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Abstract The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-

binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through

ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs

(HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here,

we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is

dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity

between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1

ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site.

Collectively, our studies are the first demonstrations of a DNA-protein interaction and an

epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an

orchestrated epigenetic control mechanism involving modifications both to histones and DNA that

facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.

DOI: 10.7554/eLife.17101.001

Introduction
Epigenetic regulation of chromatin architecture and gene expression is driven, in large part, by pro-

teins that write, erase, and read histone post-translational modifications (PTMs) and DNA methyla-

tion. These proteins and their complexes are often comprised of multiple regulatory domains,

permitting intricate mechanisms that govern allosteric control of enzymatic activity and multivalent

engagement of chromatin through one or more reader modules (Du et al., 2015; Musselman et al.,

2012; Noh et al., 2016; Rothbart and Strahl, 2014; Ruthenburg et al., 2007; Su and Denu, 2016).
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The E3 ubiquitin ligase UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is one

such multi-domain epigenetic regulator (Figure 1A) that plays a central role in DNMT1-directed

DNA methylation maintenance during DNA replication (Bostick et al., 2007; Sharif et al., 2007). It

does so in part through the reader activity of its linked TTD-PHD (tandem Tudor and plant homeo-

domain) towards the N-terminus of histone H3 when it is di- and tri-methylated at lysine 9

(H3K9me2/me3) (Arita et al., 2012; Rothbart et al., 2013, 2012), and through RING (really interest-

ing new gene) domain-mediated catalysis of H3K18 and H3K23 ubiquitylation that promotes

DNMT1 association with H3 (Nishiyama et al., 2013; Qin et al., 2015).

The SRA (SET and RING-associated domain) of UHRF1 binds DNA with modest selectivity

towards hemi-methylated CpG dinucleotides (HeDNA) (Arita et al., 2008; Avvakumov et al., 2008;

Hashimoto et al., 2008) and has also been implicated in DNA methylation regulation. However, as

previously studied mutations and deletions of the SRA disrupt DNA interaction regardless of DNA

methylation status (Liu et al., 2013; Sharif et al., 2007), the specific contribution of HeDNA recogni-

tion to this epigenetic regulatory process has not been defined. We therefore sought to gain insight

into the function of HeDNA recognition through the UHRF1 SRA domain and determine the relation-

ship between the enzymatic and histone- and DNA-binding activities of this multi-domain epigenetic

regulator.

Results
We first produced recombinant full-length human UHRF1 and quantified the interaction of this

protein with double-stranded DNA oligonucleotides containing a single unmodified (UnDNA), hemi-

methylated (HeDNA), or symmetrically methylated (SyDNA) CpG dinucleotide by fluorescence polar-

ization (FP). UHRF1 displayed a 10- to 20-fold preference for HeDNA over UnDNA, and a 5- to 10-

fold preference for HeDNA over SyDNA (Figure 1B; left panel). We also confirmed the binding pref-

erences of two previously characterized single amino acid substitutions to the SRA domain

(Avvakumov et al., 2008). G448D (DNAmut) disrupts all DNA-binding (Figure 1B; middle panel) by

installing a negatively charged residue at a position that contacts the DNA backbone (Figure 1—fig-

ure supplement 1), and N489A (HeDNAmut), harbored within the NKR finger that contacts the

eLife digest Cells are able to regulate the activity of their genes in response to different cues.

Genetic information is encoded in DNA and one way to regulate gene activity is to modify the DNA

by attaching chemical “epigenetic” markers to it. When a cell divides, these epigenetic markers can

be inherited by the daughter cells so that they share the same patterns of gene activity as the

parent cell. When the DNA of the parent cell is copied prior to cell division, the epigenetic markers

are also copied onto the new DNA. Mistakes in this process are linked to a wide range of diseases in

humans, such as cancer and neurological disorders.

One type of epigenetic marker is known as a methyl tag and it is added to DNA by certain

enzymes in a process called DNA methylation. A protein called UHRF1 is required for human cells to

inherit patterns of DNA methylation through cell division. This protein binds to newly copied DNA

that lacks some methyl tags as well as to another protein associated with DNA called histone H3.

UHRF1 modifies histone H3 by attaching a small protein molecule called ubiquitin to it. This helps to

recruit a DNA methylation enzyme to place methyl tags on the newly copied DNA. However, it was

not clear how the various properties of UHRF1 allow it to control how DNA methylation is inherited.

Harrison et al. addressed this question by studying purified proteins and DNA fragments outside

of living cells. The results show that UHRF1 binding to DNA and histone H3 work together to bring

UHRF1 to the sites on DNA that require methylation. Further experiments revealed that the

methylation pattern on newly copied DNA is able to activate the ability of UHRF1 to place ubiquitin

on histone H3.

The findings of Harrison et al. reveal a new mechanism by which dividing cells control how DNA

methylation is inherited by their daughter cells. A future challenge will be to find out how attaching

ubiquitin to histone H3 activates DNA methylation.

DOI: 10.7554/eLife.17101.002
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Figure 1. UHRF1 binding to HeDNA is required for DNA methylation regulation but is dispensable for chromatin interaction. (A) Domain map of human

UHRF1 with identified biochemical functions (top) and loss-of-function point mutations used in this study (bottom; see also Figure 1—figure

supplement 1). UBL (ubiquitin-like); TTD (tandem Tudor domain); PHD (plant homeodomain); SRA (SET and RING-associated domain); RING (really

interesting new gene). Amino acid positions demarcating domain boundaries are also shown. (B) FP binding assays quantifying the interaction of wild-

type, DNAmut, and HeDNAmut MBP-tagged UHRF1 with the indicated FAM-labeled DNA oligonucleotides. Error is represented as ± s.e.m. for two

independent experiments. (C) Representative immunofluorescence staining for 5-methylcytosine (5mC) in control and UHRF1 knockdown Hela cells

after genetic complementation with the indicated wild-type and mutant forms of full-length UHRF1. Error is represented as ± S.D. from at least four

fields of view. Mock, no DNA control; Scale bar, 20 mm. (D) Chromatin association assays for FLAG-tagged UHRF1 (wild-type) or the indicated mutants

from asynchronously growing HeLa cells. Mock, no DNA control.

DOI: 10.7554/eLife.17101.003

The following figure supplements are available for figure 1:

Figure supplement 1. UHRF1 mutations characterized in this study.

Figure 1 continued on next page
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unmethylated cytosine opposite the methylated base (Figure 1—figure supplement 1), disrupts

only HeDNA-sensing (Figure 1B; right panel). We also observed that the DNA binding affinity of

UHRF1 was exquisitely sensitive to small perturbations in salt concentration; we measured a nearly

500-fold affinity difference for HeDNA between 50 mM and 150 mM NaCl (Figure 1—figure supple-

ment 2).

We next used a previously developed genetic complementation system in HeLa cells

(Rothbart et al., 2012) to determine the contribution of DNA-binding and HeDNA-sensing to

UHRF1 function in DNA methylation maintenance. Consistent with our previous observations

(Rothbart et al., 2013, 2012), global DNA methylation levels were significantly reduced following

stable knockdown of endogenous UHRF1 by shRNA (Figure 1C). DNA methylation was restored by

reintroduction of a wild-type UHRF1 transgene, but like mutations that disrupt histone interaction

through the PHD finger (H3mut; Figure 1—figure supplement 1), E3 ubiquitin ligase activity (RING-
mut) and DNA binding (DNAmut), HeDNAmut could not rescue DNA methylation loss in cells despite

retaining its ability to bind DNA (Figure 1B–C). These results demonstrate that in addition to the

well-appreciated roles of histone-binding and ubiquitin ligase activity to the DNA methylation regu-

latory function of UHRF1 (Nishiyama et al., 2013; Rothbart et al., 2013, 2012), hemi-methylated

DNA sensing is critical for DNA methylation maintenance.

Notably, unlike H3mut and DNAmut, wild-type and HeDNAmut bound to bulk chromatin biochemi-

cally fractionated from HeLa cells (Figure 1D). Collectively, these findings suggest that the histone-

and DNA-binding domains of UHRF1 are performing complementary functions to target UHRF1 to

chromatin, and that HeDNA recognition provides an additional regulatory layer in the DNA methyla-

tion program.

To test this hypothesis, we first sought to determine whether the independently characterized

DNA- and histone-binding activities of UHRF1 might function in concert. In agreement with previous

analyses of the isolated TTD-PHD (Rothbart et al., 2013, 2012), full-length UHRF1 displayed a pref-

erence for H3K9me3 peptides over unmodified H3 peptides (H3K9un) (Figure 2A; top panel, see

also Supplementary file 1). No binding was observed for H3mut (Figure 2—figure supplement 1A)

or for wild-type protein binding to peptides containing an N-terminal 5-carboxyfluorecin (FAM)

probe to block PHD engagement (Figure 2A; bottom panel). Performing these assays with full-

length UHRF1 allowed us to ask whether DNA binding affects H3 peptide binding and vice versa.

Histone binding measurements in the presence of 10 mM unlabeled HeDNA, SyDNA, or UnDNA

enhanced the interaction with C-terminal FAM-labeled H3K9me3 and H3K9un peptides (Figure 2A;

top panel). HeDNA did not enhance binding to N-terminal FAM-labeled peptides, indicating that

the multivalent interaction of the TTD-PHD with a single H3 peptide (Rothbart et al., 2013,

2012) remained intact. Reciprocally, DNA-binding measurements in the presence of 10 mM unla-

beled H3K9me3 peptide enhanced DNA binding affinity 5–10 fold irrespective of the methylation

status on DNA (Figure 2B–C and Figure 2—figure supplement 1B-C,E). Collectively, these experi-

ments demonstrate that the histone- and DNA-binding modules of UHRF1 are regulated by recipro-

cal positive allostery.

In agreement with the multivalent histone engagement model of the UHRF1 TTD-PHD, the extent

to which H3 peptides augmented the interaction of UHRF1 with DNA was dependent on the epige-

netic signature on H3. H3K9me3 peptide showed a three-fold enhancement of DNA binding over

H3K9un, and asymmetric di-methylation of arginine 2 (H3R2me2a), which blocks the UHRF1 PHD

interaction with H3 (Rajakumara et al., 2011), did not enhance DNA binding (Figure 2B). Consis-

tently, H3mut completely perturbed the ability of an H3K9me3 peptide to positively regulate DNA

binding, a previously characterized double mutation to the linker connecting the TTD-PHD that

uncouples multivalent engagement to H3 (Linkermut) (Arita et al., 2012; Rothbart et al., 2013)

exhibited a weaker enhancement of DNA binding in the presence of peptide than wild-type, and

DNAmut remained unable to bind DNA in the presence of H3K9me3 (Figure 2C and Figure 2—

Figure 1 continued

DOI: 10.7554/eLife.17101.004

Figure supplement 2. The DNA binding affinity of UHRF1 is highly sensitive to salt concentration.

DOI: 10.7554/eLife.17101.005
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Figure 2. The DNA- and histone-binding domains of UHRF1 are regulated by reciprocal positive allostery. (A) FP

binding assays quantifying the interaction of MBP-UHRF1 with a C-terminally FAM-labeled H31-20K9me3 peptide

Figure 2 continued on next page
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figure supplement 1D–E). Conversely, the DNA binding affinity of HeDNAmut was still enhanced by

H3K9me3, although HeDNAmut could not discriminate between UnDNA and HeDNA (Figure 2C),

providing a biochemical basis for HeDNAmut retention on chromatin (Figure 1D).

The observed positive allostery between DNA- and histone-binding suggested the possibility of a

direct physical interaction between the SRA and TTD-PHD domains of UHRF1. Consistent with this

hypothesis, the UHRF1 TTD-PHD associated with the SRA and SRA-RING in pull-down experiments

(Figure 3A), and this association was perturbed in the presence of DNA, irrespective of methylation

status (Figure 3B, left). SRA-RING DNAmut maintained interaction with the TTD-PHD in the presence

of DNA (Figure 3B, right). However, an H3K9me2 peptide did not inhibit the interaction between

the SRA and the TTD-PHD (Figure 3C). These results suggest that the DNA-binding surface of the

SRA contributes to an intramolecular interaction in a manner non-competitive with histone binding.

To ensure that the allostery observed was due to an intramolecular rearrangement and not through

oligomerization, we characterized UHRF1 in the presence and absence of ligands with several bio-

physical techniques. Indeed, UHRF1 remained monomeric and in good agreement with the expected

molecular weight as measured by analytical size exclusion chromatography, dynamic light scattering,

and atomic force microscopy (Figure 3D–F).

Collectively, these results show that the histone- and DNA-binding domains of UHRF1 interact

and that general DNA binding releases this physical association. The data further suggest that

ligand-induced intramolecular rearrangement of UHRF1 domain connectivity results in high-affinity

retention of UHRF1 on chromatin through positive regulation of histone- and DNA-binding activities.

This model is generally consistent with a recent report published during the preparation of this man-

uscript (Fang et al., 2016), which shows that HeDNA enhances histone interaction and suggests a

closed-to-open conformational change in UHRF1 intramolecular architecture upon ligand binding.

However, two key differences between our findings are that we show reciprocal positive allostery

between the histone- and DNA-binding domains of UHRF1, and that general DNA interaction

(regardless of methylation state) can displace the TTD-PHD domain and enhance histone interaction.

We note that the conclusions from Fang et al. relied upon the interpretation of qualitative in-solution

pull-down experiments conducted with a 2:1 DNA:UHRF1 ratio (see Fang et al., 2016), whereas we

used quantitative FP to measure relative binding affinities and included unlabeled ligands in our

experiments at concentrations at least five-fold over their measured Kd values to ensure saturation.

Since UHRF1 ubiquitin ligase activity is required to support DNA methylation yet is dispensable

for bulk chromatin interaction (see Figure 1C–D and Nishiyama et al., 2013; Qin et al., 2015), we

hypothesized that there may be a functional link between HeDNA-binding and UHRF1 ligase activity.

To begin testing this hypothesis, we in vitro reconstituted UHRF1-mediated ubiquitylation using

recombinant UHRF1, H3 peptides, Flag-tagged ubiquitin, and the ubiquitin conjugation enzymes E1

(Uba1) and E2 (UbcH5c) (for a review of the mechanism of ubiquitin activation see Schulman, 2011).

Surprisingly, we observed robust ubiquitylation of an H31-32K9me2 peptide (Supplementary file 1)

in a 20 min end-point assay in the presence of HeDNA (Figure 4A). Neither apo-UHRF1, SyDNA,

nor UnDNA could stimulate this activity at concentrations well above their measured Kd values

(Figure 4A), despite the ability of these DNAs to positively regulate histone binding (Figure 2A).

Consistent with our measured Kd for HeDNA (Figure 1B), we observed reduced ubiquitylation activ-

ity as HeDNA concentration fell below 300 nM (Figure 4A). To our knowledge, this is the first

Figure 2 continued

(see Supplementary file 1 for a full list of peptides used in this study) in the absence or presence of the indicated

unlabeled DNA oligonucleotides. Error is represented as ± s.e.m. for two independent experiments. (B–C) FP

binding assays quantifying the interactions of wild-type and the indicated mutant MBP-UHRF1 proteins with FAM-

labeled HeDNA or UnDNA in the presence and absence of the indicated unlabeled H31-20 peptides. Error is

represented as ± s.e.m. for two independent experiments. See Figure 2—figure supplement 1E for Kd values

associated with panel C.

DOI: 10.7554/eLife.17101.006

The following figure supplement is available for figure 2:

Figure supplement 1. Quantifying the interaction of full-length UHRF1 and various mutants with histone H3

peptides and DNA oligonucleotides.

DOI: 10.7554/eLife.17101.007
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fusions of UHRF1 in the presence or absence of the indicated DNA oligonucleotides. GST Ctrl is a GST fusion of the PHD-Bromo from BPTF (see
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apo UHRF1 particles (left) and 884 HeDNA-bound UHRF1 particles (right). Distributions were fit to a single Gaussian peak using the peak fit function in

Origin 6.1.
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Figure 4. UHRF1-mediated histone H3 ubiquitylation is stimulated by substrate and HeDNA recognition. (A) UHRF1 ubiquitylation assays on an H31-

32K9me2 peptide in the absence or presence of the indicated DNA oligonucleotides: HeDNA was titrated at semi-log intervals spanning 30 mM to 1

nM. SyDNA or UnDNA was added at 30 mM or 100 mM, respectively. (B) Rate measurement quantifying UHRF1 auto-ubiquitylation and H31-32K9me2

ubiquitylation in the presence of HeDNA or UnDNA at the indicated time points. Rate experiments were performed three times with similar results, and

a representative blot is depicted. Blots were quantified using ImageQuant TL (GE Lifesciences). Quantified data was best described by a linear fit over

the measured time scale, with the exception of HeDNA-stimulated H31-32K9me2 mono-ubiuitylation, which remained linear within the first 5 min of the

reaction. (C) UHRF1 ubiquitylation assays on HeLa mononucleosomes in the presence of the indicated concentrations of HeDNA and/or an H31-

15K9me2 peptide. (D) Ubiquitylation of an H31-43K9un peptide by UHRF1 and the indicated mutants (see Figure 1A for mutant annotation) in the

absence or presence of HeDNA.
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The following figure supplement is available for figure 4:
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demonstration that a DNA-protein interaction, and in particular an epigenetic modification, directly

regulates enzymatic activity of an E3 ubiquitin ligase.

To further characterize HeDNA-stimulated UHRF1 ubiquitylation, we compared the rate of

UHRF1 enzymatic activity on itself (auto-ubiquitylation measurements are often used as a proxy to

monitor E3 ligase activity) and an H31-32K9me2 peptide substrate. We measured a 2.5-fold rate

enhancement of UHRF1 auto-ubiquitylation in the presence of HeDNA vs. UnDNA, both in the pres-

ence or absence of H31-32K9me2 peptide (Figure 4B and Figure 4—figure supplement 1A). In

sharp contrast, the rate of HeDNA-stimulated H31-32K9me2 mono-ubiquitylation was stimulated by

more than 100-fold over the rate obtained with UnDNA (Figure 4B). Comparing the rate of activity

on UHRF1 substrates (peptide vs. self), the rate of auto-ubiquitylation was 20-fold faster than the

rate of peptide ubiquitylation in the presence of UnDNA. Conversely, the rate of peptide ubiquityla-

tion was seven-fold faster than the rate of auto-ubiquitylation in the presence of HeDNA

(Figure 4B). Based on these observations, we propose that HeDNA-binding acts as an allosteric

switch to enhance ubiquitylation of histone substrates.

Similar to peptide substrates, UHRF1 mono-, di-, and tri-ubiquitylation of purified HeLa mononu-

cleosomes was stimulated by HeDNA (Figure 4—figure supplement 1B), confirming that the

enhanced ubiquitylation activity of UHRF1 is relevant in the context of chromatin. In addition, when

excess H31-15K9me2 peptide (Supplementary file 1) (which harbors the TTD-PHD binding site but

not the published ubiquitin target lysines) was added to UHRF1 mononucleosome ubiquitylation

assays, H31-15K9me2 effectively inhibited enzymatic activity towards mononucleosome substrates

(Figure 4C). In contrast, HeDNA concentrations as high as 40 mM did not block mononucleosome

ubiquitylation, consistent with its role as an activator of UHRF1 E3 ligase activity. These results sug-

gest that the N-terminus of H3 is the primary binding site for substrate recognition through the TTD-

PHD and that DNA interaction can occur in trans to the nucleosome being targeted for

ubiquitylation.

To further investigate the role of UHRF1 reader domain functions in ligase activity, we tested the

previously described H3mut, Linkermut, DNAmut, HeDNAmut (Figure 1A) and D469G

(Avvakumov et al., 2008) mutants in ubiquitylation assays using H31-32K9me2 (Figure 4—figure

supplement 1C) and H31-43K9un peptides as substrate (Figure 4D). Reacting UHRF1 with peptide

substrates, we observed low ubiquitin ligase activity in the absence of HeDNA, while HeDNA bind-

ing permitted robust formation of mono-, di-, and tri-ubiquitylated H3 peptides (Figure 4D and Fig-

ure 4—figure supplement 1C). Characterizing DNA-, HeDNA-, and histone-binding loss-of-function

UHRF1 mutants in ubiquitylation assays revealed defects in HeDNA-dependent H3 ubiquitylation,

with the exception of the previously reported SRA loss-of-function mutant (D469G)

(Avvakumov et al., 2008), that exhibited wild-type binding to HeDNA in our assays (Figure 4—fig-

ure supplement 1D). Ubiquitylation defects observed for H3mut and Linkermut confirmed a critical

role for the TTD-PHD as the substrate-binding domain for HeDNA-dependent H3 ubiquitylation and

demonstrated that multivalent cis engagement of H3K9me3 by the UHRF1 TTD-PHD is required for

proper ubiquitylation (Figure 4D and Figure 4—figure supplement 1C). In addition, complete loss

of HeDNA-dependent ubiquitylation for DNAmut UHRF1 and the absence of multi-ubiquitylated H3

for HeDNAmut UHRF1 further support the role of DNA binding and HeDNA recognition to fully acti-

vate UHRF1 ubiquitin ligase activity. The histone ubiquitylation defects observed for these loss-of-

function mutants further highlights the interplay between UHRF1 functional domains to support

proper UHRF1 ubiquitin ligase activity.

There is a growing appreciation for the role of allosteric regulation of RING E3 ubiquitin ligase

activity in the field of ubiquitin biology (Vittal et al., 2015). Most often, the regulation of RING E3

ligases is accomplished through modulation of the E3 affinity for an E2-ub (thioesterified E2-ubiqui-

tin) conjugate. Auto-inhibition release is the primary mechanism observed to date, in which steric

occlusion of the RING domain prevents E3 interaction with the E2-ub until the E3 receives an appro-

priate release signal. Examples of RING auto-inhibition release include neddylation of Cullins

Figure 4 continued

Figure supplement 1. UHRF1 ubiquitin ligase assays.

DOI: 10.7554/eLife.17101.010
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(Duda et al., 2008; Saha and Deshaies, 2008), phosphorylation of Cbl (Dou et al., 2012), and sub-

strate/peptide mimetic binding to inhibitor of apoptosis 1 (Dueber et al., 2011). Taking into consid-

eration the above-described allosteric regulatory mechanism of E3 ligase activity, we first sought to

determine whether the interaction with HeDNA could affect association with E2-ub. Using isothermal

titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy, we monitored the

interaction between UHRF1 and E2-N-ub (isopeptide-linked C85K E2-ubiquitin conjugate) or 15N-E2-

O-ub (oxyesterified C85S E2-ubiquitin conjugate), respectively. Surprisingly, neither ITC nor NMR

spectrum intensity loss measurements indicated a change in affinity for the E2 conjugates in the

absence or presence of HeDNA (Figure 5A–B and Figure 5—figure supplement 1). In addition, we

readily observed UHRF1 auto-ubiquitylation in the presence of HeDNA and UnDNA (Figure 4B and

Figure 4—figure supplement 1A), indicating the RING domain of UHRF1 could productively inter-

act with E2-ub regardless of the methylation status of the bound DNA. Notably, upon E3 binding to

the conjugated E2, NMR resonances belonging to the conjugated ubiquitin did not suffer as great a

loss in intensity (Figure 5B and Figure 5—figure supplement 1B–C), indicating that ubiquitin

retained its dynamics when bound to the E3. This observation suggests that UHRF1 binding does

not promote closed E2-ub states as strongly as other canonical RING domain E3’s

(Christensen et al., 2007; Pruneda et al., 2011a, 2012).

Recently, another mechanism of allosteric regulation of RING activity has been described where a

ligand, Poly-ADP-ribose (PAR), induces a conformational change directly in the E3 RNF146 RING

domain. This alternative RING conformation stabilizes the E2-ub/RING complex, thereby enhancing

ubiquitin discharge from the conjugated E2 (DaRosa et al., 2015). To test whether HeDNA-induced

UHRF1 ubiquitin ligase activity enhanced ubiquitin discharge from the conjugated E2, we performed

single turnover ubiquitylation assays where purified E2-ub served as the ubiquitin donor and excess

free lysine was present as a proxy ubiquitin substrate. The rate of ubiquitin discharge from E2 in

these assays (monitored by the loss of the E2-ub and the appearance of free E2) showed only a mod-

est increase in the reactivity of the conjugate in the presence of HeDNA (Figure 5C). These results

suggest that HeDNA-dependent activation of UHRF1 RING activity does not occur through enhance-

ment of the intrinsic rate of ubiquitin discharge from the E2 to non-specific lysine sidechains.

Remarkably, when an H31-20 peptide (Supplementary file 1) was added to ubiquitin discharge

reactions, we observed rapid conversion of E2-ub to E2 (Figure 5C). Additionally, we observed the

appearance of a band corresponding to ubiquitylated H31-20 (Figure 5C). Notably, we also observed

a decrease in the amount of free ubiquitin and UHRF1 auto-ubiquitylation formed when peptide was

present, presumably because more ubiquitin was being transferred to H3 (Figure 5C). Thus, even

under conditions where free lysine was in great excess, ubiquitin was transferred rapidly and prefer-

entially to H3 substrate in the presence of HeDNA.

To determine whether activation of UHRF1 occurs upon substrate binding (i.e., substrate-assisted

activation), we performed single turnover assays in the presence of H31-20, H31-20K14acK18ac, and

H31-20K9acK14acK18ac (Figure 5D, see also Supplementary file 1). We previously demonstrated

the interaction of the UHRF1 TTD-PHD with these potential substrates by peptide microarray

(Rothbart et al., 2013) and reasoned that the acetylated peptides would maintain interaction with

the TTD-PHD but would be unable to accept ubiquitin. Neither the H31-20K14acK18ac nor H31-

20K9acK14acK18ac were capable of being modified with ubiquitin (Figure 5D). Additionally, rapid

E2-ub depletion was only observed in the sample containing H31-20 (Figure 5D), indicating that sub-

strate binding alone does not enhance the E3 ligase activity of UHRF1 in the presence of HeDNA.

Consistent with our previous single turnover results (Figure 5C), reactions that contained unblocked

lysines on H31-20 accumulated less auto-ubiquitylated UHRF1 and free ubiquitin compared to assays

with no peptide or with the acetylated H3 peptides (Figure 5D), supporting a model where HeDNA

alters the substrate specificity of UHRF1 ubiquitylation. It is worth noting that in all single and multi-

ple turnover assays performed, virtually no ubiquitylated species of H3 were observed in assays that

lacked HeDNA. Taken together, these data demonstrate that HeDNA stimulates UHRF1 ubiquitin

ligase activity through a novel regulatory mechanism and suggest that HeDNA binding serves as an

allosteric switch that directs the TTD-PHD bound H3 substrate to the E2-ub active site for transfer.

We next used high-resolution mass spectrometry to further characterize the histone lysine speci-

ficity of HeDNA-stimulated UHRF1 ubiquitylation. HeLa mononucleosomes were reacted with

UHRF1 in the presence of HeDNA or UnDNA for 2 hr using the enrichment strategy depicted in

Figure 6A. Since histone proteins are highly basic, propionic anhydride was used to chemically
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Figure 5. HeDNA binding directs ubiquitin to histone substrates. (A) ITC measuring the interaction of UHRF1 with E2-N-ub (UbcH5c(C85K)-ub linked by

isopeptide bond) in the presence and absence of HeDNA (see also Figure 5—figure supplement 1A). (B) Average peak intensities for 1H-15N HSQC-

TROSY spectra of the 15N-E2-o-ub (E2-o-Ub, UbcH5c(S22R/C85S)-ub esterified conjugate) (see also Figure 5—figure supplement 1B–C). Percentages

indicate the reduction in intensity due to addition of UHRF1 or HeDNA. The addition of HeDNA to E2-ub (comparing blue to red) results in the same

Figure 5 continued on next page
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modify free lysines and facilitate the identification of peptide fragments (Garcia et al., 2007). We

first identified peptides that were enriched in the HeDNA sample relative to the UnDNA sample,

and the only histone peptides that were enriched greater than ten-fold were derived from H3

(Supplementary file 2) (see Materials and methods for information about normalization and quantifi-

cation). Consistent with our findings that HeDNA stimulates UHRF1 ubiquitin ligase activity, ubiquitin

remnants on H3 peptides were heavily enriched in samples reacted in the presence of HeDNA rela-

tive to UnDNA (Figure 6B and Figure 6—figure supplement 1,2). In addition to the previously iden-

tified sites H3K18 and H3K23, we also found H3K14ub, H3K27ub, and H3K36ub heavily enriched in

the presence of HeDNA (Figure 6B, Figure 6—figure supplement 1,2). We further identified abun-

dant H3K18ub and H3K23ub (multi-ubiquitylation) on the same peptide. These results are consistent

with laddering observed for H3ub in our experiments with synthetic peptides (see Figure 4B) and

recombinant and native mononucleosomes (see Figure 4C and Figure 4—figure supplement 1C),

as well as immunoblots from HeLa cells in previous studies (Nishiyama et al., 2013; Qin et al.,

2015). H3K18ub was the most abundant ubiquitylated peptide based upon spectral counts (greater

than 15-fold more than any other site), and H3K23ub was only observed in the context of H3K18ub

(Figure 6B). Collectively these results suggest that H3K18 is the preferred ubiquitylation site for

UHRF1, but that UHRF1 can target a number of lysines on the H3 tail.

Consistent with our model of HeDNA altering UHRF1 substrate preferences, we also observed

changes to the sites of UHRF1 auto-ubiquitylation in the presence of HeDNA (Figure 6—figure sup-

plement 2C–E). In particular, we identified a nine-fold enrichment of UHRF1 K303ub, a solvent

exposed lysine in the PHD near the C-terminus of a bound H3 peptide (Figure 6—figure supple-

ment 2D). This region may represent the target zone for HeDNA-dependent ubiquitylation where

the RING domain would be in proximity to this region. Accordingly, we observed an additional auto-

ubiquitylated UHRF1 band in the presence of HeDNA compared to that observed with UnDNA (Fig-

ure 6—figure supplement 2E), corroborating our mass spectrometry results.

We also identified several histone PTMs that co-occurred with ubiquitylated H3 peptides, includ-

ing all three states of H3K9 methylation (Figure 6B). Additionally, several of the most enriched H3

peptides not containing ubiquitin remnants also contained H3K9me2 (Supplementary file 2). We

confirmed this epigenetic link by immunoblotting HeLa mononucleosomes ubiquitylated by UHRF1.

Ubiquitylated H3 was detected in the presence of HeDNA (but not UnDNA) on nucleosomes marked

with H3K9me3, but not on nucleosomes marked with H3K9acK14ac (Figure 6C). In addition, titrating

recombinant human histones H3, H2A, and H2B into ubiquitylation assays revealed that while

UHRF1 could modify H2A and H2B at concentrations above 5 mM, H3 could be modified at sub-

micromolar concentrations, and H3K9me2 protein (synthesized by native chemical ligation) could be

modified at even lower concentrations (Figure 6—figure supplement 3). Taken together, these find-

ings strongly support the role of H3K9 methylation in directing UHRF1 ubiquitylation to adjacent

lysine residues in the presence of HeDNA. Other histone PTMs co-occurring on ubiquitylated pepti-

des were: H3K23ac, also identified in another study (Qin et al., 2015); H3K27me2, which often co-

occurs with H3K9me2/me3 and is considered a hallmark of facultative heterochromatin (Boros et al.,

2014); H3K36ac, and H3K37me3 (Figure 6B and Figure 6—figure supplement 1,2). However,

future studies will be required to dissect the biological significance of these PTM combinations to

ubiquitin ligase-dependent UHRF1 function.

Figure 5 continued

decrease in intensity as the addition of HeDNA to a sample containing E2-ub and UHRF1 (comparing green to purple) for both the E2 or ub within the

conjugate. (C) Coomassie-stained gel of ubiquitin discharge assays in the presence of the indicated ligands and 20 mM free lysine (left). Densitometry

analysis of the indicated components of the reaction (right). Line coloring corresponds to lane labels at the top of the gel. (D) Coomassie-stained gel of

ubiquitin discharge assays in the presence HeDNA and either no peptide, H31-20, H31-20K14aK18ac, H31-20K9acK14acK18ac and 20 mM free lysine (left).

Densitometry analysis of the indicated components of the reaction (right). Line coloring corresponds to lane labels at the top of the gel. We conducted

at least five ubiquitin discharge assays, and the trends observed for each condition in panels C and D were consistent across all experiments.

DOI: 10.7554/eLife.17101.011

The following figure supplement is available for figure 5:

Figure supplement 1. HeDNA binding does not modulate the interaction of UHRF1 with E2-ubiquitin conjugate.

DOI: 10.7554/eLife.17101.012
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Discussion
Our studies define an orchestrated sequence of histone- and DNA-binding events targeting UHRF1

to chromatin and identify a key regulatory mechanism controlling DNA methylation inheritance

through UHRF1 E3 ligase activation following recognition of HeDNA. This mechanism is consistent

with the observation that UHRF1-dependent H3 ubiquitylation accumulates in S-phase when HeDNA

intermediates are generated behind replicating DNA polymerase (Nishiyama et al., 2013;

Qin et al., 2015). Building on recent studies connecting H3 ubiquitylation to DNMT1 recruitment

(Nishiyama et al., 2013; Qin et al., 2015), we propose a model where UHRF1 is targeted to chro-

matin through its coordinated histone and DNA reading activities (Figure 7A). When UHRF1

A B

H3K9me1 + K14ub

HeDNA UnDNA

0

1e6

H3K9me2 + K14ub

HeDNA UnDNA

0

2e6

H3K9me3 + K14ub

HeDNA UnDNA

0

1e6

H3K9prop + K14ub

HeDNA UnDNA

0

8e5

A
U

C

R.KSTGGKAPR.K
9 14

Charge State

+2 +3 +4

HeDNA UnDNA HeDNA UnDNA HeDNA UnDNA

0

1e6

0

4e7

8e7

0

4e6

H3K18ub + K23ac H3K18ub + K23prop H3K18ub + K23ub

R.KQLATKAAR.K
18 23

A
U

C

HeDNA UnDNA HeDNA UnDNA

0

4e6

0

2e6

H3K27ub + K36ac + K37me3 H3K27me2 + K36ub + K37prop

R.KSAPATGGVKKPHR.K
27 36

A
U

C

C

37 kD

25 kD

20 kD

15 kD

U
n

D
N

A

H
e

D
N

A

U
n

D
N

A

H
e

D
N

A

U
n

D
N

A

H
e

D
N

A

H3K9me3 H3K9ac/K14ac Flag

H3

mono-ub H3

di-ub H3

UHRF1

Nuclease tx
Flag IP

On-bead propionylation 
Trypsin digestion

+HeDNA +UnDNA

LC-MS/MS

UHRF1
UHRF1

UHRF

Flag-ub

E2

UHRF1

+

HeLa
mononucs 

Figure 6. HeDNA stimulates UHRF1-directed ubiquitylation of multiple N-terminal lysines on histone H3. (A) Schematic of the assay and sample

preparation strategy to identify by LC-MC/MS products of UHRF1 ubiquitylation reactions with HeLa mononucleosomes in the presence of UnDNA or

HeDNA. (B) Quantification of the area under the curve (AUC) from extracted-ion chromatograms for the indicated ubiquitylated H3 peptides enriched

by immunoprecipitation of FLAG-ub. See Figure 6—figure supplement 1 for retention times and fragmentation for identified peptides. (C)

Immunoblot analysis for Flag-ub and the indicated histone PTMs following UHRF1 ubiquitylation of HeLa mononucleosomes reacted in the presence of

HeDNA or UnDNA, (-) indicates unreacted nucleosomes.
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The following figure supplements are available for figure 6:

Figure supplement 1. Ion-extracted chromatograms (left) and fragmentation patterns (right) for each ubiquitylated peptide identified using the search

procedures described in Materials and methods.

DOI: 10.7554/eLife.17101.014

Figure supplement 2. Characterizing lysine prioritization of UHRF1 ubiquitylation on mononucleosomes.

DOI: 10.7554/eLife.17101.015

Figure supplement 3. UHRF1 targets H3K9me2 histones for ubiquitylation.

DOI: 10.7554/eLife.17101.016
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encounters HeDNA, H3 ubiquitylation serves as a mechanism to facilitate the recruitment of DNMT1

to replicating regions of the genome to copy parental DNA methylation patterns (Figure 7B).

Structural characterization of the UHRF1 SRA bound to HeDNA (Arita et al., 2008;

Avvakumov et al., 2008; Hashimoto et al., 2008) and cellular localization of UHRF1 with DNMT1

and PCNA (proliferating cell nuclear antigen) at replicating heterochromatic foci (Bostick et al.,

2007; Sharif et al., 2007) contribute to the model in which UHRF1 ubiquitylation of S-phase chroma-

tin is mediated through HeDNA recognition. While it remains to be seen whether uncoupling UHRF1

from HeDNA recognition changes its residence genome-wide, our studies show HeDNA sensing is

not required to target UHRF1 to bulk chromatin. Rather, coordinated recognition of H3 and DNA,

independent of HeDNA discrimination, drives chromatin interaction. We propose that the avidity

resulting from sub-mM affinities of UHRF1 for both DNA and H3 peptides through reciprocal positive

allostery provides a biochemical basis by which UHRF1 is exclusively localized on chromatin. This

may also explain why small perturbations to histone binding affinity through the TTD-PHD (e.g., Link-

ermut and TTD aromatic cage mutation [Rothbart et al., 2013, 2012]) so dramatically affect chroma-

tin targeting of this protein.

Our studies define the UHRF1 TTD-PHD as the substrate-binding domain for HeDNA-stimulated

ubiquitylation, further demonstrating a functional role for the coordinated recognition of H3K9me2/

me3 and HeDNA in UHRF1 ubiquitylation. UHRF1 appears to be versatile in targeting lysines for

ubiquitylation on the H3 tail (Figure 6B): this ability may be related to the complexities of PTM pat-

terning found on this region of the H3 tail (Young et al., 2009) and the necessity to promote effi-

cient recruitment of DNMT1 to differentially modified chromatin environments. In addition, UHRF1

histone ubiquitylation may serve other roles in DNA related processes (i.e., DNA repair)

(Liang et al., 2015; Tian et al., 2015; Zhang et al., 2016). Further studies are necessary to examine
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Figure 7. Proposed model for the contributions of DNA and histone recognition events to the DNA methylation regulatory function of UHRF1. (A)

UHRF1 is targeted to and retained on chromatin by the combined actions of H3K9me2/me3 recognition through the TTD-PHD and DNA interaction,

independent of methylation status, through the SRA. (B) The interaction of the SRA with HeDNA, a DNA replication intermediate, directs the ubiquitin

ligase activity of UHRF1 towards N-terminal lysines on the histone H3 tail. H3 ubiquitylation by UHRF1 contributes to the retention of DNMT1 in

chromatin environments enriched for HeDNA and facilitates the epigenetic inheritance of DNA methylation patterns.

DOI: 10.7554/eLife.17101.017

The following figure supplement is available for figure 7:

Figure supplement 1. Mouse UHRF1 (Np95) SRA adopts different conformations bound to UnDNA (left;PDB:2ZO2) and HeDNA (right;PDB:3F8I).

DOI: 10.7554/eLife.17101.018
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the biological consequence of different patterns of H3 ubiquitylation by UHRF1 and their relation-

ship to pre-existing histone PTM signatures.

Important to note are studies on the enzymology of DNMT1 activity that show the enzyme has an

intrinsic preference for HeDNA substrates (Goyal et al., 2006) and methylates in a processive man-

ner (Bestor and Ingram, 1983; Hermann et al., 2004). Our studies define a major function for

HeDNA, beyond direct stimulation of DNMT1 activity, in the regulation of UHRF1 histone ubiquityla-

tion and DNA methylation inheritance. Considering DNMT1 behavior on oligonucleotide substrates,

it is intriguing to speculate that UHRF1 functions to provide a nucleation event for DNMT1 recruit-

ment to chromatin. Future studies mapping the genome-wide distribution of UHRF1-directed H3

ubiquitylation in relation to DNA methylation patterning will clarify the relationship between UHRF1

and DNMT1 activities.

How might HeDNA binding alter the substrate preference of UHRF1 directed ubiquitylation? We

speculate that HeDNA is bound by the UHRF1 SRA in a manner that positions the RING in proximity

to the H3 binding region of UHRF1. RING activity towards H3 may be conformationally restricted

when UHRF1 binds SyDNA or UnDNA (Figure 7). Consistent with this hypothesis, structures of the

SRA domain from mouse UHRF1 (Np95) show this domain can adopt different conformations bound

to UnDNA and HeDNA (Figure 7—figure supplement 1) (Hashimoto et al., 2008). Also the NKR

finger of the UHRF1 SRA, which harbors the HeDNAmut, adopts a highly ordered conformation upon

HeDNA binding (Avvakumov et al., 2008; Hashimoto et al., 2008). This allows for pseudo-base

pairing to the exposed guanosine nucleotide (Figure 1—figure supplement 1), and we hypothesize

this stable finger conformation is critical for HeDNA-stimulated H3 ubiquitylation. Unfortunately,

efforts to crystallize the enzymatically active conformation of UHRF1 proved unsuccessful. Determin-

ing the active conformation of UHRF1 will be an important step in further understanding the regula-

tion imparted by HeDNA.

Why might ubiquitin be an ideal PTM to accompany a temporally controlled process like replica-

tion-coupled DNA methylation? Ubiquitin itself is a functional protein domain capable of participat-

ing a wide variety of protein-protein interactions (Harrison et al., 2016) and can sterically occlude

surfaces, as has been proposed for H2BK120ub in the formation of a productive complex with

DOT1L (Zhou et al., 2016). Ubiquitin modifications are also dynamic and can be rapidly removed by

deubiquitylases. In fact, recent analysis of ubiquitin turnover kinetics showed that the half-life of

H2BK123ub in budding yeast is approximately one minute (Yumerefendi et al., 2016). Thus, discov-

ering the identity of the deubiquitylase that removes H3 ubiquitylation may provide key insight into

the dynamics of DNA methylation regulation at the level of histone ubiquitylation. The initial study

implicating H3 ubiquitylation in the inheritance of DNA methylation indirectly suggested that USP7

may be responsible for this function through interaction with DNMT1 (Nishiyama et al., 2013). This

is notable, as USP7 has also been shown to interact with UHRF1 (Zhang et al., 2015). Additionally,

recent studies have tied USP7 to DNA replication (Lecona et al., 2016) and the maintenance of het-

erochromatin (Mungamuri et al., 2016), providing a biological link to replication-coupled inheri-

tance of DNA methylation. However direct evidence of USP7 catalyzed deubiquitylation of H3 is

lacking.

In conclusion, our study defines the relationship between UHRF1 histone-binding, DNA-binding,

and ubiquitylation activities and connects HeDNA recognition to UHRF1 enzymatic function. Addi-

tionally, we characterize HeDNA as an active epigenetic mark that allosterically regulates UHRF1

ubiquitylation towards histone H3. More broadly, these finding provide a function for epigenetic pat-

terning associated with UHRF1 beyond protein recruitment. We speculate that epigenetic mecha-

nisms of multivalency and allostery are more widespread and add additional layers of complexity,

specificity, and connectivity to chromatin recognition, modification patterning, and genome

regulation.

Materials and methods

UHRF1 protein production
The cDNA that encodes amino acids 1–793 of human UHRF1 (full length) was cloned into a modified

pGEX vector in frame with an N-terminal 6xHis-MBP tag that can be cleaved with TEV protease. E.

coli were grown to O.D. 0.6 and induced with 600 mM IPTG overnight at 18˚C. Cells were collected
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by centrifugation and resuspended in lysis buffer (50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 2 mM

PMSF, 1 mM Bestatin, 1 mM Pepstain A, and 10 mM Leupeptin [Thermo Fisher Scientific, Waltham,

MA]), lysed with sonication on ice, and cellular debris was pelleted at 15,000 x g for 30 min. The

supernatant was passed over a HisTRAP nickel column (GE Lifesciences, Pittsburgh, PA), washed

(50 mM Tris-HCl, pH 8.0, 1 M NaCl, and 15 mM imidazole) and eluted (25 mM HEPES, pH 7.5,

100 mM NaCl, and 250 mM imidazole). Eluted protein was concentrated to �2 mL using a 10 kDa

spin concentrator (Amicon Ultra) and further purified by size-exclusion chromatography (SEC) over a

Superdex S-200 (16/600) column (GE Lifesciences) in 25 mM HEPES, 100 mM NaCl, and 1 mM DTT.

Monomeric fractions were pooled and concentrated to 100–200 mM. The purified protein was either

used directly or was bound to MBP resin for overnight cleavage with TEV protease purified as previ-

ously described (Tropea et al., 2009). Cleaved UHRF1 was less stable at higher concentrations than

6xHis-MBP-UHRF1 but behaved similarly in binding and ubiquitylation assays. To complete the

study, we purified UHRF1 from bacteria more than 10 times, and all protein preparations were func-

tional and behaved similarly. Mutations were introduced into cDNAs by Quick Change (Agilent,

Santa Clara, CA) and purified mutant proteins behaved similarly to wild-type protein, but were gen-

erally less stable at higher concentration. To circumvent this issue, UHRF1 mutants were character-

ized as MBP fusions.

Fluorescence polarization binding assays
Histone peptides N- and C-terminally labeled with 5-carboxyfluorescein (FAM) were synthesized as

described (Rothbart et al., 2013). 6-FAM-labeled double-stranded DNA was generated by anneal-

ing the following combinations of synthetic oligonucleotides (Eurofins, Louisville, KY); FAM-5’-

CCATGXGCTGAC-3’ and 5’-GTCAGYGCATGG-3’, where X and Y are both cytosine (UnDNA), X is

cytosine and Y is 5mC (HeDNA), or X and Y are both 5mC (SyDNA). Binding experiments were per-

formed in 25 mL in black flat-bottom 384-well plates (Corning, Tewskbury, MA). Protein was titrated

with 10 nM FAM-labeled DNA or histone peptides in buffer containing 25 mM HEPES, pH 7.5,

0.05% NP-40, 100 mM NaCl (unless otherwise indicated). Where indicated, 10 mM unlabeled DNA

or histone peptide was included in the reaction mix. Following a 10 min incubation period, fluores-

cence polarization measurements were performed at 25˚C with a PHERAstar fluorescence microplate

reader (BMG Labtech, Cary, NC) using a 480-nm excitation filter and 520/530 ± 10-nm emissions fil-

ters. Gain settings in the parallel (||) and perpendicular (?) channels were calibrated to a polarization

measurement of 100 milli-polarization units (mP) for the FAM tracer in the absence of protein. Polari-

zation (P) was determined from raw intensity values of the parallel and perpendicular channels using

the equation P = || – ? / || + 2(?) and converted to anisotropy (A) units using the equation A = 2P / 3

– P. Equilibrium dissociation constants (Kd) were determined by non-linear regression analysis of

anisotropy curves using a one-site binding model in GraphPad Prism. To control for variability in salt

concentration, each experiment included a wild-type protein as a reference. Accordingly, the methyl

preference for DNA binding (HeDNA, SyDNA, and UnDNA) and the positive allostery of histone and

DNA binding of the wild-type protein was observed in greater than ten independent experiments in

various buffers and salt concentrations with several batches of purified protein.

Ubiquitylation assays
Ubiquitylation assays were typically performed in 20 mL reactions containing 1.5 mM UHRF1, 100 nM

E1 activating enzyme (Boston Biochem #E-304; Cambridge, MA), 200 nM E2 Ubc5c (purified in

house over HisTRAP column), 2.5 mM MgCl2, 1 mM DTT, 5 mM FLAG-ubiquitin (Boston Biochem),

10 mM ATP, 25 mM HEPES, pH 7.5, and 100 mM NaCl. Unless otherwise indicated, peptide concen-

trations were 13 mM, and HeDNA, SyDNA, and UnDNA concentrations were 3 mM, 10 mM, and

40 mM, respectively. Assays were performed at 25˚C and quenched after 20 min with SDS-PAGE

loading buffer (2% SDS, 10% glycerol, 1% 2-Mercaptoethanol, 50 mM Tris-HCl pH 6.8, 0.01% bro-

mophenol blue). Reactions were ran on 16% SDS-PAGE gels, transferred to PVDF membranes, and

visualized using fluorescent imaging of immunoblots probed for FLAG-ubiquitin with FLAG (Sigma

#F3165, 1:5000; St. Louis, MO or BioLegends #637304, 1:5000; San Diego, CA) and Alexa Fluor 488

or 647 (Life Technologies 1:5,000; Carlsbad, CA) antibodies on a Typhoon Trio+ fluorescent scanner

(GE Lifesciences). Histone peptide substrates were synthesized as previously described

(Rothbart et al., 2013). Recombinant histone proteins and mononucleosomes were obtained
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commercially from Epicypher (H2A, #15–0301; H2B, 15–0302; and H3.1, #15–0303; mononucleo-

somes, #16–0002; Research Triangle Park, NC). Allosteric activation of UHRF1 ubiquitylation activity

towards histone peptides and nucleosomes was observed in more than ten independent experi-

ments, and DNA and UHRF1 titrations were repeated three times. The activities of the mutant pro-

teins were tested in five independent experiments with at least two protein preparations for each

mutant. Rate measurements for UHRF1 ubiquitylation activities in the presence of HeDNA vs UnDNA

were conducted three times with similar results as Figure 4B.

Synthesis of H3K9me2 histone using native chemical ligation
C-terminal H3 peptide (amino acids 11–135; T11C) was prepared as described (Shogren-

Knaak et al., 2003) by cleavage of precursor with Factor 10X. Purification by reverse-phase HPLC

followed by pooling of appropriate fractions and lyophilization afforded a white solid (6.2 mg). The

theoretical mass of C622H1040N196O172S3 product is 14112.54 Da and the measured mass of the

product was 14112.94 Da. N-termial peptide thioester ARTKQTARK(me2)S-Mes-OH was synthesized

as described (Mahto et al., 2011) and purified by reverse-phase HPLC to 70% purity. After purifica-

tion peptide contained 30% of hydrolysis product (ARTKQTARK(me2)S-OH). A mixture of 1 mg of

C-terminal peptide (70.86 nmoles) and 0.52 mg of an N-terminal peptide thioester (70% pure; 280.3

nmoles; 4 molar equivalents) in 0.5 mL of ligation buffer (3 M Guanidine-HCl, pH 7.9, 100 mM potas-

sium phosphate) was treated with benzyl mercaptan (2.5 mL) and thiophenol (2.5 mL), and the mix-

ture shaken vigorously for 24 hr. The reaction mixture was diluted with ligation buffer (500 mL),

treated with MeCN:water:trifluoroethanol (750 mL; 25:75:0.1), and desalted by dialysis (2 x 30 min

with water change). Analysis by reverse-phase HPLC and by gel electrophoresis on SDS-18% poly-

acrylamide gel followed by staining with coomassie blue indicated a complete ligation reaction. Puri-

fication by reverse-phase HPLC followed by pooling of appropriate fractions and lyophilization

afforded H3K9me2 (1–135) T11C as a white solid (0.70 mg; 65%). The theoretical mass of

C670H1129N215O186S3 is 15268.90 Da and the measured mass of the product was 15269.19 Da.

Ligated peptide (H3K9me2 T11C; 0.7 mg) was dissolved in argon-degassed desulfurization buffer

(200 mM phosphate, 6 M guanidine-HCl, pH 6.7; 0.15 mL) and treated with ethanethiol (2 mL), TCEP

(0.15 mL of 0.5 M in desulfurization buffer), t-butanethiol (10 mL), and VA-061 (2,2’-azobis[2-(2-imida-

zolin-2-yl)propane]) in methanol (2 mL of 0.2 M solution) and incubated at 37˚C for 24 hr. The resul-

tant mixture was purified by reverse-phase HPLC followed by pooling of appropriate fractions and

lyophilization to afford H3 1–135 T11A as a white solid (0.55 mg). The theoretical mass of

C670H1129N215O186S2 is 15236.84 Da and the measured mass of product was 15237.16 Da.

Lysine discharge assays
Lysine reactivity assays were performed as previously described (DaRosa et al., 2015; Wenzel et al.,

2011). Briefly, the UbcH5c-Ub conjugate was generated in 25 mM sodium phosphate, pH 7.0 and

100 mM NaCl containing 1.5 mM human E1, 250 mM Ub, 100 mM UbcH5c, 2.5 mM MgCl2, and

2 mM ATP (Sigma). Reactions were incubated for 40 min at 37˚C, then purified by SEC to isolate E2-

Ub. SEC-purified E2-Ub was added to UHRF1 E3 samples incubated with HeDNA or buffer for

30 min on ice to form a final concentration of 8 mM E3, 25 mM E2-Ub, and, where indicated, 13 mM

HeDNA and 12 mM peptide. After a zero min time point was taken, buffered L-lysine HCl (Sigma)

was added to a final concentration of 20 mM and samples were incubated at 35˚C, removing sam-

ples at indicated time points. Samples were quenched in non-reducing SDS sample loading buffer

and analyzed by SDS-PAGE stained with either Coomassie or Oriole fluorescent gel stain (Bio-

Rad, Hercules, CA). Lysine reactivity assay performed in the presence of excess free lysine were per-

formed in the following conditions: 32 mM E2-Ub (UbcH5c and WT Ub), 8 mM UHRF1, 13 mM

HeDNA, 11 mM H3(1–20)K9me3, with 20 mM Lysine. Ubiquitin discharge assays were performed at

least five times in the lab and yielded results consistent with Figures 5C–D.

Pull-down assays
His-MBP-tagged UHRF1 SRA-RING (amino acids 405–793) was produced in E. coli as described

above. GST-tagged UHRF1 TTD-PHD (amino acids 123–366) and BPTF PHD-Bromo (gift from Dr.

Alex Ruthenburg [Ruthenburg et al., 2011]) were produced as previously described

(Rothbart et al., 2013). Proteins (each at 1 mM) were incubated overnight at 4˚C with MBP magnetic
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beads (NEB, Ipswich, MA) in binding buffer containing 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 0.1%

NP-40, 0.5% BSA, and, where indicated, 25 mM DNA oligonucleotides or histone peptides. Pulldown

experiments with the SRA-RING DNAmut were performed with 5 mM DNA. Samples were washed

extensively with binding buffer, eluted in SDS sample buffer, resolved by SDS-PAGE, transferred to

PVDF membrane (Thermo), and probed with GST antibody (Sigma #G7781, 1:2,000). Pull-down

assays were performed in triplicate.

Chromatin association assays
Asynchronously growing HeLa cells were harvested by trypsinization 48 hr post transfection with the

indicated FLAG-tagged human UHRF1 constructs. Pellets were washed once with cold 1x PBS, snap

frozen in liquid N2 and either processed immediately or stored at �80˚C. Cell pellets were resus-

pended in 1x volume CSK buffer (10 mM PIPES pH 7.0, 300 mM sucrose, 100 mM NaCl, 3 mM

MgCl2, 0.1% Triton X-100 and 1x Complete EDTA-Free protease inhibitor cocktail from Roche) and

incubated on ice for 20 min. Total protein was quantified by Bradford Assay (BioRad), and 10% of

this total fraction was combined with an equivalent volume of CSK buffer supplemented with Univer-

sal Nuclease (Thermo, 1:5,000). Note that the concentration of the total fraction is now 0.5x. The

remaining cell lysate was centrifuged at 1300 x g for 5 min at 4˚C. The supernatant (soluble fraction)

was collected. The chromatin pellet was resuspended in 1x volume CSK buffer and kept on ice for

10 min before being spun again at 1300 x g for 5 min at 4˚C. The supernatant was discarded and

the chromatin pellet was solubilized in CSK buffer supplemented with Universal Nuclease. 1–5 mg of

protein from each fraction (estimated from Bradford on total extract) was resolved by SDS-PAGE,

transferred to PVDF membrane (Thermo), and probed with the indicated antibodies (Flag, Sigma

#F1804, 1:5,000; b-tubulin, Millipore #05–661, 1:5,000, H3, Epicypher #13–0001, 1:25,000).

DNA methylation analysis
Immunofluorescence analysis of 5mC content was performed essentially as described with the fol-

lowing modifications (Rothbart et al., 2012). HeLa cells grown in 4-well chamber slides (Nunc Lab-

Tek) were fixed with ice-cold methanol at �20˚C for 10 min. To denature the DNA, fixed cells were

treated with 2 N HCl for 30 min at 37˚C and washed twice with 0.1 M boric acid, pH 8.5. Cells were

blocked for 30 min in PBS containing 1% (w/v) BSA and labeled with an anti-5mC antibody (Active

Motif #39649, 1:500; Carlsbad, CA) in PBS containing 1% BSA for 1 hr at room temperature. Cells

were washed with PBS and incubated with an Alexa Fluor 647-conjugated secondary antibody (Life

Technologies #A21236, 1:1000) for 1 hr at room temperature protected from light. Cells were

washed with PBS and mounted with SlowFade Gold Antifade with DAPI (Thermo #S36942). Images

were acquired using a Nikon A1+ RSi confocal microscope using a 60x objective following excitation

with 403-nm and 640-nm solid-state lasers. The 5mC signal from each image was quantified using

the equation

P
i
1

bi>t½ �1 ri>t½ � ri�tð Þ
P

i
1

bi>t½ �
, where bi is DAPI signal intensity for an individual pixel, ri is 5mC signal

intensity for an individual pixel, and t defines the background signal threshold. The percent of con-

trol 5mC was calculated using the mean 5mC signal from at least four fields of view.

Preparation of mass spec samples
20 mg of Hela extracted mononuclesomes (Epichyper #16–0002) were used as substrate in each

ubiquitylation reaction supplied with either HeDNA or UnDNA (described above) for 2 hr. The reac-

tions were placed on ice, treated with Universal Nuclease (Thermo, 1:5,000), and the ubiquitylated

products were immunoprecipitated with FLAG M2 magnetic beads (Sigma). The resin was washed

3x with 1 mL of wash buffer (HEPES, pH 7.5, 100 mM NaCl), split in half, and the beads were trans-

ferred to spin columns (Vivacon) and sequencing grade modified trypsin (Promega, Madison, WI).

Half of the sample was reacted with proprionic anhydride (Alfa Aesar) using a modified version of

this procedure (Lin and Garcia, 2012). 100 ml of a 1:3 ratio of proprionic anhydride diluted in

100 mM NH4CO3, pH 8.0 was added to each spin column followed by 50 ml NH4OH to adjust the

pH to 8.0. Each reaction was incubated for 30 min at 30˚C before being spun through the column.

This protocol was repeated to ensure complete proprionylation of free lysines in the sample. The

proprionylated and unreacted samples were then digested on resin using sequencing grade
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modified trypsin (Promega) digested at 37˚C for 2 hr. This mixture was analyzed with LC-MS/MS

without proprionylation of the free amines exposed after trypsin digestion.

LC-MS-MS
The peptide mixture was analyzed in positive mode using a nanoAquity UPLC coupled LTQ Orbitrap

Elite mass spectrometer (Thermo ). Chromatographic separation used a 2 cm trapping column

(Acclaim PepMap 100) and a 15 cm EASY-spray analytical column (75 mm ID, C18 beads of 3.0 mm

particle size, 100 Å pore size). The HPLC flow rate was set to 350 nL/min over a gradient of 1%

buffer B (0.1% formic acid in acetonitrile) to 25% buffer B in 150 min. The full mass scan (300 to

2000 m/z) was acquired at a resolution of 120,000 with a maximum injection time of 500 ms, and

MS/MS was performed in a data-dependent manner for the top 15 intense ions in the linear ion trap

by collision-induced dissociation. Raw data were converted to mzXML format using ProteoWizard

(Kessner et al., 2008) and searched using the Crux pipeline (McIlwain et al., 2014) (version

2.1.16867) against the human UniProtKB/Swiss-Prot sequence database (downloaded on 2/20/15)

(Boutet et al., 2007). Search parameters were set as the following: peptides between 6 and 25

amino acids long with a precursor mass tolerance of 0.5 amu, no missed cleavages, fully-enzymatic

Arg-C digestion, a static propionyl modification (+56.026215) on lysines, and a maximum of 4 vari-

able modifications consisting of up to 2 lysine ubiquitinations (+58.016716), 2 methylations

(+14.01565), 2 dimethylations (�27.994915), 2 trimethylations (�13.979264), 2 acetylations

(�14.015644), 1 methionine oxidation (+15.99492), and 1 STY phosphorylation (+79.966331). The

mass of propionyl was subtracted from variable lysine modification masses (except methylation) due

to the already applied static propionyl modification. For unpropionylated samples, the differing

parameters were: up to 3 missed cleavages, fully-enzymatic trypsin digestion, no static modifications,

and a maximum of 4 variable modifications consisting of up to 2 lysine ubiquitinations

(+114.042931), 2 methylations (+14.01565), 2 dimethylations (+28.0313), 2 trimethylations

(+42.046951), 2 acetylations (+42.010571), 1 methionine oxidation (+15.99492), and 1 STY phos-

phorylation (+79.966331). Prior to execution of the Percolator algorithm supplied by Crux, deltaCn

scores were re-computed using an alternate definition: deltaCni = 1 – ((xcorr1-xcorri) / xcorr1). This

adjustment was performed because the similar mass of trimethylation and acetylation results in iden-

tical xcorr values for the low mass accuracy MS/MS spectra from linear ion traps, which then led to

invalid deltaCn values with the default equation used by Percolator. After application of a 5% FDR

threshold, peptides were further filtered by ensuring they had the expected retention time relative

to peptides having the identical unmodified sequence. We used the following procedure. First, pep-

tides with the same unmodified sequence were sorted in ascending order by their Percolator PEP

(posterior error probability). Then, each peptide (starting from lowest to highest PEP) was accepted

if at least one of its MS/MS scan’s retention time was consistent relative to all currently accepted

peptides having the same unmodified sequence. The expected relative retention time constraints

were: ubiquitin < dimethyl � trimethyl < acetyl < propionyl < methyl, oxidation < unmodified, and

phosphorylation � unmodified. Peptides expected to have the same retention times were allowed

to elute within 2 min of each other. Finally, peptide H3K9me3 + K14ub was accepted after manual

inspection of its corresponding MS/MS spectra, isotopic distribution, and its consistent retention

time despite being above the 5% FDR threshold. Quantification was performed within Skyline

(MacLean et al., 2010) and the results were exported for further visualization and analysis using the

R programming language. Proteomics data have been deposited to the ProteomeXchange Consor-

tium via the PRIDE partner repository with the dataset identifier PXD003983.

Analytical size exclusion
A 10 mM solution of apo-UHRF1 or 1:1:1 ratio of ligands (HeDNA and H3(1–15)K9me3 peptide) was

passed over a Superdex 200 (10/300) GL column using an AKTA purifier FPLC (GE Lifesciences) in

size exclusion buffer (25 mM HEPES pH 7.4, 100 mM NaCl, 1 mM DTT) with a flow rate of 0.5 mL/

min. Samples with ligand were allowed to equilibrate for 10 min prior to injection onto the column.

The apparent molecular weight was calculated using a linear fit to the retention time for a set of

molecular weight standards (BioRad #1511901). Analytical size exclusion experiments were repeated

three times with identical results.
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Dynamic light scattering
Dynamic light scattering was measured using were a DynaPro Plate Reader (Wyatt Technology,

Goleta, CA ). UHRF1 was at 5 mM and 10 mM H3(1–15)K9me2 or DNA was added to a final volume of

50 mL in buffer (HEPES pH 7.5 100 mM NaCl and 1 mM DTT). Samples were incubated for 10 min

before monitoring light scattering for over 100 s for each sample. Light scatter for each ligand alone

yielded a low intensity and poly-dispersed signal that did not significantly contribute to the scatter-

ing when UHRF1 was present. Addition of the ligand however likely accounts for the small increases

to poly-dispersity observed upon addition of ligand.

Atomic force microscopy
A 20 nM solution of UHRF1 (25 mM HEPES pH 7.4, 100 mM NaOAc, 1 mM DTT) was mixed with or

without HeDNA (5 mM) and deposited on freshly peeled mica, immediately rinsed with water (Sigma

#W4502), and dried with nitrogen gas before imagining. All images were acquired on the same day

as the deposition. Images were collected on an MFP3D Atomic Force Microscope (Asylum Research

Oxford Instruments using the following parameters: scan rate 1 Hertz, scan size 1 mM x 1 mM, image

resolution 1024 x 512. Images were collected in intermittent contact mode (AC mode) using AFM

probes from NanoSensor (PPP-FMR, force constant = 2.8 N/m). Images were analyzed using the

Asylum Research AFM software package. The images were flattened to a second-degree polynomial

to account for surface warping artifacts and volume analysis was performed using built-in particle

analysis (a more detailed review of this methodology can be found here Ratcliff and Erie, 2001).

Volume distributions were plotted to a peak fit model and visualized using Origin 6.1 (origin labs).

The fact we could only identify a single volume species indicates monomeric UHRF1; the kD (data

not shown) we calculated from AFM volume is also in agreement with monomeric UHRF1).

NMR
Oxyester-linked 15N E2-O-Ub conjugate (UbcH5c(Ser22Arg/Cys85Ser)-O-Ub was generated as pre-

viously described (Pruneda et al., 2011b). Two-dimensional 1H-15N HSQC-TROSY experiments were

performed with 200 mM 15N E2-O-Ub conjugate in 25 mM sodium phosphate, pH 7.0 and 150 mM

NaCl on a Bruker 500 MHz AVANCE II NMR spectrometer. MBP-UHRF1 and/or HeDNA was added

to experiments to a final concentration of 18 mM and 22 mM, respectively. NMR data was processed

with NMRPipe (Delaglio et al., 1995) and peak intensities were determined using NMRViewJ

(Johnson and Blevins, 1994) (OneMoonScientific). Relative peak intensity changes were determined

as the absolute peak intensity divided by the initial intensity of the E2-O-Ub conjugate in the

absence of additives.

Isothermal calorimetry (ITC)
E2-N-ub was generated as previously described (Branigan et al., 2015). ITC experiments were per-

formed at 25˚C in a MicroCal iTC200 in 25 mM Hepes pH 7.4 and 100 mM NaCl. UHRF1 was at

12 mM and the E2-N-ub was at 218 mM. Data was fit to a single site binding model with Origin.
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