3’; common reverse,

5’tatcccatcacgaagcaaaac3’). The Jackson Laboratory Animal Care and Use Committee approved all

animal protocols.
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Microarray analysis
The cerebellum and hippocampus were collected from B6J and B6J- Gtpbp2nmf205-/- mice at 3 weeks

and 5 weeks of age and RNA extraction was performed with Trizol (Invitrogen). cRNA was prepared

from each sample and hybridized to Affymetrix Mouse Gene 1.0 ST Arrays using standard methods.

Three biological replicates were performed for each time point and genotype. Average signal inten-

sities for each probe set were calculated using Expression Console software (Version 1.1, Affymetrix)

using the average (RMA) method. Fs, a modified F-statistic incorporating shrinkage estimates of vari-

ance components from within the R/-MAANOVA package was used to determine differentially

expressed genes by one pairwise comparisons (Cui et al., 2005; Wu et al., 2003). Permutations

analysis was used to calculate the levels of statistical significance of pairwise comparisons and these

were adjusted for multiple testing using the false discovery rate, q-value method (Storey, 2002). Dif-

ferentially expressed genes are declared at an FDR q-value threshold of 0.05.

RNA-Seq
Library preparation for gene expression comparison among B6J, B6J-Gcn2-/-, B6J- Gtpbp2nmf205-/-,

and B6J-Gtpbp2nmf205-/-; Gcn2-/- was performed based using Illumina TruSeq methodology. Cerebel-

lum at 3 weeks of age from each genotype was isolated and immediately frozen in liquid nitrogen.

Total RNA was extracted using Trizol reagent (Life Technologies). RNA were further purified using

the Qiagen RNeasy MinElute Cleanup Kit per manufacturer’s instructions (Qiagen) and the quality of

the purified RNA was assessed using an Agilent 2100 Bioanalyzer instrument and RNA 6000 Nano

LabChip assay. Messenger RNA was purified using biotin-tagged poly dT oligonucleotides and

streptavidin-coated magnetic beads. After fragmentation of mRNA, libraries were prepared using

TruSeq RNA Sample Prep Kit v2 (Illumina). Quality of libraries was assessed on Agilent 2100 Bioana-

lyzer. Paired-end reads (2X100bp) were obtained using the HiSeq2500 (Illumina). The sequence

reads were processed to a set of comprehensive QC metrics and then FASTQ data file of nucleotide

sequences.

Each library was split into two lanes for sequencing, yielding two FASTQ files that were then

merged. Read mapping and quality control, read clipping and trimming were performed at the com-

mand line with options: 1) fastx_clipper -Q33 -a CTGTAGGCACCATCAAT -l 25 -c -n -v -i $fastqfile -

o temp_clipped.fastq and 2) fastx_trimmer -Q33 -f 2 -l 100 -i temp_clipped.fastq -o temp_trimmed.

fastq. The resulting reads were mapped to a fasta file containing all coding transcripts plus the last

18nts of the 5’UTR and the first 18nts of the 3’UTR downloaded from Ensembl Biomart (http://www.

ensembl.org/biomart/martview/) using bowtie: bowtie -S -p 16 -n 1 -m 1 -l 23 –norc $fastafile temp_-

trimmed.fastq where only reads uniquely matching to the sense strand and containing not more

than one mismatch were considered.

After mapping, read counts were calculated with an ad-hoc script, and then genes with significant

up and down-regulation were calculated using DESeq2 (Love et al., 2014). We applied DESeq2 to

detect differentially expressed genes at the default stringency, i.e. p-value of 0.1 (multiple-testing

adjusted) or lower. Genes with low read counts were removed from the analysis using the indepen-

dent filtering option in DESeq2 as determined by the p-value=0.1 threshold. We note that this

results in genes with low read counts being given an adjusted p value of NA, and therefore they are

not plotted in our volcano plots.

Gene ontology
Upstream regulator analysis was performed with IPA (Ingenuity Pathway Analysis) browser (http://

pages.ingenuity.com/Ingenuity_Login.html). Gene Ontology (GO) and Kegg pathway analysis was

performed using the DAVID bioinformatics web server (http://david.abcc.ncifcrf.gov/) by uploading

the gene lists from microarray analysis that were significantly upregulated or downregulated in B6J-

Gtpbp2nmf205-/- compared to B6J brains or gene lists from RNAseq analysis (Huang da et al., 2009).

The functional annotation chart and clustering analysis modules were employed for gene-term

enrichment analysis. GO terms and Kegg pathway terms with a p-value < 0.05 were considered

enriched.

Activated microglia and astrocyte gene lists were obtained from Glia Open Access Database

(GOAD, http://bioinf.nl:8080/GOAD/databaseSelectServlet) (Holtman et al., 2015). Microglia

related genes were obtained from the studies of Alzheimer’s disease model (APPSwe; PS1dE9)
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(Orre et al., 2014) and of ALS disease model (Sod1, Endpoint) (Chiu et al., 2013). Astrocyte related

genes were obtained from the study of Alzheimer’s disease model (App-Ps1) (Orre et al., 2014). Dif-

ferentially expressed >1.5 fold genes with a p value < 0.05 were analyzed.

Histology and immunofluorescence
Mice were transcardically perfused with Bouin’s fixative and brains were embedded in paraffin. Sec-

tions were stained with hematoxylin and eosin according to standard protocols. For immunofluores-

cence, mice were perfused with 4% paraformaldehyde (PFA) and brains were paraffin embedded.

Sections were stained with rabbit anti-Iba1 (Wako, Richmond, VA) or a mouse anti-GFAP (Sigma

Aldrich, St. Louis, MO). Signal was visualized with Alexa Fluor 488-congugated or 555-conjugated

donkey secondary antibodies (Invitrogen).

Cell counts
Granule cells, identified by their distinct nuclei were counted in a 50 � 50 mm area from lobule VI

and IX in hematoxylin and eosin stained sections that were taken at midline from three mice of each

genotype.

Northern blot and tRNA aminoacylation analysis
RNA extraction, Northern blot analysis, and tRNA aminoacylation analysis were performed as

described previously (Ishimura et al., 2014). Blots were hybridized with a 32P-labeled oligo probe

(TCT_nonchromosome1; [Ishimura et al., 2014]) recognizing the common sequence among

tRNAArg
UCU isodecoders n-Tr21, n-Tr22, n-Tr23, and n-Tr25. Northern blot analysis of brain RNA

from the B6J-n-Tr20-/- mice and B6N-Tg(n-Tr20B6J) mice was performed using a 32P-labeled oligo

probe specific to n-Tr20 as described previously (Ishimura et al., 2014).

Western blotting
Proteins were extracted from cerebellum at three weeks of age as described previously

(Carnevalli et al., 2004) and were resolved on SDS-PAGE gels prior to transfer to PVDF membranes.

Membranes were blocked with 5% bovine serum albumin prior to incubations with primary antibod-

ies. Total eIF2a and phosphorylated eIF2a (Ser51) were detected using anti-human rabbit polyclonal

antibodies (Cell Signaling Technology, Danvars, MA) and anti-human rabbit polyclonal antibody (Invi-

trogen), respectively. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was detected using

anti-human mouse monoclonal antibody (clone 3C2, Sigma Aldrich). Membranes were subsequently

incubated with HRP-conjugated anti-rabbit or anti-mouse IgG (1:5,000; Bio-Rad Life Science, Hercu-

les, CA). Signals were detected with ECL Plus (GE Healthcare Life Sciences) and band intensities

were quantified using ImageJ software (NIH).

RT-qPCR and Xbp1 analysis
Cerebella were isolated and immediately frozen in liquid nitrogen. Total RNA was extracted with Trizol

reagent (Life Technologies). 1.3 mg of total RNA was treated with DNAse I (Sigma) and then used for

cDNA synthesis with oligo(dT)20 primers and the SuperScript III First-Strand Synthesis System (Invitro-

gen). PCR were performed using iQ SYBR Green Supermix (Bio-Rad) using a iQ5 Multicolor Real-Time

PCR Detection System (Bio-Rad). Primers were as follows: Sesn2-forward, 5’ccttctccacacccagacat3’;

Sesn2-reverse, 5’agcctctggatcagcgagta3’;Mthfd2-forward, 5’ccgccagtcactcctatgtt3’;Mthfd2-reverse,

5’ggaggccatctacgttctca3’; Ddr2-forward, 5’tgatggagctgttgggtaca3’; Ddr2-reverse, 5’ccgttggtag-

cactttcgtt3’; Aldh1l2-forward, 5’gaggagcttctgccatcaac3’; Aldh1l2-reverse, 5’gcgagtccactgtgtcattg3’;

Chac1-forward, 5’gtacggctccctagtgtgga3’; Chac1-reverse, 5’tcttcaaggagggtcaccac3’, Asns-forward,

5’aagatgggtttctggctgtg3’; Asns-reverse, 5’gcaactttgccatttggttt3’; Stc2-forward, 5’gattcatttcaag-

gatctcc3’; Stc2-reverse, 5’ggttcacaaggtccacatag3’; Atf5-forward, 5’cctgtggattaaagggggta3’; Atf5-

reverse, 5’agcgtggaagattgttcagc3’; Eif4ebp1-forward, 5’ctagccctaccagcgatgag3’; Eif4ebp1-reverse,

5’cttgggggacatagaagcat3’; Cyb5r1-forward, 5’gctttctgctttttgccaac3’; Cyb5r1-reverse,

5’caaagcccttgctgtaggtc3’ Gapdh-forward, 5’cattgtcataccaggaaatg3’, Gapdh-reverse, ggagaaacctgc-

caagtatg3’. Expression of each gene of interest is normalized to Gapdh using the 2-DDCT method

(Livek and Schimittgen, 2001). Primers used for Xbp1 splicing analysis were Xbp1-forward, 5’gaac-

caggagttaagaacacg3’, Xbp1-reverse, 5’aggcaacagtgtcagagtcc3’.
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Statistics
All data are presented as means ± SEM. Data were analyzed by one-way ANOVA or Student’s t-test.

p<0.05 was considered statistically significant.
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