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A. Relation to the model of MacArthur

The dynamics (3) can be written as

dn~σ
dt

=
1

τ0|χ~σ|
n~σ

(∑
i

σiHi − χ~σ

)
. (S1)

where Hi denotes the “available resources”. In the model
considered in this work, Hi = Ri

Ti
. MacArthur (1969)

considered a model of species competing for renewing
resources. In that model, the dynamics of organism pop-
ulations were identical to (S1), but the availability of
resources was given by Hi = Ri(1−Ti/ri) (see equations
(1)-(3) in MacArthur 1969), where the extra parameter
ri is the renewal rate (or the “intrinsic rate of natural
increase”).

The dynamics of the two models, therefore, differ
only by the choice of the functional form relating pop-
ulation growth and the corresponding decrease of re-
source availability. The mapping between the notations
of MacArthur 1969 (“MA”) and those used here is pro-
vided in the table:

Notation for... MA Here

Species index i ~σ

Species abundance xi n~σ
Resources a species can harvest aij σi
Resource carrying capacity Kj Ri
Minimal resource requirement Ti χ~σ
“Resource weight” wi 1

Resources 7→ biomass conversion factor ci (τ0χ~σ)−1

Resource renewal rate rj N/A

In the work of MacArthur, each species i was described
by an arbitrary chosen vector of parameters aij (proba-
bility to encounter and consume resource j). The space
of possibilities is unconstrained, and the types available
to form a community are fixed by historical contingency;
MacArthur then asks how many species can co-exist in
this way. In the model considered here, aij are con-
strained to be 0 or 1. The setting is treated as an adaptive
dynamics model where species are allowed to acquire or
lose pathways, and the outcome of this co-evolution is
investigated.

Reformulating community dynamics as an optimiza-
tion problem was first done in MacArthur 1969; here,
because of the difference in the way resource consump-
tion is treated, the objective function being optimized
is different, but the argument is similar. Consider the
following objective function:

F̃ =
∑
i

Ri lnTi −
∑
~σ

χ~σn~σ, (S2)

defined for {n~σ ≥ 0}, and differing from the definition of
Eq. (5) only by normalization and an additive constant.

Proposition 1: F̃ is bounded from above.
To see this, note the inequalities:∑

i

Ti =
∑
~σ

|~σ|n~σ ≤ N
∑
~σ

n~σ

and for α, β > 0:

α lnx− βx ≤ α ln
α

eβ

Using these, and setting min~σ χ~σ = χ∗ > 0, one can
write:

F̃ ≤
∑
i

Ri lnTi − χ∗
∑
~σ

n~σ ≤
∑
i

(
Ri lnTi −

χ∗

N
Ti

)
≤
∑
i

Ri ln
NRi
eχ∗

Proposition 2: F̃ is convex.
To see this, note that for any function f(~n), the fol-

lowing two operations leave its convexity invariant (M is
an arbitrary matrix):

1. adding a linear function of its arguments:

f(~n) 7→ g(~n) = f(~n) +M~n;

2. performing a linear transformation of its argu-
ments:

f(~n) 7→ h(~n) = f(M~n).

Given these observations, convexity of F̃ , and therefore
also the convexity of F as defined in (5), directly follows
from the convexity of the logarithm.

The main text demonstrated that F̃ is always increas-
ing along the trajectories of the model. Thus, for any
initial community state C, ecological dynamics converge
to the equilibrium corresponding to the unique maximum
of F̃ on the domain {n~σ ≥ 0 for ~σ ∈ Ω(C)}. Since F̃ is
bounded and convex, the final equilibrium always exists
and is unique and stable.

B. The role of the biomass assumption

When defining the dynamics (Eq. (3) in the main text),
the biomass of species was taken to be equal to their cost.
What role did this assumption play for the rest of the
argument?
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The main text describes an assay for evaluating the
performance of a given species by placing a single indi-
vidual into a “chemostat” with all resources supplied at
equal abundance, and no other organisms present. There
are two ways of defining the “intrinsic performance” of
a species in this situation. For the purposes of this
work, the most relevant measure is the largest popula-
tion size this species can sustain; it is directly related
to the threshold of substrate availability at which it can
persist. However, an alternative measure could also be
considered, namely the initial growth rate of the species
in a pristine environment will all substrates untouched.

The “biomass=cost” assumption made in this work is
intuitively convenient, since it makes these two measures
of intrinsic performance coincide. In general, of course,
one can imagine a fast-growing species that eventually
yields to one that is slow-growing, but has a lower suste-
nance threshold of resource availability (cf. the classic ar-
gument by Tilman 1982). Allowing the biomass of species
to be arbitrary would change this transient dynamics,
decoupling the two measures of individual species’ per-
formance. However, the equilibrium states to which this
dynamics converges would remain the same, as would the
objective function F . None of the conclusions drawn in
this work are sensitive to the choice of species’ biomass,
as long as the individual performance of a species is taken
to mean its equilibrium abundance in a “pure culture”
chemostat. The quantity defined in the main text as f~σ
retains this interpretation for an arbitrary choice of the
species’ biomass.

C. Normalization of community fitness

The typical value of F̃ as defined in equation (S2) for
a community close to equilibrium can be estimated as
follows.

To estimate the first term, note that the cost per path-
way of all organisms is close to χ0, and therefore the
overall expression Ti is approximately Ti ≈ Ri/χ0.

The second term is the total cost of all organisms in the
population

∑
~σ n~σχ~σ. At any equilibrium, it is equal to

the total resource abundance Rtot ≡
∑
iRi. This can be

seen in two ways. One approach is to use the equilibria
conditions to express the cost of all present organisms in
terms of resources:

∀~σ ∈ Ω(C) : χ~σ =
∑
i

σi
Ri
Ti

Therefore,

∑
~σ

n~σχ~σ =
∑
i

(∑
~σ

nσσi

)
Ri
Ti

=
∑
i

Ri.

Alternatively, this same equation can be derived from the
condition of maximization of F̃ , by setting n~σ ≡ Mp~σ,

and requiring ∂F̃
∂M = 0. Both arguments lead to the same

intuitive conclusion that at equilibrium, the total demand
for a substrate must match the total supply.

Putting these observations together, the expectation
for the value of F̃ at any equilibrium is therefore

F̃ =
∑
i

Ri lnTi −
∑
~σ

χ~σn~σ =
∑
i

Ri lnTi −
∑
i

Ri

≈
∑
i

Ri ln(Ri/χ0)−
∑
i

Ri ≡ F̃0 (S3)

When defining community fitness, it is natural to sub-
tract this baseline value from F̃ as defined in (S2), and
normalize by Rtot:

F =
F̃ − F̃0∑

iRi
.

This is the normalization chosen in equation (5) in the
main text.

D. Sensitivity to the value of ε

Fig. 2B demonstrates that for small enough ε, the
structure of the final equilibria does not significantly de-
pend on this parameter. This can be intuitively under-
stood as follows. Consider two resources A,B and organ-
isms A = {1, 0}, B = {0, 1}, and AB = {1, 1}. If

χAB > χA + χB , (S4)

it easily follows that the “generalist” organism AB will
eventually be outcompeted by the two specialists A and
B. Conversely, if the opposite inequality holds, then A
and B cannot stably coexist in the final equilibrium, since
AB will always be able to invade, displacing one (or both)
of them. In this way, in the metagenome partitioning
model, community composition is shaped primarily by
inequalities like (S4), which are invariant under changes
in ε and depend only on the realization of the “noise” ξ.

E. The maximum number of coexisting types

The traditional question of how many types can coexist
for a given set of parameters, although not at the focus of
this work, is nevertheless instructive to address. A simple
linear algebra argument demonstrates that in the model
considered here, this maximum number is N : a stable
coexistence is possible only for a number of types that is
at most equal to the number of resources. This is because
for a given set of K types, the K equilibria conditions
∆~σ = 0 can be seen as a linear mapping between the N -
dimensional vector Ri/Ti and a K-dimensional vector of
organism costs χ~σ. In the generic case (i.e. if no special
symmetries exist in the cost structure), the existence of
such a mapping requires K ≤ N .

Symmetries in the cost structure can lead to degen-
erate equilibria circumventing this maximal coexistence
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condition. Imagine, for example, that all organisms have
the exact same cost per pathway χ0. In this maximally
degenerate case any combination of functional types can
coexist, provided that Ti = Ri/χ0: no partitioning of
metagenome is better than any other.

F. Numerical determination of community
equilibrium

To determine the equilibrium state established through
competition of a given set of K species, one could imagine
choosing a random starting point with a non-vanishing
abundance of all K competing species, and evolving it ac-
cording to the dynamical equations for time t→∞. The
Lyapunov function guarantees that such evolution would
converge to an equilibrium state. However, if K � N
(for example, K = 1023 and N = 10 in Fig. 2A), such a
procedure is highly memory-intensive and wasteful, since
the final population is guaranteed to contain at most N
types with non-zero abundance (see section “The maxi-
mum number of coexisting types”).

Conveniently, verifying that a configuration is a final
equilibrium is much easier than finding it: one only needs
to check that the resource surplus ∆~σ is zero for all com-
petitors that survived and is negative for all those who
went extinct. This verification is fast and is guaranteed
to either confirm that the equilibrium state is correct,
or provide a list of species that can invade it. There-
fore, a simple heuristic procedure can construct the true
equilibrium configuration through an iterated sequence
of “guesses”, whereby a subset of species is first equili-
brated, and then updated by removing species that went
extinct and adding those that can invade. This is the
approach adopted here.

Specifically, calculations were performed in Matlab
(Mathworks, Inc.). Availability of all resources was set
to R = 100. The “initial guess” S0 is constructed using
the individual fitness criterion explained in the main text
(low cost per pathway = high fitness): for each path-
way i, the 10 most cost-efficient (lowest cost per path-

way) functional types (S
(i)
0 ) that contained pathway i

are determined; the union of these cost-efficient types,
all taken at equal abundance of 1 unit, constitutes the

“initial guess” S0 =
⋃
i S

(i)
0 .

The following procedure is then iterated: community
dynamics are simulated using MatLab’s variable-order
differential equation solver ode15s until the absolute
magnitude of all time derivatives dn~σ

dt fall below thresh-

old 10−4ε. At this point, most of the very-low-abundance
species still present in the community are in the pro-
cess of exponential extinction. To ensure that all such
low-abundance types are indeed going extinct, all types
with abundance below 10−4 are removed from the pop-
ulation, the pruned community is re-equilibrated (to ac-
count for any tiny adjustments this removal might have
caused), and the resulting state C∗ is tested for being
a non-invadable equilibrium. If any invaders are found,

they are added to the community at abundance 1, and
the simulation cycle is repeated. Otherwise (no species
can invade), the configuration is accepted as being within
the pre-determined numerical error of the true final equi-
librium. This protocol ensures that in the community
C∗, the list of survivors is exact (because the invadabil-
ity criterion is always checked for all competing species
and is exact), and their abundance is within acceptable
numerical error. The protocol always converged due to
convexity of “community fitness” F .

Scripts performing calculations and reproducing
Figs. 2–5 are available as Supplementary File 2.

G. Supplementary information for Figure 2B

Fig. 2B was generated as follows. For a given cost
structure, 10 random subsets Ωi of 100 types each were
equilibrated to determine survivors S∗

i . The procedure
was repeated for 10 random realizations of the cost struc-
ture at each ε, with ε ranging from 10−5 to 0.1. Thus
for each value of ε, a total of 100 randomly constructed
communities were evaluated. Fig. 2B shows the median
performance rank of survivors S∗ within the respective
set of competitors, averaged over all 100 instances, where
the median was either weighted (blue dashed line) or not
weighted (red solid line) by abundance of the type at
equilibrium.

H. Supplementary information for Figure 3

The trajectories displayed in Fig. 3 were simulated for
time T = 105 starting from 10 random initial conditions
whereby each of the 1023 types was set to an abundance
value drawn out of a log-uniform distribution between
10−5 and 100. It is instructive to examine in detail the
time traces of individual species shown in Fig. 3B for one
community trajectory. Fig. S1A shows those same traces
for the entire length of simulated time (of which Fig. 3B
shows a part), and panel B shows the availability of each
of 10 substrates at the matching time.

The randomly generated initial configuration is over-
populated; the total demand for the limiting resource∑
~σ n~σχ~σ vastly exceeds the total supply

∑
iRi; equiva-

lently, substrate availability is far below χ0 = 1, which is
the value required to sustain an typical organism. As a
result, population abundance crashes for all species, un-
til substrate availability becomes close to 1 (Fig. S1B,
left-hand side). Now the total supply and total demand
are approximately matched (

∑
~σ χ~σn~σ =

∑
iRi), and

we enter the regime where optimizing community-level
objective function is equivalent to minimizing

∑
i lnHi

(Fig. S1B, right-hand side). This is the regime discussed
in the main text and shown in Fig. 3A, B, C.

The environment experienced by organisms at this
stage is very dynamic. Collectively, substrates become
progressively more depleted (as shown in Fig. 3C in the



4

10-2 100 102 104
0

50

100

ab
un

da
nc

e

A

10-2 100 102 104

time /=
0

10-2

100

re
so

ur
ce

av
ai

la
bi

lit
y

B

0.992
0.994
0.996
0.998
1
1.002
1.004

FIG. S1. Convergence to equilibrium: a detailed view.
A: Same community trajectory of convergence to equilibrium
as in Fig. 3B of the main text; entire simulation time is shown.
B: Availability of individual substrates (the harvests Hi) dur-
ing the convergence process shown in panel A. After the early
stages of mass extinction in the overpopulated community,
the availability of all substrates is brought close to 1, allow-
ing species to sustain themselves. The scale of the Y axis is
changed at this point, to show detail. Small adjustments of
Hi at the later stages of convergence have a defining effect on
the fate of individual species.

main text), however, the availability of individual sub-
strates changes relative to each other (Fig. S1B, right-
hand side). As a result, a species successfully growing at
one point in time may end up going extinct at the final
equilibrium. This highlights that the “cohesive” behav-
ior of the community described in this work originates
from this type of feedback between the organisms and
the environment they shape for themselves.

I. Efficient resource depletion
vs. efficient resource partitioning

Consider a three-species community

C0 = {ABCDE,FG,HIJ}.

This community could be described as exhibiting effi-
cient resource partitioning (each substrate is consumed
by only one species). It is important therefore to high-
light the difference between this kind of “efficiency” and

the efficient resource depletion sought by the equilibrium
community in the model described here.

Take the organism ABCDE. There is a combinato-
rially large number of other species that could compete
for the same substrates, some of which may have a lower
cost per pathway, e.g. species ABD. While it alone can-
not fully displace ABCDE, it will be able to invade, its
lower cost causing the resources A, B and D to be de-
pleted more efficiently. It is worth noting that the avail-
ability of C and E will go up, since their only consumer
will reduce in abundance, but the overall efficiency as
quantified by F move towards stronger substrate deple-
tion. At the same time, the increase in availability of
these two substrates means that the arrival of ABD is
potentially facilitating another invasion.

The same goes for “cross-linkages” such as DEF ; the
number of such species straddling the niches of current
community members is again combinatorially large. Un-
der the fully random cost model considered here, each of
them is equally likely to possess a low cost by the luck
of the draw, and it is therefore highly likely that at least
some of them will be able to gain a foothold in the com-
munity. Thus the cost model considered here makes it
extremely unlikely that the non-invadeable community
will implement a perfect resource partitioning as exhib-
ited by the community C0 (but see Sup. Ref. [5], where a
more nuanced cost model allows different regimes to be
explored).

J. Recombination

It is interesting to note that a formal equivalence be-
tween a certain class of community dynamics on one
hand, and population genetics with recombination on the
other hand, had previously been discussed in the litera-
ture (Akin 1979), but it was of a very different type. A
curious mathematical accident makes the Fisher’s equa-
tion for natural selection in a diploid population formally
equivalent to the pure strategy dynamic in a certain class
of evolutionary games (Taylor and Jonker, 1978). In that
scenario, recombination is understood in the standard
way, and the evolutionary dynamics proceed through reg-
ular binary (win/lose) competition governed by fixed val-
ues of fitness (game-theoretic payoff of a strategy). Here,
in contrast, the observation is that the phenomenon of
community coalescence can be seen as a generalization
simultaneously of competition and of recombination.
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