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Abstract The tuberculosis (TB) epidemic is fueled by a parallel Human Immunodeficiency Virus

(HIV) epidemic, but it remains unclear to what extent the HIV epidemic has been a driver for drug

resistance in Mycobacterium tuberculosis (Mtb). Here we assess the impact of HIV co-infection on

the emergence of resistance and transmission of Mtb in the largest outbreak of multidrug-resistant

TB in South America to date. By combining Bayesian evolutionary analyses and the reconstruction

of transmission networks utilizing a new model optimized for TB, we find that HIV co-infection does

not significantly affect the transmissibility or the mutation rate of Mtb within patients and was not

associated with increased emergence of resistance within patients. Our results indicate that the HIV

epidemic serves as an amplifier of TB outbreaks by providing a reservoir of susceptible hosts, but

that HIV co-infection is not a direct driver for the emergence and transmission of resistant strains.

DOI: 10.7554/eLife.16644.001

Introduction
Among the estimated 1.5 million people who died from TB in 2013, 360,000 were HIV co-infected

and 200,000 cases were caused by multidrug-resistant TB (MDR-TB) (World Health Organiza-

tion, 2015). Until the late 1980s, reports of MDR-TB were rare, and transmission of such strains was

even less frequent (Reves et al., 1981; Small et al., 1993; Wells et al., 2007). The MDR-TB burden

surged concurrently with the human immunodeficiency virus (HIV) pandemic and most reported early

MDR-TB outbreaks mainly affected HIV co-infected individuals in hospitals and prisons (Small et al.,

1993; Wells et al., 2007; Ritacco et al., 1997).

There are good epidemiological reasons to suspect that the HIV and MDR-TB pandemics are fuel-

ing each other. Not only does HIV infection render people more susceptible to develop active TB by

weakening their immune system, but anti-TB drugs can also directly interfere with antiretroviral treat-

ment. Rifampicin (RIF), one of the cornerstones in anti-TB therapy, has been shown to significantly

lower serum concentrations of HIV protease and reverse transcriptase inhibitors (Burman et al.,

1999; Centers for Disease Control and Prevention, 1998). To make matters worse, HIV co-infec-

tion is also associated with malabsorption of anti-TB drugs. This pattern is particularly pronounced

for RIF, but seems to hold true for most anti-TB drugs (Patel et al., 1995; Peloquin et al., 1993).
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HIV co-infection might also directly contribute to the accumulation of resistance in Mtb. First, as

resistance mutations generally entail a fitness cost to the bacterium (at least initially), some resistant

strains might be more successful in HIV+ hosts with weakened immunity leading to a reduced selec-

tive pressure on the bacillus. Second, some antiretroviral drugs used to treat HIV might have a muta-

genic effect on mycobacterial genomes, but this has yet to be investigated (McGrath et al., 2014).

HIV co-infection and very low CD4 lymphocyte counts (<100 cells/mm3), a hallmark of advanced

HIV infection, have been shown to be risk factors for developing resistance to RIF and to a lesser

degree isoniazid (INH) (Bradford et al., 1996; Burman et al., 2006; Li et al., 2005; Porco et al.,

2013). However, a systematic review of 32 studies assessing MDR-TB prevalence by HIV status did

not demonstrate an overall association between acquired MDR-TB and HIV, but suggested that HIV

co-infection is a risk factor for contracting primary MDR-TB (Suchindran et al., 2009). In summary,

the association between HIV co-infection and Mtb drug resistance remains unclear, with a number of

studies yielding conflicting results (Small et al., 1993; Chum et al., 1996; Lukoye et al., 2011;

Meyssonnier et al., 2012; Robert et al., 2003). Attempts have also been made to model the impact

of HIV on TB incidence and resistance (Sergeev et al., 2012), but in lieu of empirical data, such stud-

ies relied on a number of assumptions on both host and pathogen biology as well as the interactions

between them.

It is beyond doubt that HIV has been a driver of increased TB incidence globally, but a recent

review of the subject actually found HIV co-infection to be associated with decreased rates of TB

transmission within households and between close contacts (Kwan and Ernst, 2011). This observa-

tion is possibly explained by differing manifestation of TB in HIV positives, namely less frequent cavi-

tation and lower pulmonary bacillary load (Kwan and Ernst, 2011). External factors such as social

isolation or HIV infected patients being followed up more closely than HIV negatives may also con-

tribute to this pattern (Kwan and Ernst, 2011). Indeed, in a low-incidence setting of close follow-up,

HIV co-infection was associated with reduced TB transmission (inferred by clustering) and TB among

eLife digest Tuberculosis is an infectious disease caused by a bacterium called Mycobacterium

tuberculosis that causes more deaths worldwide than any other infection. Individuals who are

infected with the Human Immunodeficiency Virus (HIV), which weakens the immune system, are

particularly vulnerable to tuberculosis. However, treating individuals who are infected with both HIV

and tuberculosis is complicated because the drugs currently used to treat one infection can interfere

with the effectiveness of the drugs used to treat the other.

Tuberculosis is generally treated with antibiotics. However, some strains of M. tuberculosis are

difficult to treat as they have evolved to resist the effects of multiple types of antibiotics. These

“multidrug-resistant” bacteria appear to be particularly common in areas where HIV infections are

also common. However, it was not known whether HIV directly influences whether M. tuberculosis

bacteriaevolve into drug-resistant forms.

Eldholm, Rieux et al. have now analyzed the genomes, or total genetic content, of 252 samples of

M. tuberculosis taken from the largest outbreak to date of multidrug-resistant tuberculosis in South

America. This made it possible to identify the genetic mutations that enable the bacteria to resist

antibiotic treatment. Using mathematical models to reconstruct the spread of multidrug resistant M.

tuberculosis bacteria during the outbreak also made it possible to assess who transmitted

tuberculosis to whom.

The results suggest that M. tuberculosis does not evolve drug resistance any faster in patients

with HIV than otherwise. Furthermore, patients infected with both HIV and tuberculosis did not

transmit tuberculosis to others more often than patients who did not have HIV. However, being

infected with HIV did increase the likelihood that an individual would contract tuberculosis. HIV also

increased the rate at which the symptoms of tuberculosis progressed in an individual.

To clarify the effect of HIV on the spread of tuberculosis, similar studies are needed that collect

more complete patient data, including their anti-HIV treatment history and their degree of immune

weakening.

DOI: 10.7554/eLife.16644.002
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HIV co-infected was at least partly due to transmission from HIV-negative patients (Fenner et al.,

2012).

In the current work we aimed to directly investigate the impact of HIV co-infection on the evolu-

tion of antibiotic resistance emergence and on transmission dynamics. We analyzed the genomes of

252 isolates belonging to the largest reported outbreak of MDR-TB in South America, caused by the

M strain (Ritacco et al., 1997; Eldholm et al., 2015). The isolates were collected from patients with

known HIV status from the mid-90s until 2009, providing important temporal information. To assess

the impact of HIV co-infection on Mtb evolutionary rates, we estimated mutation rates in the termi-

nal branches of a time-labelled phylogenetic tree, roughly corresponding to the evolutionary history

of individual clinical Mtb isolates within sampled patients. We also inferred transmission networks by

implementing a novel epidemiological model accounting for the long latency of TB. Finally, we esti-

mated the length of the latent period by combining the results of the phylogenetic reconstruction

and inferred transmission networks.

We found that HIV status of the host does not affect the mutation rate of Mtb, and that drug

resistance is not more likely to evolve in HIV positive than HIV negative patients. Together these

findings suggest that HIV co-infection is not a direct driver of Mtb drug resistance, which fits well

Figure 1. Whole-genome Bayesian evolutionary phylogeny of the M outbreak. The peripheral color strips indicate

the HIV status of patients from which the clinical isolates were collected and the resistance burden of the isolate.

The scale bar is given in years since the most recent common ancestor of the outbreak.

DOI: 10.7554/eLife.16644.003
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with the distribution of the global burden of TB, MDR-TB and HIV. Reconstructed transmission net-

works did not reveal a significant impact of HIV co-infection on the ability of patients to transmit TB.

However, our estimates of TB latency confirm that HIV co-infection accelerates progression to active

TB.

Results

Impact of HIV co-infection on Mtb mutation rates and resistance
development
After filtering out positions with low mapping quality and removal of single nucleotide polymor-

phisms (SNPs) in problematic regions, a total of 509 SNPs separating the 252 isolates were used to

construct a Bayesian phylogeny (Figure 1) (Eldholm et al., 2015). The majority of the isolates in the

study shared the same six mutations yielding resistance to INH, RIF, streptomycin, kanamycin, pyrazi-

namide and ethambutol (Eldholm et al., 2015). The bulk of resistance mutations evolving within the

outbreak were thus made up of ethionamide (ETH) and fluoroquinolone (FLQ) resistance mutations.

The HIV status was known for all patients in the study, of which 60.7% were HIV positive.

Figure 2. Impact of HIV co-infection on Mtb evolution. Left: Rate of evolution (substitutions/site/year) on terminal branches (p = 0.1920). Right:

resistance load (number of antimicrobials to which resistance-conferring mutations were found in clinical Mtb isolates, stratified by HIV status of the

host.

DOI: 10.7554/eLife.16644.005

The following figure supplement is available for figure 2:

Figure supplement 1. Evolution of Mtb within patients as a function of HIV status.

DOI: 10.7554/eLife.16644.006
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Based on the available data we considered that the sequenced outbreak isolates represented

about one third of the total number of individuals belonging to the outbreak. Based on available

RFLP data and estimates of the proportion of MDR-cases in Argentina belonging to the M strain, the

outbreak is believed to have caused about 550 cases between 1992 and 2002, of which 109

genomes were available for study (20%). A large fraction of isolates from before 2001, which

includes the peak of the outbreak, were lost in a freezer accident. From 2003 to 2009, the M strain

caused 228 cases in Argentina, of which 143 genomes were available (63%), 116 isolates were

sequenced from HIV positive patients and 85 from negatives. Lost isolates amounted to 40 positives

and 25 negatives. For these years there are hence no reason to suspect any bias in the HIV status of

the sampled patients (c2; p = 0.53). Lost samples can potentially inflate the length of the terminal

branches as they can result in missing internal nodes, but any inflation in branch length is thus

expected to apply equally to branches leading to isolates sampled from HIV positive and negative

patients.

To investigate the impact of HIV-TB coinfection on the accumulation of mutations in Mtb

genomes we directly counted the mutations occurring on terminal branches by performing an ances-

tral reconstruction analysis in PAML (Table 1, Figure 2—figure supplement 1) (Yang, 2007). We

observed no significant differences in the rate at which substitutions accumulate in the genomes of

strains evolving in HIV positive and negative patients (Figure 2a). However, terminal branches were

significantly longer and contained significantly higher numbers of mutations in HIV negative patients

than in positives (Table 1 and Figure 2—figure supplement 1), possibly reflecting a slower progres-

sion of TB in HIV negatives relative to positives.

Hypothesizing that HIV-coinfection could either be a direct driver of resistance emergence or

increase the susceptibility to contract additionally resistant isolates, we tested whether patient HIV

status was associated with resistance load, by counting the number of resistance determinants pres-

ent in each Mtbisolate (Supplementary file 1: Sample information) and stratifying the data by HIV

status. We found that the resistance load was near identical between Mtb isolates from HIV positive

and negative patients (mean = 5.99 and 6.04 respectively) (Figures 1 and 2b). These results are in

line with those from a very recent study of drug resistant TB in Kwazulu-Natal (Cohen et al., 2015).

The analysis above does not distinguish between mutations that emerged in the patients included

in our sample (acquired resistance) and those acquired earlier in unsampled patients and subse-

quently transmitted to the patients in our sample (primary resistance). To investigate the impact of

HIV co-infection on evolution of new resistance, we collected available treatment history for patients

from whom isolates with terminal branch resistance mutations had been sampled

(Supplementary file 2: Treatment histories). We excluded secondary mutations in resistance genes,

namely katG and rpoB mutations, in isolates already harboring high-level resistance mutations in

these genes. These mutations could either be random events or be involved in fitness compensation,

but not resistance per se. We then excluded isolates collected from patients who had not been

treated with drugs relevant for the terminal branch resistance mutation, as these most likely repre-

sent mutations that evolved in unsampled cases and subsequently transmitted to a sampled second-

ary case. This left 13 resistance mutations that evolved with high probability during therapy in 11

patients (Table 2). Nine events of acquired resistance occurred in seven HIV negatives and four in

HIV positives. Based on the frequency of HIV co-infection among the sampled patients, HIV negative

patients were overrepresented among cases of acquired resistance, but the difference was not sig-

nificant (p= 0.24, Fisher’s exa ct test). While the sample size is arguably small, this finding does also

not implicate HIV as a driver of Mtb drug resistance within the outbreak.

Table 1. Number of SNPs accumulated in clinical isolates.

Host HIV status n Mutations total Mean number per isolate c
2 p-value

Negative 99 262 2.646 < 0.001

Positive 153 277 1.810

DOI: 10.7554/eLife.16644.004
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Effect of HIV co-infection on TB transmission
To investigate the impact of HIV co-infection on transmission of Mtb, we implemented a new

method to infer transmission events based on the timed phylogenetic tree (Figure 1). This was

needed because a phylogeny is not directly informative about transmission events as a result of

within-host diversity and evolution (Didelot et al., 2016; Pybus and Rambaut, 2009). Our method-

ology is briefly outlined below and explained in more details in the materials and methods section.

A coalescent within-host model (Didelot et al., 2014) was combined with a Susceptible-Exposed-

Infectious-Removed (SEIR) epidemiological model (Lekone and Finkenstädt, 2006). The likelihood

of transmission from one host to another can be computed under this combined model, and this cal-

culation was performed for all pairs of individuals with one acting as potential infector and the other

as potential infectee. The likelihood calculation relies solely on the dates at which the two individuals

were sampled, their relative position on the phylogeny, and whether the putative infector was smear

positive or negative. It does not incorporate other information such as HIV status, so that these

effects can be tested separately.

The SEIR model was set up with parameters for latency (mean of 5 years with 95% CI 46 days –

18.5 years) and infectious period (mean of 120 days with 95% CI 3–443 days). The infectious period

includes time from symptom onset to infection clearance. A standard method for diagnosing TB is

direct microscopy of sputum smears. If bacteria are visible under the microscope, the case is

denoted smear positive. If no bacteria are observed, but Mtb can be cultured from the sputum, the

case is culture positive but smear negative. Smear positive cases transmit TB far more efficiently on

average than smear negative cases. We thus applied a so-called smear-correction, penalizing trans-

mission event likelihoods involving a smear negative transmitter by multiplying likelihood values with

0.05.

The resulting matrix contains likelihoods of all possible transmission events (Figure 3—source

data 1). For each of the 252 sampled cases in the outbreak, we extracted the most likely transmitter,

resulting in 251 identified transmission pairs. Examples of transmission graphs and transmission

events mapped on the phylogeny are shown in Figure 3 whereas full transmission graphs are pre-

sented as figure supplements (Figure 3—figure supplements 1 and 2). Figure 3—source data 2

provides the links between transmission graph nodes and sample IDs. We performed a simulation

analysis to test the accuracy of our transmission analysis method, and sensitivity analyses to ensure

that our results were robust to parameter choice (see Materials and methods).

Next, we analyzed transmission events as a function of the HIV status of the transmitter of trans-

mitter-receiver pairs. We found no significant effect of HIV status on the ability of patients to cause

secondary TB cases (Table 3). Due to incomplete sampling, a proportion of identified transmission

pairs are expected to be spurious, as unsampled intermediary hosts go undetected. To account for

Table 2. Identified events of within-patient acquired resistance.

Isolate ID HIV Treatment history Mutation Acquired resistance

107 - follow-up (ETH* treated) ethA L225fs ETH

108 - follow-up (ETH and FLQ treated) ethA S208P ETH

516 - follow-up (unknown treatment) pncA D129G PZA

1757 - follow-up (ETH and FLQ treated) ethA H22P ETH

2098 - follow-up (ETH and FLQ treated) ethA F302S + gyrB D461V ETH + FLQ

2485 - follow-up (unknown treatment) ethA G437fs ETH

POGU - follow-up (ETH and FLQ treated) ethA R259fs + gyrB R292G ETH + FLQ

110 + follow-up (ETH and FLQ treated) gyrB R446S FLQ

257 + follow-up (ETH and FLQ treated) inhA -15 C>T ETH

1298 + follow-up (ETH and FLQ treated) gyrA D94N FLQ

2569 + follow-up (ETH treated) ethA S251fs ETH

*Patient received the ETH analogue prothionamide

DOI: 10.7554/eLife.16644.007
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this, the analyses were repeated including only the most likely transmission events using three

thresholds of increasing stringency (top 45%, 35% or 25% most likely transmissions). These subsets

are expected to be increasingly enriched for true transmission pairs, but subsampling did not affect

Figure 3. Reconstruction of transmission events. (A) Graphs representing two selected high-likelihood transmission chains. The colors of the edges

indicate the probabilities of each transmission event from high (red) to lower (orange). Patient HIV-status is indicated by grey (negative) and blue

(positive). (B) The corresponding transmission chains annotated in the timed phylogenetic tree. Red color highlights isolates linked by transmission

events from a single source. Branches in magenta indicate subsequent transmission from a secondary case to additional cases (blue).

DOI: 10.7554/eLife.16644.008

The following source data and figure supplements are available for figure 3:

Source data 1. Likelihood matrix of all possible pairwise transmission events.

DOI: 10.7554/eLife.16644.009

Source data 2. Conversion table linking transmission graph nodes and sample IDs.

DOI: 10.7554/eLife.16644.010

Figure supplement 1. Inferred transmission graph including all 251 transmission events (grey boxes HIV negative; blue HIV positive).Graph edges

colored by likelihood from high (red) to low (yellow).

DOI: 10.7554/eLife.16644.011

Figure supplement 2. Inferred transmission graph including only the most likely transmissions after applying various cut-offs (grey boxes HIV negative;

blue HIV positive).Graph edges colored by likelihood from high (red) to low (yellow).

DOI: 10.7554/eLife.16644.012

Figure supplement 3. Top 25% likely transmission events mapped on the timed phylogeny.

DOI: 10.7554/eLife.16644.013
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the original findings (Table 3). We also explicitly investigated the distribution of the number of trans-

missions per transmitter to test whether this could be affected by HIV status, but detected no signifi-

cant differences between HIV-status of transmitters (Table 4). The 25% most likely infection events

were mapped onto the time-labelled phylogeny for a visual integration of the modelled transmission

links (Figure 3—figure supplement 3).

To further assess performance of the epidemiological modelling, we investigated whether six

pairs of isolates with known epidemiological links (epi-pairs) had been identified by the transmission

analysis. Four pairs of household contacts were identified as likely transmission pairs by the genomic

analysis. All four were among the 35% most likely transmission events, and two among the top 25%.

The SNP differences between these epi-pairs ranged from one to three SNPs (Supplementary file

Table 3. Number of reconstructed transmission events.

Transmission event cut-off Donor HIV status Observed Expected Obs/Exp c
2 p value

All transmissions Negative 80 98.61 0.81 0.3185

Positive 171 152.39 1.12

Top 25% events Negative 20 24.75 0.81 0.2205

Positive 43 38.25 1.12

Top 35% events Negative 30 34.57 0.87 0.3185

Positive 58 53.43 1.09

Top 45% events Negative 36 44.39 0.81 0.1060

Positive 77 68.61 1.12

DOI: 10.7554/eLife.16644.014

Table 4. Distribution of transmissions as a function of HIV status of transmitter.

All transmission events

Transmissions per transmitter: Kruskal-Wallis
p value

HIV status none 1 2 3 4 5 6 7 8 9 10 11

neg 50 37 4 2 1 5 0 0 0 0 0 0 0.075

pos 63 58 11 10 5 2 2 1 0 0 0 1

Top 25% likely transmission events

Transmissions per transmitter:

HIV status none 1 2 3 4 5

neg 83 15 0 0 0 1 0.304

pos 121 25 3 4 0 0

Top 35% likely transmission events

Transmissions per transmitter:

HIV status none 1 2 3 4 5

neg 75 21 2 0 0 1 0.505

pos 111 33 4 4 0 1

Top 45% likely transmission events

Transmissions per transmitter:

HIV status none 1 2 3 4 5

neg 69 27 2 0 0 1 0.324

pos 100 39 7 5 1 1

DOI: 10.7554/eLife.16644.015
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3: SNP distances between epi-pairs). The remaining two epi-pairs were not identified as likely trans-

mission events. These included one pair of household contacts and one pair of isolates from the

same patient taken 4.5 years apart. The genomic differences were nine and five SNPs respectively,

which explains why the model did not identify these as likely transmission pairs. Interestingly, drug

resistance had evolved in one of the epidemiologically linked isolates in both of these pairs, but in

none of the four other pairs. We previously showed that a large number of mutations can hitchhike

in the genetic background of resistance mutations sweeping to fixation and hypothesized that such

selective sweeps could potentially confuse the reconstruction of transmission events (Eldholm et al.,

2014). These two cases might well exemplify such a situation. However, it cannot be ruled out that

the epi-links actually represent independent sources of infection (re-infection in the serially sampled

patient).

Figure 4. Estimating latency time as a function of HIV status. (A) For pairs of samples connected by a transmission

event from i to j, transmission of Mtb is expected to have occurred on the terminal branch above j. Even though

we do not know exactly when j went from latent TB to active TB, the latent period is included in the length of the

terminal branch leading to j (see main text). We therefore use this branch length as an upwardly biased estimate

for latency time. (B) For transmission pairs in the calculated transmission networks, the length (in years) of terminal

branches leading to the recipient of the pairs (overestimated latency period) was extracted and stratified by HIV

status of the recipient. To account for incomplete sampling, the analyses were performed on all 251 calculated

transmission events as well as subsets including only the most likely transmission pairs (top 45, 35 and 25%).

***denotes p<0.001, *denotes p<0.05 as determined by unpaired t-test.

DOI: 10.7554/eLife.16644.016
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Effect of HIV on progression of Mtb infection to active TB
We then set out to estimate the effect of HIV co-infection on the length of TB latency. For pairs of

samples connected by a transmission event, transmission of Mtb from host A to B must happen after

the date of the node connecting the two isolates in the Bayesian phylogeny (Figure 1)

(Didelot et al., 2012, 2013). The date of transition from silent infection to active TB is unknown, but

must happen before sampling time, when the active status is known. An upward biased estimate for

the length of latency period of individual j is therefore given by the difference between the date of

the MRCA of the transmitter i and the receiver j (when j was not yet infected) and the date of sam-

pling of j (by which time j had developed active TB). Although this estimator clearly overestimates

the latency period, there is no a priori reason to suspect that the bias should be different between

HIV negatives and positives. Any significant difference is therefore likely to reflect a difference in

length of the actual latency period. Accordingly, we extracted the length (in years) of the branches

separating the MRCA and recipient of the transmission pairs and stratified the data by HIV status of

the recipient.

As we did not have an exhaustive sampling of all isolates in the outbreak, not all individuals would

have donors present in the phylogenetic tree. To account for this, we analyzed branch lengths of the

receiver for all 251 inferred transmissions, and separately for the 45%, 35% and 25% best supported

transmission events, respectively. Again, we expected the proportion of genuine transmissions to

increase in frequency as we restricted the analysis to a smaller subset of the best-supported trans-

missions. The length of the branches leading to HIV negative hosts was significantly longer than for

HIV positive hosts when including all 251 estimated transmission events (p<0.001), and this differ-

ence remained significant for all three subsampling regimes (Figure 4).

When including only the top 25% of transmission events, the average branch lengths were 5.56

versus 4.65 years for HIV negative and positive receivers, respectively. A comprehensive review of

52 studies found that the average time from TB symptom onset to diagnosis (diagnostic delay) is

approximately two months, with no significant difference between high and low income countries

(Sreeramareddy et al., 2009). Another meta-study found that HIV positive status was associated

with both increased and decreased diagnostic delay, depending on study setting (Storla and Yimer,

2008). The study most relevant to the current setting was conducted in 2005 in Buenos Aires and

other Argentinean provinces and found a delay of about three months, with no significant effect of

HIV status (Zerbini et al., 2008). As the difference in TB activation time we infer between HIV- and

HIV+ is several times higher than the diagnostic delay reported in any setting, we feel confident that

it reflects faster progression to active TB in HIV+ patients.

The fact that HIV co-infection significantly increases the rate of reactivation of latent TB is well

documented. A comprehensive study from the United States found the rate of reactivation to be 25-

fold higher in HIV co-infected individuals relative to their HIV-free peers (1.82 vs 0.072 per 100 per-

son-year) (Shea et al., 2014). However, our outbreak analysis is necessarily restricted to people who

develop active TB, and in this subset of cases, HIV co-infection seems to be associated with a rela-

tively modest acceleration of TB progression, speeding up the process by about 11 months. We do

not know when individual patients contracted TB and HIV respectively. Hypothetically, the accelerat-

ing effect of HIV co-infection on TB progression is likely to be underestimated in patients who were

infected with HIV significantly later than TB. Conversely, patients who were infected with TB late in

the study period might be enriched for HIV co-infection as these patients were more likely to

develop TB in time for inclusion in the study. However, as the study period was relatively long, we

do not believe this potential bias to have significantly affected our results.

Discussion
The single most important impact of HIV infection in this large multi-decade outbreak of MDR-TB

seems to be an increase in the proportion of patients who develop active TB. The HIV prevalence in

Argentina is approximately 0.4% (in 2001 and 2014) (World Health Organization, 2013), whereas

the proportion of HIV co-infected individuals is 60.7% within the M outbreak. These numbers dem-

onstrate that HIV infection is a massive risk factor for developing TB with the MDR M strain. We

found that HIV co-infection is associated with a moderately faster, yet statistically significant, pro-

gression to active TB. As this subtle effect of HIV status on time to active TB cannot explain the far

higher incidence of the M strain in HIV positives, this suggests that the main effect of HIV co-
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infection is to increase the absolute risk of developing active TB. In other words, we surmise that a

large proportion of HIV negatives infected by the M strain will not progress to active TB but for

those that do, the latency period is only slightly longer than for HIV positives.

This study encompasses an outbreak within which resistance to six common anti-TB drugs evolved

early on, and our results are thus mainly restricted to the evolution of resistance to second-line drugs

such as ETH and FLQ in individual isolates. Extrapolation of these findings to evolution of resistance

to first-line drugs thus requires caution. However, the physiological and societal impact of HIV on TB

Figure 5. Correlations between global patterns of HIV, TB and MDR-TB prevalence. Clockwise: Per country prevalence of MDR-TB as a function of TB

prevalence (p=2.2 � 10�16); TB prevalence as a function of HIV prevalence (p=5.9 � 10�6); MDR-TB prevalence as a function of HIV prevalence (p=1.6 �

10�4); Proportion of MDR-TB cases among TB patients as a function of HIV prevalence (p=0.8). All values are log-transformed. The depth of shading of

individual dots reflect the TB prevalence in individual countries.

DOI: 10.7554/eLife.16644.017

The following source data and figure supplement are available for figure 5:

Source data 1. Global per-country health, economy and disease metrics.

DOI: 10.7554/eLife.16644.018

Figure supplement 1. Correlations between global patterns of HIV, TB and MDR-TB prevalence restricted to the top 50% countries in terms of GDP

per capita.

DOI: 10.7554/eLife.16644.019
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patients as well as the fitness constraints associated with new Mtb resistance mutations should be

fundamentally similar regardless of drug class.

It should be noted that free access to highly active antiretroviral therapy in Argentina from 1997

is likely to have mitigated the accelerating effect of HIV on TB progression (Waisman, 2001;

Gupta et al., 2015). Clinical data on HIV progression was not available and we were thus unable to

quantify the effect of anti-retroviral treatment by stratifying our analyses by CD4 counts. We predict

CD4 counts would correlate negatively with TB progression. However, we do not expect that antivi-

ral therapy (and increased CD4 counts) would nullify the effect of HIV on TB progression. Indeed, it

has been shown that TB incidence during highly active anti-retroviral treatment is significantly higher

than background levels even though a number of possible confounders makes the exact quantifica-

tion of the effect of antiretroviral therapy challenging (Gupta et al., 2015; Girardi et al., 2005;

Lawn et al., 2005; Lawn and Wood, 2005).

Accurate reconstruction of transmission chains of bacteria with extended periods of within-host

evolution remains challenging (see Materials and methods). But even though some artefactual trans-

missions are bound to be included among the reconstructed high-confidence events, we are confi-

dent that the overall pattern of transmission is shaped by actual events and is hence robust.

Restricting the transmission network analyses to the most likely transmission events did not affect

our finding that HIV status does not significantly impact the transmissibility of Mtb (Table 3 and

Table 4). We also found that HIV co-infection does not affect the rate of Mtb evolution within

patients. In fact, Mtb was found to accumulate more mutations in HIV negatives. This likely reflects

the slower progression to active disease in this group, with these patients harboring Mtb for a more

extended period relative to HIV positives. This pattern holds true also for antimicrobial resistance

mutations, which were found to evolve significantly more often in HIV negatives than in HIV

positives.

We previously showed that the largest clade in the M outbreak had evolved resistance to six anti-

microbials by 1979, well before the HIV epidemic reached Argentina (Eldholm et al., 2015), a find-

ing which has been replicated for another highly resistant Mtb lineage in South Africa (Cohen et al.,

2015). To put our results in a global context, we retrieved data on the burden of TB, MDR-TB and

HIV globally from the World Health Organization (WHO) Global Health Observatory Data Repository

(http://apps.who.int/gho/data/node.main). We observed a strong correlation between TB and MDR-

TB prevalence (Figure 5a) as well as a correlation between HIV and TB burden between countries

(Figure 5b). We also recovered a highly significant correlation between HIV and MDR-TB

(Figure 5c). However, when correcting the MDR-TB burden for total TB burden, the correlation van-

ished (Figure 5d). This is in line with our results on the M outbreak that HIV is a driver of TB in gen-

eral, but does not disproportionately contribute to the rise of MDR-TB lineages.

By combining Bayesian evolutionary analyses and the reconstruction of transmission networks

based on a new epidemiological model, we were able to directly assess the impact of HIV on the

evolution and transmission of the single most widespread MDR-TB strain reported to date in South

America. The main pre-extensively resistant (pre-XDR) clade within the outbreak evolved before the

HIV epidemic in Argentina, but HIV patients at a major hospital in Buenos Aires played a central role

in fueling the epidemic in the early 1990s (Ritacco et al., 1997; Eldholm et al., 2015), by providing

the strain with a large and spatially restricted reservoir of individuals susceptible to develop active

TB. Once the outbreak erupted, we find that HIV co-infection did not play a role in accelerating Mtb

mutation rates; neither did HIV co-infected patients cause secondary TB cases at significantly higher

rates than their HIV negative peers did. Our findings confirm that HIV co-infected patients have

increased susceptibility to contract TB, but strongly suggest that they do not drive the evolution of

Mtb resistance within an outbreak, nor do they act as super-spreaders of MDR-TB.

Materials and methods

Isolate collection
All available isolates belonging to the M outbreak as assessed by IS6110 RFLP were included in the

study (see (Eldholm et al., 2015) for additional information on samples). The exact number of lost

isolates is not known. No IS6110 RFLP data are available for isolates from before 1992; a freezer

accident also contributed significantly to sample loss.
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Genomic analyses and phylogenetic evolutionary inferences
The protocols used for DNA isolation, preparation of sequencing libraries and SNP calling are

described in (Eldholm et al., 2015), as are the methods for phylogenetic evolutionary inferences,

testing of tip-based calibrations and molecular dating. Sequence reads from the study can be found

under European Nucleotide Archive accession PRJEB7669. Briefly, BEAST 1.7.4 (Drummond and

Rambaut, 2007) was used to infer a phylogeny, branch lengths and evolutionary rates using a gen-

eral time reversible substitution model with variation among sites simulated using a discrete gamma

distribution with four rate categories. We assumed a lognormal relaxed clock to allow variation in

rates among branches in the trees. Trees were calibrated using tip dates only with sample time span

ranging from October 1996 to December 2009. Following appropriate testing, we applied an expo-

nential demographic model. Posterior distributions of parameters, including branch lengths and sub-

stitution rates were estimated by Markov chain Monte Carlo (MCMC) sampling.

Analyzing differences in number of accumulated mutations between
Mtb strains evolving in HIV-positive and negative patients
In this study, we aimed to test for evolutionary differences between strains evolving in HIV positive

and negative patients. Because we can only be confident about the HIV status from which the sam-

ples were collected from, we restricted these analyses to terminal branches in the tree. We esti-

mated the rates of evolution on terminal branches and compared those leading to HIV- and HIV+

hosts using two sample unpaired t-tests. We used the baseml model implemented in PAML program

to perform the empirical Bayesian reconstruction of ancestral sequences. High-likelihood resistance

mutations in the genes embB, ethA, gidB, gyrA, gyrB, katG, ndh, mshA, pncA, rpoB, rpsL and rrs

were identified as described previously (Eldholm et al., 2015).

Reconstruction of transmission chains and assessment of the impact of
HIV co-infection
The code used to reconstruct transmission events is available at https://github.com/xavierdidelot/

TransPairs. We wanted to reconstruct likely transmission events between sampled individuals, with

the added difficulty that we knew a significant proportion of infected individuals were not sampled,

so that some of the sampled individuals would have been infected by unsampled individuals. To

avoid this difficulty, we developed the following inferential framework in which the likelihood of

direct transmission from any sampled host to any other can be calculated. We consider a Suscepti-

ble-Exposed-Infectious-Removed (SEIR) model where individuals move from E to I at rate g1 and

from I to R at rate g2. We also assume that within-host coalescence happens at a constant rate a as

in previous work (Didelot et al., 2014). We want to calculate the likelihood Lifij of transmission from

host i to host j (Figure 4). Let ti and tjdenote the known times at which the two hosts are sampled.

Let ti,j denote the time at which the samples from i and j last shared a common ancestor, which is

known from the timed phylogeny (Figure 1). Let s denote the unknown time at which i transmitted

to j, assuming that this is indeed what happened. s is unknown but is greater than ti,j and smaller

than both ti and tj. With these notations:

Li�!j ¼ pðti; tj; ti;j j i�!jÞ ¼

Z
pðti; tj; ti;j j sÞpðsÞds /

Z minðti;tjÞ

s¼ti;j

pðti j sÞpðtj j sÞpðti;jÞ j sÞds

The first term in the integral is the probability of host i being removed at time ti given that he was

infectious at time s and is exponentially distributed with rate g2:

pðti j sÞ ¼ g2e
�g2ðti�sÞ

The second term in the integral is the probability of host j being removed at time tj given that he

was exposed at time s and so is a convolution of the exponentials with rates g1 and g2:

pðtj j sÞ ¼
g1g2ðe

�g2ðtj�sÞ � e�g1ðtj�sÞÞ

g1�g2

The third term in the integral is the probability that coalescence of the two lines present in host i at
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time s happens at time ti,j and also that either i was infectious at time ti,j and stayed so until s or that

host i was latent at time ti,j and became infectious (but not removed) by time s, leading to:

pðti;j j sÞ ¼ ae�aðs�ti;jÞ
2g1e

�g2ðs�ti;jÞ�g2e
�g2ðs�ti;jÞ�g1e

�g1ðs�ti;jÞ

g1 �g2

By injecting the last three equations into the first we get the likelihood of transmission from i to j.

These calculations were made for all putative infector-infectee pairs using g1 = 0.2 per year and

g2 = 3 per year and the previously estimated within-host coalescent rate a = 0.83 per year

(Didelot et al., 2014). The likelihoods of transmission from smear negative individuals was multiplied

by 0.05 to reflect the lower infectiousness of these individuals. The SEIR epidemiological model

assumed in the calculations above implies that there is random mixing between the individuals, with

every infectious individual being a priori equally likely to infect any susceptible individual. Although

the assumption of random mixing is appealing in theory, in practice human population are well

known to behave differently, with for example a strong effect of the household structure in the trans-

mission patterns of many pathogens (Cauchemez et al., 2004; Whittles and Didelot, 2016). Here

Figure 6. Timed phylogeny used in simulation of SEIR model.

DOI: 10.7554/eLife.16644.020
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we did not have information on the structure of the population and so could not integrate it in our

model. Application of our methodology in a setting where such information is available could be

performed simply by multiplying the likelihood values with the a priori probabilities of transmission

caused by the host population structure.

From the full matrix of transmission likelihoods between all pair of strains, we aimed to recon-

struct disease transmission as accurately as possible. For each pair [i,j] of the transmission matrix, we

started by removing the lowest likelihood value (i infecting j or j infecting i). From the remaining

transmission events, we used Edmonds algorithm implemented in the RBGL R package

(Carey et al., 2016) to find the spanning arborescence of minimum weight (sometimes called an

optimum branching). An optimum branching is a graph defined as a set of directed edges that con-

tain no cycles and such that no two edges are directed towards the same node. In our reconstruc-

tion, such a graph contains n nodes, n being the number of isolates and n-1 directed edges

representing the transmission events. As our sampling of the outbreak was not exhaustive, we know

that a proportion of direct transmission events did not happen. To deal with that situation, we used

various thresholds of inferred transmission events with the highest associated likelihoods to plot the

transmission graphs and analyze the distribution of transmission events.

Simulations and sensitivity analyses
In order to test the accuracy of the above method of reconstruction of transmission chains, we simu-

lated an SEIR model for a population of N = 3000 individuals, with a transmission rate of b = 0.001

per year, a rate of becoming infectious when exposed g1 = 0.2 per year, and a rate of being

removed when infectious g2 = 3 per year. These values of N and b were selected to produce simu-

lated outbreaks of roughly the same size as in the real data, and these values are not used for infer-

ence. The transmission tree generated by this simulation was recorded. A timed phylogeny was then

constructed from the transmission tree, using a coalescent within-host evolutionary model with coa-

lescent rate a = 0.83 per year, and leaves were randomly removed from this tree to simulate incom-

plete sampling of cases, keeping two thirds of the leaves in the second half of the outbreak to

emulate the sampling frame in our study. The resulting phylogeny (Figure 6) was then analyzed in

exactly the same way as the real data: the likelihood of transmission was computed for every pair of

leaves, a transmission tree was deduced using Edmonds algorithm, and only the 25%, 35% or 45%

most likely transmission links were retained to account for incomplete sampling. When applying

these three thresholds to the simulated data, we found that the proportion of correctly inferred links

were 74%, 69% and 63%, respectively. These results conform with our expectation given that there

is significant uncertainty about who infected whom based on genomic data alone when accounting

for extended periods of within-host evolution (Didelot et al., 2016; Biek et al., 2015;

Didelot et al., 2014; Worby et al., 2014).

The results of our transmission analysis are based on three parameter values, namely a mean

latent period of 5 years, a mean infectious period of 120 days and a smear correction of 0.05 by

which the likelihood of transmission from smear negative individuals is multiplied. These parameters

were selected based on the literature and clinical experience. The latent period can vary extensively

between people. Approximately two months of diagnostic delay (Sreeramareddy et al., 2009) plus

two months from treatment onset to clearance of the MDR infection (Brust et al., 2013) suggests

that 120 days is a reasonable estimate of infectious period. Finally, A 20-fold decreased transmissibil-

ity of smear-negative cases was chosen as a reasonable parameter (Ma et al., 2015). We performed

a sensitivity analysis to test how reliable our results would be if any of these parameters were inaccu-

rate. For each of the three parameters, we ran the analysis again considering double and half of their

specified values above, and compared the reconstructed transmission links with those of the main

analysis. In each case, the proportion of links identical with the main analysis was between 91% and

99%. We also performed an analysis in which no smear correction was applied and recovered 90.5%

of the links in the main analysis.

Collection of data on global HIV, TB and MDR-TB burden
HIV prevalence expressed as% population between the age of of 15 and 49 was downloaded form

the World Bank Data website (http://data.worldbank.org/indicator/SH.DYN.AIDS.ZS).
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TB and MDR-TB prevalence data was obtained from the World Health Organization (http://www.

who.int/tb/country/data/download/en/). For TB prevalence, data was available for all countries for

the year 2013 and point estimates of prevalence by 100 k individuals were retrieved (e_prev_100 k).

For MDR-TB prevalence, the data was collected less systematically, and relies on a mix of surveil-

lance, surveys and models. We used the estimated number of MDR-TB cases among all notified pul-

monary TB cases (e_mdr_num), expressed as prevalence per 100 k individuals by dividing by country

population size estimates from the same source. We calculated the proportion of MDR-TB cases by

dividing the prevalence of MDR-TB by the prevalence of TB. All four variables (HIV-, TB-, MDR-TB-

prevalence and the ratio of MDR-TB/TB prevalence were transformed as log(x+1) prior to analyses.

Pearson correlation coefficients were used to test for significant associations between the prevalence

of TB and MDR-TB, HIV and TB, HIV and MDR-TB and finally HIV and of the MDR-TB/TB ratio.

The robustness of the prevalence estimates likely vary between countries due to difference in

methodology and surveillance effort, which may lead to some biases in the correlations reported in

Figure 5. We reasoned that more robust estimates should be obtained in countries with more devel-

oped economies and public health institutions.

Thus, we additionally retrieved estimates for 2013 GDP per capita (http://data.worldbank.org/

indicator/NY.GDP.PCAP.CD) and health expenditure (%) http://data.worldbank.org/indicator/SH.

XPD.TOTL.ZS.

For all countries. Health expenditure was transformed into absolute health expenditure per cap-

ita, by multiplying by GDP and dividing by population size of the countries. The source data used in

these analyses is provided in Figure 5—source data 1.

We then recomputed the correlations reported in Figure 5 on different fractions (25%, 50% and

75%) of the countries with highest GDP or health expenditure per capita. Prevalence estimates from

countries with lower GDP are indeed likely to be less robust as the coefficients between the signifi-

cant correlations in Figure 5 (panels A, B and C) were substantially higher for the countries with high

GDP. However, importantly, we never recovered a significant correlation between the prevalence of

HIV and the proportion of TB that were MDR-TB. In Figure 5—figure supplement 1, we report the

correlations between the same variables than in Figure 5 for the 50% countries with highest GDP.
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Lekone PE, Finkenstädt BF. 2006. Statistical inference in a stochastic epidemic SEIR model with control
intervention: Ebola as a case study. Biometrics 62:1170–1177. doi: 10.1111/j.1541-0420.2006.00609.x

Li J, Munsiff SS, Driver CR, Sackoff J. 2005. Relapse and acquired rifampin resistance in HIV-infected patients
with tuberculosis treated with rifampin- or rifabutin-based regimens in New York City, 1997-2000. Clinical
Infectious Diseases 41:83–91. doi: 10.1086/430377

Lukoye D, Cobelens FG, Ezati N, Kirimunda S, Adatu FE, Lule JK, Nuwaha F, Joloba ML. 2011. Rates of anti-
tuberculosis drug resistance in kampala-uganda are low and not associated with HIV infection. PLoS One 6:
e16130. doi: 10.1371/journal.pone.0016130

Ma M-J, Yang Y, Wang H-B, Zhu Y-F, Fang L-Q, An X-P, Wan K-L, Whalen CC, Yang X-X, Lauzardo M, Zhang Z-Y,
Cao J-F, Tong Y-G, Dai E-H, Cao W-C. 2015. Transmissibility of tuberculosis among school contacts: An
outbreak investigation in a boarding middle school, China. Infection, Genetics and Evolution 32:148–155. doi:
10.1016/j.meegid.2015.03.001

McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. 2014. Mutation rate and the
emergence of drug resistance in mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy 69:292–
302. doi: 10.1093/jac/dkt364

Meyssonnier V, Veziris N, Bastian S, Texier-Maugein J, Jarlier V, Robert J. 2012. Increase in primary drug
resistance of mycobacterium tuberculosis in younger birth cohorts in France. Journal of Infection 64:589–595.
doi: 10.1016/j.jinf.2012.01.013

Patel KB, Belmonte R, Crowe HM. 1995. Drug malabsorption and resistant tuberculosis in HIV-infected patients.
New England Journal of Medicine 332:336–337. doi: 10.1056/NEJM199502023320518

Peloquin CA, MacPhee AA, Berning SE. 1993. Malabsorption of antimycobacterial medications. New England
Journal of Medicine 329:1122–1123. doi: 10.1056/NEJM199310073291513

Porco TC, Oh P, Flood JM. 2013. Antituberculosis drug resistance acquired during treatment: An analysis of
cases reported in California, 1994-2006. Clinical Infectious Diseases 56:761–769. doi: 10.1093/cid/cis989

Pybus OG, Rambaut A. 2009. Evolutionary analysis of the dynamics of viral infectious disease. Nature Reviews
Genetics 10:540–550. doi: 10.1038/nrg2583

Reves R, Blakey D, Snider DE, Farer LS. 1981. Transmission of multiple drug-resistant tuberculosis: report of a
school and community outbreak. American Journal of Epidemiology 113:423–435.

Eldholm et al. eLife 2016;5:e16644. DOI: 10.7554/eLife.16644 18 of 19

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

http://dx.doi.org/10.1186/gb-2012-13-12-r118
http://dx.doi.org/10.1093/molbev/msu121
http://dx.doi.org/10.1073/pnas.1304681110
http://dx.doi.org/10.1073/pnas.1304681110
http://dx.doi.org/10.1038/nrmicro.2015.13
http://dx.doi.org/10.1186/1471-2148-7-214
http://dx.doi.org/10.1038/ncomms8119
http://dx.doi.org/10.1186/s13059-014-0490-3
http://dx.doi.org/10.1128/JCM.05392-11
http://dx.doi.org/10.1086/498315
http://dx.doi.org/10.1016/S2352-3018(15)00063-6
http://dx.doi.org/10.1128/CMR.00042-10
http://dx.doi.org/10.1097/01.aids.0000194808.20035.c1
http://dx.doi.org/10.1097/01.aids.0000194808.20035.c1
http://dx.doi.org/10.1086/498308
http://dx.doi.org/10.1111/j.1541-0420.2006.00609.x
http://dx.doi.org/10.1086/430377
http://dx.doi.org/10.1371/journal.pone.0016130
http://dx.doi.org/10.1016/j.meegid.2015.03.001
http://dx.doi.org/10.1016/j.meegid.2015.03.001
http://dx.doi.org/10.1093/jac/dkt364
http://dx.doi.org/10.1016/j.jinf.2012.01.013
http://dx.doi.org/10.1056/NEJM199502023320518
http://dx.doi.org/10.1056/NEJM199310073291513
http://dx.doi.org/10.1093/cid/cis989
http://dx.doi.org/10.1038/nrg2583
http://dx.doi.org/10.7554/eLife.16644


Ritacco V, Di Lonardo M, Reniero A, Ambroggi M, Barrera L, Dambrosi A, Lopez B, Isola N, de Kantor IN. 1997.
Nosocomial spread of human immunodeficiency virus-related multidrug-resistant tuberculosis in Buenos Aires.
Journal of Infectious Diseases 176:637–642. doi: 10.1086/514084

Robert J, Trystram D, Truffot-Pernot C, Jarlier V. 2003. Multidrug-resistant tuberculosis: eight years of
surveillance in France. European Respiratory Journal 22:833–837. doi: 10.1183/09031936.03.00014103

Sergeev R, Colijn C, Murray M, Cohen T. 2012. Modeling the dynamic relationship between HIV and the risk of
drug-resistant tuberculosis. Science Translational Medicine 4:135ra67. doi: 10.1126/scitranslmed.3003815

Shea KM, Kammerer JS, Winston CA, Navin TR, Horsburgh CR. 2014. Estimated rate of reactivation of latent
tuberculosis infection in the United States, overall and by population subgroup. American Journal of
Epidemiology 179:216–225. doi: 10.1093/aje/kwt246

Small PM, Shafer RW, Hopewell PC, Singh SP, Murphy MJ, Desmond E, Sierra MF, Schoolnik GK. 1993.
Exogenous reinfection with multidrug-resistant mycobacterium tuberculosis in patients with advanced HIV
infection. New England Journal of Medicine 328:1137–1144. doi: 10.1056/NEJM199304223281601

Sreeramareddy CT, Panduru KV, Menten J, Van den Ende J. 2009. Time delays in diagnosis of pulmonary
tuberculosis: a systematic review of literature. BMC Infectious Diseases 9:91. doi: 10.1186/1471-2334-9-91

Storla DG, Yimer S, Bjune GA. 2008. A systematic review of delay in the diagnosis and treatment of tuberculosis.
BMC Public Health 8:15. doi: 10.1186/1471-2458-8-15

Suchindran S, Brouwer ES, Van Rie A. 2009. Is HIV infection a risk factor for multi-drug resistant tuberculosis? A
systematic review. PLoS One 4:e5561. doi: 10.1371/journal.pone.0005561
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