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Abstract Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which

contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive

progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting

blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear.

Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with

mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial

ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-

B2 ligand in GSC enabled perivascular migration through homotypic forward signalling.

Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by

mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic

xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours

with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that

targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and

proliferation in GBM.

DOI: 10.7554/eLife.14845.001

Introduction
Glioblastoma (GBM) is the most common and aggressive type of primary brain tumour and one of

the most lethal types of cancer (Chen et al., 2012b). Current therapies consist of maximally safe sur-

gical resection followed by radio and chemotherapy. However, these are largely ineffective and
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GBM invariably recur following treatment, resulting in a median survival of <15 months

(Weathers and Gilbert, 2014).

A leading cause of GBM recurrence is the diffuse infiltration of the tumour cells into the surround-

ing brain parenchyma, which limits efficacy of surgery and radiotherapy (Cuddapah et al., 2014;

Lamszus et al., 2003). In addition, GBM contain subpopulations of cells with stem cell properties

termed glioblastoma stem-like cells (GSC), which are able to self-renew, differentiate into tumour-

bulk cells and reconstitute a phenocopy of the original lesion upon transplantation (Venere et al.,

2011). It is therefore increasingly recognized that GSC are critical players in tumour initiation and

progression. Furthermore, GSC were shown to be intrinsically resistant to chemo- and radiotherapy

and more invasive than non-stem tumour cells (Chen et al., 2012a; Cheng et al., 2011; Bao et al.,

2006; Venere et al., 2011; Sadahiro et al., 2014). This suggests that GSC might be the primary

cells within GBM responsible for infiltration and tumour recurrence following therapy and that GSC-

targeting therapies should be beneficial for GBM treatment.

GBM invasion occurs along three main routes: the white matter tracts, the interstitial space of the

brain and the perivascular space surrounding blood vessels (Scherer, 1938; Cuddapah et al., 2014).

Invasion along the perivascular space is a favourable migration route because endothelial cells

secrete chemoattractants, which actively recruit tumour cells to the vasculature (Montana and Son-

theimer, 2011; Cuddapah et al., 2014). In addition, the perivascular space is enriched in migration-

promoting ECM components and is fluid-filled, thereby opposing little physical resistance to invad-

ing tumour cells (Gritsenko et al., 2012; Cuddapah et al., 2014). Importantly, within GBM, GSC are

particularly prone to perivascular invasion, likely due to their similarities with normal neural progeni-

tors, which preferentially migrate along blood vessels during development and after injury in the

adult (Cuddapah et al., 2014; Watkins et al., 2014). In agreement with this, GSC reside in perivas-

cular niches and the majority of invading cells migrate along the host vasculature in xenograft GSC

models of both mouse and human origin (Farin et al., 2006; Zagzag et al., 2008; Baker et al.,

2014; Calabrese et al., 2007; Winkler et al., 2009; Watkins et al., 2014).

eLife digest Glioblastoma is the most common and deadly type of brain cancer. On average,

patients with glioblastoma only survive 15 months even with aggressive treatment. One of the main

reasons that therapy fails is the strong tendency of the tumor cells in this form of cancer to spread

into the normal brain tissue. This makes it impossible for surgeons to completely remove the tumor,

which means that the disease will almost always recur.

Within the brain, invading glioblastoma tumor cells spread along pre-existing structures, like

blood vessels. When the tumors use blood vessels as a highway to the rest of the brain it is called

“perivascular invasion”. Scientists do not know exactly how glioblastoma cells move along the blood

vessels. Learning more about this type of tumor cell movement could help scientists develop

treatments to stop the tumor cells from spreading.

Now, Krusche et al. show that the glioblastoma tumor cells highjack the system that normally

helps keep brain cells in place. Experiments with mouse and human tumor cells grown in the

laboratory and injected in mice to produce glioblastoma tumors showed that a family of proteins

called ephrins determines whether perivascular invasion occurs. Ephrins are found on the surface of

both tumor cells and blood vessels. Normally, the blood vessels use these proteins to block the

spread of normal brain cells. However, tumor cells override this normal anti-tumor mechanism and

become able to spread along the blood vessels.

Specifically, Krusche et al. showed that an increase in the levels of ephrin-B2 in tumor cells allows

them to move along the blood vessels. Ephrin-B2 was also found to drive the multiplication of the

tumor cells independently of the protein’s interactions with the blood vessels. Using antibodies to

block ephrin-B2 in tumors greatly reduced tumor size and extended survival in mice with

glioblastoma tumors. The experiments suggest the blocking ephrin-B2 might be a therapy that both

stops the glioblastoma cells from spreading and prevents the tumor cells from multiplying.

DOI: 10.7554/eLife.14845.002
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Besides infiltration, GBM/vascular interactions underlie two additional key tumourigenic mecha-

nisms. First, tumour cell migration along pre-existing normal blood vessels is an important tumour

vascularisation mechanism, known as vascular co-option, by which tumours gain access to oxygen

and nutrients independent of angiogenesis (Donnem et al., 2013). Vascular co-option plays crucial

roles during initial tumour growth, seeding of satellite lesions and tumour recurrence following ther-

apy. Second, association with the perivascular niche provides GSC with important self-renewal and

survival signals, which support GSC tumour-propagating abilities and therapeutic resistance

(Charles and Holland, 2010). Therefore, interactions with the vasculature, particularly within the

GSC compartment, are critical throughout gliomagenesis and were indeed proposed as promising

therapeutic targets for GBM treatment, but the mechanisms remain poorly defined

(Cuddapah et al., 2014; Vehlow and Cordes, 2013).

GSC share many properties with normal neural stem cells (NSC), such as stem cell markers

expression (Sox2, Nestin, CD133, ALDH1, etc.) and multilineage differentiation and, importantly,

extensive evidence indicates that NSC themselves can be cells of origin in GBM (Chen et al., 2012b;

Venere et al., 2011; Chen et al., 2012a). However, GSC also significantly differ from their normal

counterparts, in that they harbour transforming mutations that drive their tumourigenic properties,

including deregulated proliferation and increased invasiveness (Engstrom et al., 2012). Therefore,

the comparison of GSC carrying known mutations to otherwise genetically matched normal NSC,

should inform disease mechanisms, enable genotype-phenotype correlation and may identify new

therapeutic targets for GBM.

In this study, we generated a murine GBM model by sequentially introducing oncogenic lesions

relevant to the human disease into normal NSC and compared vascular interactions of the resultant

transformed GSC-like cells and immortalised parental cells to interrogate mechanisms of perivascular

invasion. Using this system, we identified ephrin-B2 as a critical driver of perivascular invasion. eph-

rin-B2 is a member of the Eph/ephrin family of receptor tyrosine kinases and their membrane-bound

ligands, a fundamental cell communication system with widespread roles in tissue development,

maintenance and disease (Pasquale, 2010). Activation of Eph receptors by ephrin ligands on adja-

cent cells modulates cell behaviour, including migration, proliferation and stemness, by eliciting for-

ward signalling downstream of Ephs and reverse signalling downstream of ephrins (Kullander and

Klein, 2002). Deregulation of the Eph/ephrin system contributes to the pathogenesis of many types

of cancer, including GBM (Pasquale, 2010). Indeed, EphA2 and EphA3 were shown to drive GSC

self-renewal, whereas EphA2, EphA4, EphB2, ephrin-B2 and ephrin-B3 have all been linked to GBM

invasion, through incompletely understood mechanisms (Day et al., 2014; Tu et al., 2012;

Binda et al., 2012; Day et al., 2013; Nakada et al., 2010; 2011).

We found that ephrin-B2 expressed on vascular endothelial cells inhibits the migration of non-

tumourigenic cells, resulting in cell confinement. In contrast, transformation to GSC-like cells over-

rides this tumour-suppressive mechanism to drive perivascular invasion. We show that this is caused

by upregulation in GSC-like cells of the same ephrin-B2 ligand, which desensitizes the cells to vascu-

lar confinement by constitutively activating Eph forward signalling non-cell-autonomously. Further-

more, we discovered that ephrin-B2 reverse signaling also elicits tumour cell proliferation in the

absence of normal anchorage signals by driving Rho-A-dependent cytokinesis in a cell-autonomous

manner. Consistent with these important roles, ephrin-B2 overexpression was sufficient to fully trans-

form immortalised NSC to the same extent as oncogenic Ras. In human GBM specimens, high Eph-

rin-B2 levels were detected in perivascular tumour cells with GSC features at the infiltrative tumour

margin, indicative of a role in the GSC compartment in primary tumours. Remarkably, EFNB2 knock-

down in primary human GSC isolated from patient material or treatment of established tumours

derived from these GSC with anti-ephrin-B2 single chain blocking antibodies strongly suppressed

tumourigenesis, by concomitantly inhibiting vascular association and proliferation. Thus, ephrin-B2

may be an attractive therapeutic target for the treatment of GBM.
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Results

Endothelial ephrin-B2 compartmentalises immortalized, but not
transformed, neural stem cells
To investigate mechanisms of GSC/vascular interactions in the context of syngeneic, immuno-com-

petent brains, we sequentially introduced mutations commonly found in human GBM (RTK activa-

tion,p53 and RB inactivation) in primary murine SVZ NSC to generate fully transformed, GSC-like

cells and genetically-matched immortalised NSC (Network, 2008). We used two complementary

strategies for this. First, we used a ‘classical’ transformation paradigm previously shown to drive glio-

magenesis in vivo, whereby NSC were immortalised with SV40 large-T antigen (imNSC1) and trans-

formed with RasV12 (herein referred to as GSC1) to inactivate Trp53 and Rb, and mimic the

increased Ras signalling that results from Nf1 loss, respectively (Blouw et al., 2003; Hahn et al.,

1999; Sonoda et al., 2001; Huszthy et al., 2012). This approach allowed us to readily test candi-

date effectors by transforming NSCs isolated from mice carrying the specific mutation, as previously

reported (Blouw et al., 2003). In the second approach, we induced transformation by defined

genetic changes in the same pathways to rule out artifacts of oncogene overexpression. Nf1fl/fl NSCs

were immortalised with p53 shRNAs and ectopic CDK4 to inactivate p53 and the p16/RB axis,

respectively (imNSC2), and transformed by Cre-mediated Nf1 deletion (herein referred to as GSC2).

Unlike previously reported for SVZ NSC in vitro (Wang et al., 2012), increased Ras signalling did

not cause premature glial differentiation of the NSC in vitro in either model (Figure 1—figure sup-

plement 1a and Tables 1 and 2 and Supplementary files 1 and 2). In contrast, GSC1 and GSC2

retained stem cell properties in vitro as judged by high clonal efficiency in neurosphere culture and

differentiation into glial and neuronal lineages upon mitogen withdrawal (Figure 1—figure supple-

ment 1a–c). Furthermore, both cell types (but not their immortalised controls) formed colonies in

soft agar (Figure 4c,d) and gave rise to highly aggressive tumours upon intracranial transplantation

in immunocompromised mice (5/5 animals, 100% penetrance, median survival 24d for GSC1 and

38.5 for GSC2), whereas GSC1 also did so in syngeneic animals (5/9 animals, 56% penetrance,

median survival 73d), indicative of a more aggressive phenotype. Consistent with their stem-like

properties, clonal dilution experiments revealed that as little as 100 cells of either line was sufficient

to generate aggressive tumours (Figure 1—figure supplement 1d). Importantly, the tumours reca-

pitulated the histopathology and gene expression signatures of human GBM, including presence of

necrosis, neovascularization, nestin and Sox2 expression and a strong enrichment in the Verhaak

mesenchymal subtype gene signature (Figure 1a–d and Figure 1—figure supplement 1e) (Klei-

hues, 2000; Verhaak et al., 2010). The tumours presented diffuse borders with the majority of

invading cells migrating along blood vessels and displacing astrocyte endfeet and pericytes to come

in direct contact with endothelial cells, as previously reported for both murine and human GSC

(Figure 1b and Figure 1—figure supplement 1f) (Zagzag et al., 2008; Farin et al., 2006;

Nagano et al., 1993; Watkins et al., 2014). Thus, GSC1 and 2 resemble mesenchymal glioblastoma

stem-like cell lines and are highly similar, interchangeable model systems.

Next, as only GSC1 formed tumours in syngeneic mice, we used this model to assess interactions

with the normal brain vasculature in real time in vivo using 2-photon microscopy. GFP-labeled GSC1

or imNSC1 were injected at a mimimum depth of 150–200 mm into the cortex of syngeneic recipients

under a chronic cranial window and 5–7 days later their migration in relation to Dextran-TxRed-

labeled blood vessels was imaged over a period of 6 hr (Figure 1e,f and Figure 1—figure supple-

ment 1g) (Holtmaat et al., 2009). Although imNSC do not form tumors long-term, the cells were

still present, viable and migratory at this time-point, as indicated by morphology and motility outside

of the perivascular space. Consistent with previous reports, both cell types readily associated to the

vasculature (Kokovay et al., 2010; Baker et al., 2014; Farin et al., 2006; Nagano et al., 1993;

Watkins et al., 2014; Winkler et al., 2009). However, while individual GSC1 migrated out of the

tumour mass along blood vessels, resulting in cell scattering, imNSC remained in stationary groups

(Figure 1e,f). GSC1 perivascular migration was independent of their position relative to the tumour

bulk or cell density, with single cells migrating from the main tumour as efficiently and at similar

speed as GSC1 migrating at a distance from the tumour margin (Figure 1e and Figure 1—figure

supplement 1h). Similarly, rare sparse imNSC further away from the tumour margin failed to migrate

along blood vessels (Figure 1—figure supplement 1h). Importantly, this effect was not due to a

general impaiment in imNSC migration, as these cells migrated to a similar extent as GSC in vitro
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Figure 1. The vasculature compartmentalises immortalised neural but not glioma stem cells through endothelial ephrin-B2. (a) Representative H&E

staining of GSC1 tumours 60 days after intracranial injection into nude mice. Neovascularisation (i), focal necrosis (ii) and increased cellular density (iii)

Figure 1 continued on next page
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(Figure 1—figure supplement 1i). This suggests that signals from the vasculature compartmental-

ises non-tumourigenic cells to restrict their migration, whereas transformation overrides these signals

to enable perivascular spread.

To test this more directly and identify potential effectors, we developed an in vitro cell migration

assay that mimics the response of infiltrating GBM cells to initial contact with endothelial cells. We

seeded both imNSC/GSC models and primary brain microvascular endothelial cells (bmvEC) in sepa-

rate wells of culture inserts and assessed migration of the two cell types towards each other follow-

ing insert removal by time-lapse microscopy. Remarkably, this assay closely recapitulated in vivo

migratory patterns, in that endothelial cells strongly repelled and compartmentalised imNSC forming

a sharp boundary (Figure 1 and Video 1). Similar effects were observed with normal NSC, indicating

that compartmentalisation is not caused by immortalisation, but rather reflects the response of nor-

mal cells to the vasculature (not shown). In contrast, GSC1 were refractory to compartmentalisation

and migrated over the endothelial monolayer, giving rise to an uneven and longer boundary

(Figure 1g and Video 2). The behavior of GSC2 was identical to GSC1, confirming that it is a

Table 1. Gene set enrichment analysis FDR q-values for astrocyte, oligodendrocyte, OPC and neuron signatures in GSC lines vs NSC.

GAGE analysis q-value (FDR)

GSCvsNS GSC1vsNS GSC2vsNS Cell type term gene number

oligo 1 1 1 497

neuron 1 1 1 497

astro 1 1 1 486

opc 1 1 1 490

DOI: 10.7554/eLife.14845.007

Figure 1 continued

can be observed. (b) Representative fluorescent images of GFP-labeled GSC1 tumours stained for the vascular marker CD31 (red) and GFP to identify

tumour cells (green, left), the stem cell markers nestin (green, middle) and Sox2 (red, right), as indicated. The arrows indicate examples of GFP-labeled

GSC1 that have migrated away from the tumour mass and are invading along the vasculature as single cells or in small groups. Scale bars = 50 mm. (c)

Heatmap showing Verhaak subtype classification of 4 GSC1 and 3 GSC2-derived tumours in vivo. Colour scale with corresponding normalised

enrichment scores is shown on the right. All tumours classified as mesenchymal with a nes >2.6. (d) Mean GSEA enrichment plot for the Verhaak

mesenchymal gene signature in the GSC lines. Both nom p-val and FDR q-val = 0. (e) Intravital 2-photon micrographs of GFP-labeled imNSC1 and

GSC1 cells injected into the cortex of wildtype (Efnb2 WT EC) and endothelial specific Efnb2 knockout mice (Efnb2-/- EC) and imaged 7 days later over

6 hr through an intracranial window at a depth of 200 mm. The vasculature was labeled by tail-vein injection of Tx-red conjugated Dextrans (3000 MW).

Arrowheads indicate representative perivascular migration patterns for each genotype. Scale bar = 50 mm. (f) Quantification of the migrated distance of

the cells depicted in (c). Each dot represents one cell. n indicates number of animals imaged. One way ANOVA with Tukey post hoc test. (g) Left:

schematic representation of the experimental set up for in vitro migration assays with endothelial cells. Middle: merged fluorescent and phase contrast

still images taken from time-lapse microscopy experiments of GFP-labeled imNSC1 and GSC1 (green) migrating towards brain microvascular

endothelial cells (bmvEC, unlabeled cells) at the indicated time points. Right: quantification of boundary length at 60 hr. Students t-test. Scale

bar = 500 mm. (h) Still fluorescence and phase contrast merged images of GFP-labeled imNSC2 and GSC2 migrating towards bmvEC (unlabeled, left)

for 60 hr and quantification (right) as in (e). Error bars denote s.e.m., Students t-test. Scale bar = 500 mm. (i) Schematic representation of the

experimental set up for in vitro migration assays toward recombinant ephrin-B2-Fc (left), phase contrast images (middle) and quantification (right) of

imNSC1 and GSC1 migration against coated ephrinB2-Fc pre-clustered with fluorescently-labelled anti-Fc antibodies at 60 hr. Error bars denote s.e.m.,

Students t-test. Scale bar = 500 mm. Green dots denote boundary of ephrin-B2 coating identified by fluorescence. (j) Still images (left) and

quantification (right) of GFP-labeled imNSC (GFP) migrating towards bmvEC (unlabeled) treated with control siRNA (Scr) or siRNA against Efnb2

(siEfnb2) for 60 hr. Scale bar = 500 mm. Error bars denote s.e.m., Students t-test. For this and later figures dots indicate individual data points and

***p<0.001; **p<0.01 and *<0.05. See also Figure 1—figure supplement 1 and Figure 1—source data 1.

DOI: 10.7554/eLife.14845.003

The following source data and figure supplements are available for figure 1:

Source data 1. Raw data for all quantification of NSC/GSC migrated distance and boundary length shown in Figure 1.

DOI: 10.7554/eLife.14845.004

Figure supplement 1. GSC1/2 resemble glioma stem-like cells.

DOI: 10.7554/eLife.14845.005

Figure supplement 1—source data 1. Raw data for all quantitative analyses shown in Figure 1—figure supplement 1.

DOI: 10.7554/eLife.14845.006
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general property of transformed cells (Figure 1h). Eph/ephrin signalling is one of most important

mediators of cell-cell contact-dependent boundary formation and we reported that endothelial eph-

rin-B2, the most abundant ephrin-B2 in the endothelial cells in vivo and in vitro (Figure 1—figure

supplement 1j), induces cell sorting of normal NSC (Cayuso et al., 2014; Ottone et al., 2014;

Gale et al., 2001). We therefore tested the role of ephrin-B2 in endothelial-induced compartmentali-

sation by assessing imNSC1 migration towards recombinant ephrin-B2-Fc. As shown in Figure 1i

and Videos 3 and 4, ephrin-B2-Fc compartmentalised imNSCs, but not GSC, to the same extent as

endothelial cells. This effect was highly specific and was not due to general differences in migration

between imNSC and GSC cells because imNSC migrated onto Fc peptides, ephrin-A1 or ephrin-A5-

Fc ligands to a similar extent as GSC cells (Figure 1—figure supplement 1i). Conversely, Efnb2

knock-down in endothelial cells disrupted boundary formation against imNSC, indicating that endo-

thelial ephrin-B2 is both necessary and sufficient for compartmentalisation (Figure 1j and Figure 1—

figure supplement 1j).

To assess the role of vascular ephrin-B2 in vivo , we performed intravital imaging of imNSC

implanted in inducible endothelial-specific conditional Efnb2 knock-out mice (Efnb2 iDEC), following

postnatal tamoxifen-mediated recombination (Ottone et al., 2014). Strikingly, selective deletion of

ephrin-B2 in the endothelium elicited robust perivascular migration of imNSC1, confirming that vas-

cular ephrin-B2 compartmentalises non-tumourigenic cells in vivo (Figure 1e,f).

Upregulation of ephrinB2 drives perivascular invasion of GSC
As we reasoned that changes in Eph/ephrin levels might underlie the ability of GSC to escape eph-

rin-B2-mediated vascular compartmentalisation, we interrogated expression levels of all Ephs and

ephrins in imNSC1/2 and GSC1/2 by qRT-PCR (Figure 2a and Figure 2—figure supplement 1a).

Normal NSC controls were included to rule out p53 and Rb-dependent changes unrelated to peri-

vascular migration. We found that p53 and Rb inactivation did not change Eph/ephrin expression

Table 2. Gene set enrichment analysis FDR q-values for astrocyte, oligodendrocyte, OPC and neuron signatures in NSC vs GSC lines.

GAGE analysis q-value (FDR)

NSvsGSC NSvsGSC1 NSvsGSC2 Cell type term gene number

astro 4.06848E-22 2.84603E-23 2.04565E-19 490

opc 1.57235E-16 7.01306E-17 3.24522E-14 486

neuron 1.51727E-06 4.55938E-07 4.58202E-05 497

oligo 0.064920265 0.06708047 0.222744258 497

DOI: 10.7554/eLife.14845.008

Video 1. Endothelial cells compartmentalise imNSC.

Merged fluorescent and phase contrast movie from

time-lapse microscopy experiments of cell-tracker

labelled imNSC1 (green) migrating towards brain

microvascular endothelial cells (bmvEC, unlabelled

cells). Images were taken every 10 min for 60 hr.

DOI: 10.7554/eLife.14845.009

Video 2. GSC escape endothelial

compartmentalisation. Merged fluorescent and phase

contrast movie from time-lapse microscopy

experiments of cell-tracker labelled GSC1 (green)

migrating towards brain microvascular endothelial cells

(bmvEC, unlabelled cells). A slight decrease in

fluorescence was observed due to higher proliferation

rate of the cells. Images were taken every 10 min for

60 hr.

DOI: 10.7554/eLife.14845.010
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substantially. In contrast, elevated Ras signalling, triggered by either RasV12 expression or Nf1 loss,

strongly downregulated three Ephs (Epha4, Ephb1 and Ephb2) and upregulated two ephrins (Efna5

and Efnb2) in both models. However, western analysis indicated that of these genes, only Ephb1,

Ephb2 and Efnb2 changed significantly at the protein level (Figure 2b) and were thus further

assessed in migration assays against ephrin-B2-Fc. Surprisingly, we found that re-introduction of

Ephb1 or Ephb2 by overexpression in GSC1 (Figure 2—figure supplement 1b) did not affect migra-

tion towards recombinant ephrin-B2-Fc, indicating that changes in the complement of Eph receptors

do not underlie unimpeded migration, as in other systems (Figure 2c) (Astin et al., 2010). Instead,

genetic deletion of Efnb2 in GSC1 (Figure 2—figure supplement 1c) fully rescued boundary forma-

tion in response to ephrin-B2-Fc and endothelial cells in vitro and blocked perivascular migration in

vivo (Figure 2c–e). Conversely, Efnb2 overexpression (Figure 2—figure supplement 1d) conferred

imNSC1 with the ability to migrate over recombinant ephrin-B2 and a cultured endothelium and to

escape vascular compartmentalisation in vivo (Figure 2c–e). Together, these results show that eph-

rin-B2 upregulation downstream of Ras underlies GSC evasion of ephrin-B2-mediated endothelial

repulsion and invasion along the vasculature.

Elevated ephrin-B2 desensitizes GSC to vascular repulsion by
constitutively activating homotypic forward signalling
To understand the mechanisms involved in ephrin-B2-driven perivascular invasion, we characterised

the early events of imNSC1 and GSC1 migration towards ephrin-B2-Fc in greater detail. We noticed

that, although all GSC cells eventually migrated over ephrin-B2-Fc, a proportion of the cells (~20%)

are repelled on first contact (Figure 3a). Repelled cells invariably migrated towards ephrin-B2-Fc

either as single cells or in small groups (<2 contacts), whereas non-repelled cells migrated in larger

groups (>3 contacts) (Figure 3b). This was not the case in imNSC cultures, where all cells were

equally repelled, regardless of the number of homotypic cell-cell interactions at initial contact. This

suggested that homotypic cell-cell interactions among GSC, mediated by intrinsic ephrin-B2, might

underpin evasion of extrinsic ephrin-B2 repulsion. To test this, we repeated the migration assay

under conditions that disrupt GSC cell-cell contacts by inhibiting cadherin-based junctions

(Ottone et al., 2014). Both culture in low Ca2+ media and dominant-negative N-cadherin overex-

pression completely disrupted cell-cell junctions without affecting cell motility (Figure 3—figure sup-

plement 1a,b) and blocked GSC migration over ephrin-B2 ligands, indicating that homotypic cell-

cell interactions are specifically required (Figure 3c).

Video 3. imNSC are strongly compartmentalised by

ephrinB2 ligand. Merged fluorescent and phase

contrast movie from time-lapse microscopy of imNSC1

migrating towards coated ephrinB2-Fc labelled with

fluorescent antibody (green). Images were taken every

10 min for 60 hr.

DOI: 10.7554/eLife.14845.011

Video 4. GSC become insensitive to ephrinB2 ligand.

Merged fluorescent and phase contrast movie from

time-lapse microscopy of GSC1 migrating towards

coated ephrinB2-Fc labelled with fluorescent antibody

(green). Images were taken every 10 min for 60 hr.

DOI: 10.7554/eLife.14845.012
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Figure 2. Upregulation of ephrin-B2 in GSCs enables perivascular invasion (a) Quantitative RT-PCR analysis of indicated Eph receptors and ephrin

ligands. Error bars denote s.e.m., p values of differences in expression between imNSC1 and GSC1 are shown. Multiple t-test analysis. (b) Western

analysis of levels of the indicated proteins in normal neural stem cells (NSC), imNSC1 and GSC1. n = 3 (c) Kymographs from time-lapse experiments of

the indicated cell types migrating against coated ephrinB2-Fc over 60 hr. Quantification of the kymographs is shown on the right. Error bars denote s.e.

Figure 2 continued on next page
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We next asked whether homotypic ephrin-B2 signalling drives migration through activation of for-

ward or reverse signalling within the GSC population. Ectopic expression of a C-terminal truncated

form of ephrin-B2 (DCEfnb2), which lacks reverse signalling (Pfaff et al., 2008), promoted imNSC

migration over ephrin-B2-Fc to the same extent as full-length Efnb2, demonstrating that forward sig-

nalling between neighboring cells is responsible (Figure 3d and Figure 2—figure supplement 1d).

Indeed, western analysis (Figure 3e) indicated that while imNSC controls displayed low basal levels

of activated Eph receptors (p-Eph), GSC exhinited constitutively high levels of p-Eph, despite their

reduced levels of EphB1 and EphB2 (Figure 2b) and no increase in other ephrin-B2 receptors in

these cells (Figure 2a and not shown). High basal p-Eph could be mimicked by ephrin-B2 overex-

pression in imNSC and reduced to basal control levels by culture in low Ca2+ (Figure 3e). In addi-

tion, the high phosphorylation levels of Ephs in GSC appeared to be saturating, as, in contrast to

imNSC, co-culture with endothelial cells or treatment with recombinant ephrin-B2 failed to further

activate Eph receptors in these cells (Figure 3f). Importantly, Eph desensitization was again entirely

dependent on endogenous ephrin-B2 because genetic deletion of Efnb2 in GSC fully restored Eph

stimulation by exogenous ephrin-B2. Consistent with the known ability of Ephs to trigger repulsion

(Astin et al., 2010; Pasquale, 2010), such high basal levels of activated Eph resulted in GSC under-

going much greater scattering and faster migration than imNSC following homotypic collisions in

sparse monocultures, in an ephrin-B2-dependent manner (Figure 3—figure supplement 1c,d). Thus,

high ephrin-B2 levels in GSC result in constitutive activation of Eph forward signalling and desensiti-

zation to exogenous stimulation.

To further test whether this desensitization mechanism underlies the ability of GSC to override

ephrin-B2-mediated repulsion, we pre-stimulated imNSC with recombinant ephrin-B2-Fc to stronly

activate Eph forward signalling prior to their migration out of the insert (Figure 3f) and assessed

migration towards coated ephrin-B2 in boundary assays. Parallel Fc-treated cultures served as con-

trols. Remarkably, we found that ephrin-B2-Fc (but not Fc) pretreatment enabled migration over the

ephrin-B2 boundary, confirming that activation of Eph forward signaling on first contact with exoge-

nous ephrin-B2 is the mechanism involved. In agreement with these findings, immunofluorescence

analysis of GSC1-derived orthotopic tumours revealed high pEph levels in cells migrating along

blood vessels at the tumour edge, indicating that constitutive forward signaling also contributes to

perivascular invasion in vivo (Figure 3—figure supplement 1e).

We conclude that GSC escape from endothelial compartmentalisation depends on continuous

activation of Eph forward signalling elicited by elevated ephrin-B2 through homotypic cell-cell inter-

actions within the tumour cell population. This, in turn, desensitises the receptors to further activa-

tion by extrinsic ephrins, thereby overriding the repulsion by endothelial ephrin-B2 and enabling

unimpeded perivascular migration.

Figure 2 continued

m., one way ANOVA with Tukey post hoc test. (d) Overlaid fluorescent and phase contrast images (left) and quantifications (right) of boundaries formed

at 60 hr of GFP-labeled imNSC1/GSC1 (green) migrating towards bmvEC (unlabeled) as indicated. Error bars denote s.e.m., one way ANOVA with

Tukey post hoc test. Scale bar = 500 mm. (e) Representative 2-photon microscopy micrographs of GFP-labeled imNSC1-Efnb2 and GSC1Efnb2-/-

imaged as in 1e. Quantification of migrated distances is shown on the right. Dots represent single cells measured across multiple animals. One way

ANOVA with Tukey correction. p values are given compared to GSC1 for GSC1Efnb2-/- and imNSC1 for imNSC1-Efnb2. Scale bar = 50 mm. See also

Figure 2—figure supplement 1 and Figure 2—source data 1.

DOI: 10.7554/eLife.14845.013

The following source data and figure supplements are available for figure 2:

Source data 1. Raw data for qRT-PCR analysis and quantifications of kymographs, boundary assays and migrated distance in vivo of NSC/GSC cells

shown in Figure 2.

DOI: 10.7554/eLife.14845.014

Figure supplement 1. GSC2 show similar changes in Eph/ephrin levels as GSC1.

DOI: 10.7554/eLife.14845.015

Figure supplement 1—source data 1. Raw data for all quantitative analyses shown in Figure 2—figure supplement 1.

DOI: 10.7554/eLife.14845.016
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Figure 3. ephrin-B2 upregulation drives perivascular migration by saturating Eph forward signalling through homotypic cell-cell interactions. (a)

Quantification of cell behavior upon initial contact with coated ephrin-B2. n = 3, error bars denote s.e.m. (b) Left: representative images taken from

Figure 3 continued on next page
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ephrin-B2 transforms imNSC
Given these important roles in invasion, we asked whether ephrin-B2 might also affect tumourigene-

sis by performing tumourigenicity studies of luciferase-tagged imNSC1, imNSC1-Efnb2, GSC1 and

GSC1Efnb2-/- implanted orthotopically in nude mice. We used immunocompromised mice for these

experiments because the incomplete tumour penetrance of GSC in syngeneic animals precludes rig-

orous assessment of their tumourigenicity in the syngeneic model. Strikingly, quantitative imaging

and survival analysis revealed that, while imNSC1 did not form tumours and GSC1 formed tumours

at full penetrance, Efnb2 deletion strongly suppressed GSC1 tumour growth and, conversely, Efnb2

overexpression was sufficient to fully transform imNSC (Figure 4a,b). Specifically, imNSC1-Efnb2

tumours resulted in a similar median survival as GSC1 (28d). In contrast, all imNSC animals survived

tumour-free beyond 200 days and 7 out of 9 animals of the GSC1Efnb2-/-cohort developed lesions

with much slower kinetics, while the remaining 2 mice remained tumour-free, as confirmed by post-

mortem examination. These effects were not due to a general loss of stem-like properties due to

ephrin-B2 deletion, as clonal efficiency remained unaffected in GSCEfnb2-/- (Figure 1—figure sup-

plement 1b). Thus, ephrin-B2 can substitute oncogenic Ras for transformation.

To dissect the mechanisms involved, we performed soft-agar assays, which assess proliferation in

the absence of anchorage signals, a property closely linked to in vivo tumourigenicity

(Freedman and Shin, 1974). Consistent with our results in vivo , the majority of imNSC1 and GSC1

Efnb2-/- remained as single cells in soft agar and only less than 5% of the cells generated small colo-

nies, as previously reported for NSC, again indicating that immortalised cells behave like NSC

(Figure 4c) (Gursel et al., 2011). Instead, imNSC1-Efnb2 and GSC1 formed large colonies at similar

high efficiency, indicating that ephrin-B2 drives anchorage-independent proliferation. Intriguingly,

and in contrast to its role in perivascular invasion, ephrin-B2 effects on proliferation were dependent

on reverse signalling and independent of homotypic cell-cell contact. Indeed, imNSC1-DCEfnb2 did

not form colonies in suspension and imNSC1-Efnb2 overexpressing DN-Ncadherin formed colonies

at similar efficiency as GFP-controls, demonstrating that Eph forward signalling is dispensable

(Figure 4c and Figure 4—figure supplement 1a). To rule out the possibility that the transforming

ability of ephrin-B2 might be a peculiar feature of the lgT-Ras model, we repeated the soft agar

assays with imNSC2, imNSC2-Efnb2, imNSC2-DCEfnb2, GSC2 and GSC2 knock-down for Efnb2 and

obtained identical results, confirming the generality of these findings and the functional equivalence

of the two GSC lines (Figure 4d and Figure 4—figure supplement 1b).

We next asked how ephrin-B2 overrides anchorage checkpoints by comparing cell cycle progres-

sion of immortalised and transformed cells in suspension. We seeded imNSC1, imNSC1-Efnb2,

Figure 3 continued

videos of GSC1 cells as they first come in contact with coated ephrin-B2 (green). Right: quantification of the number of homotypic GSC1 cell-cell

contacts at time of initial interaction with ephrin-B2. A minimum of 50 cells were counted in each experiment. Error bar denotes St.D, Student t-test. (c)

Representative kymographs (left) and quantifications (right) of GSC1 migrating towards ephrin-B2 that were either cultured in normal media (ctrl) or low

Ca2+ conditions (low Ca2+), or transduced with GFP control (GFP) or dominant negative N-Cadherin (DN-NCdh) adenoviral constructs. Dotted lines

demarcate coated ephrin-B2 boundary. n = 3, error bars denote s.e.m., Student t-test. (d) Kymographs and quantifications of the responses of imNSC1

and imNSC1-DCEfnb2 to coated ephrin-B2 ligands. n = 3, error bars denote s.e.m., Student t-test. (e) Western analysis of the levels of activated Eph

receptors (p-Eph) in the indicated cell types cultured in either normal growth media (ctrl) or calcium depleted (low Ca2+) conditions. b-tubulin served as

loading control. n = 3 (f) Western blots of p-Eph levels in indicated cells cultured either with control proteins (Fc), endothelial cells (Endo) or ephrinB2-

Fc (ephrinB2-Fc) for 18 hr. b-tubulin is used as loading control. n = 3 (g) Phase contrast images (left) and quantification (right) of imNSC1 migration

towards coated ephrin-B2-Fc following pre-treatment with either control (Fc) or clustered ephrinB2-Fc to activate Eph forward signalling. Experiments

were stopped at 48 hr to assure maximal stimulation of the cells throughout the assay. Green dots denote boundary of ephrin-B2 coating identified by

fluorescence. n = 3, error bars denote s.e.m., Students t-test. Scale bar = 250 mm. See also Figure 3—figure supplement 1 and and Figure 3—source

data 1.

DOI: 10.7554/eLife.14845.017

The following source data and figure supplements are available for figure 3:

Source data 1. Raw data for all quantifications of NSC/GSC migration assays shown in Figure 3.

DOI: 10.7554/eLife.14845.018

Figure supplement 1. Increased repulsion between ephrin-B2 expressing cells leads to greater migration velocity and distance.

DOI: 10.7554/eLife.14845.019

Figure supplement 1—source data 1. Raw data for all quantitative analyses shown in Figure 3—figure supplement 1.

DOI: 10.7554/eLife.14845.020
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Figure 4. ephrin-B2 is a glioblastoma oncogene controlling anchorage independent proliferation. (a) Representative bioluminescent images of nude

mice 20 days after intracranial injection of imNSC1, imNSC1-Efnb2, GSC1, GSC1Efnb2-/-. (b) Kaplan-Meier survival plots of the mice depicted in (a).

Figure 4 continued on next page
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GSC1 and GSC1 Efnb2-/- in adhesion or methylcellulose culture for 72 hr and measured their PI-

FACS profiles (Cremona and Lloyd, 2009). As anticipated, all cells proliferated efficiently in attach-

ment (Figure 4e). By contrast, their behavior in suspension was very distinct. While GSC1 continued

to proliferate in methylcellulose with similar kinetics, suspended imNSC did not. This was not due to

cell death as judged by activated caspase3+ staining (Figure 4—figure supplement 1c). Instead,

imNSC arrested with a 4n DNA content. This indicated that while imNSC progress normally through

the G1 and S phases of the cell-cycle, their progression through G2/M is blocked by an anchorage

checkpoint, which is overridden by activated Ras.

Importantly, Ras-mediated progression through G2/M was again dependent on ephrin-B2 reverse

signalling, because Efnb2 deletion in GSC re-instated the G2/M arrest (without additional apoptosis,

Figure 4—figure supplement 1c), and the cell-cycle arrest of imNSC could be rescued by overex-

pression of full-length, but not DC, Efnb2 (Figure 4e).

To assess the relevance of these findings to in vivo tumourigenesis, 7d after intracranial implanta-

tion imNSC1, imNSC1-Efnb2, GSC1 and GSC1Efnb2-/-, were recovered from the injected brains and

their PI profiles analysed (Figure 4f). Strikingly, the cell-cycle profiles of all cells were indistinguish-

able from the corresponding methylcellulose cultures, confirming that ephrin-B2 drives gliomagene-

sis in vivo by promoting proliferation in the absence of normal anchorage signals.

ephrin-B2 drives anchorage-independent cytokinesis
A previous study reported that human fibroblasts cultured in suspension arrest at cytokinesis and

that oncogenic Ras can bypass this arrest (Thullberg et al., 2007). We therefore explored the role of

cytokinesis in our system by pulsing all attached and suspended cultures with EdU to distinguish G2/

M arrested from cycling cells completing mitosis and staining for phalloidin to detect cortical actin.

As shown in Figure 5a and b, we found that all methylcellulose cultures devoid of ephrin-B2 reverse

signalling (imNSC1, imNSC1-DCEfnb2 and GSC1 Efnb2-/-) contained a much larger proportion of

EdU- binucleated cells with decondensed chromatin compared to adherent conditions, indicative of

a cytokinesis block (Thullberg et al., 2007). In contrast, cells with intact ephrin-B2 reverse signalling

(imNSC1-Efnb2 and GSC1) had similar low percentages of EdU+ binucleated cells in both suspension

and attachment culture. Thus, ephrin-B2 reverse signalling drives anchorage-independent

cytokinesis.

Of the known effectors of ephrin-B2, Src and RhoA have been previously linked to anchorage

independent proliferation, with RhoA also regulating constriction of the contractile ring during cyto-

kinesis (Daar, 2012; Desgrosellier et al., 2009; Jordan and Canman, 2012). We therefore assessed

Src and RhoA in ephrin-B2-mediated anchorage-independent cytokinesis by measuring levels of their

activated forms (phosphorylated Src, p-Src, and GTP-bound RhoA) in suspension by western blot

and pull-down assays, respectively. p-Src was undetectable in suspended imNSC1, imNSC-Efnb2

and GSC1 and, similarly, levels of activated FAK, a critical Src substrate, were also reduced (Fig-

ure 5—figure supplement 1a), indicating that Src does not play a role in our system. In stark

Figure 4 continued

Significance is given relative to imNSC1 for imNSC1-Efnb2 and to GSC1 for GSC1-Efnb2-/-. Log Rank Mantel Cox. (c, d) Left: Representative

micrographs of GSC1 (c) and GSC2 (d) cells of indicated genotype grown in soft agar for 10d. Right: quantification of number of colonies formed in soft

agar in all cultures, expressed as percentage over total number of seeded cells. n = 3, error bars depict s.e.m. One way ANOVA with Tukey correction.

(e) Left: representative FACS profiles of cells grown in attachment or methylcellulose for 72 hr, showing DNA content by propidium iodide (PI) staining.

Right: quantification of cell cycle phases from the FACS profiles. n = 3–5 as indicated by the dots. Error bars depict s.e.m., p values indicate significance

of changes in G2/M phase. (f) Representative PI FACS profiles and quantifications of imNSC and GSC1 isolated from brain tissue 7 days after

intracranial injection. n = 3. Error bars depict s.e.m. One way ANOVA with Tukey post hoc test shown for G2/M phase. See also Figure 4— figure

supplement 1 and Figure 4— source data 1.

DOI: 10.7554/eLife.14845.021

The following source data and figure supplements are available for figure 4:

Source data 1. Raw data for Kaplan Meier analysis, number of colonies formed in soft agar and cell-cycle analysis presented in Figure 4

DOI: 10.7554/eLife.14845.022

Figure supplement 1. Anchorage-independent proliferation is independent of homotypic cell-cell contacts.

DOI: 10.7554/eLife.14845.023

Figure supplement 1—source data 1. Raw data for all quantitative analyses shown in Figure 4—figure supplement 1

DOI: 10.7554/eLife.14845.024
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Figure 5. ephrin-B2 mediates cytokinesis in the absence of anchorage through RhoA. (a) Representative fluorescent images of binucleated cells grown

in suspension for 24 hr and stained with phalloidin (green) to label cortical actin and EdU (red) to distinguish cycling from arrested cells. Scale

bar = 20 mm. (b) Quantification of binucleated cells in indicated attached and suspended cultures. Values represent percentages over total number of

cells. n = 4, error bars denote s.e.m. Two way ANOVA with Tukey post hoc test. (c) Western analysis of RhoA pulldown assays showing levels of

activated RhoA (RhoA-GTP) and total RhoA levels in indicated cells grown in suspension for 24 hr . Bottom graph shows quantifications of activated

RhoA levels from the western blots. n = 3. Error bars indicate s.e.m. (d) Quantification of the PI cell cycle profile as measured by FACS. Cells transfected

with either constitutively active RhoA (V14) or dominant negative RhoA (N19) were grown in suspension for 24 hr . n = 3, error bars depict s.e.m. One

way ANOVA with Tukey post hoc test was used to calculate p values for differences in G2/M phase of each suspended culture relative to corresponding

attached cultures. See also Figure 5—figure supplement 1 and Figure 5—source data 1.

DOI: 10.7554/eLife.14845.025

The following source data and figure supplement are available for figure 5:

Source data 1. Raw data for quantifications of binucleated cells and cell cycle analysis presented in Figure 5.

DOI: 10.7554/eLife.14845.026

Figure supplement 1. Src and FAK do not mediate anchorage-independent proliferation downstream of ephrin-B2.

DOI: 10.7554/eLife.14845.027
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contrast, levels of active RhoA were low in suspended cells that lacked ephrin-B2 reverse signalling

(i.e. imNSC, imNSC1-DCEfnb2 and GSC1Efnb-/-) but greatly increased in cells that express high lev-

els of full-length ephrin-B2 (i.e. imNSC1-Efnb2 and GSC1), suggesting the involvement of RhoA

(Figure 5c). To further test this, we overexpressed constitutively active (RhoA-V14, which increases

levels of active GTP-bound RhoA, Figure 5—figure supplement 1b) and dominant negative (RhoA-

N19, which inhibits activation of endogenous RhoA, Figure 5—figure supplement 1b) (Qiu et al.,

1995) forms of RhoA in imNSC1/GSC1Efnb2-/- and imNSC1-Efnb2/GSC1, respectively, and assessed

the ability of the cells to proliferate anchorage-independently by FACS. Remarkably, RhoA-V14

could rescue the cell-cycle arrest of imNSC1 and GSC1Efnb2-/-, whereas RhoA-N19 arrested

imNSC1-Efnb2 and GSC1 in G2/M (Figure 5d and Figure 5—figure supplement 1c). Together,

these results demonstrate that ephrin-B2 drives anchorage-independent cytokinesis of GSCs through

RhoA-mediated reverse signalling.

Ephrin-B2 drives invasion and anchorage-independent proliferation of
human mesenchymal GSC
We have shown that ephrin-B2 drives two key aspects of tumour formation in our murine models:

GSC perivascular invasion and proliferation. We thus sought to determine the relevance of these

findings to human GBM (hGBM). To this end, we first examined Ephrin-B2 levels at the infiltrative

margin of 10 GBM patient specimens and correlated them with GSC marker expression (Figure 6a,

Figure 6—figure supplement 1a and Table 3). Two of these tumours were the original lesions from

which G19 and G26 human GSC lines used below have been isolated. Serial sections were stained

with H&E and with antibodies against Ephrin-B2 and ALDH1, a stem cell marker which labels GSC in

perivascular and hypoxic niches (Rasper et al., 2010). All tumours presented cytoplasmic and mem-

branous Ephrin-B2 expression in 25 to 90% of the tumour cells, as well as neurons, inflammatory cells

and vascular endothelial cells, as reported (Gale et al., 2001; Sawamiphak et al., 2010;

Ottone et al., 2014). In contrast, ALDH1 expression was less abundant, with expression detected

predominantly in neoplastic cells surrounding blood vessels, in perinecrotic regions and at the infil-

trative tumour margin, as expected from a stem cell marker (Rasper et al., 2010). Weaker ALDH1

expression was also detected in reactive astrocytes and endothelial cells. Importantly, many perivas-

cular ALDH1+ neoplastic cells at the infiltrative tumour margin co-expressed ephrin-B2. Thus, ephrin-

B2 is expressed in stem-like cells invading along blood vessels in primary human tumours.

We next assessed EFNB2 expression in a panel of 8 well-characterised primary human GSC lines

isolated from independent patient tumours, including two of the tumours analysed by IHC above

(Caren et al., 2015). These lines recapitulate the transcriptional sybtypes of primary GBM and pre-

dominantly cluster into proneural and mesenchymal subtypes, as previously reported for GSC (Fig-

ure 6 b and Figure 6—figure supplement 1b) (Bhat et al., 2013; Mao et al., 2013). Consistent

with our mouse models, RNA-sequencing analysis revealed frequent upregulation of EFNB2 in GSCs

and a significant correlation between EFNB2 and mesenchymal gene expression levels (Figure 6b).

In addition, analysis of 402 GBM from the TGCA dataset classified according to Verhaak et al. and

corrected for IDH1 status, indicated that EFNB2 expression levels are highest in mesenchymal and

classical GBM subtypes (Figure 6—figure supplement 1c) (Verhaak et al., 2010). When tumours

were divided into two groups on the basis of EFNB2 levels relative to median expression within sub-

types, EFNB2 correlated with decreased survival in mesenchymal GBM (Figure 6—figure supple-

ment 1d). Together, these results are indicative of a functional role for ephrin-B2 in GSC

tumorigenesis within human GBM, specifically of mesenchymal subtype.

To test this more directly, we introduced control scrambled shRNAs or shRNAs to EFNB2 in 3 of

the mesenchymal GSC lines described above (Figure 6—figure supplement 1e) and assessed

effects of Ephrin-B2 depletion on invasion and proliferation in vitro. As shown in Figure 6c–h, we

found that, similar to the murine GSC models, in the absence of ephrin-B2, GSC (but not SCR

shRNA-transduced controls) lost the ability to migrate over coated ephrin-B2 and failed to prolifer-

ate anchorage-independently, resulting in a G2/M cell-cycle arrest. These effects were not caused by

an impairment of GSC self-renewal following ephrin-B2 downregulation and were highly specific, as

overexpression of an shRNA-resistant EFNB2 construct in G26 shEFNB2 cells fully rescued their

anchorage-independent proliferation (Figure 6—figure supplement 1f–h).
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Figure 6. Ephrin-B2 is expressed in human GSC and drives their invasion and proliferation in vitro. (a) Haematoxylin-eosin (H&E), ALDH1 and Ephrin-B2

HRP staining of infiltrative margins of patient tumours. Three different glioblastomas of 10 analysed are shown. Atypical tumour cells expressing both

Figure 6 continued on next page
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EFNB2 silencing or anti-ephrinB2 scFv Ab treatment suppress human
GSC tumourigenesis
To test effects of ephrin-B2 on hGSC tumourigenicity in vivo , we used two complementary strate-

gies. First, we xenotransplanted luciferase-tagged SCR or shEFNB2 G26 cells intracranially in nude

mice and monitored tumour growth and disease-free survival by bioluminescence imaging and sur-

vival analysis (Figure 7a–c). We found a dramatic impairment of tumour growth in the EFNB2 knock-

down group relative to control, in that vector-transduced G26 formed GBM in all animals (as previ-

ously reported (Stricker et al., 2012) whilst EFNB2 knock-down cells gave rise to slower growing

tumours in only 2 out of 10 animals, with the other 8 mice remaining tumour-free for >1 year. To

investigate the mechanisms responsible and confirm the generality of these findings, we repeated

these experiments using both G26 and G19 lines and examined vascular association and prolifera-

tion of the GSC by immunofluorescence and FACS analysis at 10 days following implantation, a time

point at which knock-down cells could still be detected by bioluminescence (Figure 7b). SCR GSC

associated with the vasculature at this early time point (and at later stages of tumour growth), result-

ing in vascular co-option, as reported (Figure 7d and Figure 7—figure supplement 1)

(Watkins et al., 2014). In contrast, vascular contact was severely compromised in knock-down cells.

Figure 6 continued

ALDH1 and EphrinB2 (black arrows) can be identified around both normal and fibrotic co-opted vessels (white arrows) in all cases. Images ii and iii for

Case 2 are close ups of the artery in i, showing that ALDH1+/EphrinB2+ cells present irregular and hyperchromatic nuclei characteristic of tumour cells.

Box denotes magnified area. Case 751 is the original tumour from which G26 cells have been isolated. (b) Correlation plot between EFNB2 and

mesenchymal gene expression levels (Z-score) in 8 primary human GSC lines. Mesenchymal Z-score was calculated using signature marker genes with a

variance greater than 0.1 (high-variance genes) across GSC lines. Verhaak classification of each line into disease subtype using the same cutoff is also

shown. Of note, G2 and G26 display dual signatures as indicated. G26 carries a deletion in the NF1 gene. (c) Representative kymographs (left) and

quantifications (right) of human primary GSC lines G26 and G19, stably expressing scrambled shRNA (ctrl,) or shRNA directed against EFNB2

(shEFNB2). Note that while migration of human GSC is less pronounced than in mouse cells, EFNB2 depletion results in complete inhibition of

migration. Error bars denote s.e.m., n = 3. Students t-test. Green dots denote boundary of ephrin-B2 coating identified by fluorescence. (d) Left:

Representative micrographs of SCR or shEFNB2 transduced G26, G166 and G19 cells cultured in soft agar for 14d. Right: quantification of number of

colonies formed in soft agar in all cultures, expressed as percentage over total number of seeded cells. n = 3, error bars depict s.e.m. One way ANOVA

with Tukey correction. (e) Left: representative FACS profiles of G166 and G19 cells ctrl or shEFNB2 grown in soft agar for 72 hr, showing DNA content

by propidium iodide (PI) staining. Right: quantification of cell cycle phases from the FACS profiles. n = 3 as indicated by the dots. Error bars depict s.e.

m., One way ANOVA with Tukey post hoc test shown for G2/M phase. See also Figure 6—figure supplement 1 and Figure 6—source data 1.

DOI: 10.7554/eLife.14845.028

The following source data and figure supplements are available for figure 6:

Source data 1. Raw data for quantifications of kymographs, number of colonies formed in soft agar and cell-cycle analysis of human GSC presented in

Figure 6.

DOI: 10.7554/eLife.14845.029

Figure supplement 1. Ephrinb2 expression is increased and correlates inversely with patient survival in mesenchymal human GBM.

DOI: 10.7554/eLife.14845.030

Figure supplement 1—source data 1. Raw data for all quantitative analyses shown in Figure 6—figure supplement 1.

DOI: 10.7554/eLife.14845.031

Table 3. Patient information for tumours 1–8 used for Ephrin-B2 IHC

name gender age site IDH1/2 MGMT ATRX Grade

case 1 M 69 left temporal wt 0 retained IV

case2 M 45 left temporal wt 0 retained IV

case 3 M 54 right temporo-parietal wt <10% retained IV

case 4 M 55 right temporal wt 0 retained IV

case 5 F 61 right parietal wt 25% retained IV

case 6 M 57 right frontal G395A 0 lost IV (secondary)

case 7 F 73 left frontal / crossed midline wt 0 retained Iv

case 8 F 39 left temporo-parietal wt 0 retained IV

DOI: 10.7554/eLife.14845.032
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Figure 7. EFNB2 silencing abolishes hGSC tumorigenicity. (a) Representative bioluminescent images of nude mice injected at d0 with 105 luciferase-

labeled G26 cells, stably expressing scrambled shRNA (SCR, top) or shRNA directed against EFNB2 (shEFNB2, bottom). (b) Quantification of luciferase

bioluminiscence measured at the indicated time points in both groups. n = 9 for ctrl and 10 for shEFNB2, error bars denote s.e.m. Two-way ANOVA

with Tukey correction. (c) Kaplan-Meier survival plots of the mice depicted in (a). n = 5 for SCR, 10 for shEFNB2. Log Rank Mantel Cox test. (d)

Representative fluorescence images (left) and quantification (right) of GSC/vascular interactions in tumors derived from G19 SCR and G19 shEFNB2

cells at 10 days post-implantation. Sections were stained for GFP to identify tumor cells and CD31 (red) to label pre-existing blood vessels. Arrows

indicate vascular association and co-option in SCR tumours, which is reduced in shEFNB2 tumours. (e) Quantification of percentages of Ki67+ cells over

Figure 7 continued on next page
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Furthermore, similar to GSC1Efnb2-/- murine cells, EFNB2 downregulation resulted in a marked

decrease in proliferation, accompanied by an arrest in the G2/M phase of the cell-cycle, indicative of

a cytokinesis block (Figure 7e,f). Thus, Ephrin-B2 drives tumour initiation by mediating vascular asso-

ciation and proliferation of human GSC.

Second, we asked whether Ephrin-B2 inhibition could suppress tumourigenesis of pre-established

tumours. For this, we took advantage of an Ephrin-B2 blocking scFv antibody fragment (B11) we pre-

viously developed (Abengozar et al., 2012). Migration and methylcellulose assays in vitro confirmed

that B11 effectively inhibits Ephrin-B2 signalling in GSC1 (Figure 8—figure supplement 1a,b). Lucif-

erase-tagged G26 cells were implanted intracranially in immunocompromised mice and 13d later,

once sizeable, exponentially growing tumours had formed, but prior to the onset of neoangiogene-

sis, B11 was administered intravenously for a total of 9 consecutive days, as reported

(Abengozar et al., 2012; Binda et al., 2012). This treatment regimen enabled us to assess direct

effects of B11 on the tumour cells in the absence of confounding anti-angiogenic effects known to

result from ephrin-B2 inhibition (Sawamiphak et al., 2010; Abengozar et al., 2012). Efficient deliv-

ery of the scFv across the blood/tumour barrier to the tumour cells was confirmed in parallel animals

using Alexa-680 labelled B11 (Figure 8—figure supplement 1c). Remarkably, B11 strongly sup-

pressed tumour growth in all animals without any evidence of toxicity, with three of six animals

showing complete regression, as judged by quantitative bioluminescence imaging, survival analysis

and post-mortem examination of the injected brains (Figure 8a–c). Analysis and quantification of the

tumours immediately following treatment also revealed that, in contrast to vehicle-treated control

tumours, invading tumour cells failed to associate with and coopt the vasculature (Figure 8d). Fur-

thermore, proliferation was reduced in B11 tumours relative to controls, with B11 samples containing

many Ki67+ multinucleated cells, indicative of a cytokinesis defect (Figure 8e). Therefore, B11 sup-

presses G26 tumourigenicity through inhibition of ephrin-B2-dependent perivascular invasion and

anchorage-independent proliferation, independent of angiogenesis. We conclude that Ephrin-B2

plays an important role in the pathogenesis of human GBM and its inhibition might be an effective

strategy for curtailing GBM progression and recurrence.

Discussion
Perivascular invasion is a critical mechanism of GBM growth and infiltration, which greatly contrib-

utes to the marked therapeutic resistance of these tumours (Cuddapah et al., 2014; Scherer, 1938).

Here, using a novel mouse ‘progression series’ that mimics transformation of normal NSC to mesen-

chymal GSC, we identified ephrin-B2 as a critical driver of GSC perivascular invasion. Interestingly, a

role for ephrin-B2 and its phosphorylation in the tumour cells has been previously linked to GBM

invasiveness, albeit not in the context of GSC. This suggests that ephrin-B2 might promote invasion

both by generally enhancing cell-intrinsic invasive potential through reverse signalling

(Nakada et al., 2010; Tu et al., 2012) and, also, by specifically enabling perivascular spread through

forward signalling as we have shown here.

We found that ephrin-B2 expressed on vascular endothelial cells compartmentalises non-trans-

formed cells. A similar role for Eph/ephrin signalling in constraining migration of premalignant cells

was reported in colorectal cancer, where ephrin-B ligands in the surrounding normal tissue inhibit

invasion of incipient lesions through activation of EphB receptors in the tumour cells (Cortina et al.,

Figure 7 continued

total GFP+ cells in G19 SCR and shEFNB2 tumors. n = 4, error bars denote s.e.m. Students t-test. (f) PI FACS plots (left) and quantifications (right) of cell

cycle profiles of G26 SCR and shEFNB2 cells retrieved from brain tissue 10 days after intracranial injection. n = 3 error bar denotes s.e.m. Significance is

given for G2/M phase, one way ANOVA with Tukey post hoc test. See also Figure 7—figure supplement 1 and Figure 7—source data 1.

DOI: 10.7554/eLife.14845.033

The following source data and figure supplement are available for figure 7:

Source data 1. Raw data for quantifications of tumour growth by bioluminescence analysis, survival by Kaplan-Meier analysis, tumour cell intractions

with the vasculature, Ki67 labelling and cell-cycle analysis of human GSC-derived tumours presented in Figure 7.

DOI: 10.7554/eLife.14845.034

Figure supplement 1. G26 cells associate with blood vessels.

DOI: 10.7554/eLife.14845.035
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Figure 8. Treatment with anti-EphrinB2 ScFv blocking antibodies suppresses progression of established GBMs. (a,b) Representative images (a) and

quantification (b) of bioluminescence radiance of PBS or anti-Ephrin-B2 scFv antibody (B11) injected mice. n = 4 for PBS ctrl and 6 for B11 treatment

groups. (c) Kaplan-Meier survival plots of the mice depicted in a and b. n = 4 for PBS-treated, 6 for B11-treated G26 tumours. Log Rank Mantel Cox

test. (d) Representative immunofluorescence images (left) of PBS and B11-treated G26 tumours 5 days after the first B11 injection, stained for GFP

Figure 8 continued on next page
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2007). Our study is also consistent with work by Astin et al., which reported that ephrin ligands on

stromal cells repel normal and non-metastatic prostate cancer cells (Astin et al., 2010). Thus, the

present work further strengthens the notion that ephrins expressed in normal tissues act as tumour-

suppressors during early tumourigenesis by promoting tumour confinement and identifies the vascu-

lature as a critical mediator of these effects. It is tempting to speculate that ephrin-B2-mediated vas-

cular compartmentalisation might be a more general tumour-suppressive mechanism, limiting the

spread of premalignant lesions across many cancer types.

In contrast, malignant transformation overrides vascular compartmentalisation to enable stereo-

typical GBM invasion along the perivascular space (Baker et al., 2014; Farin et al., 2006;

Watkins et al., 2014; Winkler et al., 2009). Mechanistically, we found this to be dependent on the

upregulation of ephrin-B2 in the GSC themselves, which elicits constitutive activation of Eph forward

signalling in the tumour through homotypic cell-cell interactions. Consequently, this promotes peri-

vascular spread in two ways. First, constitutive Eph activation increases repulsion between the

tumour cells within the tumour bulk, thereby promoting GSC motility and scattering of single cells

away from the tumour, a hallmark of GBM migration (Vehlow and Cordes, 2013). Second, it desen-

sitizes the cells to extrinsic ephrin-B2 repulsion, thereby circumventing vascular confinement and

permitting cells that have detached from the tumour mass to continue their migration along the vas-

culature (Figure 8—figure supplement 1d). Thus, invasive GSC augment their tumourigenic poten-

tial by ‘hijacking’ the same signalling pathway through which the vasculature suppresses

tumourigenesis in normal tissues. Intriguingly, the mechanism of invasion we identified here, differs

from what has been reported for colorectal and prostate cancer in the studies mentioned above

(Astin et al., 2010; Cortina et al., 2007). Indeed, while in those systems tumour spread depended

on the downregulation of Eph receptors in a cell-autonomous manner, in our GBM model non-cell-

autonomous constitutive activation of Eph forward signalling is responsible, suggesting that the

mechanisms that evade ephrin repulsion during tumour progression might be critically dependent

on cancer type.

We further report that ephrin-B2 is also a critical effector of the ‘Ras-transformed phenotype’,

capable of both transforming immortalised cells and mediating, at least in part, Ras-dependent

transformation. Indeed, lgT-immortalised stem cells overexpressing Efnb2 formed aggressive

tumours with nearly identical kinetics to Ras-transformed cells and genetic deletion of Efnb2 in GSCs

significantly delayed tumourigenesis. We demonstrate that these effects depend on the surprising

and previously unknown ability of ephrin-B2 to drive anchorage-independent proliferation through

the activation of cytokinesis in a RhoA-dependent manner. It is of note that, in contrast to perivascu-

lar invasion, these ephrin-B2 effects are mediated by reverse signalling and independent of cell-cell

contact, indicating that ephrin-B2 drives two key aspects of GBM tumourigenesis through a complex

interplay of cell-autonomous and non-cell-autonomous mechanisms (Figure 8—figure supplement

1d). Previous studies in endothelial and smooth muscle cells have reported a similar cell-cell contact-

and Eph-independent role for ephrin-B2 reverse signalling in driving acto-myosin contractility and

cell spread, respectively (Bochenek et al., 2010; Foo et al., 2006). We currently do not know how

Figure 8 continued

(green) to identify tumour cells and CD31 (red) to label the endogenous vasculature. Quantification of vascular association is shown on the right. Arrows

indicate co-opted blood vessels in PBS-treated tumours. Scale bar 50 mm. Error bars denote s.e.m. Student t-test. (e) Representative

immunofluorescence images (left) PBS and B11-treated G26 tumours stained for GFP and the proliferation marker Ki67. Quantification of the

percentage of Ki67+ cells over total number of GFP+ tumour cells is shown on the right. Note the presence of multinucleated cells (arrows and inset) in

B11-treated tumours. Scale bar=25 mm, n = 3, error bars denote s.e.m. Students t-test. See also Figure 8—figure supplement 1 and Figure 8—source

data 1.

DOI: 10.7554/eLife.14845.036

The following source data and figure supplements are available for figure 8:

Source data 1. Raw data for quantifications of tumour growth by bioluminescence analysis, survival by Kaplan-Meier analysis, tumour cell intractions

with the vasculature and Ki67 labelling of human GSC-derived tumours presented in Figure 8.

DOI: 10.7554/eLife.14845.037

Figure supplement 1. B11 crosses the blood/tumour barrier and inhibits Ephrin-B2 on tumour cells.

DOI: 10.7554/eLife.14845.038

Figure supplement 1—source data 1. Raw data for all quantitative analyses shown in Figure 8—figure supplement 1.

DOI: 10.7554/eLife.14845.039
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RhoA becomes activated downstream of ephrin-B2. A potential candidate is Dishevelled, which

mediates activation of Rho/ROCK by ephrin-B1 (Tanaka et al., 2003). It would be interesting to

explore the role of Dishevelled in our system in the future.

Our results in GBM specimens and primary human GSC lines strongly support a critical role for

ephrin-B2 in the human disease through the same mechanisms that we identified in the murine mod-

els. Indeed, EFNB2 knock-down prior to implantation abrogated tumour initiation and treatment of

pre-existing intracranial tumours with Ephrin-B2 blocking antibodies, under conditions that mimic

human therapeutic paradigms, strongly reduced the growth and expansion of pre-formed tumours.

Significantly, both approaches curtailed tumour growth by impairing both vascular association and

cytokinesis. In patient samples stratified by GBM subtype, EFNB2 levels were highest in mesenchy-

mal and classical tumours and correlated, inversely, with survival specifically in mesenchymal GBM.

This is in agreement with our mesenchymal mouse models and analysis of human GSC lines, which

revealed a robust correlation between EFNB2 and mesenchymal gene expression levels. This recur-

rent correlation is particularly noteworthy, as EFNB2 was previously identified as a component of the

core mesenchymal gene network (Carro et al., 2010). Furthermore, increasing evidence suggests

that convertion to the mesenchymal signature is associated to progression, radioresistance and

recurrence and is thus a fundamental driver of GBM malignancy (Ozawa et al., 2014; Bhat et al.,

2013).

GSCs are thought to be largely responsible for tumour infiltration and propagation (Chen et al.,

2012a; Venere et al., 2011). As our work is based on murine and human GSC models of GBM, and

Ephrin-B2 levels are high in the GSC compartment in primary tumours (Figure 6a), our findings indi-

cate that anti-ephrin-B2-based therapies would target the most critical subset of cells within these

lesions. As such, by harnessing the complexity of the Eph/ephrin system, inhibition of ephrin-B2

would in itself be an effective ‘combinatorial therapy’, capable of suppressing two critical GSC-intrin-

sic properties, namely perivascular invasion and proliferation, and might thus represent an attractive

strategy for blocking GBM progression and recurrence. In addition, as ephrin-B2 levels are robustly

increased in GSC compared to normal neural stem cells and other tissues, such therapies should be

relatively tumour-specific and non-toxic.

Materials and methods

Animals
All animal work was carried out in accordance with the regulations of the Home Office and the

ARRIVE guidelines. Efnb2iDEC mice and recombination protocols were described previously

(Wang et al., 2010; Ozawa and James, 2010; Ottone et al., 2014). Tamoxifen-injected Efnb2fl/fl lit-

termates were used as controls. C57Bl6 and CD-1 nude mice for tumourigenicity analysis were

obtained from Charles River. For GSC1 tumorigenic studies and B11 treatments of G26 cells, sample

size was calculated by power analysis using PASS software based on pilot studies assessing the

tumorigenicity of the parental line. For experiments with shEFNB2 human G26 cells sample size was

set based on previous studies (Pollard et al., 2009).

Craniotomies and intravital imaging
Craniotomies were performed as previously described (Holtmaat et al., 2009). Briefly 6–8 week old

Efnb2 iDEC or Efnb2fl/fl mice were anaesthetized with ketamine-xylayzine intraperitoneal injection

(0.083 mg/g ketamine, 0.0078 mg/g xylazine). The animals were then injected with 0.02 ml 4 mg/ml

intramuscular dexamethasone to limit an inflammatory response and subcutanaeous bupivacaine

(1 mg/kg) a local anaesthetic. Once the skull was exposed a few drops of lidocaine (1% solution)

were applied on its surface. Before covering the burr hole with a glass coverslip, 2x104 cells were

injected into the cortex at a depth of 150–300 mm using a picospritzer. Mice were left to recover for

7 days and then imaged using a purpose built microscope equipped with a tunable Coherent Ti:Sap-

phire laser and PrairieView acquisition software. Mice were anaesthetized with isoflurane and

secured to a fixed support under the microscope. The eyes were coated with Lacri-lube (Allergan) to

prevent dehydration, an underlying heat pad used to maintain body temperature (37˚C). To prevent

dehydration isotonic saline solution was administered (i.p.) during long imaging sessions. Depth of

anaesthesia was closely monitored. To visualize blood vessels a 3000MW dextran-Texas Red
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conjugate was injected intravenously prior to imaging. A pulsed laser beam with a wavelength of

910 nm was used to ensure that both GFP-tumour cells and Texas Red showed sufficient signal

intensity. Each imaging session lasted for no longer than 60 min and mice were imaged up to four

times daily with cells imaged every 20 min . After image acquisition individual frames were aligned

and the displacement of single cells measured using ImageJ software.

Orthotopic xenografts and in vivo imaging
5x104 luciferase expressing cells were injected into 6–8 week old CD-1 nude mice into the right

putamen (1 mm rostral to bregma, 2 mm lateral and 2.5 mm depth) as previously described

(Ozawa and James, 2010). Tumour cells were loaded into the syringe just prior to injection and the

needle kept in place for a further 5 min to ensure minimal reflux of the material along the needle

tract. Tumour formation, growth and volume were indirectly calculated by sequential images taken

with an IVIS Spectrum in vivo imaging system (Perkin Elmers). Following administration of 120 mg/kg

D-luciferin (Intrace medical) by intraperitoneal injection, mice were anaesthetized (3% isoflurane) and

imaged under continuous exposure to 2% isoflurane. Luminescent measures were performed once a

week starting 5 days after cell implantation until day 40. Bioluminescence was detected by the IVIS

camera system, integrated, digitised, and displayed. Pseudocolor scale bars were consistent for all

images of dorsal views in order to show relative changes at tumour site over time. Tumours were

quantified by calculating total flux (photons/s/cm2) using Living Image software (Xenogen, Caliper

Life Sciences).

Animals were sacrificed when they showed signs of distress or weight loss. For treatment experi-

ments, PBS or B11 administration was started once the tumours reached a minimum signal intensity

of 1x106 photons/s/cm2. Mice were then randomised into two groups prior to intravenous injection

of 5 doses of either anti ephrinB2-scFv B11 (total dose 20 mg/kg) or PBS control over a period of 9

days. Survival curves were estimated using the Kaplan-Meier method. Significance was calculated

using the log-rank Mantel-Cox test. To determine efficiency of delivery, B11 was labeled with Alexa

Fluor 680 using the SAIVI rapid antibody kit (Invitrogen) according to the manufacturer’s

instructions.

Cell culture, gene delivery and constructs
Primary mouse microvascular endothelial cells were obtained from Caltag Medsystems and subcul-

tured according to the suppliers recommendations (cells were primary cells isolated directly from

normal mouse brain, no further authentication performed by the authors, mycoplasma negative as

tested by Mycoalert kit, Lonza)

Human GSC lines were described previously (Pollard et al., 2009; Caren et al., 2015). Cells were

originally isolated from patient tumours and are maintained in serum free cultures on laminin

(Pollard et al., 2009, no further authentication performed by the authors, mycoplasma negative as

tested by Mycoalert kit, Lonza). Co-culture experiments with endothelial cells for assessment of p-

Eph levels were performed as previously described (Ottone et al., 2014). Briefly, endothelial cells

were seeded at confluence on PLL-coated dishes and imNSC or GSC cells seeded on top the follow-

ing day. The cells were separated by differential trypsinisation. For analysis of clonal efficiency, single

cells were sorted into individual wells of a low attachment 96 well plate using a FACS Aria III cell

sorter and cultured in neural stem cell media for 7d after which percentage of neurosphere formed

was calculated. Transient transfections and viral transductions were performed as previously

reported (Ottone et al., 2014). The following plasmids were used: FUGW was used to label all

imNSC and GSC cells (Lois et al., 2002). Constitutively active RhoA-V14 and dominant negative

RhoA-N19 constructs were a kind gift of Anne Ridley (Ridley and Hall, 1992). Plasmid encoding full-

length cDNAs of human EphB1 was purchased from OriGene Technologies, Inc (RC214301) and

mouse EphB2 was a kind gift of E. Batlle.

Generation of imNSC and GSC lines
Primary NSCs were isolated directly from the SVZ of postnatal or adult Cdh5(Pac)-CreERT2 or NF1fl/

fl transgenic animals and cultured as described previously (Wang et al., 2010; Zhu et al., 2001;

Ottone et al., 2014). To generate imNSC and GSC lines the following plasmids were used: pBabe-

largeT + pLXSN-hRasV12 (Cremona and Lloyd, 2009), shp53 pLKO.1 (Godar et al., 2008), pCMV-
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Cdk4 (van den Heuvel and Harlow, 1993) (addgene 1874). Recombination of the NF1fl/fl allele was

achieved using Adeno-Cre viruses at an MOI of 100, as reported (Ottone et al., 2014). All experi-

ments were performed on a minimum of two independent batches of GSC1 and 2 generated as

described above from independent primary preparations (no further authentication performed by

the authors, mycoplasma negative as tested by Mycoalert kit, Lonza). Cells were used within the first

10–15 passages from infection.

Immunoblotting, immunocytochemistry and immunohistochemistry
Western blots and immunocytochemistry were performed as reported previously (Ottone et al.,

2014). The RhoA activation assay kit (Millipore) was used according to manufacturers instructions.

For immunohistochemical analysis of tumours, mice were perfused with 4% PFA and the brain post-

fixed in 4% paraformaldehyde for 2 hr, placed in a 30% sucrose solution over night, embedded in

OCT and snap frozen. Immunohistochemistry was performed on 30 mm cryostat sections. Tissue sec-

tions were stained overnight at 4˚C with antibodies diluted in 10% goat serum. Hematoxylin and

Eosin (H&E) staining was performed on 3 mm paraffin embedded sections. The following commercial

primary antibodies were used: b-Tubulin (Sigma T8328 1:5000), BrdU (Roche 11170376001 1:400),

cleaved caspase-3 (Cell Signaling #9664 1:500), EphA4 (abcam ab641 1:1000), EphB1 (abcam

ab129103 1:1000), EphB2 (abcam ab76885 1:1000), EphB3 (abcam ab133742), EphB4 (R&D AF446),

ephrinA5 (R&D AF3743 1:500), ephrinB2 (R&D AF496 1:250), CD31 (BD 550274 1:400), GAPDH

(abcam ab9483 1:1000), GFAP (abcam54554 1:400), GFP (Invitrogen A-21311 1:400), Nestin (Milli-

pore MAB353 1:400), pan-pEph (abcam ab61791 1:500), pFAK (Cell signalling #3283 1:500), p-Src

(Cell Signaling 2101s 1:1000), O4 (R&D MAB1326 1:400), Sox2 (Cell signalling 3728s 1:250), SSEA1

(BD Pharmingen 560079 1:400), Tuj1 (Covance MMS-435P 1:500) and NG2 (Chemicon, 1:250).

Migration assays and quantifications
For migration assays, endothelial cells and imNSC/GSCs were plated at a density of 2x104 cells into

adjacent compartments of cell-culture silicon inserts (Ibidi) separated by a 500 mm gap. Alternatively

one well of the insert was coated over night with 4 mg/ml of recombinant ephrin-B2-Fc fusion pro-

teins or Fc controls (R&D) clustered at a molar ratio of 1:2 with fluorescently labelled anti-Fc anti-

body for 1.5 hr at room temperature. After removal of the insert the cells were cultured in medium

supplemented with 1 % Matrigel (Invitrogen) and live cell imaging was performed in a heated and

CO2 controlled chamber for 60 hr. For stimulation of imNSCs, recombinant ephrinB2-Fc ligands

were preclustered with anti-human Fc antibodies as above and added to imNSCs for 24 hr before

removal of the insert at a final concentration of 10 mg/ml. Analysis of ephrinb2-stimulated imNSC

migration was terminated at 48 hr to achieve maximal stimulation of forward signaling throughout

the experiments. Migration was quantified by tracing the boundary between GFP positive NSCs and

non-stained bmvECs in ImageJ. To analyse the number of cell contacts individual frames from the

videos of cells making initial contact with the ephrinB2-Fc boundary were analysed. The total number

of protrusions per cell that were in contact with other cells at the time of entering the ephrin-B2-

coated well were counted. All counting was performed blind. Kymograph analysis was performed

using an ImageJ macro. Quantification of the kymographs was performed by measuring pixel intensi-

ties 200 mm before and after the ephrinB2-Fc boundary at the last imaged time-point to assess the

proportion of cells that migrate over ephrin-B2 upon contact (expressed as relative cell density). To

analyse scattering behaviour, cells were seeded sparsely at 10,000 cells/12 well and their migration

tracked for 20 hr . Collisions between single cells were quantified over 200 min and a minimum of 50

cells were counted per condition per biological repeat.

Soft-agar and Methylcellulose cultures
For analysis of anchorage independent proliferation, cells were seeded for up to 72 hr in SVZ culture

medium containing 1.8% dissolved Methylcellulose (Sigma) to form a semisolid hydrogel as previ-

ously described47. To retrieve cells, the suspension was diluted fivefold with DMEM and centrifuged

at 500 g for 10 min. The pellet was then washed twice with ice-cold PBS. For analysis of binucleated

cells, all cells were incubated with EdU (Life technology) for 4 hr and placed on PLL-coated cover-

slips 15 min before fixation and staining. As the metaphase in mammalian cells typically lasts less

than an hour this experimental set up enabled us to distinguish between cycling (EdU positive) and

Krusche et al. eLife 2016;5:e14845. DOI: 10.7554/eLife.14845 25 of 32

Research article Cancer biology Cell biology

http://dx.doi.org/10.7554/eLife.14845


cytokinesis arrested (EdU negative) cells. To assess colony formation in soft agar 5x103 cells/6 well

were seeded into 0.5% agar on top of a bottom layer of 1% agar (Sigma). Total number of colonies

formed was counted after 10 days.

Flow cytometry
Cell pellets retrieved from methylcellulose were resuspended, fixed in 70% EtOH for 4 hr and

stained with propidium iodide (Sigma). A minimum of 10,000 cells were counted for each condition

using a BD LSR II. The PI profile was then analysed using the cell-cycle module of FlowJo X. Cells

from tumours were isolated as follows: The GFP positive tumour tissue was dissected using a fluores-

cent dissection microscope and digested using papain according to the manufactures recommenda-

tion (Worthington Biochemical Corporation). Cells were stained with PI as above prior to FACS

analysis. All FACS stainings were performed on at least 3 independent cultures/tumours.

RNA sequencing and Bioinformatic analysis
GFP-labeled GSC1 and GSC2 tumours were dissected and digested as above. RNA was isolated by

using RNAeasy Plus Mini Kit (Qiagen) and RNA sequencing libraries were constructed using the

NEBNext Ultra RNA Library Prep Kit for Illumina (NEB). RNA-seq data from adult brain of normal

mice was obtained from GEO [1] (accession numbers GSM1055111, GSM1055112 and

GSM1055113). Sequencing reads from tumour samples were aligned with the Tophat splice junction

mapper (Kim et al., 2013), version 2.0.11 against GRCm37/ mm9 and transcript annotations. All

parameters were set to default except inner distance between mate pairs (r = 100) and library type

(fr-firststrand). The normal brain data was also aligned using Tophat with default parameter values

except for distance between mature pairs (r = 200). The DESeq2 Bioconductor package (version

1.4.5) (Love et al., 2014) was used to perform differential gene expression analysis on read counts

obtained with HTSeq-count (version 0.5.3p9) (Anders et al., 2015), and p-values were adjusted for

multiple testing with the Benjamini-Hochberg procedure (Love et al., 2014). Genes with adjusted p-

value <= 0.05 were deemed to be differentially expressed.

Sequencing reads for NS and GSC cell lines were aligned to mouse genome build GRCm38/

mm10 with STAR 2.5.2a (Dobin et al., 2013) using the two-pass method for novel splice detection

(Engstrom et al., 2012). Read alignment was guided by gene annotation from Ensembl release 84

(Cunningham et al., 2015) with optimal splice junction donor/acceptor overlap settings. Transcripts

were quantified with HTSeq-count (Anders et al., 2015) based on feature coordinates from Ensembl

84. Gene set enrichment analysis was carried out with the GAGE Bioconductor package (version

2.18.0) (Luo et al., 2009). Gene sets used corresponded to either biological process (BP) terms from

the Gene Ontology, or derived from CNS cell type RNA-seq data described by the Barres group

(http://web.stanford.edu/group/barres_lab/brainseq2/brainseq2.html) using mean log2 FPKM values

for astrocyte, neuron, OPC and oligodendrocyte classes. The top 500 genes for each class were

identified by the ratio of individual class average expression to the maximum non-class average

expression values. Log2 fold-change values computed by DESeq2 (version 1.8.2) were used as the

input for GSA analysis. Data visualised in Figure 1—figure supplement 1a is derived from log2

FPKM data for the left panel and variance stabilised read counts using the rlog function in DESeq2.

GBM subtype analysis
Subtype analysis of human GSC lines was completed using methods and microarray data described

by Caren et al. (Caren et al., 2015). Sample log2-transformed expression values for the signature

centroid genes were produced by taking the mean expression across sample replicates. Centroid

genes that could not be assigned to annotated genes were also omitted from further analysis. To

ensure the accuracy of subtype expression estimates only subtype genes with high variance across

the GNS dataset were carried forward. Subtype scores per sample were computed from mean Z-

score transformed levels of overexpressed centroid genes for each subtype. Samples were then clas-

sified as belonging to the subtype associated with the highest mean Z-score or mixed subtype when

presenting a similarly high expression of another subtype’s mean Z-score.

Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) was applied to mouse tumor

samples to test for Verhaak et al. subtype enrichment using the pre-ranked GSEA tool. DESeq2 com-

puted T statistics from each tumor to control mouse sample differential expression results were used

Krusche et al. eLife 2016;5:e14845. DOI: 10.7554/eLife.14845 26 of 32

Research article Cancer biology Cell biology

http://web.stanford.edu/group/barres_lab/brainseq2/brainseq2.html
http://dx.doi.org/10.7554/eLife.14845


to rank the gene lists. Pre-defined genesets pertaining to Verhaak et al. (Verhaak et al., 2010) were

obtained from the Molecular Signatures Database. TCGA data analysis was performed as described

previously (Binda et al., 2012) survival and expression analysis was performed on the publicly avail-

able TCGA data and relative mRNA expression obtained from the TCGA data portal (http://cancer-

genome.nih.gov/dataportal/data/about). The analysis was performed using samr R package. A two

class unpaired model was used with the following parameters: delta 0.01, number of permutation

100.

Quantitative RT-PCR and siRNA/shRNA knockdown
Quantitative RT-PCR analysis and siRNA transfections were performed as previously described

(Ottone et al., 2014). See Supplementary file 3 for primer details. For knockdown of EFNB2 in

human G26 cells, lentiviral shRNA constructs were used (Invitrogen). Control cells were infected with

control vectors. Both cell types were selected with puromycin and knock-down efficiency validated

by qPCR and immunoblotting prior to tumourigenic studies.

Neuropathological assessment of Ephrin-B2 expression in human GBMs
EphrinB2 expression pattern was investigated in brain tissue samples of eight patients operated of

supratentorial hemispheric glioblastoma at Imperial College Healthcare Trust between February and

June 2015. None of patients had radiotherapy or chemotherapy prior to surgery or any relevant

comorbidities. Patients consent was given for all samples. The project received ethical approval from

the Imperial College Healthcare Tissue Bank committee on behalf of MREC (ICHTB HTA licence:

12275, REC Wales approval: 12/WA/0196). All 8 tumours were wild type for IDH1 and 2 mutations

and ATRX status with the exception of case 6, which was a secondary glioblastoma bearing the com-

mon G395A amino acid substitution in IDH1 and showing loss of ATRX expression.

Two additional GBM samples were the original lesions from which G19 and G26 cells have been

isolated (Pollard et al., 2009). Preoperative structural MRI was available in all patients; the T2-

weighted FLAIR sequences were reviewed to assess the extent of invasion into normal tissue. All

patients underwent maximally safe surgical debulking and the isolated tissues were extensively sam-

pled in order to represent the bulk of the tumour along with its infiltrative component in the sur-

rounding grey matter. Specifically, areas representative of the invasive front of the tumour were

chosen from each case. The tissues were fixed in 4% buffered formalin for 24 hr and then processed

using standard method to produce paraffin sections. Sequential three-micron sections cut from each

selected block and were used for immunoperoxidase immunohistochemistry. Immunostainings were

performed following a standard protocol. Briefly, the sections were dewaxed in xylene and rehya-

drated in decreasing alcohols to distilled water. Antigen retrieval was performed incubating the sec-

tions for 20 min in steam-heated sodium citrate buffer (10 mM Sodium Citrate, 0.05% Tween 20, pH

6) at 90˚C or 1 mM EDTA at pH 8. Following antigen unmasking, endogenous peroxidase was

quenched with 1% hydrogen peroxide in PBS at -20˚C for 15 min. After rinsing in PBS, the sections

were incubated overnight at room temperature with the following primary antibodies: anti-EphrinB2

(clone EFR-163M hybridoma supernatant 1:4, CNIO) (Abengozar et al., 2012), anti-ALDH1 (mono-

clonal, BD Bioscience, dilution 1:500), anti-ALDH1 (mouse, clone 44, BD biosciences). The ephrin-B2

antibody gave robust membrane and cytoplasmic staining and labelled the endothelium, confirming

specificity. Nuclear labelling was however detected in some tumour cases, a feature not present in

control samples. Only membranous and cytoplasmic staining was scored as positive in the analysis of

the tumours. The SuperSentitive IHC detection system from BioGenex (Fremon, CA, USA) was used

to visualise antibody binding following the manufacturer’s instructions and counterstained with

Mayer’s Haemalum.

Statistics
Statistical analysis was performed using GraphPad Prism statistical analysis software. The precise

tests are stated in the figure legends. Shapiro-Wilk test was used to confirm normal distribution of

the data. All experiments for which quantifications were performed were carried out a minimum of

three times as indicated in the figure legends.
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Charmsaz S, Cooper LT, Ellacott JK, Harding A, Leveque L, Inglis P, Allan S, Walker DG, Lackmann M, Osborne
G, et al. 2013. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer
Cell 23:238–248. doi: 10.1016/j.ccr.2013.01.007

Day BW, Stringer BW, Boyd AW. 2014. Eph receptors as therapeutic targets in glioblastoma. British Journal of
Cancer 111:1255–1261. doi: 10.1038/bjc.2014.73

Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prévost N, Tarin D, Shattil SJ, Cheresh DA. 2009. An
integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression.
Nature Medicine 15:1163–1169. doi: 10.1038/nm.2009

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. doi: 10.1093/bioinformatics/bts635

Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, Gatter KC, Pezzella F. 2013. Vessel co-option in
primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Medicine 2:
427–436. doi: 10.1002/cam4.105

Engström PG, Tommei D, Stricker SH, Ender C, Pollard SM, Bertone P. 2012. Digital transcriptome profiling of
normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival. Genome
Medicine 4. doi: 10.1186/gm377

Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P. 2006. Transplanted glioma cells migrate and
proliferate on host brain vasculature: a dynamic analysis. Glia 53:799–808. doi: 10.1002/glia.20334

Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH. 2006.
Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173. doi: 10.
1016/j.cell.2005.10.034

Freedman VH, Shin SI. 1974. Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid
medium. Cell 3:355–359. doi: 10.1016/0092-8674(74)90050-6

Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD. 2001. Ephrin-B2
selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial
and smooth-muscle cells. Developmental Biology 230:151–160. doi: 10.1006/dbio.2000.0112

Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, Liu A, Miu K, Watnick RS, Reinhardt F, McAllister SS,
Jacks T, Weinberg RA. 2008. Growth-inhibitory and tumor- suppressive functions of p53 depend on its
repression of CD44 expression. Cell 134:62–73. doi: 10.1016/j.cell.2008.06.006

Gritsenko PG, Ilina O, Friedl P. 2012. Interstitial guidance of cancer invasion. The Journal of Pathology 226:185–
199. doi: 10.1002/path.3031

Gürsel DB, Shin BJ, Burkhardt JK, Kesavabhotla K, Schlaff CD, Boockvar JA. 2011. Glioblastoma stem-like cells-
biology and therapeutic implications. Cancers 3:2655–2666. doi: 10.3390/cancers3022655

Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. 1999. Creation of human
tumour cells with defined genetic elements. Nature 400:464–468. doi: 10.1038/22780

Krusche et al. eLife 2016;5:e14845. DOI: 10.7554/eLife.14845 30 of 32

Research article Cancer biology Cell biology

http://dx.doi.org/10.1016/j.stemcr.2015.09.014
http://dx.doi.org/10.1038/nature08712
http://dx.doi.org/10.1016/j.ydbio.2014.11.013
http://dx.doi.org/10.4161/cc.9.15.12335
http://dx.doi.org/10.1038/nature11287
http://dx.doi.org/10.1016/j.cell.2012.03.009
http://dx.doi.org/10.1016/j.bbrc.2011.02.123
http://dx.doi.org/10.1016/j.bbrc.2011.02.123
http://dx.doi.org/10.1038/ng.2007.11
http://dx.doi.org/10.1038/ng.2007.11
http://dx.doi.org/10.1242/jcs.047126
http://dx.doi.org/10.1038/nrn3765
http://dx.doi.org/10.1093/nar/gku1010
http://dx.doi.org/10.1016/j.semcdb.2011.10.012
http://dx.doi.org/10.1016/j.ccr.2013.01.007
http://dx.doi.org/10.1038/bjc.2014.73
http://dx.doi.org/10.1038/nm.2009
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1002/cam4.105
http://dx.doi.org/10.1186/gm377
http://dx.doi.org/10.1002/glia.20334
http://dx.doi.org/10.1016/j.cell.2005.10.034
http://dx.doi.org/10.1016/j.cell.2005.10.034
http://dx.doi.org/10.1016/0092-8674(74)90050-6
http://dx.doi.org/10.1006/dbio.2000.0112
http://dx.doi.org/10.1016/j.cell.2008.06.006
http://dx.doi.org/10.1002/path.3031
http://dx.doi.org/10.3390/cancers3022655
http://dx.doi.org/10.1038/22780
http://dx.doi.org/10.7554/eLife.14845


van den Heuvel S, Harlow E. 1993. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262:
2050–2054. doi: 10.1126/science.8266103

Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hübener M, Keck T, Knott G, Lee
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