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Abstract 12 

What mechanisms support our ability to estimate durations on the order of minutes? 13 

Behavioral studies in humans have shown that changes in contextual features lead to 14 

overestimation of past durations. Based on evidence that the medial temporal lobes and 15 

prefrontal cortex represent contextual features, we related the degree of fMRI pattern 16 

change in these regions with people’s subsequent duration estimates. After listening to 17 

a radio story in the scanner, participants were asked how much time had elapsed 18 

between pairs of clips from the story. Our ROI analyses found that duration estimates 19 

were correlated with the neural pattern distance between two clips at encoding in the 20 

right entorhinal cortex. Moreover, whole-brain searchlight analyses revealed a cluster 21 

spanning the right anterior temporal lobe. Our findings provide convergent support for 22 

the hypothesis that retrospective time judgments are driven by “drift” in contextual 23 

representations supported by these regions.  24 
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Introduction 25 

Imagine that you are at the bus stop when you run into a colleague and the two of 26 

you become engrossed in a conversation about memory research. After a few minutes, 27 

you realize that the bus still has not arrived. Without looking at your watch, you have 28 

some sense of how long you have been waiting. Where does this intuition come from?  29 

Estimation of durations lasting a few seconds has been probed in the neuroimaging, 30 

neuropsychology and neuropharmacology literatures (see Wittmann, 2013, for a 31 

review). On the other hand, the neural mechanisms underlying time perception on the 32 

scale of minutes have remained unexplored. This is particularly true of retrospective 33 

judgments, where individuals experience an interval without paying attention to time 34 

and must subsequently estimate the interval’s duration. In such cases, individuals must 35 

rely on information stored in memory to estimate duration. How is this accomplished?   36 

Memory scholars have long posited that the same contextual cues that help us to 37 

retrieve an item from memory can also help us determine its recency. According to 38 

extant theories of context and memory (see Manning, Kahana, & Norman, 2014, for a 39 

review), mental context refers to aspects of our mental state that tend to persist over a 40 

relatively long time scale; this encompasses our representation of slowly-changing 41 

aspects of the external world (e.g., what room we are in) as well as other slowly-42 

changing aspects of our internal mental state (e.g., our current plans). Crucially, these 43 

theories posit that slowly-changing contextual features can be episodically associated 44 

with more quickly-changing aspects of the world (e.g., stimuli that appear at a particular 45 

moment in time; Mensink & Raaijmakers, 1988; Howard & Kahana, 2002).  46 
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Bower (1972) first proposed that we could determine how long ago an item 47 

occurred by comparing our current context with the context associated with the 48 

remembered item. The similarity of these two context representations would reflect 49 

their temporal distance, with more similar representations associated with events that 50 

happened closer together in time. Thus, a slowly varying mental context could serve as a 51 

temporal tag (Polyn & Kahana, 2008). In parallel, researchers in the domain of 52 

retrospective time estimation have shown that the degree of context change is a better 53 

predictor of duration judgments than alternative explanations, such as the number of 54 

items remembered from the interval (Block & Reed, 1978; Block, 1990, 1992). Indeed, 55 

changes in task processing (Block & Reed, 1978; Sahakyan & Smith, 2014), 56 

environmental context (Block, 1982), and emotions (Pollatos, Laubrock, & Wittmann, 57 

2014), as well as event boundaries (Poynter, 1983; Zakay, Tsal, Moses, & Shahar, 1994; 58 

Faber & Gennari, 2015), lead to overestimation of past durations.  59 

In our study, we set out to obtain neural evidence in support of the hypothesis that 60 

mental context change drives duration estimates. Specifically, we hypothesized that,  61 

in brain regions representing mental context, the degree of neural pattern change 62 

between two events (operationalized as change in multi-voxel patterns of fMRI activity) 63 

should predict participants’ estimates of how much time passed between those events.  64 

Extensive prior work has implicated the medial temporal lobe (MTL) and lateral 65 

prefrontal cortex (PFC) in representing contextual information (Polyn & Kahana, 2008; 66 

for reviews of MTL contributions to representing context, see Eichenbaum, Yonelinas, & 67 

Ranganath, 2007, and Ritchey & Ranganath, 2012; for related computational modeling 68 
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work, see Howard & Eichenbaum, 2013). In keeping with our hypothesis, multiple 69 

studies have obtained evidence linking neural pattern change in these regions to 70 

temporal memory judgments.  Manns, Howard, & Eichenbaum (2007) recorded from rat 71 

hippocampus during an odor memory task; they found that greater change in 72 

hippocampal activity patterns between two stimuli predicted better memory for the 73 

order in which the stimuli occurred. In the human neuroimaging literature, Jenkins & 74 

Ranganath (2010) found that the degree to which activity patterns in rostrolateral 75 

prefrontal cortex changed during the encoding of a stimulus predicted better memory 76 

for the temporal position of that stimulus in the experiment. Jenkins & Ranganath 77 

(2016) also showed that greater pattern distance between two stimuli at encoding in 78 

the hippocampus, medial and anterior prefrontal cortex predicted better order memory. 79 

Only one study has directly related neural pattern drift to judgments of elapsed time in 80 

humans: Ezzyat & Davachi (2014) found that patterns of fMRI activity in left 81 

hippocampus were more similar for pairs of stimuli that were later estimated to have 82 

occurred closer together in time, despite equivalent time passage between all pairs (a 83 

little less than a minute).   84 

While the Ezzyat & Davachi (2014) study provides support for our hypothesis, it has 85 

some limitations. First, in Ezzyat & Davachi (2014), participants estimated the temporal 86 

distance of stimuli that were linked to their contexts in an artificial way (by placing 87 

pictures of objects or famous faces on unrelated scene backgrounds); it is unclear 88 

whether these results will generalize to more naturalistic situations where events are 89 

linked through a narrative. Second, since participants performed the temporal memory 90 
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test after each encoding run, they were not entirely naïve to the manipulation. Knowing 91 

that they would have to estimate durations between stimuli could have changed 92 

participants’ strategy and enhanced their attention to time (for evidence that estimating 93 

time prospectively engages different mechanisms, see Hicks, Miller, & Kinsbourne, 1976, 94 

and Zakay & Block, 2004). In the current study, we sought to address the above issues 95 

by eliciting temporal distance judgments for pairs of events that had occurred several 96 

minutes apart and that were embedded in the context of a rich naturalistic story; 97 

participants listened to the entire story before being informed about the temporal 98 

judgment task. 99 

Based on the studies reviewed above, we predicted that neural pattern drift in 100 

medial temporal and lateral prefrontal regions might support duration estimation. In 101 

our study, we examined these regions of interest (ROIs), as well as a broader set of 102 

regions that have been implicated in fMRI studies of time estimation, including the 103 

inferior parietal cortex, putamen, insula and frontal operculum (see Box 1 for a review). 104 

In addition to the ROI analysis, which examined activity patterns in masks that were 105 

anatomically defined, we performed a searchlight analysis, which examined activity 106 

patterns within small cubes over the whole brain.  107 

Participants were scanned while they listened to a 25-minute science fiction radio 108 

story. Outside the scanner, they were surprised with a time perception test, in which 109 

they had to estimate how much time had passed between pairs of auditory clips from 110 

the story. Controlling for objective time, we found that the degree of neural pattern 111 

distance between two clips at the time of encoding predicted how much time an 112 
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individual would later estimate passed between them. The effect was significant in the 113 

right entorhinal cortex ROI. Extending the anatomical analysis to all masks in cortex 114 

revealed an additional effect in the left caudal anterior cingulate cortex (ACC). 115 

Moreover, whole-brain searchlight analyses yielded significant clusters spanning the 116 

right anterior temporal lobe. Our results suggest that patterns of neural activity in these 117 

regions may carry contextual information that helps us make retrospective time 118 

judgments on the order of minutes. 119 

 120 

Box 1. fMRI literature on prospective time estimation  
As noted in the main text, only one study (Ezzyat & Davachi, 2014) has used fMRI 

to study retrospective estimation of time intervals lasting more than a few seconds. 
The vast majority of fMRI studies of time estimation have used prospective tasks, in 
which participants are asked to deliberately track the duration of a short stimulus or 
compare the duration of two stimuli. Such studies have repeatedly shown that 
activity in the putamen, insula, inferior frontal cortex (frontal operculum), and 
inferior parietal cortex increases as participants pay more attention to the duration 
of stimuli, as opposed to another time-varying attribute (Coull, 2004; Coull, Vidal, 
Nazarian, & Macar, 2004; Livesey, Wall, & Smith, 2007; Wiener, Turkeltaub, & 
Coslett, 2010; Wittmann, Simmons, Aron, & Paulus, 2010). Moreover, Dirnberger et 
al. (2012) showed that greater activity in the putamen and insula during encoding of 
aversive emotional pictures predicted better subsequent memory for those pictures, 
but only when their duration was overestimated relative to neutral images. This 
suggests that the putamen and insula might mediate the relationship between 
enhanced processing for emotional stimuli and subjective time dilation. Given the 
established role of these regions in time processing (albeit of a different sort) we 
included these regions in the set of a priori ROIs for our main fMRI analysis. 
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Results 121 

 122 
Figure 1 Experimental design 123 

 124 
Behavioral Results 125 

Participants were sensitive to the duration of story intervals 126 

Figure 1 shows the experimental design, which consisted of an fMRI session, 127 

followed immediately by a behavioral session. After listening to a 25-minute radio story 128 

in the scanner, participants were asked how much time had passed between 43 pairs of 129 

clips from the story. In actuality, 24 of the clip pairs had been presented 2 minutes apart 130 

in the story, while 19 of the clip pairs had been presented 6 minutes apart in the story 131 

(participants were not informed of this). Participants were able to estimate the duration 132 

of experienced minutes-long intervals far above chance, albeit with substantial intra- 133 

and inter-individual variability. On average, across participants, the 6-minute intervals 134 
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(M=5.70 min, SD=3.06) were judged to be significantly longer than the 2-minute 135 

intervals (M=3.69 min, SD=1.96), t(17) = 5.20, p = 0.00007 (see Figure 2 A).  136 

As described in the Methods (see Removing low-confidence intervals), participants 137 

also provided confidence ratings reflecting their certainty about each clip’s place in the 138 

story. Based on this measure, we grouped each participant’s duration estimates into 139 

high-confidence and low-confidence intervals. To verify that participants were better at 140 

distinguishing 6-minute intervals from 2-minute intervals when they were confident, we 141 

calculated the difference between the mean duration estimates for 6-minute intervals 142 

and the mean duration estimates for 2-minute intervals for every participant. The 143 

difference score was significantly higher for high-confidence intervals (M=2.43, SD=1.82) 144 

than for all intervals (M=2.01, SD=1.64), t(17)=2.33, p=0.0324. Thus, participants were 145 

significantly more accurate at estimating an interval’s duration when they confidently 146 

remembered the temporal position of both clips delimiting that interval in the story (see 147 

Figure 2 B).  148 

For a given interval duration, some intervals were consistently judged to be longer 149 

than other intervals across participants, although the actual amount of elapsed time was 150 

held constant. To test the reliability of duration estimates across participants, we split 151 

the subjects randomly into two groups, averaged the duration estimates within each 152 

group, and correlated the two averages with each other. We repeated this procedure 153 

1000 times to ensure that we sampled a variety of group splits. The average correlation 154 

between the two groups was 0.64 (SD=0.09) for 2-minute intervals and 0.54 (SD=0.15) 155 

for 6-minute intervals (see Figure 2 - Supplement 1). This analysis suggests that features 156 
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of the story made some intervals appear consistently shorter and other intervals appear 157 

consistently longer across participants. 158 

 159 

 160 

Figure 2 Mean duration estimates for all intervals (A) and confident intervals (B) as a function 161 
of their actual duration. Each blue circle represents the mean duration estimate for an 162 
individual participant within a given interval duration (2 or 6 minutes). The blue bar heights 163 
represent the global means for 2 and 6-minute intervals across intervals and participants.  164 

The following figure supplements are available for Figure 2:  165 
Figure 2 – supplement 1. Reliability of duration estimates across participants. 166 

The following source data are available for Figure 2: 167 
Figure 2 – source data 1. Duration estimates and confidence ratings for all participants and 168 
intervals.  169 
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Figure 2 – Supplement 1: Reliability of duration estimates across participants 170 

 171 
Reliability of duration estimates across participants. Between-group correlations were 172 
obtained by splitting the participants randomly into two equal groups and averaging the 173 
duration estimates for each interval (across participants) within a group. Each dot in the 174 
scatterplot represents a particular temporal interval; its x and y coordinates indicate the mean 175 
estimated duration of that interval for Group 1 and Group 2 participants, respectively. We 176 
repeated this procedure 1000 times to ensure that we sampled a variety of group splits. The 177 
average correlation between the two groups was 0.64 (SD=0.09) for 2-minute intervals and 0.54 178 
(SD=0.15) for 6-minute intervals. The above plot shows the grouping that was most 179 
representative of the mean.   180 
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Duration Estimates Are Influenced by Memory of the Story 181 

We found that participants estimated six-minute intervals to be significantly longer 182 

than two-minute intervals (Figure 2), and that some intervals in the story tended to be 183 

systematically over-estimated by participants (Figure 2 – Supplement 1). However, it is 184 

possible that participants could judge the temporal distance between two clips purely 185 

based on the similarity between them (e.g. Are the same characters speaking? Is the 186 

background music the same? Is the topic of conversation similar?)  187 

To ensure that participants were using their memory of the story to judge temporal 188 

distance, we ran a control experiment in which 17 participants who had never heard the 189 

story were given the exact same memory test. They were asked to try to estimate the 190 

amount of time that had elapsed between each pair of clips during the original telling of 191 

the story. During debriefing, participants reported making duration estimates based on 192 

the perceptual and semantic similarity between the two clips (e.g., which character 193 

voices were present, which background music was playing, the topic of conversation).  194 

We found that naïve participants estimated 6-minute intervals (M=6.21 min, 195 

SD=1.91) to be longer than 2-minute intervals (M=5.63 min, SD=1.74; t(16)=2.62, 196 

p=0.019), suggesting that the similarity between two clips carried some information 197 

about the temporal distance between them. However, naïve participants were 198 

significantly less accurate at distinguishing 6-minute intervals from 2-minute intervals 199 

than our original participants who had heard the story. To quantify this, we calculated 200 

the difference between the mean duration estimates for 6-minute intervals and the 201 

mean duration estimates for 2-minute intervals for every participant (exactly as above). 202 
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The difference score was significantly higher for our original participants (M=2.01 min, 203 

SD=1.64 min) than for naïve participants (M=0.59 min, SD=0.91 min), t(26.86)= -3.22, 204 

p<0.005. Thus, having memory of the story enabled our participants to estimate 205 

durations with significantly higher accuracy.  206 

We hypothesized that both our original participants and the naïve participants 207 

would use consistent strategies to estimate the temporal distance between two clips, 208 

but that these strategies would differ across groups. If this is the case, duration 209 

estimates should be more correlated across participants within groups than across 210 

participants between groups. The inter-subject correlation (see Methods) in duration 211 

estimates was as strong for naïve participants (M=0.43, SD=0.18, 95% CI [0.40, 0.56]) as 212 

for our original participants (M=0.43, SD=0.25, 95% CI=[0.37, 0.58]), suggesting that 213 

both groups used a consistent strategy to estimate the distance between two clips. 214 

When we correlated duration estimates from our original group of participants with 215 

those of our naïve participants, we found that the between-group correlations (M=0.18, 216 

SD=0.22, 95% CI=[0.04, 0.28]) were significantly above 0, suggesting that a component 217 

of the original duration estimates was influenced by the similarity in content between 218 

clips. However, the between-group correlations were significantly lower than the 219 

within-group correlations (p<0.0001, as assessed by a permutation test described in the 220 

Methods). In other words, there is a reliable component of our original participants’ 221 

behavior that cannot be captured by accounting for the perceptual and semantic 222 

similarity between clips. In summary, having memory of the story induced a qualitatively 223 
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different pattern of behavior and produced significantly more accurate duration 224 

estimates.  225 

 226 

Correlation between number of event boundaries and duration estimates 227 

To gain additional evidence that duration estimates were related to contextual 228 

change, we looked at the correlation between estimated duration and the number of 229 

event boundaries in the interval between the clips.  The number of intervening event 230 

boundaries can be viewed as a proxy for contextual change, insofar as event boundaries 231 

often encompass changes in scene, characters and conversation topic (Kurby & Zacks, 232 

2008; Zacks, Speer, & Reynolds, 2009).  As reviewed in the Introduction, numerous 233 

studies have found a relationship between changes in contextual features during an 234 

interval and duration estimates for that interval.  235 

A separate group of participants (n=9) listened to the story and was asked to press a 236 

button every time they felt an event boundary was occurring. These data were then 237 

averaged across participants to obtain the mean number of event boundaries inside 238 

each two-minute interval. We found that the mean number of boundaries in an interval 239 

was significantly correlated with the mean duration estimates from our original 240 

experiment (r=0.49, 95% CI [0.27, 0.57]; Figure 3). This suggests that our participants’ 241 

retrospective duration estimates were influenced by the number of contextual changes 242 

that had occurred during an interval.  243 

However, it is important to note that the number of event boundaries between two 244 

clips also influences the perceptual and semantic similarity between them (e.g., clips 245 
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from the same scene might sound more similar than clips from different scenes). Thus, 246 

our participants’ duration estimates could correlate with the number of event 247 

boundaries, even if they were basing their estimates purely on the perceptual similarity 248 

between clips. To explore this possibility, we tested whether the number of event 249 

boundaries would correlate with duration estimates from naïve participants, who could 250 

only judge temporal distance based on the similarity between clips, given that they had 251 

never heard the story.  252 

Importantly, we found that the number of event boundaries in an interval did not 253 

significantly correlate with duration estimates of naïve participants (r=0.09, 95% CI [-254 

0.05, 0.21]; Figure 3). Of course, we cannot definitely prove the null hypothesis that 255 

naïve estimates do not at all correlate with the number of event boundaries. However, 256 

the correlation between the number of boundaries and duration estimates was 257 

significantly higher for our original participants than for naïve participants (ݎௗ௜௙௙ = 0.40, 258 

95% CI [0.15 0.56]). In other words, duration estimates from participants who 259 

remembered the story were significantly more correlated with the number of 260 

contextual changes between two clips than duration estimates from participants who 261 

were judging temporal distance based merely on the similarity between the two clips.  262 

This suggests that the number of event boundaries carries information about temporal 263 

context that is not contained within the clips alone, and that our original participants’ 264 

estimates were influenced by their memory of this contextual information.  265 
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 266 

Figure 3 Mean duration estimates for 2-minute intervals as a function of the number of event 267 
boundaries in each interval. The number of event boundaries in an interval predicted 268 
retrospective duration estimates in our original experiment (left panel), but did not predict 269 
duration estimates of naïve participants (right panel) who had never heard the story. This 270 
suggests that the number of contextual changes between two clips influenced temporal 271 
distance judgments only when the content of the story between the two clips could be recalled.  272 

The following source data are available for Figure 3 273 
Figure 3 – source data 1. Mean number of event boundaries and mean duration estimates from 274 
both original and naïve participants.  275 
Figure 3 – source data 2. Duration estimates from the Naïve Experiment, including both 2 and 6-276 
minute intervals.  277 

 278 
  279 
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fMRI Results 280 

We tested whether BOLD pattern change between two clips correlated with 281 

temporal distance estimates, using both ROI and whole-brain searchlight analyses. Each 282 

type of analysis was performed both within-participants across intervals and within-283 

intervals across participants.  284 

In the within-participant analysis, we correlated each participant’s duration 285 

estimates with that participant’s neural pattern distances (see Within-Participant 286 

Correlation between Pattern Change and Duration Estimates and Within-Participant 287 

Whole-brain Searchlight). In the within-interval analysis, we correlated individual 288 

differences in subjective duration for a given interval with individual differences in 289 

neural pattern distance for that interval (see Within-Interval Correlation between 290 

Pattern Change and Duration Estimates and Within-Interval Whole-brain Searchlight). 291 

The two versions of each analysis were performed in order to rule out the possibility 292 

that our effects were driven either by participant or interval random effects. In 293 

particular, we were concerned that correlations between neural pattern distance and 294 

behavior could reflect sensitivity to perceptual or semantic features of the clips (i.e., clip 295 

pairs with similar perceptual/semantic features might be associated with shorter 296 

duration estimates and greater neural similarity, relative to clip pairs with more 297 

dissimilar features). The within-interval analysis addresses this concern by holding clip 298 

identity constant. 299 

Next, we fit a mixed-effects model for each ROI (see Mixed-Effects Model 300 

Accounting for Naïve Duration Estimates), in which we estimated whether pattern 301 
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distance in that ROI could predict duration estimates, even when accounting for 302 

participant random effects, item (interval) random effects, as well as naïve duration 303 

estimates (which are a proxy for the perceptual and semantic similarity between two 304 

clips, see Behavioral Results).  305 

Finally, we discuss the brain regions that showed significant effects across all 306 

analyses (see Comparing Results from ROI and Searchlight Analyses).  307 

As noted in the Methods, the ROI and searchlight analyses were conducted only on 308 

high-confidence 2-minute intervals. 6-minute intervals were excluded from the fMRI 309 

analysis, since we could not successfully dissociate neural pattern change at this 310 

timescale from low-frequency scanner noise (see Methodological challenges with 311 

analyzing pattern distance over long time scales in the Methods).  312 

 313 

 314 

  315 
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 316 
Figure 4 Correlating pattern distance with duration estimates within participants. For each ROI 317 
in each participant, the pattern distance between each pair of clips at encoding was correlated 318 
with the participant’s retrospective duration estimate (A-B). The top panel (A) shows two 319 
example intervals. The neural distance (1-Pearson’s r) between clips 2 and 4 (second interval) is 320 
greater than the neural distance between clips 1 and 3 (first interval), as is the subjective 321 
duration estimate. (B) shows the correlation between neural distance and duration estimates in 322 
a hypothetical region and participant. (C) We used a permutation test to generate 10,000 323 
surrogate pattern distance vectors (see Figure 3 - Supplement 1), which we then used to obtain 324 
a distribution of null correlations between neural distances and duration estimates. For each 325 
ROI in each participant, we calculated the z-scored correlation value, which reflects the strength 326 
of the empirical correlation relative to the distribution of null correlations. For each ROI, we 327 
performed a random effects t-test to assess whether the z-score was reliably positive across 328 
participants. P-values from this t-test were then subjected to multiple comparisons correction 329 
using False Discovery Rate (FDR). 330 

The following figure supplements are available for Figure 4:  331 
Figure 4 – Supplement 1 Permutation test assessing the temporal specificity of correlations 332 
between pattern change and behavior. 333 
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Figure 4 – Supplement 1: Permutation test assessing the temporal specificity of 334 
correlations between pattern change and behavior 335 

 336 
Permutation test assessing the temporal specificity of correlations between pattern change 337 
and behavior. This procedure is described in the Methods (see “Statistical analysis of 338 
correlations between pattern change and behavior”). (A,B) The time course of pattern change is 339 
constructed using the distance (1 - Pearson’s r) between each pattern and the pattern 80 TRs (2 340 
minutes) after it. As in the main analysis, we averaged over the 5 consecutive TRs surrounding 341 
each pattern (for simplicity, this is not shown in the above figure). (C) 10 000 surrogate pattern 342 
distance time courses are generated by randomizing the phases of the original time course, thus 343 
conserving the amplitude of each frequency component. (D) Surrogate pattern distances are 344 
correlated with time estimates, generating 10,000 null correlations. A Z-value for each ROI / 345 
searchlight in each participant is computed to compare the strength of the empirical correlation 346 
with the distribution of null correlations. The p-value for a given ROI is obtained using a right-347 
tailed t-test on the Z-values across participants. 348 
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Anatomical ROI Analyses  349 

We first tested whether pattern change in regions suggested by the literature to be 350 

important for representing temporal context (see ROI Selection) correlated with 351 

retrospective duration estimates. Anatomical ROIs were derived from FreeSurfer cortical 352 

parcellation (Desikan et al., 2006) and from a probabilistic MTL atlas (Hindy & Turk-353 

Browne, 2015).  354 

 355 

Within-Participant Correlation between Pattern Change and Duration Estimates 356 

The within-participant analysis procedure is outlined in Figure 4. We calculated the 357 

correlation between neural pattern distance and duration estimates within participants 358 

(Figure 4 A) in each of the 32 ROIs shown in Figure 5. To assess the likelihood of 359 

obtaining a correlation of that magnitude by chance, we used a phase randomization 360 

procedure (described in Methods) to obtain 10 000 null correlations for each ROI in 361 

every participant. This enabled us to calculate a Z-value for every ROI in every 362 

participant, which reflects the strength of the actual correlation between pattern 363 

distance and duration estimates relative to the distribution of null correlations (Figure 4 364 

C). Here we report the regions whose Z-values were consistently positive across 365 

participants, corrected for multiple comparisons using False Discovery Rate (FDR, 366 

Benjamini, Krieger, & Yekutieli, 2006).  367 

Out of the regions selected a priori, the right entorhinal cortex and right pars 368 

orbitalis showed a significant positive correlation between pattern change and duration 369 

estimates for high-confidence 2-minute intervals (q<0.05). Figure 5 shows the mean Z-370 
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values across participants for all a priori ROIs (16 in each hemisphere), including lateral 371 

prefrontal regions (top panel A), medial temporal lobe regions, insula, putamen, and 372 

inferior parietal cortex (bottom panel B). While a large number of these regions had Z-373 

values that were positive across participants (e.g., left hippocampus, left entorhinal 374 

cortex, right perirhinal cortex, right amygdala, bilateral insula, and right caudal middle 375 

frontal cortex, p<0.05 uncorrected), we report only those that survived FDR correction.  376 

As part of an exploratory search, we also performed this analysis on the other brain 377 

regions derived from FreeSurfer cortical parcellation. This included the 16 ROIs 378 

mentioned above, in addition to regions in the occipital lobe, parietal lobe, medial 379 

prefrontal cortex, lateral temporal lobe, basal ganglia, thalamus and brainstem (the 380 

complete list of regions can be found in Figure 5 – source data 1). Out of the 84 regions 381 

tested (42 in each hemisphere), the right entorhinal cortex, right pars orbitalis, and left 382 

caudal anterior cingulate cortex (ACC) showed significant positive correlations between 383 

pattern change and duration estimates (q<0.1). This suggests that the right entorhinal 384 

cortex and right pars orbitalis, which were part of our list of a priori ROIs, contained 385 

effects that were apparent even after whole-brain correction, and reveals an additional 386 

effect in the left caudal ACC that we had not anticipated. Figure 5 – Supplement 1 387 

displays the locations of these three regions in MNI space. 388 
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 389 
Figure 5 Within-participant ROI analysis: Mean Z-values (across all 18 participants) of 390 
correlations between pattern distance and duration estimates for the 16 a priori ROIs. Z-391 
values were obtained from the phase randomization procedure and reflect the strength of the 392 
empirical correlation relative to the distribution of null correlations. Error bars represent 393 
standard errors of the mean. The blue dots over the right entorhinal cortex and right pars 394 
orbitalis indicate that these ROIs survived FDR correction at q<0.05.  395 
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The following figure supplements are available for Figure 5:  396 
Figure 5 - supplement 1. Anatomical ROIs that showed a significant correlation between pattern 397 
change and duration estimates within participants, after whole-brain FDR correction. 398 

The following source data are available for Figure 5: 399 
Figure 5 – source data 1. Within-participant analysis Z-values and Pearson’s r values for all 400 
participants and grey matter regions derived from FreeSurfer segmentation and the probabilistic 401 
MTL atlas.  402 

 403 

Figure 5 – Supplement 1 404 

 405 
Anatomical ROIs that showed a significant correlation between pattern change and duration 406 
estimates within participants, after whole-brain FDR correction. In red are regions with q<0.1: 407 
the right entorhinal cortex, right pars orbitalis and left caudal ACC. This analysis was performed 408 
in native space on participant-specific ROIs. ROIs were transformed from native functional space 409 
to MNI space for display purposes. 410 

 411 

Within-Interval Correlation between Pattern Change and Duration Estimates 412 

Above, in the within-participants analysis, we found that the neural pattern distance 413 

between two clips at encoding was correlated with retrospective duration judgments in 414 
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the right entorhinal cortex, right pars orbitalis and left caudal ACC. However, in the 415 

Behavioral Results, we found that the perceptual and semantic similarity between two 416 

clips could explain some of the variance in subjective duration across intervals, even 417 

though it could not explain all the variance. Thus, it is possible that neural pattern 418 

change in the regions we found correlates with the component of duration estimates 419 

that is driven by perceptual and semantic content, rather than the component that is 420 

driven by abstract, slowly varying contextual features.  421 

To rule out this concern, we performed a within-interval (across participants) version 422 

of the ROI analysis. For each ROI, we correlated 1) duration estimates for a given 423 

interval across participants with 2) the neural pattern distances for that interval across 424 

participants; results were then aggregated across all 2-minute intervals. Rather than 425 

capturing variance within an individual across intervals of the story, this analysis 426 

captures variance across individuals for a given interval of the story. By performing the 427 

correlation within a given interval, we hold constant the perceptual and semantic 428 

content of the two clips and only leverage individual differences in how long the interval 429 

appeared retrospectively.  430 

As described in the Methods, a permutation test was used to assess the statistical 431 

significance of each correlation. Duration estimates were scrambled across participants 432 

10,000 times to obtain a distribution of null correlations for every interval in every ROI. 433 

This enabled us to calculate a Z-value, which reflects the strength of the actual 434 

correlation between pattern distance and duration estimates relative to the distribution 435 

of null correlations. Finally, a right-tailed t-test was performed to assess whether the Z-436 
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values for a region were reliably above 0 across intervals. The p-values from this t-test 437 

were subjected to multiple comparisons correction using FDR.  438 

Out of the regions selected a priori, the right entorhinal cortex, right amygdala, and 439 

right insula showed a significant positive correlation between pattern change and 440 

duration estimates for high-confidence 2-minute intervals (q<0.05). Figure 6 shows the 441 

mean Z-values across intervals for all a priori ROIs (16 in each hemisphere). 442 

Extending this analysis to the whole brain (same anatomical masks as in Figure 5 – 443 

source data 1) revealed only the right entorhinal cortex (q<0.05), suggesting that the 444 

effect in this region was strong enough to survive whole-brain correction.  445 

Importantly, the right entorhinal cortex is the only region with significant effects in 446 

both the within-interval analysis (Cohen’s d = 0.83) and the within-participant analysis 447 

(Cohen’s d = 0.79). If neural pattern distance between two clips in entorhinal cortex 448 

were driven solely by changes in clip content, we would have expected the correlation 449 

with duration estimates to be larger for the within-participant analysis (where story 450 

content differed across intervals) than for the within-interval analysis (where story 451 

content is held constant). The fact that the effect sizes are similar shows that perceptual 452 

or semantic differences in content between the two clips are not the main factor driving 453 

the correlation between duration estimates and neural pattern change in this region.  454 
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 455 
Figure 6 Within-interval ROI analysis: Mean Z-values (across all 2-minute intervals) of 456 
correlations between pattern distance and duration estimates for the 16 a priori ROIs. Error 457 
bars represent standard errors of the mean. Correlations between pattern change and duration 458 
estimates were performed across participants, separately for each interval.  459 
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The following source data are available for Figure 6: 460 
Figure 6 – source data 1. Within-interval analysis Z-values and Pearson’s r values for all 461 
participants and regions in the FreeSurfer and MTL atlases. 462 

 463 

Mixed-Effects Model Accounting for Naïve Duration Estimates 464 

We analyzed our data using a hierarchical linear regression model (Gelman & Hill, 465 

2006; see Methods for additional detail). This analysis estimates population-level effects 466 

of interest, while controlling for the possibility of individual variability between subjects 467 

and between clip pairs. In other words, this approach leverages the power of the within-468 

interval analysis to control for the objective content similarity between two clips, while 469 

also taking into account variability in the effect across participants. In addition, we 470 

included the mean duration estimates from our naïve participants as a covariate in the 471 

model (see Behavioral Results). Since naïve participants had estimated the temporal 472 

distance between each pair of clips without hearing the story, this covariate is a further 473 

control for the inherent guessability of the temporal distance between two clips. Both 474 

controls strengthen our interpretation that the remaining effect of neural pattern 475 

distance on duration estimates is driven by the contextual dissimilarity (rather than 476 

perceptual or content dissimilarity) between two clips.  477 

For each anatomical region derived from FreeSurfer and MTL segmentation (42 in 478 

each hemisphere), we fit a model where duration estimates were predicted by naïve 479 

duration estimates as well as the neural pattern distance in that region (see Methods for 480 

the complete formula). We then computed 95% confidence intervals of the fixed-effects 481 

parameter estimates using the asymptotic Gaussian approximation (see Methods).  482 
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The fixed effect of naïve estimates was positive in all models and its confidence 483 

intervals did not include zero in 80% of the models. This reproduced our finding that 484 

naïve duration estimates are correlated with the original duration estimates (see 485 

Behavioral Results), suggesting that interval durations are partially guessable based on 486 

the similarity between clips. However, even under this control, the fixed effect of neural 487 

pattern distance in left caudal ACC and right entorhinal cortex exhibited confidence 488 

intervals that did not include zero (Figure 7). Figure 7 – source data 1 contains the 489 

parameter estimates and 95% confidence intervals for all 84 anatomical regions.  490 

Importantly, including the naïve duration estimates as a covariate in the model did 491 

not significantly weaken the relationship between neural pattern distance and duration 492 

estimates in these regions (though the effects were slightly lower numerically). Figure 7 493 

shows in green the 95% confidence intervals for the same ROIs when naïve duration 494 

estimates are excluded from the model.  495 

 496 
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 497 
Figure 7 Parameter estimates and 95% confidence intervals for the fixed effect of neural 498 
pattern distance on duration estimates. We also included the right amygdala and right superior 499 
temporal cortex in the figure, because their confidence intervals did not include 0 when a 500 
slightly less conservative fitting procedure was used (see Methods). 501 

The following source data are available for Figure 7: 502 
Figure 7 – source data 1. Parameter estimates (betas) and 95% confidence intervals for the fixed 503 
effects of neural pattern distance on duration estimates for all 84 anatomical regions. 504 

 505 

Whole-Brain Searchlights 506 

As with the Anatomical ROI analyses, both within-participant and within-interval 507 

analyses were performed for the Whole-Brain Searchlight analyses, in order to rule out 508 

the possibility that our effects were driven either by participant or interval random 509 

effects. 510 

 511 

Within-participant Whole-brain Searchlight 512 

We ran a cubic searchlight with 3x3x3 (27) voxels (972 mm3) through the entire 513 

brain and tested for a correlation between pattern change and duration estimates in 514 
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each searchlight. The same phase-randomization procedure that was used for the 515 

within-participant anatomical ROI analysis was also applied here; this procedure 516 

generates Z-values that reflect how likely we are to get this strong of a correlation by 517 

chance, given the frequency spectrum of the fMRI data. When excluding low-confidence 518 

intervals, we found a significant cluster in the right anterior temporal lobe (p=0.034, 519 

FWE-corrected; Center of Gravity MNI coordinates (x, y, z) in mm:  [45.6, -5.53, -21.7]; 520 

cluster size=572 voxels in 3 mm MNI space). Small parts of the cluster also extended to 521 

the right posterior insula and right putamen (see Figure 8).  522 

 523 

 524 
Figure 8 Results of within-participant whole-brain searchlight. Voxels in orange represent 525 
centers of searchlights that exhibited significant correlations between pattern change and 526 
duration estimates within participants across intervals (p<0.05, FWE). The significant cluster had 527 
peak MNI coordinates (in mm): x = 45.6, y = -5.53, z = -21.7. 528 

 529 

R 
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Within-interval Whole-brain Searchlight 530 

We also ran a searchlight version of the within-interval analysis. In order to match 531 

searchlights across participants, functional data were transformed to 3mm MNI space. 532 

Since this transformation approximately doubles the number of brain voxels, we ran 533 

cubic searchlights of radius 2 with 5x5x5 (125) voxels through the entire brain.  534 

As with the ROI analysis, this analysis was performed on high-confidence duration 535 

estimates. For each interval, we only included participants who had confidently 536 

recollected the temporal position of the two clips delimiting that interval.  537 

To assess the significance of each correlation score, we used the same permutation 538 

test as for the ROI analysis. Duration estimates were scrambled across participants 539 

10,000 times to obtain a distribution of null correlations, and Z-values were calculated 540 

for each interval. We thus obtained a brain map of Z-values for each of the 24 intervals, 541 

and FSL’s randomise function was used to control the Family-wise error rate, as above. 542 

Similarly to the within-participant searchlight, we found a significant cluster in the 543 

right anterior temporal lobe (p=0.019, FWE-corrected; Center of Gravity MNI 544 

coordinates (x, y, z) in mm: [32.1, -10.2, -18.7]; cluster size=535 voxels in 3 mm MNI 545 

space). The cluster extended from the right parahippocampal gyrus, hippocampus and 546 

amygdala medially to the middle temporal gyrus and temporal pole laterally (see Figure 547 

9). 548 
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 549 

Figure 9 Results of within-interval whole-brain searchlight. Voxels in orange represent centers 550 
of searchlights that exhibited significant correlations between pattern change and duration 551 
estimates across participants (p<0.05, FWE). The significant cluster had center of gravity MNI 552 
coordinates (in mm): x =32.1, y = -10.2, z = -18.7. 553 

 554 

Comparing Results from ROI and Searchlight Analyses 555 

The within-participant ROI analysis revealed significant effects in the right entorhinal 556 

cortex, right pars orbitalis and left caudal ACC. The within-interval ROI analysis revealed 557 

significant effects in the right entorhinal cortex, right amygdala and right insula. The 558 

mixed-effects ROI analysis showed that the right entorhinal cortex and left caudal ACC 559 

had confidence intervals above 0, even when naïve duration estimates were accounted 560 

for. Both the within-participant and within-interval searchlights revealed significant 561 

clusters in the right anterior temporal lobe. Figure 10 enables a comparison of the two 562 
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searchlight analyses; the right entorhinal cortex ROI that emerged in all three ROI 563 

analyses is also overlaid. The within-interval searchlight cluster was located more 564 

medially than the within-participant searchlight cluster, though the two overlapped in 565 

the right amygdala, right temporal pole, and the cerebral white matter of the right 566 

anterior temporal lobe. Moreover, the within-interval searchlight cluster overlapped 567 

with the right entorhinal cortex ROI (see green voxels, Figure 10).  568 

 569 

 570 

Figure 10 Comparison of ROI and Searchlight results. The within-participant searchlight cluster 571 
(p<0.05, FWE) is displayed in blue; the within-interval searchlight cluster (p<0.05, FWE) is 572 
displayed in yellow; voxels that overlap between the searchlights are shown in green. The right 573 
entorhinal cortex (q<0.05 FDR in both ROI analyses) is displayed in red; voxels that overlap 574 
between the within-interval searchlight and the right entorhinal ROI are shown in green. 575 

 576 
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The difference in the set of regions that passed the significance threshold between 577 

the ROI and searchlight analyses is very likely due to the difference in shapes between 578 

the searchlight cube and the anatomical masks. Following the anatomy is particularly 579 

important for small, elongated regions like entorhinal cortex and caudal ACC, which are 580 

unlikely to be perfectly aligned across participants. For the searchlight analyses, the data 581 

needed to be transformed to MNI space in order to aggregate the results; consequently, 582 

imperfections in alignment can reduce the significance of searchlight results in these 583 

regions. On the other hand, anatomical ROI analyses were performed entirely in native 584 

space, making them more suitable for idiosyncratically shaped regions. 585 

 586 

Patterns of activity in entorhinal cortex change slowly over time 587 

To further probe the idea that the regions we found represent slowly changing 588 

contextual features, we assessed whether their patterns of activity change slowly over 589 

time relative to the rest of the brain. We focused this analysis on the right entorhinal 590 

cortex and left caudal ACC, both of which were significant in the mixed-effects ROI 591 

analysis.  592 

We quantified the speed of BOLD signal change in three different ways: 1) a 593 

multivariate procedure, 2) a multivariate procedure in which we regressed out ROI size, 594 

and 3) a univariate procedure. 1) For the multivariate procedure, we obtained the mean 595 

auto-correlation function of the pattern in every region, and took the full-width half-596 

maximum (FWHM) of this function as a measure of how slowly the pattern moves away 597 

from itself on average (see Methods). 2) Since this analysis was performed on 598 
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anatomical masks derived from FreeSurfer parcellation, they varied substantially in size. 599 

To ensure that differences in the speed of pattern change were not due to differences in 600 

ROI size, we also performed the multivariate procedure after regressing the vector of 601 

ROI sizes (number of voxels) out of the vector of FWHM values for each participant. 3) 602 

Finally, we performed the above analysis for every voxel individually. Rather than 603 

calculating the mean auto-correlation function of the pattern in every region, we 604 

calculated the auto-correlation function of every voxel’s time course and averaged the 605 

auto-correlation functions across all the voxels in a given region. The FWHM was then 606 

computed for this mean auto-correlation derived from individual voxel time courses. 607 

Using these three procedures, we compared the FWHMs in the right entorhinal 608 

cortex and left caudal ACC with FWHMs in three regions known to be involved in 609 

auditory and language processing: the right transverse temporal cortex, which 610 

encompasses primary auditory cortex (Destrieux, Fischl, Dale, & Halgren, 2010; 611 

Shapleske, Rossell, Woodruff, & David, 1999), the right banks of the superior temporal 612 

sulcus and the right superior temporal cortex, which are involved in auditory processing 613 

and the early cortical stages of speech perception (Binder et al., 2000; Hickok & 614 

Poeppel, 2004).  615 

Table 1 shows the FWHMs in the above regions derived using the three procedures, 616 

as well as the ranking of the right entorhinal cortex and left caudal ACC mean FWHMs 617 

relative to all the other masks in the brain (84 in total).  618 

  619 
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Table 1 Speed of pattern change in the right entorhinal cortex and left caudal ACC relative to 620 
the rest of the brain. Full-Width Half-Maximum (FWHM) values reflect how slowly patterns of 621 
activity (multivariate) or individual voxels (univariate) change over time. The Multivariate (-ROI 622 
size) column reflects the slowness of pattern change when controlling for the effect of ROI size.  623 

 624 
 625 

Across all three procedures, a right-tailed Wilcoxon signed-rank test indicated that 626 

the FWHMs in the right entorhinal cortex were consistently larger across participants 627 

than the FWHMs in the right transverse temporal cortex (p<0.00005, p<0.0005 and 628 

p<0.00005), the right banks of the superior temporal sulcus (p<0.001, p<0.001 and 629 

p<0.0005) and the right superior temporal cortex (p<0.005, p=0.06 and p<0.0005). Thus, 630 

single voxels and multivariate patterns in entorhinal cortex changed consistently more 631 

slowly than those in regions involved in auditory and language processing. Moreover, 632 

the mean FWHM in the right entorhinal cortex was one of the largest among all 84 633 

regions, ranking 3rd, 4th and 1st in the brain across the three procedures. The other 634 

regions with the slowest voxel and pattern change included the temporal pole, medial 635 

and lateral orbitofrontal cortex, frontal pole, perirhinal cortex, pars orbitalis and inferior 636 

temporal cortex.  637 

On the other hand, the left caudal ACC ranked 66th, 67th and 46th out of 84 regions 638 

across the three procedures, suggesting that it did not exhibit slow signal change 639 

Region FWHM (TRs) Ranking FWHM 
(TRs) Ranking FWHM (TRs) Ranking

Right entorhinal M=18.9, 
SD=13.8 3rd M=1.2, 

SD=1.9 4th M=23, 
SD=15.6 1st 

Left caudal ACC M=8.3, 
SD=1.8 66th M= -0.5, 

SD= 0.5 67th M=9.2, 
SD=3.8 46th 

Right transverse 
temporal cortex

M=7.3, 
SD=1.2 80th M= -0.8, 

SD= 0.5 83rd M=7.9, 
SD=1.2 68th 

Right banks of superior 
temporal sulcus

M=9.0, 
SD=2.1 48th M= -0.3, 

SD= 0.4 49th M=8.8, 
SD=1.7 61st 

Right superior temporal 
cortex

M=11.0, 
SD=3.1 28th M= 0.4,  

SD = 0.6 18th M=10.3, 
SD=2.4 34th 

Multivariate UnivariateMultivariate (-ROI size) 
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relative to the rest of the brain. Across the three procedures, the FWHMs in the left 640 

caudal ACC were larger than those in the right transverse temporal cortex (p<0.01, 641 

p<0.005, and p=0.059), but generally smaller than those in the right banks of the 642 

superior temporal sulcus (p=0.97, p=0.96, and p=0.42) and the right superior temporal 643 

cortex (p=1.0, p=1.0, p=0.98). Thus, patterns in the left caudal ACC changed only slightly 644 

more slowly than those in primary auditory cortex.  645 

Taken together, all three variants of the analysis showed that the right entorhinal 646 

cortex, along with other regions of the anterior and medial temporal lobe, orbitofrontal 647 

cortex and frontal pole, had the slowest pattern change in the brain. These results do 648 

not seem to be due to differences in the sizes of the anatomical masks and suggest that 649 

the right anterior MTL regions found most consistently in our ROI and searchlight 650 

analyses process information that changes slowly over time. Our findings are consistent 651 

with those of Stephens, Honey, & Hasson (2013), who showed that auditory cortex 652 

regions processing momentary stimulus features had intrinsically faster dynamics than 653 

higher-order regions that integrated information over longer time scales (see also 654 

Lerner, Honey, Silbert, & Hasson, 2011).  655 

 656 

Story position effects cannot explain the correlation between duration estimates and 657 

neural pattern change 658 

We found that duration estimates systematically decreased as a function of position 659 

in the story, with earlier intervals being estimated as longer than later intervals (Figure 660 

11). The correlation between the estimated duration of an interval and its time in the 661 
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story was consistently negative across participants (M= -0.40, SD= 0.22; t(16)= -7.59, 662 

p<0.00001).  663 

This result may be a replication of the positive time-order effect: the finding that 664 

people judge earlier durations in a series of durations to be longer than later durations 665 

(Block, 1982, 1985; Brown & Stubbs, 1988). The effect has been interpreted to mean 666 

that context usually changes more rapidly at the start of a novel episode (Block, 1982, 667 

1986). However, another possibility is that the characteristics of the particular story we 668 

picked are driving this result. In our story, there was a strong negative correlation 669 

between the mean number of event boundaries per interval and the position of the 670 

interval in the story (ρ = -0.77). Thus, the decrease in mean duration estimates with 671 

story position may be due to the relationship between the number of event boundaries 672 

and duration estimates (see Behavioral Results).  673 

If the decrease in duration estimates over time is due to a decrease in the amount of 674 

contextual change over the course of the story, we might expect BOLD pattern 675 

dissimilarity to decrease over time in the brain regions yielded by our ROI analyses. 676 

However, there was no consistent correlation between pattern change during an 677 

interval and its time in the story for the right entorhinal cortex (M=0.03, SD=0.21; t(16)= 678 

0.65; p=0.53), the right pars orbitalis (M= -0.10, SD=0.22; t(16)= -1.83, p=0.09), the left 679 

caudal ACC (M= -0.05, SD=0.18; t(16)=-1.15, p=0.27), the right amygdala (M= -0.02, 680 

SD=0.23; t(16)= -0.28, p=0.78) or the right insula (M= -0.08, SD=0.25; t(16)=-1.34, 681 

p=0.20). These results suggest that the relationship between duration estimates and 682 

pattern dissimilarity in these regions was not driven by a shared effect of story position. 683 
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Rather, it seems that pattern dissimilarity in these regions correlated with more fine-684 

grained variations in the estimated durations of nearby intervals (Figure 11).  685 

To investigate why the above regions did not show the expected decrease in pattern 686 

dissimilarity over time, we assessed whether any brain region in the FreeSurfer or MTL 687 

atlas might show this effect. There was no brain region whose pattern of activity 688 

changed more at the beginning than at the end of the story. Given that we were looking 689 

for a slow change in neural signal (unfolding over the entire course of the story), we 690 

thought that our high-pass filter might be removing this slow change; to address this 691 

possibility, we analyzed the unfiltered data. When we did this, we found that neural 692 

pattern change in the unfiltered data showed a consistent correlation in the opposite 693 

direction: almost all brain patterns changed more at the end of the story than at the 694 

beginning, including the CSF and white matter (q<0.05, FDR), suggesting that a signal 695 

unrelated to neural processing, such as scanner drift or motion, may cause activity 696 

patterns to change more as time passes (see Figure 11 – source data 1). Thus, even if 697 

the degree of neural pattern change were decreasing over time, we might not be able to 698 

detect this effect, as it would have to overcome a global signal in the opposite direction 699 

that is not due to neural activity and that is present everywhere, including the CSF.  700 
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 701 
Figure 11 Mean duration estimates and pattern distances (across participants) for all 2-minute 702 
intervals as a function of the interval’s position in the story. The middle time point of each 2-703 
minute interval (half-way between the two clips delimiting it) was chosen as the x-coordinate.  704 

The following source data are available for Figure 11: 705 
Figure 11 – source data 1. Duration estimates and pattern distances in all FreeSurfer and MTL 706 
ROIs for each 2-minute interval in every participant. Data prior to high-pass filtering and after 707 
high-pass filtering (cut-off = 480 s) are provided.  708 

 709 

Replication of Jenkins and Ranganath 2010: activity at encoding predicts accuracy of 710 

temporal context memory 711 

As described in the Methods (“Time perception test” section), in addition to 712 

estimating the elapsed duration between pairs of clips from the story, participants were 713 

given an additional test, where they estimated each clip’s position on the timeline of the 714 

story. The mean correlation (across participants) between the actual and estimated 715 
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temporal position on the timeline of the story was r=0.885 (SD = 0.05), suggesting that 716 

participants remembered the temporal position of each clip extremely well (p<10-21). 717 

Figure 12 shows the timeline estimates for a representative participant (top left panel), 718 

as well as the absolute residual error associated with each clip (top right panel), group 719 

averaged and plotted against time in the story.  720 

This behavioral dataset enabled us reproduce an fMRI analysis from Jenkins and 721 

Ranganath (2010), where voxel activity at encoding was correlated with subsequent 722 

accuracy in remembering when a trial occurred in the experiment. For each participant, 723 

we regressed the estimated timeline position against the actual position and used the 724 

absolute value of the residual as a measure of error. We found that the accuracy 725 

(negative error) of timeline placements was significantly correlated with encoding 726 

activity in large clusters of the left dorsolateral prefrontal cortex and medial prefrontal 727 

cortex, including dorsomedial PFC and anterior cingulate (p=0.008, FWE-corrected; 728 

Center of Gravity MNI coordinates (x, y, z) in mm: [-20, 34.8, 28.4]; cluster size = 1121 729 

voxels in 3 mm MNI space), as well as sub-threshold clusters in the medial parietal 730 

cortex, including precuneus and posterior cingulate (p=0.058, FWE-corrected; Center of 731 

Gravity MNI coordinates (x, y, z) in mm: [-10.5, -54, 16.1]; cluster size = 419 voxels), and 732 

left superior temporal gyrus (p=0.098, FWE-corrected; Center of Gravity MNI 733 

coordinates (x, y, z) in mm: [-56.9, -19.1, -3.72]; cluster size = 270 voxels). 734 

 735 
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 736 
Figure 12 Replication of Jenkins and Ranganath 2010: activity at encoding predicts accuracy of 737 
temporal context memory. Top left panel: Timeline estimates for a representative participant. 738 
The estimated temporal position of each clip is plotted against its actual position in the 739 
story. Top right panel: Group-averaged residual error for each clip plotted against its time in 740 
the story. Our behavioral results mimic those of Figure 2 in Jenkins and Ranganath (2010) 741 
showing that accuracy increases for clips that occurred later in the story.  742 
Bottom panels: Clusters that showed a significant correlation between activity at encoding and 743 
subsequent accuracy at placing a clip on the timeline of the story. The prefrontal cluster in light 744 
blue was significant (p=0.008, FWE), while the medial parietal cluster (p=0.058, FWE) and the 745 
lateral temporal cluster in dark blue (p=0.098, FWE) were trending. 746 
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Discussion 747 

While human and animal time perception has been a subject of intense empirical 748 

investigation (see Wittmann, 2013), most neuroimaging studies have tested its 749 

mechanisms on the scale of milliseconds to seconds and neglected paradigms in which 750 

long-term memory plays an important role. Such studies have typically employed 751 

prospective paradigms, in which participants must deliberately attend to the duration of 752 

a stimulus. However, behavioral studies in humans have consistently demonstrated that 753 

retrospective paradigms, in which participants are asked to estimate the duration of an 754 

elapsed interval from memory, tap into different cognitive mechanisms from 755 

prospective ones (Hicks et al., 1976; Zakay & Block, 2004; Block & Zakay, 2008). In 756 

retrospective paradigms, changes in spatial, emotional and cognitive context tend to 757 

modulate estimates of elapsed time (Block, 1992; Block & Reed, 1978; Sahakyan & 758 

Smith, 2014; Pollatos et al., 2014).  759 

In the present study, we used changes in patterns of BOLD activity as a proxy for 760 

mental context change. We sought to extend previous neuroimaging work by testing 761 

whether neural pattern change predicts duration estimates on the scale of several 762 

minutes and in a more naturalistic setting, where spatial location, situational inference, 763 

characters, and emotional elements can all drive contextual change. 764 

Participants were scanned while they listened to a 25-minute radio story and were 765 

subsequently asked how much time (in minutes and seconds) had elapsed between 766 

pairs of clips from the story (all pairs were in fact two minutes apart). Using this 767 

approach, we were able to probe retrospective duration memory repeatedly within 768 
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participants without needing to interrupt the encoding of the story. This allowed us to 769 

leverage within-participant variability in neural pattern change and relate it to a 770 

participant’s retrospective duration estimates.  771 

Using a within-participant anatomical ROI analysis (encompassing 16 regions 772 

selected a priori), we found that neural pattern distance in the right entorhinal cortex 773 

and right pars orbitalis at the time of encoding was correlated with subsequent duration 774 

estimates. Extending this analysis to all anatomical ROIs in cortex revealed an additional 775 

effect in the left caudal anterior cingulate cortex (ACC). These results converged 776 

qualitatively with the results of our whole-brain searchlight analysis, which revealed a 777 

significant cluster spanning the right anterior temporal lobe. 778 

To test our interpretation that duration estimates were driven by contextual change, 779 

we asked a separate group of participants to identify event boundaries in the story. We 780 

found that the number of event boundaries between two clips was very highly 781 

correlated with participants’ subsequent duration estimates. Importantly, the number 782 

of event boundaries was significantly less correlated with duration estimates for a 783 

separate group of “naïve“ participants, who had been asked to estimate the elapsed 784 

time between clips without first hearing the story. These behavioral experiments 785 

provide evidence that retrospective duration estimates were indeed influenced by 786 

memory for intervening contextual changes between clips.  787 

In addition, we sought to rule out the possibility that neural pattern distance 788 

between two clips reflected only the perceptual or semantic similarity between them, 789 

rather than the degree of mental context change. We performed a within-interval 790 
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analysis, in which pattern distances for the same pair of clips were correlated with 791 

duration estimates across participants. The within-interval ROI analysis yielded effects 792 

of the same size in the right entorhinal cortex, right amygdala and right insula. The 793 

within-interval whole-brain searchlight revealed a significant cluster in the right anterior 794 

temporal lobe. Thus, pattern distance in the right anterior temporal lobe, particularly 795 

the right entorhinal cortex, predicted variability in duration estimates even when the 796 

perceptual and semantic distance of the clips was controlled as much as possible, 797 

suggesting that pattern change in these regions may capture idiosyncratic differences in 798 

mental context that cannot be predicted from the stimulus alone.  799 

Finally, if neural pattern distance between two clips reflected only the similarity in 800 

content between them, rather than abstract contextual similarity, we would expect the 801 

correlation between pattern distance and duration estimates to be weakened when 802 

controlling for naïve duration estimates, which were based solely on the perceptual and 803 

semantic similarity between two clips. Fitting a mixed-effects model to each ROI showed 804 

that neural pattern distance in the right entorhinal cortex, along with the left caudal 805 

ACC, exhibited a significant effect on duration estimates even when all other factors, 806 

including random effects of participants and intervals, as well as naïve duration 807 

estimates, were controlled for. 808 

In support of the hypothesis that these regions represent slowly varying contextual 809 

information, we found that the right entorhinal cortex, as well as adjacent regions of the 810 

MTL, temporal pole and orbitofrontal cortex, had some of the slowest neural pattern 811 

change in the entire brain. This is in line with findings that brain regions at the top of the 812 
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processing hierarchy (furthest from the primary perceptual areas) integrate information 813 

over longer time scales and are therefore best suited for representing abstract 814 

information extracted from multiple streams of sensory observations (Stephens, Honey, 815 

& Hasson, 2013; Lerner et al., 2011).  816 

Our results implicating the right entorhinal cortex in representing context fit well 817 

with other results in the literature. Multiple lines of evidence have suggested an 818 

important role for the entorhinal cortex in representing relationships between the 819 

spatial environment, task and incoming stimuli. Lesions of the lateral entorhinal cortex 820 

in rodents have shown that this region is necessary for discriminating between novel 821 

and familiar associations of object and place, object and non-spatial context, or place 822 

and context, while leaving non-associative forms of memory unaffected (Buckmaster, 823 

Eichenbaum, Amaral, Suzuki, & Rapp, 2004; Wilson, Watanabe, Milner, & Ainge, 2013; 824 

Wilson, Langston, et al., 2013). Moreover, electrophysiological recordings in rats 825 

performing a spatial memory task showed that neurons in the medial entorhinal cortex 826 

exhibited greater context sensitivity and greater modulation by task-relevant mnemonic 827 

information than hippocampal neurons, while hippocampal neurons carried more 828 

specific spatial information (Lipton, White, & Eichenbaum, 2007). Medial entorhinal 829 

neurons also exhibited longer firing periods, which led the authors to propose that they 830 

could bind a series of hippocampal representations of distinct events (Lipton & 831 

Eichenbaum, 2008). Thus, changes in distributed entorhinal activity patterns on the 832 

scale of minutes might represent changes in contextual elements that are later retrieved 833 
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to make duration judgments (for theoretical discussion of the role of entorhinal cortex 834 

in contextual representation, see Howard, Fotedar, Datey, & Hasselmo, 2005).  835 

While the right entorhinal cortex was the only medial temporal lobe region that 836 

survived FDR correction in both our within-participant and within-interval ROI analyses, 837 

our whole-brain searchlights found a significant relationship between pattern change 838 

and duration estimates in two extensive clusters that overlapped in the right 839 

hippocampus, the right perirhinal cortex, right amygdala and right temporal pole.  840 

Two previous studies, Noulhiane et al. (2007) and Ezzyat and Davachi (2014), have 841 

directly implicated the MTL in retrospective time estimation in humans. Ezzyat and 842 

Davachi (2014) scanned participants while they were presented with trial-unique faces 843 

and objects on a scene background, which changed every four trials. After each run, 844 

participants were asked whether pairs of stimuli had occurred close together or far 845 

apart in time (all pairs were about 50 seconds apart). They found that neural pattern 846 

distance in the left hippocampus at the time of encoding was greater for pairs of stimuli 847 

later rated as “far apart”, though only when the stimuli were separated by a scene 848 

change. Noulhiane et al. (2007) used a retrospective behavioral paradigm similar to ours 849 

in patients with unilateral MTL lesions. In that study, participants were asked to 850 

estimate the temporal distance between object pictures that had been randomly 851 

inserted into a silent documentary film. They found that the degree of left entorhinal, 852 

left perirhinal and left temporopolar cortex damage correlated with the degree to which 853 

patients overestimated minutes-long intervals in retrospect. (For related evidence from 854 

the animal literature, see Jacobs, Allen, Nguyen, & Fortin, 2013, who showed that 855 
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bilateral inactivation of the hippocampus impaired rats’ ability to discriminate between 856 

similarly long durations, such as 8 and 12 minutes, but not between less similar 857 

intervals, such as 3 and 12 minutes.) 858 

Our ROI and searchlight results are in line with the above set of findings, and suggest 859 

that patients with anterior MTL lesions might be impaired in retrospective time 860 

estimation because patterns of activity in entorhinal, perirhinal, and temporopolar 861 

cortex encode contextual changes on the scale of minutes. The set of regions we found 862 

is more extensive than those in Ezzyat & Davachi (2014) and mostly right-lateralized. It is 863 

possible that the difference in the extent of our effects could be explained by 864 

differences in the paradigms that were used. In both the Noulhiane (2007) and Ezzyat & 865 

Davachi (2014) studies, the links between objects and their context had to be 866 

deliberately constructed. In our study, the clips whose temporal distance participants 867 

estimated were excerpts from a story, and therefore strongly linked with a situational, 868 

spatial, and emotional context. Thus, it is possible that activity patterns in a more 869 

extensive cluster tracked temporal distance estimates because our auditory story 870 

caused changes in a broader set of contextual features.  871 

Extending our anatomical ROI analysis to the entire brain showed that pattern 872 

change in the left caudal anterior cingulate cortex (ACC) predicted subsequent duration 873 

estimates, and this region remained significant in a mixed-effects model controlling for 874 

the effect of naïve duration estimates. However, caudal ACC exhibited more rapid 875 

pattern change than the anterior and medial temporal lobe, suggesting that it may 876 

represent a qualitatively different, faster-changing signal. Caudal ACC activity has been 877 
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shown to increase in response to shifts in task contingencies (see Shenhav, Botvinick, & 878 

Cohen, 2013, for a review) and there is converging evidence that ACC responses are 879 

important for adjusting behavior to unexpected changes by increasing attention and 880 

learning rate (Bryden, Johnson, Tobia, Kashtelyan, & Roesch, 2011; Behrens, Woolrich, 881 

Walton, & Rushworth, 2007; McGuire, Nassar, Gold, & Kable, 2014). Furthermore, 882 

O’Reilly et al. (2013) have provided evidence that the ACC only responds to surprising 883 

outcomes when they necessitate updating beliefs about the current state of the world. 884 

Although the present study was not designed to test such accounts, our findings are 885 

consistent with a role for ACC in updating predictive models. Events in the story that 886 

prompt participants to update their beliefs about the characters’ situation are also likely 887 

to cause changes in cognitive context and therefore overestimation of duration. 888 

However, future studies are needed to test this interpretation, for instance by 889 

manipulating belief updating independently of surprise and measuring its effect on 890 

retrospective duration estimates. 891 

In addition to the anatomical ROI analysis, we performed a whole-brain searchlight 892 

that yielded an extensive cluster covering the right anterior temporal lobe, extending 893 

from the medial temporal regions described above to the middle temporal gyrus and 894 

temporal pole. Prior work has suggested that the middle temporal gyrus and temporal 895 

pole are involved in narrative comprehension (Ferstl, Neumann, Bogler, & Von Cramon, 896 

2008; Mar, 2004) and narrative item memory (Hasson, Nusbaum, & Small, 2007; 897 

Maguire, Frith, & Morris, 1999). Moreover, Ezzyat and Davachi (2011) found a similarly 898 

located cluster (extending from the right perirhinal cortex to the right middle temporal 899 



 51

gyrus) to be involved in integrating information within narrative events. In particular, 900 

they showed that activity within these regions gradually increases within events and 901 

that this increase predicts the degree to which memories become clustered within 902 

events. Retrospective time judgments have been shown to increase with the number of 903 

events an interval contains (Poynter, 1983; Zakay et al., 1994; Faber & Gennari, 2015), 904 

suggesting that brain regions involved in clustering memories by events may carry 905 

important information for estimating durations. 906 

Finally, we were able to replicate an analysis by Jenkins & Ranganath (2010), who 907 

showed that activity during encoding in the left lateral prefrontal cortex and right 908 

anterior hippocampus predicted accuracy in remembering when a trial had occurred in 909 

the experiment. Our analysis revealed a cluster in the left dorsolateral prefrontal cortex 910 

that is similar to that found in their study. However, we also found significant clusters in 911 

the medial prefrontal and medial parietal cortex that are part of the Default Mode 912 

Network. These regions may be important for maintaining narrative information over 913 

minutes-long timescales (Lerner et al., 2011; Hasson, Chen, & Honey, 2015; Chen et al., 914 

2015), which might explain why their activity predicted temporal context memory for 915 

clips from an auditory story, but did not appear in Jenkins & Ranganath (2010), where 916 

participants recalled the timing of trials which were not linked by a narrative. Moreover, 917 

our clusters overlap highly with the “posterior medial network” (Ritchey & Ranganath, 918 

2012), which has been consistently implicated in episodic memory, episodic simulation 919 

and theory of mind.  920 

  921 
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Conclusion 922 

After probing human participants’ time perception for intervals from an auditory 923 

story they had just heard, we found substantial variability in subjective estimates of the 924 

passage of time. This variability was significantly correlated with changes in BOLD 925 

activity patterns in the right anterior temporal lobe, particularly the right entorhinal 926 

cortex, between the start and end of each interval. Control experiments demonstrated 927 

that duration estimates were strongly driven by contextual boundaries and that the 928 

relationship between neural distance and behavior still held when we controlled for the 929 

perceptual/semantic similarity of the clips. Our findings suggest that patterns of activity 930 

in these regions might encode contextual information that participants can later retrieve 931 

to infer the durations of intervals on the scale of minutes. Additional work is needed to 932 

assess how these regions contribute to representing particular contextual features (such 933 

as physical environment, abstract task states, and emotional states) and whether 934 

changes in each of these features affect retrospective duration estimates differently. 935 

 936 

  937 
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Methods 938 

Participants  939 

18 participants (13 female) took part in the study. All participants were recruited 940 

from the Princeton undergraduate and graduate student population and were between 941 

18 and 31 years of age (mean = 22 years). All participants were screened to ensure no 942 

neurological or psychiatric disorders. Written informed consent was obtained for all 943 

participants in accordance with the Princeton Institutional Review Board regulations. 944 

Participants were compensated $20/hour for the scanning session, and $12/hour for the 945 

behavioral session. 946 

Given that no previous studies had related neural pattern change during a 947 

naturalistic stimulus to subsequent duration estimates for minutes-long intervals, we 948 

could not a priori estimate the variance in the pattern change signal, the variance in 949 

duration estimates, or the correlation between them. Therefore, rather than performing 950 

a power analysis, we chose a sample size that was in the same range as previous fMRI 951 

studies that had used naturalistic stimuli to study memory (Lerner et al., 2011, n=11 per 952 

condition; Chen et al., 2015, n=13, 14 and 24 per condition; Chen, Leong, Norman, & 953 

Hasson, 2016, n=22 (5 excluded)), as well as fMRI studies that had related neural 954 

pattern distance to mnemonic judgments (Ezzyat & Davachi, 2011, n=19; Jenkins & 955 

Ranganath, 2010, n=16 (1 excluded); Ezzyat & Davachi, 2014, n=21 (3 excluded), Jenkins 956 

& Ranganath, 2016, n=17). 957 

 958 
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Experimental Design and Stimuli 959 

The experiment consisted of two parts: an approximately 40-minute session in the MRI 960 

scanner, during which participants listened to the auditory story, followed immediately 961 

by a 1-hour behavioral session, during which participants completed a time perception 962 

test on the story they had just heard. Figure 1 illustrates the experimental procedure. 963 

fMRI session 964 

Prior to the fMRI session, participants were instructed to listen carefully to the 965 

auditory story while in the scanner, because they might be asked questions about it 966 

later. The nature of the follow-up questions was unknown to the participants. While in 967 

the scanner, participants listened to a 25-minute-long radio adaptation of a science 968 

fiction story called “Tunnel Under the World” (written by Frederik Pohl), originally aired 969 

on the radio drama series, “X Minus One”, in 1956. 970 

Time perception test 971 

After leaving the scanner, participants were surprised with a time perception test, 972 

presented on a laptop with the Psychophysics toolbox for Matlab (Brainard, 1997; Pelli, 973 

1997). For each of 43 questions, participants listened to a 10 s clip from the story, 974 

followed by another 10 s clip, and were asked to estimate how much time had passed 975 

between the first and second clips when they initially heard the story. Participants were 976 

specifically asked to estimate how much time had passed in their own lives, rather than 977 

how much narrative time had passed in the story. They were also asked to make the 978 

judgments as intuitively as possible, without resorting to deductive reasoning about the 979 

sequence of events that unfolded in between the two excerpts.  980 
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Participants had complete control over the pacing of the test. On each question, 981 

they initiated the playing of the clips, and were able to replay the clips if they missed 982 

them the first time. They could take as long as they wished to enter their duration 983 

estimates (in minutes and seconds), using the keyboard. Clip pairs were identical across 984 

participants, but the order in which the pairs were presented was randomized. 985 

To control for the objective passage of time, we ensured that 24 of the clip pairs 986 

were 2 minutes apart and 19 of the pairs were 6 minutes apart. Debriefing showed that 987 

participants were unaware of this manipulation, and the high variability of duration 988 

estimates for both the 2 and 6-minute intervals further confirmed that they were 989 

unaware of the fixed interval durations.  990 

After participants had provided duration estimates for all 43 intervals, the 86 clips 991 

that had delimited those intervals were replayed in a random order (unpaired), and 992 

participants were asked to place each clip on the timeline of the story. For each of the 993 

86 questions, a white line appeared on a black background, representing the full length 994 

of the story. Participants could place their cursor at any point on that line, followed by 995 

the Enter key. After each placement, they were asked to provide a confidence rating on 996 

a scale of 1 to 5, reflecting their confidence about that clip’s place in the story. 997 

Participants were instructed to base the confidence rating on their certainty of when 998 

that clip occurred in the story, rather than on the vividness of the memory for that clip. 999 

While the exact placement of each clip on the timeline was not used in the fMRI 1000 

analysis, confidence ratings were used to exclude clips whose temporal context 1001 

participants had forgotten.  1002 
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Please note: the first of our 18 participants completed a version of the time 1003 

perception test that differed only in the following way: the specific intervals in the story 1004 

whose duration was asked about were different. In all other respects (half of the 1005 

intervals were 2 minutes while the other half were 6 minutes apart), the behavioral test 1006 

was identical to the subsequent 17 participants. For this reason, however, any analyses 1007 

where duration estimates are compared across participants were performed on 17 1008 

rather than 18 participants. Any within-participant analyses were performed on all 18 1009 

data sets.  1010 

Naïve time perception test 1011 

To address the concern that participants were estimating temporal distance 1012 

between two clips based purely on the content of the clips (rather than their memory of 1013 

when the clips had occurred in the story), we administered an identical time perception 1014 

test to a separate group of 17 participants who had never heard the story. Naïve 1015 

participants were asked to try their best to guess how much time passed between each 1016 

pair of clips during the original telling of the story, even though they had never heard 1017 

the story. Participants were told the length of the story (25 minutes, 33 seconds) and 1018 

informed that the maximum distance between two clips could not exceed that duration.  1019 

Event boundary test 1020 

A separate group of 9 participants were asked to listen to the same story and to 1021 

press the space bar every time they thought an event had ended and a new event was 1022 

beginning. This test was purely behavioral and fMRI data were not collected for these 1023 

participants.  1024 



 57

Behavioral Data Analysis 1025 

Significance of correlation between duration estimates and event boundaries 1026 

To assess whether the number of event boundaries in an interval predicted duration 1027 

estimates for that interval, we related our original participants’ duration estimates with 1028 

event boundary data collected from a separate group of 9 participants. For each 2-1029 

minute interval from the time perception test, we counted the number of event 1030 

boundaries that a participant had indicated during that interval and averaged that 1031 

number across the 9 participants. This resulted in a mean number of event boundaries 1032 

per interval, which was then correlated with the mean estimated duration of that 1033 

interval from our original participants.  1034 

To assess the statistical significance of this correlation, we performed a 1035 

bootstrapping procedure on the duration estimates. We obtained 1000 bootstrap 1036 

samples, each time selecting with replacement a different subset of n individuals from 1037 

our pool of n participants. The duration estimates for each subset were averaged across 1038 

participants and correlated with the mean number of event boundaries. The upper 1039 

limit (ul) for an x% confidence interval was set to the value of the Pearson correlation in 1040 

percentile x% of the bootstrap distribution; the lower limit (ll) for the confidence 1041 

interval was set to the value of the beta score in percentile 100-x of this distribution. 1042 

Confidence intervals that did not encompass zero were considered reliable at the given 1043 

level of confidence. 1044 

 1045 
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Significance of difference in correlations with event boundaries between original 1046 

duration estimates and naïve duration estimates 1047 

We hypothesized that duration estimates from our original participants (who had 1048 

actually heard the story) would be significantly more correlated with the number of 1049 

event boundaries between two clips than duration estimates from our naïve 1050 

participants, who had never heard the story. To assess the significance of the difference 1051 

in correlations, we computed the ݎௗ௜௙௙ (empirical difference), as well as the upper 1052 

confidence limits (݈ݑௗ௜௙௙) and lower confidence limits (݈݈ௗ௜௙௙) for the difference between 1053 

the two correlations. We used the following formulae (Zou, 2007; Poppenk & Norman, 1054 

2012) for two bootstrapped correlation confidence intervals: 1055 ݎௗ௜௙௙ = ଵݎ − ଶ  1056 ݈݈ௗ௜௙௙ݎ  = ଵݎ ଶݎ − −  ඥ(ݎଵ − ݈݈ଵ)ଶ + ଶ݈ݑ) − ௗ௜௙௙݈ݑ ଶ)ଶݎ = ଵݎ − ଶݎ  +  ඥ(݈ݑଵ − ଵ)ଶݎ + ଶݎ) − ݈݈ଶ)ଶ 

The upper (݈ݑଵ, ,ଶ) and lower limits (݈݈ଵ݈ݑ ݈݈ଶ) for a 95% confidence interval of each 1057 

group’s correlation were calculated as described above. 1058 

 1059 

Reliability of duration estimates across participants within and between groups 1060 

We hypothesized that both our original participants and the naïve participants (who 1061 

had never heard the story) would use consistent strategies to estimate the temporal 1062 

distance between two clips, but that these strategies would differ across groups. If this 1063 

is the case, duration estimates should be more reliable across participants within groups 1064 

than across participants between groups.   1065 
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To assess within-group reliability, we correlated each participant’s duration 1066 

estimates with the mean of the other participants’ estimates. These correlations were 1067 

then averaged across participants within a group to obtain a mean within-group ISC 1068 

(inter-subject correlation). The between-group reliability was calculated by correlating 1069 

each participant’s duration estimates from one group (e.g., the original participants) 1070 

with the mean duration estimates from the other group (e.g., the naïve participants). 1071 

These correlations were then also averaged across participants to obtain a mean 1072 

between-group ISC. Confidence intervals for the mean between-group ISC were 1073 

calculated by bootstrapping the duration estimates from both groups 10,000 times, 1074 

each time selecting with replacement a different subset of n individuals from our pool of 1075 

n participants. The between-group ISCs were calculated for each bootstrap sample and 1076 

averaged across participants, resulting in a distribution of 10,000 mean between-group 1077 

ISCs. Confidence intervals for the within-group ISC were obtained in a similar manner. 1078 

To assess the significance of the difference between the mean within-group ISC and 1079 

the mean between-group ISC, we compared the empirical difference with a null 1080 

distribution of differences. Group labels (naïve participants vs. original participants) 1081 

were scrambled 10,000 times, such that each participant’s duration estimates were 1082 

randomly assigned to either the naïve group or to the original group. The difference 1083 

between the mean within-group ISC and the mean between-group ISC was then 1084 

computed for these two random groups. Using this null distribution of ISC differences, 1085 

we calculated a p-value based on the number of permutations that yielded a greater 1086 

difference than the empirical difference.  1087 
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Please note that the within-group and between-group correlations could be 1088 

compared only because the group sizes were identical (17 participants in each) and 1089 

because the within-group correlations were equally strong for the original and naïve 1090 

groups (M=0.43, SD=0.25, 95% CI=[0.37, 0.58] vs. M=0.43, SD=0.18, 95% CI [0.40, 0.56]). 1091 

Since the within-group ISCs are comparable, we can infer that the significant difference 1092 

between the within-group and between-group reliability reflects a difference in the 1093 

signals (strategies) underlying the two groups of duration estimates (Chow, Chen, & 1094 

Hasson, 2015), rather than a difference in within-group reliability. 1095 

 1096 

MRI Acquisition 1097 

Participants were scanned in a 3T full-body MRI scanner (Skyra, Siemens) with a 20-1098 

channel head coil. Functional images were acquired using a T2*-weighted echo planer 1099 

imaging (EPI) pulse sequence (repetition time [TR], 1500 ms; echo time [TE], 28 ms; flip 1100 

angle, 64°), each volume comprising 27 slices of 4 mm thickness. In-plane resolution was 1101 

3×3 mm2 (field of view [FOV], 192×192 mm2). Slice acquisition order was interleaved. 1102 

Anatomical images were acquired using a T1-weighted magnetization-prepared rapid-1103 

acquisition gradient echo (MPRAGE) pulse sequence (TR, 2300 ms; TE, 3.08 ms; flip 1104 

angle 9°; 0.89 mm3 resolution; FOV, 256 mm2). Participants’ heads were stabilized with 1105 

foam padding to minimize head movement. Auditory stimuli were presented using the 1106 

Psychophysics toolbox (Brainard, 1997; Pelli, 1997). Participants were provided with MRI 1107 

compatible in-ear mono earbuds (Sensimetrics Model S14), which provided the same 1108 
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audio input to each ear. MRI-safe passive noise-canceling headphones were placed over 1109 

the earbuds for additional protection against noise.  1110 

 1111 

fMRI Data Preprocessing 1112 

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 1113 

5.98, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following 1114 

procedure was applied: motion correction using MCFLIRT (Jenkinson, Bannister, Brady, 1115 

& Smith, 2002); slice-timing correction using Fourier-space time-series phase-shifting; 1116 

non-brain removal using BET (Smith, 2002); spatial smoothing using a Gaussian kernel of 1117 

FWHM 6.0 mm; grand-mean intensity normalization of the entire 4D dataset by a single 1118 

multiplicative factor; and high-pass temporal filtering (Gaussian-weighted least-squares 1119 

straight line fitting, with sigma=240.0 s). The procedure for selecting the high-pass filter 1120 

is described below. Preprocessed data were kept in the native functional space for all 1121 

analyses, except for the within-interval searchlight analysis, which was performed across 1122 

participants. 1123 

Preprocessed data were then despiked using the following procedure: for each 1124 

voxel, data points that deviated from the mean by more than 5 times the inter-quartile 1125 

range were removed and replaced using cubic interpolation. 1126 

 1127 

Procedure for obtaining anatomical masks: FreeSurfer and MTL segmentation  1128 

Segmentation was performed in a semi-automated fashion using the FreeSurfer 1129 

image analysis suite, which is documented and available online (version 1130 
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5.1; http://surfer.nmr.mgh.harvard.edu) with details described previously (e.g. Fischl et 1131 

al., 2004; Poppenk & Norman, 2014). Briefly, this processing includes removal of non-1132 

brain tissue using a hybrid watershed/surface deformation procedure (Ségonne et al., 1133 

2004), automated Talairach transformation, intensity normalization (Sled, Zijdenbos, & 1134 

Evans, 1998), tessellation of the grey matter / white matter boundary, automated 1135 

topology correction (Fischl, Liu, & Dale, 2001; Segonne, Pacheco, & Fischl, 2007), surface 1136 

deformation following intensity gradients (Fischl & Dale, 2000), parcellation of cortex 1137 

into units based on gyral and sulcal structure (Desikan et al., 2006; Fischl et al., 2004), 1138 

and creation of a variety of surface-based data, including maps of curvature and sulcal 1139 

depth.  1140 

We resampled and aligned FreeSurfer segmentations of all grey matter, white 1141 

matter, and cerebrospinal fluid (CSF) regions to native functional image space for use as 1142 

anatomical masks. Anatomical regions were segmented according to the Desikan-1143 

Killiany Atlas (Desikan et al., 2006).  1144 

It is important to note that the medial temporal lobe (MTL) masks in the Desikan-1145 

Killiany Atlas do not match the canonical anatomical distinctions in the literature. For 1146 

example, the parahippocampal gyrus mask comprises the medial part of the 1147 

parahippocampal cortex and the posterior part of the entorhinal cortex. Therefore, 1148 

instead of the FreeSurfer MTL masks, we used a probabilistic MTL atlas developed by 1149 

Hindy & Turk-Browne (2015). MTL regions, including perirhinal cortex, entorhinal cortex 1150 

and parahippocampal cortex were defined probabilistically in MNI space, based on a 1151 

database of manual MTL segmentations from a separate set of 24 participants. Manual 1152 
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segmentations were created on T2-weighted turbo spin-echo images using anatomical 1153 

landmarks (Duvernoy, 2005; Carr, Rissman, & Wagner, 2010; Schapiro, Kustner, & Turk-1154 

Browne, 2012) and then registered to an MNI template. Finally, nonlinear registration 1155 

(FNIRT; Andersson, Jenkinson, & Smith, 2007) was used to register the masks from MNI 1156 

space to each participant's native space. After registration, voxels with a probability 1157 

greater than 0.3 of being in a region were assigned to that ROI.  1158 

 1159 

Residualization of non-neuronal signal sources 1160 

Slow changes of respiration over time (RV) have been shown to induce robust 1161 

changes in the BOLD signal (Chang, Cunningham, & Glover, 2009) in many areas around 1162 

the cerebral midline. To minimize signal change unrelated to neural activity, we used 1163 

multiple linear regression to project out 3 nuisance variables from the BOLD data 1164 

(Behzadi, Restom, Liau, & Liu, 2007; Silbert, Honey, Simony, Poeppel, & Hasson, 2014). 1165 

Nuisance regressors were:  1166 

1) the average time course of high standard deviation voxels (voxels with the top 1% 1167 

largest standard deviation), as these voxels tend to have the highest fractional variance 1168 

of physiological noise (e.g., cardiac and respiratory components) and are likely near 1169 

blood vessels (Behzadi et al., 2007),  1170 

2) the average BOLD signal measured in CSF,  1171 

3) the average white matter signal.  1172 

All masks (grey matter, white matter and CSF) were obtained from the FreeSurfer 1173 

segmentation procedure described above. The beneficial effects of this residualization 1174 
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procedure on the signal-to-noise ratio are shown in Figure 13. Note that this procedure 1175 

was always applied after removal of low-frequency components using the high-pass 1176 

filter (see below). 1177 

 1178 

Methodological challenges with analyzing pattern distance over long time scales: 1179 

Selection of temporal high-pass filter cut-off 1180 

Because we were interested in the aspect of neural activity that changes slowly over 1181 

time (reflecting gradual changes in context), we could not use a standard high-pass filter 1182 

(with a cut-off period on the order of 120 s), as it would remove components of the 1183 

signal that evolve on the scale of minutes. Thus, we were faced with the challenge of 1184 

preserving slower components of the BOLD signal that reflect neural activity, while 1185 

removing low-frequency components attributable to non-neuronal noise, including 1186 

scanner drift and physiological noise (such as low-frequency respiratory variation and 1187 

heart rate variation). Physiological noise (and a substantial component of scanner noise) 1188 

was factored out using the residualization procedure described above. This enabled us 1189 

to select a gentler high-pass filter than is generally used in the literature.  1190 

We then performed a separate analysis to determine the optimal high-pass filter 1191 

cut-off period, i.e. the lowest frequency cut-off that still enabled us to remove most of 1192 

the non-neuronal noise. This analysis relies on the idea that, when participants listen to 1193 

the same story or watch the same film, the signal in brain regions processing the story is 1194 

highly correlated across participants (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004). 1195 

While such correlations should not be present in CSF or white matter, spurious inter-1196 
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subject correlations in these regions can arise due to low-frequency noise. In addition, 1197 

listening to the same story could induce correlated motion across participants, but these 1198 

correlations would also be present in CSF and white matter. Thus, we searched for a 1199 

high-pass filter that could remove nonspecific correlations in CSF and white matter, 1200 

while preserving correlations in brain regions known to be important for processing the 1201 

stimulus. For each participant, the inter-subject correlation (ISC) of a brain region was 1202 

defined as the correlation between that participant’s ROI time course (averaged over 1203 

voxels in that region) with the average time course of all the other participants (Hasson, 1204 

Yang, Vallines, Heeger, & Rubin, 2008; Lerner et al., 2011). 1205 

Since the functional scan length was 1560 s (26 minutes), high-pass filter cut-off 1206 

periods of 140 s, 240 s, 300 s, 400 s, 480 s, 600 s and 720 s were attempted. The minimal 1207 

cut-off attempted, 140 s, was the cut-off used in several previous studies with 1208 

naturalistic stimuli (e.g. Lerner et al., 2011), while 720 s represented approximately half 1209 

of the scan duration and was the longest cut-off that could reasonably make a 1210 

difference to data quality.  1211 

Given that roughly half the clip pairs in our time perception test were 2 minutes 1212 

apart and the other half were 6 minutes apart, we hoped to find a filter that would 1213 

allow us to measure pattern distances at both of these time scales. However, we were 1214 

unable to find a high-pass filter that would allow us to examine activity patterns that 1215 

were 6 minutes (360 s) apart. In order to meaningfully measure distances between 1216 

neural patterns that are 360 s apart, the Nyquist theorem suggests we would need a 1217 

high-pass filter cut-off of 720 s or larger. However, plotting ISC as a function of high-pass 1218 
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filter (Figure 13) showed that a cut-off like 720 s was not able to remove inter-subject 1219 

correlations in the CSF, which remained of the same magnitude as those in some grey 1220 

matter regions. We concluded that pattern distances at the 6-minute time scale are too 1221 

confounded with low-frequency noise (as reflected in spurious correlations in the CSF), 1222 

and therefore restricted our analysis to intervals that were 2 minutes long. 1223 

According to the Nyquist theorem, we need a filter cut-off of 4 minutes (240 s) or 1224 

longer in order to measure distances between patterns that are 2 minutes apart (120 s). 1225 

Out of the filters tested (240 s – 720 s), a cut-off of 480 s was selected to be the gentlest 1226 

(i.e. the longest) filter that reduced the magnitude of inter-subject correlations in 1227 

ventricles and CSF, such that they were significantly below the correlations in most grey 1228 

matter regions.  1229 

Figure 13 illustrates that, even for regions like the hippocampus – with relatively low 1230 

inter-subject correlations – the 480 s filter cut-off, combined with the residualization 1231 

procedure, succeeded at raising the grey matter ISCs significantly above those of the 1232 

white matter and CSF.   1233 
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 1234 
Figure 13 Mean inter-subject correlations (ISCs) for 6 representative brain regions as a 1235 
function of the high-pass filter cut-off. Shaded error bars represent standard errors of the mean 1236 
(across participants). Top panel A shows the mean ISCs after the residualization procedure has 1237 
been applied (see “Residualization of non-neuronal signal sources”). The 480 s cut-off was the 1238 
gentlest filter for which all of the grey matter regions listed above showed ISC values 1239 
significantly above those in the CSF. Bottom panel B shows the mean ISCs prior to the 1240 
residualization procedure. Without residualization, the ISCs of some grey matter regions never 1241 
rise significantly above those in the white matter and CSF. Note that without high-pass filtering 1242 
(“none”) or residualization, all brain regions displayed spuriously high ISCs. 1243 
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fMRI Data Analysis 1244 

Within-participant correlation between pattern change and duration estimates 1245 

Our primary hypothesis was that greater pattern dissimilarity between two clips (at 1246 

the time of encoding) would correlate with greater subsequent duration estimates. For 1247 

each pair of clips from the time perception test, we located the TRs (volumes) 1248 

corresponding to when the participant first heard those clips and extracted the activity 1249 

patterns for each ROI at those time points. Since the auditory clips were between 5 s 1250 

and 10 s in duration (corresponding to about 5 volumes), we averaged the patterns over 1251 

5 consecutive TRs for every clip, with the 5-TR window centered on the middle of each 1252 

clip.  1253 

We then related the pattern distance between the two clips at encoding to how 1254 

much time the participant thought passed between them. Specifically, we calculated the 1255 

dissimilarity (1 – Pearson correlation) between the two averaged activity patterns. The 1256 

pattern dissimilarity scores for a given region were then correlated with that 1257 

participant’s subsequent duration estimates. This was performed separately for every 1258 

ROI and searchlight (Figure 4). We thus obtained a Pearson correlation score for every 1259 

ROI in every participant. All Pearson correlation coefficients were Fisher-transformed 1260 

prior to statistical testing (Fisher, 1915).  1261 

To assess the reliability of the correlation across participants for a given ROI, we ran 1262 

a phase-randomization procedure, which is described in detail below. The results of the 1263 

phase-randomization procedure were then subjected to multiple comparisons 1264 

correction. 1265 
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Removing low-confidence intervals  1266 

If a participant could not remember when in the story a particular clip had occurred, 1267 

it would be difficult for them to estimate the temporal distance between that clip and 1268 

another clip. It is possible that participants would invoke different retrieval strategies in 1269 

such cases (for instance, they might base their duration estimates purely on the content 1270 

of the clips, without recollecting their context). It is also possible that such estimates 1271 

could be random guesses. To filter out guesses, we used the confidence ratings 1272 

collected after the time perception test, in which participants rated how well they could 1273 

remember when in the story each individual clip had occurred. Specifically, we located 1274 

the participant’s confidence for the two clips delimiting each temporal interval, and took 1275 

the smaller of the two ratings as the confidence for that interval. We performed the 1276 

main analysis relating neural drift to time estimation (described below) only on high-1277 

confidence intervals, removing pairs of clips with the lowest confidence. Since 1278 

participants calibrated their confidence ratings differently (some were more prone to 1279 

rate their confidence as 4/5, while others were more prone to rate it as 2/5), we picked 1280 

the confidence threshold for each participant that removed at least 33% of the intervals 1281 

with the lowest confidence, while preserving at least 33% of the intervals with the 1282 

highest confidence. Our behavioral analysis (see Results) shows that participants’ 1283 

duration estimates were significantly more accurate for high-confidence intervals than 1284 

when all intervals were included. 1285 

 1286 
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Statistical analysis of correlations between pattern change and behavior 1287 

Because of the presence of long-range temporal autocorrelation in the BOLD signal 1288 

(Zarahn et al., 1997), the statistical likelihood of each observed correlation (between 1289 

neural distance and duration estimates) was assessed using a permutation procedure 1290 

based on surrogate data. The surrogate data were generated using phase randomization 1291 

(Theiler et al., 1992). Phase-randomized surrogates have the same autocorrelation as 1292 

the original signal. 1293 

Since our analysis measures pattern change over multiple voxels, rather than the 1294 

time course of a single voxel, we generated surrogate time courses of pattern change 1295 

(Figure 4 – Supplement 1 shows how that time course was obtained). Having extracted 1296 

the time course of pattern change for each ROI, we applied a Fourier transform to that 1297 

signal. To randomize its phases, we multiplied each complex amplitude by , where  1298 

is independently chosen for each frequency from the interval [0, 2π]. In order for the 1299 

inverse Fourier transform to be real (no imaginary components), we symmetrized the 1300 

phases, so that . Finally, we took the inverse Fourier transform to 1301 

produce the surrogate time courses.   1302 

Each surrogate dataset was analyzed in the same manner as the empirical data: 1303 

pattern dissimilarity between each pair of clips was correlated with duration estimates. 1304 

Thus, we generated a distribution of 10,000 null correlations for every ROI in every 1305 

participant (see Figure 4 – Supplement 1). As above, all correlation coefficients were 1306 

Fisher-transformed to ensure that they follow a Gaussian distribution. For every ROI, we 1307 

je φ φ

( ) ( )f fφ φ= − −
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were then able to compare the empirical Pearson correlation with the distribution of 1308 

null correlations. We calculated a Z-value for every participant: 1309 

ࢆ − = ࢋ࢛࢒ࢇ࢜ – ࢔࢕࢏࢚ࢇ࢒ࢋ࢘࢘࢕ࢉ ࢒ࢇࢉ࢏࢘࢏࢖࢓ࢋ  (࢙࢔࢕࢏࢚ࢇ࢒ࢋ࢘࢘࢕ࢉ ࢒࢒࢛࢔)࢔࢕࢏࢚ࢇ࢏࢜ࢋࢊ ࢊ࢘ࢇࢊ࢔ࢇ࢚࢙ (࢙࢔࢕࢏࢚ࢇ࢒ࢋ࢘࢘࢕ࢉ ࢒࢒࢛࢔)࢔ࢇࢋ࢓     
A large positive Z-value implies that the empirical correlation is large relative to the 1310 

distribution of null correlations. To assess whether the Z-values for a given ROI were 1311 

reliably positive across participants, we performed a right-tailed t-test against 0. The p-1312 

values from the above t-test were then subjected to multiple comparisons correction. 1313 

For anatomical ROIs (derived from the FreeSurfer and MTL atlases), we used MATLAB’s 1314 

fdr_bky.m function, which executes the "two-stage" Benjamini, Krieger, & Yekutieli  1315 

(2006) procedure for controlling the false discovery rate (FDR) of a family of hypothesis 1316 

tests. The procedure implemented by this function is more powerful than the original 1317 

Benjamini & Hochberg (1995) procedure when a considerable percentage of the 1318 

hypotheses in the family are false. For the searchlight analysis, we controlled the family-1319 

wise error (FWE) rate, as described below. 1320 

 1321 

ROI selection 1322 

The literature reviewed above suggests that the MTL, lateral prefrontal cortex, 1323 

insula, putamen and inferior parietal cortex might all process information important for 1324 

inferring the duration of past events. We therefore performed an ROI analysis on the 1325 

following regions, derived from both the FreeSurfer and MTL atlases: hippocampus, 1326 

parahippocampal cortex, entorhinal cortex, perirhinal cortex, amygdala, superior frontal 1327 

cortex, caudal and rostral middle frontal gyrus (dorsolateral prefrontal cortex), pars 1328 
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opercularis (frontal operculum), pars triangularis, pars orbitalis, lateral orbitofrontal 1329 

cortex, frontal pole, insula, putamen and inferior parietal cortex. This resulted in an 1330 

analysis on 16 regions of interest (in each hemisphere) motivated by the literature. ROIs 1331 

with q-values < 0.05 (FDR) are reported as significant. 1332 

As part of an exploratory, whole-brain search, we also ran the same analysis on all 1333 

grey matter regions in the Desikan-Killiany Atlas, which contained 42 regions in each 1334 

hemisphere, including the ones mentioned above (see FreeSurfer Segmentation and 1335 

MTL Segmentation). The complete list of regions can be found in Figure 5 – source data 1336 

1. For the exploratory analysis, we report regions with q-values < 0.1 (FDR). 1337 

 1338 

Within-interval correlation between pattern change and duration estimates 1339 

Our main analysis verified whether the pattern distance between two clips was 1340 

correlated with duration estimates in a given participant and then aggregated the 1341 

results across participants. To address the concern that pattern distance between two 1342 

clips might reflect only the difference in story content between those clips (rather than 1343 

change in abstract factors like mental context), we performed the same analysis for a 1344 

given interval across participants and aggregated the results across intervals. Since this 1345 

analysis is performed within intervals, it ensures that story content is held constant 1346 

across participants, such that differences in pattern distances and duration estimates 1347 

are due to individual differences only. To ensure that pattern distances and duration 1348 

estimates were comparable across participants, all vectors were z-scored within 1349 
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participants. The Pearson correlation between pattern distances and duration estimates 1350 

across participants was then calculated for every 2-minute interval in every ROI.  1351 

As for the within-participant analysis, this procedure was performed on high-1352 

confidence intervals. For each interval, we only included participants who had 1353 

confidently recollected the temporal position of the two clips delimiting that particular 1354 

interval.  1355 

The significance of each correlation score was assessed using a permutation test: 1356 

10,000 null correlations were obtained by scrambling the duration estimates across 1357 

participants, such that a given participant’s duration estimate was matched with a 1358 

different participant’s pattern distance. (Since this analysis was performed across 1359 

participants, it was not necessary to generate phase-randomized pattern distance time 1360 

courses – the auto-correlation in the BOLD signal for a given participant only represents 1361 

a concern for the within-participant analysis.)  1362 

As above, a Z-value was obtained for every interval, reflecting the degree to which 1363 

the empirical correlation was higher than the distribution of null correlations. Finally, a 1364 

right-tailed t-test was performed to assess whether a given ROI’s Z-values were reliably 1365 

positive across intervals. The p-values from this t-test were subjected to multiple 1366 

comparisons correction using FDR. 1367 

To compare effect sizes between the within-interval and within-participants 1368 

analyses, we calculated Cohen’s d for a region as: 1369 

݀ ݏℎ݁݊ᇱ݋ܥ = ߩ ݂݋ ݊݋݅ݐܽ݅ݒ݁݀ ݀ݎܽ݀݊ܽݐܵ(ݏ݈ܽݒݎ݁ݐ݊݅ ݎ݋ ݏݐ݊ܽ݌݅ܿ݅ݐݎܽ݌ ݏݏ݋ݎܿܽ) ߩ ݊ܽ݁ܯ   
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where ߩ is the Pearson’s correlation between pattern distance and duration estimates. 1370 

(Using the Z-values derived from the permutation procedures rather than the raw 1371 

correlation coefficients yielded practically identical results.) 1372 

 1373 

Mixed-Effects Model Accounting for Naïve Duration Estimates 1374 

We analyzed our data using a hierarchical linear regression model (Gelman & Hill, 1375 

2006). Known in different fields as hierarchical, mixed, or multi-level models, such 1376 

regressions correctly account for non-independence of repeated observations of the 1377 

same subject and stimulus (in our case, interval). In doing this they estimate the 1378 

population effects (coefficients) of interest even assuming that individual subjects or 1379 

items (henceforth, collectively “groups”) may have idiosyncratic perturbations from the 1380 

population, and that those perturbations may be correlated within a group. They are a 1381 

generalization of approaches that treat all observations as independent (e.g. t-test, 1382 

ANOVA, linear regression), as well as of approaches that can take into account the non-1383 

independence across a single grouping factor (e.g. repeated-measures ANOVA), and are 1384 

more conservative than any of the above (Barr, Levy, Scheepers, & Tily, 2013)1.   1385 

Formally, the model is the following:  1386 ݕ௜ = ௜ܺ(ߚ + ௝[௜]ݏ + ݉௞[௜]) + ௝ݏ ߳ ∼ ܰ(0, ,(ௌߑ ݉௞ ∼ ܰ(0, ,(ெߑ ߳ ∼ ܰ(0,  (ߪ

                                                       
1 More precisely, methods that do assume observation independence are anti-
conservative in the presence of correlated observations.  
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Here, ݕ௜  is the ith observed duration judgment, ௜ܺ  is a matrix of predictors (neural 1387 

pattern distance) and covariates (naïve duration estimates), ߚ௜ is a vector of coefficients 1388 

(as in conventional linear regression), ݆[݅] is the subject of the ith observation, so that 1389 ݏ௝[௜] is a subject-specific perturbation of all of the coefficients, and ݉௞[௜] is similarly a 1390 

vector of item-specific perturbations.  1391 

This model is undefined when either the subject or item effects approach zero 1392 

(either because there is truly no variability, or more realistically when there is 1393 

insufficient data to estimate this variability). Since such rich models often fail to 1394 

converge or approach singularity given typical psychological datasets (Bates, Kliegl, 1395 

Vasishth, & Baayen, 2015), we imposed a weak Wishart prior on the group covariances, 1396 

which regularizes the model away from singularity (Chung, Gelman, Rabe-Hesketh, Liu, 1397 

& Dorie, 2015). This weak, boundary-avoiding prior on our random effects covariance 1398 

structure regularizes the model towards simpler random effects structures unless the 1399 

data suggests otherwise (Chung et al., 2015). All models converged under this prior. This 1400 

fitting procedure was implemented using the R package blme (Chung, Rabe-Hesketh, 1401 

Dorie, Gelman, & Liu, 2013), which extends the lme4 package (Bates, Mächler, Bolker, & 1402 

Walker, 2015) and performs maximum-a-posteriori estimation of linear mixed-effects 1403 

models.  1404 

Please note that we also verified that our results were replicable using an alternative 1405 

fitting procedure suggested by Bates, Kliegl, et al. (2015). We used the lme4 package to 1406 

fit the ‘maximal’ model (in the sense of Barr et al., 2013) and removed zero-variance 1407 

random effects terms until the model converged and until the estimated random effects 1408 
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covariance matrix was full-rank, indicating a non-degenerate estimate. We obtained 1409 

highly consistent results using both fitting procedures. In the Results section, we report 1410 

only the first procedure, which has been found to be more conservative (Chung et al., 1411 

2015). Chung et al. (2015) report: “Uncertainty for the fixed coefficients is less 1412 

underestimated than under classical ML or restricted maximum likelihood estimation.” 1413 

Indeed, our effects were very slightly stronger using the second procedure (Bates, Kliegl, 1414 

et al., 2015). Both sets of results can be found in Figure 7 – source data 1.  1415 

Finally, the duration estimates are bounded at zero and positively skewed, which 1416 

resulted in heteroskedastic residuals. To mitigate this, we power-transformed the 1417 

duration estimates using the Box-Cox power transformation (Box & Cox, 1964). We 1418 

picked the exponent ߣ for each model by maximizing the profile likelihood in a model 1419 

without group effects (though see e.g. Gurka, Edwards, Muller, & Kupper (2006) for an 1420 

extension to the hierarchical case).  1421 

In R formula notation, a model of the following form was fit to the data from each 1422 

region of interest: 1423 ܶ1 ~ ݏ݁ݐܽ݉݅ݐݏ݁ ݊݋݅ݐܽݎݑܦ ݀݁݉ݎ݋݂ݏ݊ܽݎ + + ݏ݁ݐܽ݉݅ݐݏܧ݁ݒ݅ܽܰ  +݁ܿ݊ܽݐݏ݅ܦ݊ݎ݁ݐݐ݈ܽܲܽݎݑ݁ܰ ( 1 + ݏ݁ݐܽ݉݅ݐݏܧ݁ݒ݅ܽܰ + 1 ) + ( ݐ݆ܾܿ݁ݑܵ | ݁ܿ݊ܽݐݏ݅ܦ݊ݎ݁ݐݐ݈ܽܲܽݎݑ݁ܰ  +  (݈ܽݒݎ݁ݐ݊ܫ | ݁ܿ݊ܽݐݏ݅ܦ݊ݎ݁ݐݐ݈ܽܲܽݎݑ݁ܰ 

Please note that participants from the original experiment could not be “matched” with 1424 

participants from the naïve experiment. For this reason, naïve duration estimates were 1425 

group-averaged and the mean vector of naïve estimates was placed as a covariate in the 1426 

model. The above formula shows that the slope of the relationship between naïve 1427 
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estimates and original duration estimates was allowed to vary by subject (i.e. each 1428 

participant’s duration estimates might be differently related to naïve group mean). On 1429 

the other hand, the slope for naïve estimates could not vary by interval, since naïve 1430 

estimates did not vary by subject.   1431 

We computed 0.95 confidence intervals of ߚ using the asymptotic Gaussian 1432 

approximation (called the “Wald approximation” in lme4) based on the estimated local 1433 

curvature of the likelihood surface. Since this approximation is anti-conservative (it 1434 

assumes infinite data and no model misspecification), we then computed a more 1435 

conservative parametric bootstrap interval for the intervals that did not include zero. 1436 

Effects whose interval does not overlap with 0 are significant at the conventional 1437 0.05=ߙ 

level.  1438 

Note that all of the above choices (including the choice of fitting procedure and the 1439 

power transform of the data) are conservative relative to their alternatives. For 1440 

instance, prior to power-transforming the duration estimates, the fixed effects of neural 1441 

pattern distance were estimated to be stronger (as reported in Figure 7 – source data 1442 

1.) These alternative analyses revealed additional significant regions that are either false 1443 

positives or regions we lack the power to detect.  1444 

 1445 

Whole-brain searchlights 1446 

In addition to using anatomical ROIs, we ran a cubic searchlight throughout the 1447 

entire brain. The same analysis as described above was performed for every searchlight, 1448 

and the Z-value for each searchlight was assigned to the center voxel.  1449 
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The within-participant analysis was performed in native functional space, and each 1450 

cubic searchlight contained 3x3x3 (27) voxels. To aggregate the results across 1451 

participants, each participant’s Z-value map was transformed to standard MNI space 1452 

and down-sampled to 3mm to reflect the resolution of the original data.  1453 

The within-interval analysis was performed in 3mm MNI space, in order to match 1454 

the searchlights across participants. Since this transformation approximately doubles 1455 

the number of brain voxels, we ran cubic searchlights of radius 2 with 5x5x5 (125) voxels 1456 

through the entire brain. Neural pattern distance was not calculated for searchlights on 1457 

the very edge of the brain with fewer than 25 voxels, in order to reduce noise from 1458 

overly small patterns. We also excluded a searchlight location if fewer than 5 1459 

participants had brain voxels in that location. 1460 

Family-wise error rate was controlled using FSL’s randomise function (version 5.0.4, 1461 

Winkler, Ridgway, Webster, Smith, & Nichols, 2014). An uncorrected p-value image was 1462 

first generated, reflecting voxel-wise (searchlight) reliability across participants or 1463 

intervals. The significance of supra-threshold clusters (defined by the cluster-forming 1464 

threshold, p<0.01) was then assessed by cluster mass. Specifically, a corrected p-value 1465 

was assigned to each cluster by assessing its cluster mass with respect to the null 1466 

distribution of the maximum cluster mass during 10,000 permutation simulations 1467 

(Hayasaka & Nichols, 2003; Nichols & Holmes, 2002). Cluster coordinates are reported in 1468 

MNI space, and cluster size reflects the number of voxels in 3x3x3mm MNI space. 1469 

 1470 
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Comparing speed of pattern change across brain regions 1471 

If the brain regions that showed significant effects in our main analysis represent 1472 

mental context, then the pattern of activity in these regions should change more slowly 1473 

over time than the patterns in regions representing sensory information. To quantify the 1474 

speed of pattern change in a given ROI, we obtained the correlation of the pattern at 1475 

every time point (TR) with itself at every other time point. (As for our main analysis, the 1476 

BOLD time course of every voxel was smoothed using a moving average filter of 5 TRs. 1477 

This temporal smoothing was used as a de-noising technique and did not affect the 1478 

results.) We then averaged the auto-correlation curves across TRs to obtain a mean 1479 

auto-correlation function for every region in every participant. The more rapidly a 1480 

pattern changes over time, the more sharply the auto-correlation should decrease as we 1481 

move away from 0. To quantify this, we defined the Full-Width Half-Maximum (FWHM) 1482 

of the auto-correlation curve as the number of time points (TRs) for which the auto-1483 

correlation was equal to or greater than half its maximum value (the maximum was 1484 

always 1.)  1485 

To compare the speed of pattern change in the regions we found (right entorhinal 1486 

cortex and left caudal ACC) with regions involved in auditory and language processing, 1487 

we performed a paired Wilcoxon signed rank test on the FWHM values across 1488 

participants. The p-values from this test were subjected to multiple comparisons 1489 

correction using FDR.  1490 

Since the anatomical masks we used varied substantially in size, we sought to ensure 1491 

that differences in the speed of pattern change were not due to differences in ROI size. 1492 
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For this purpose, we performed the same analysis after regressing the vector of ROI 1493 

sizes out of the vector of FWHM values for every participant.  1494 

Since the above regression would only account for a linear effect of ROI size on the 1495 

speed of pattern change, we additionally performed a univariate analysis that calculated 1496 

the auto-correlation function for each voxel individually. The auto-correlation curve was 1497 

obtained by correlating the BOLD time course of every voxel with itself at all possible 1498 

lags. The mean auto-correlation for an ROI was obtained by averaging the auto-1499 

correlation curves across all the voxels in that ROI. The FWHM values were then 1500 

calculated in the same manner as above for every ROI in every participant.   1501 

 1502 

Replication of Jenkins and Ranganath 2010 “coarse temporal memory” fMRI analysis 1503 

As in Jenkins and Ranganath (2010), we correlated each voxel’s activity during 1504 

encoding of a clip with the accuracy of a participant’s placement of that clip on the 1505 

timeline. Voxel activity was averaged over a 5-TR window centered on the mid-point of 1506 

the clip. For each participant, the estimated clip position on the timeline was regressed 1507 

against actual position. Accuracy was defined as the negative error, which was the 1508 

absolute value of the residual for a clip. Within participants, voxel activity was then 1509 

correlated with accuracy across all clips, and the Pearson’s r score was Fisher-1510 

transformed. As for the within-participant searchlight analysis, transformed r score 1511 

maps were registered to 3mm MNI space, and FSL’s randomise was used to control the 1512 

FWE rate. 1513 
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Legends for Source Data Files (attached separately) 1858 
 1859 
Figure 2 – source data 1 1860 

Duration estimates and confidence ratings for all participants and intervals. To generate the 1861 
plot in Figure 2, duration estimates for an objective duration (2 or 6 minutes) were first 1862 
averaged within participants, for all intervals (Figure 2A) and for confident intervals only (Figure 1863 
2B). The global means (represented by the heights of the blue bars) were then obtained by 1864 
averaging again across participants. Confidence ratings in this table are binary: 1 reflects a high-1865 
confidence interval and 0 reflects a low-confidence interval (see “Removing low-confidence 1866 
intervals” in Methods). 1867 

 1868 

Figure 3 – source data 1 1869 

Mean number of event boundaries and mean duration estimates from both original and naïve 1870 
participants. Intervals appear in chronological order and the “position in story” indicates the 1871 
middle time point between the two clips delimiting the interval. Mean duration estimates were 1872 
obtained by averaging the duration estimates for a specific interval across participants. The 1873 
mean number of event boundaries in an interval was obtained by averaging data from a 1874 
separate group of participants who pressed the spacebar every time a boundary was occurring. 1875 

Figure 3 – source data 2 1876 

Duration estimates from the naïve experiment, including both 2 and 6-minute intervals. As 1877 
above, Intervals appear in chronological order and the “position in story” indicates the middle 1878 
time point between the two clips delimiting the interval. 1879 

 1880 

Figure 5 – source data 1 1881 

Within-participant analysis Z-values and Pearson’s r values for all participants and grey matter 1882 
regions derived from FreeSurfer segmentation and the probabilistic MTL atlas. Excel sheet 1 1883 
contains the Z-values for each participant and region, reflecting the strength of the empirical 1884 
correlation between pattern distance and duration estimates relative to the distribution of null 1885 
correlations. NaNs signify that a participant had fewer than 10 voxels in a given brain region, 1886 
most likely due to signal dropout (this was only an issue for the frontal pole). The bar plots in 1887 
Figure 5 were generated by plotting the mean z-value (and standard error of the mean) across 1888 
participants for each of the a priori ROIs. Excel sheet 2: T-values were obtained from a right-1889 
tailed t-test verifying whether the Z-values for a region were reliably positive across participants. 1890 
The p-values from this t-test were then subjected to multiple comparisons correction using FDR. 1891 
The three regions in bold survived whole-brain FDR correction at q<0.1 and are shown in Figure 1892 
5 – Supplement 1. Excel sheet 3 contains the Fisher-transformed Pearson’s r values for each 1893 
participant and region.  1894 

 1895 

Figure 6 – source data 1 1896 



 92

Within-interval analysis Z-values and Pearson’s r values for all intervals and regions in the 1897 
FreeSurfer and MTL atlases. NaNs for a given interval and region indicate that there were not 1898 
enough participants who rated that interval as confident and who had at least 10 voxels in the 1899 
specific region to calculate a correlation (this was only an issue for the frontal pole). The bar 1900 
plots in Figure 6 were generated by plotting the mean z-value (and standard error of the mean) 1901 
across intervals for each of the a priori ROIs. The t-values were obtained from a right-tailed t-1902 
test on the z-values for each region. The p-values from this t-test were then subjected to 1903 
multiple comparisons correction using FDR.  1904 

 1905 

Figure 7 – source data 1 1906 

Parameter estimates (betas) and 95% confidence intervals for the fixed effects of neural 1907 
pattern distance on duration estimates for all 84 anatomical regions. Parameter estimates are 1908 
provided for four variants of the mixed-effects ROI analysis: 1) full model (with naïve estimates) 1909 
using the Chung et al. (2015) blme fitting procedure and Box-Cox transform of duration 1910 
estimates (see Methods), 2) model without naïve estimates, using the Chung et al. (2015) blme 1911 
fitting procedure and Box-Cox transform of duration estimates, 3) full model (with naïve 1912 
estimates) using the Bates et al. (2015) lme4 fitting procedure and Box-Cox transform of 1913 
duration estimates, and 4) full model (with naïve estimates) using the Chung et al. (2015) blme 1914 
fitting procedure, but without any transform of duration estimates. The first analysis variant, 1915 
which is the most conservative, is the one reported in the Results and plotted in Figure 7.  1916 

 1917 

Figure 11 – source data 1 1918 

Duration estimates and pattern distances in all FreeSurfer and MTL ROIs for each 2-minute 1919 
interval in every participant. Data prior to high-pass filtering and after high-pass filtering (cut-1920 
off = 480 s) are provided. The unfiltered neural pattern distances tend to increase with time in 1921 
story, even in the CSF and white matter. To generate the plots in Figure 11, duration estimates 1922 
and pattern distances were averaged across participants for each interval and plotted as a 1923 
function of the interval’s position in the story. The interval’s position in the story (in minutes) 1924 
was set as the middle time point between the two clips delimiting it. 1925 


