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Abstract Epithelial cells and their underlying basement membranes (BMs) slide along each other

to renew epithelia, shape organs, and enlarge BM openings. How BM sliding is controlled,

however, is poorly understood. Using genetic and live cell imaging approaches during uterine-

vulval attachment in C. elegans, we have discovered that the invasive uterine anchor cell activates

Notch signaling in neighboring uterine cells at the boundary of the BM gap through which it

invades to promote BM sliding. Through an RNAi screen, we found that Notch activation

upregulates expression of ctg-1, which encodes a Sec14-GOLD protein, a member of the Sec14

phosphatidylinositol-transfer protein superfamily that is implicated in vesicle trafficking. Through

photobleaching, targeted knockdown, and cell-specific rescue, our results suggest that CTG-1

restricts BM adhesion receptor DGN-1 (dystroglycan) trafficking to the cell-BM interface, which

promotes BM sliding. Together, these studies reveal a new morphogenetic signaling pathway that

controls BM sliding to remodel tissues.

DOI: 10.7554/eLife.17218.001

Introduction
The basement membrane (BM) is a cell-associated, dense, sheet-like form of extracellular matrix that

underlies all epithelia and endothelial tissue, and surrounds muscle, fat, and Schwann cells

(Halfter et al., 2015; Yurchenco, 2011). BMs are built on polymeric laminin and type IV collagen

networks that arose at the time of animal multicellularity, and may have been required for the evolu-

tion of complex tissues (Hynes, 2012; Ozbek et al., 2010). Consistent with this idea, BMs provide

tissues with mechanical support, barrier functions, and cues for polarization, differentiation and

growth (Breitkreutz et al., 2013; Hay, 1981; Poschl et al., 2004; Rasmussen et al., 2012; Suh and

Miner, 2013; Yurchenco, 2011).

Although it was generally thought that cell-BM interactions are static, live imaging studies have

revealed that cell-BM interfaces are highly dynamic (Morrissey and Sherwood, 2015). One of the

most dramatic examples of this mobility is cell-BM sliding, during which epithelial cell layers and

their underlying BM sheets move (slide) along one another independently to regulate tissue remod-

eling or renewal. Examples of cell-BM sliding are varied and include egg chamber rotation in Dro-

sophila, where the follicle cells move along BM and deposit constricting strips of aligned type IV

collagen, which direct egg elongation along the anterior-posterior axis (Cetera and Horne-
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Badovinac, 2015; Haigo and Bilder, 2011). During salivary gland growth in vertebrates, the BM

slides away from the bud tip toward the duct, allowing bud expansion while restricting growth at the

duct (Harunaga et al., 2014). Further, BM labeling and pulse chase experiments revealed that intes-

tinal epithelial cells derived from the stem cell crypt slide along the BM towards the villus tips during

differentiation to rapidly renew the gut epithelium (Clevers, 2013; Trier et al., 1990). Cell-BM slid-

ing may be a common morphogenetic process that regulates organ shaping during development,

tissue homeostasis, and diseases such as cancer, where remodeling of cell-BM interfaces frequently

occur (Kelley et al., 2014; Rowe and Weiss, 2008). Because of the challenge of visualizing and

experimentally examining dynamic cell-BM interactions in vivo, however, mechanisms controlling

cell-BM sliding remain largely unknown.

An experimentally tractable model to examine cell-BM sliding during tissue remodeling is uter-

ine-vulval attachment in C. elegans (Schindler and Sherwood, 2013), a developmental process that

is necessary for effective mating and egg laying in the worm. During the mid-L3 larval stage, the

uterine-vulval connection is initiated by a specialized uterine cell, the anchor cell (AC), that breaches

the BM that separate these tissues and attaches to the underlying vulval cells. Following AC invasion,

the gap in the BM widens further, which allows additional connection between uterine and vulval

cells (Ihara et al., 2011). BM gap widening does not involve BM degradation. Instead, optical

highlighting of BM and manipulation of tissue dynamics has shown that growth and morphogenesis

of the uterine and vulval tissues generate forces on the BM that drive BM sliding over the vulval and

uterine cells to further expand the gap (Ihara et al., 2011). The vulval cells have a key role in control-

ling the extent of BM movement. The centrally located vulval E and F cells, which contact the BM

gap boundary, undergo precisely timed divisions to initiate BM sliding–cell rounding during divisions

dramatically reduces cell contact with the BM and allows the BM to slide over the vulE and F cells

(Matus et al., 2014). The BM stops sliding on the non-dividing vulD cell, which concentrates the BM

eLife digest All tissues in the human body are encased with a thin, dense, web of proteins

called the basement membrane. These membranes separate and help shape tissues, while

protecting them from mechanical damage such as stretching. However, despite serving as important

barriers, basement membranes must be rapidly removed at specific times and places to allow tissues

to grow and change shape. This process also permits cells to enter and leave tissues, such as

immune cells when they search for disease-producing agents. This creates a paradox: how does a

tissue create a tough, impassable barrier that can also be rapidly removed at specific times and

places?

Recent research has shown that basement membranes can slide over a tissue, and thus rapidly

move the barriers to create openings for tissue growth and reshaping. However, it was not known

how the cells within tissues that are normally firmly attached to basement membrane control when

and where basement membrane can slide.

Now, McClatchey, Wang et al. have carefully observed the tissues and basement membranes in a

small worm called Caenorhabditis elegans under a microscope. This revealed that a single cell,

called the anchor cell, relays a signal that instructs a group of neighboring cells to let go of the

basement membrane at a specific time to allow tissue reshaping. Further experiments revealed that

this signal causes cells to reduce the amount of a protein named dystroglycan at their surface.

Dystroglycan is present in most tissues and helps stick the cells of tissues to basement

membranes. The loss of dystroglycan was previously reported to promote the spread of cancer,

although its role in cancer progression was not clear. The findings of McClatchey, Wang et al. now

suggest that tumors that lose dystroglycan might allow the basement membranes surrounding them

to slide, creating openings that allow the cancers to spread.

Finally, McClatchey, Wang et al. also found that a protein named CTG-1, one of a family of

proteins thought to regulate the movement of proteins within cells, restricts the levels of

dystroglycan at cell surface. As such, the next challenge will be to understand exactly how CTG-1

limits the amount of dystroglycan at the cell surface.

DOI: 10.7554/eLife.17218.002
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adhesion receptor INA-1/PAT-3 (integrin) to stabilize the BM gap boundary (Ihara et al., 2011;

Matus et al., 2014). While vulval cell divisions control BM sliding on the vulval side of the uterine-

vulval connection, the role of the uterine p cells, which flank the AC, and sit on the opposing side of

the BM gap boundary, remain unclear.

Many receptors bind BM components and are possible regulators of BM sliding. Two of the most

prominent classes of adhesion receptors that link BM to the cytoskeleton are integrin family mem-

bers and the receptor dystroglycan (Bello et al., 2015; Kramer, 2005; Yurchenco, 2011). Most

studies have focused on how these receptors are activated or upregulated to strengthen adhesion;

however there is a growing appreciation of the importance of integrin and dystroglycan downregula-

tion in morphogenetic, homeostatic, and disease processes (Agrawal et al., 2006; Bouvard et al.,

2013; Miller et al., 2015; Nakaya et al., 2013). Cells utilize a variety of mechanisms to reduce BM

receptor adhesion. These include transcriptional downregulation, production of negative regulators

that interfere with receptor activation, alterations in phosphorylation status, and changes in localiza-

tion and trafficking (Bouvard et al., 2013; Nakaya et al., 2013; Poulton and Deng, 2006). Whether

these strategies are used to modulate adhesion to control BM sliding is unknown.

To address how the uterine BM gap boundary cells control BM sliding during uterine-vulval

attachment in C. elegans, we carried out a mutagenesis screen. Through this screen we identified a

putative null mutant in the gene encoding the LIN-29 protein, which is a Kruppel-family EGR (early

growth response) protein (Harris and Horvitz, 2011), that is deficient in BM sliding. We show that

LIN-29 is expressed and functions in the invading AC to promote BM sliding. We further find that

LIN-29 regulates BM sliding through its role in maintaining AC expression of LAG-2, a transmem-

brane Notch ligand, which activates Notch signaling in the neighboring BM gap boundary cells, the

uterine p cells that sit on BM next to the nascent breach. Through a targeted uterine-specific RNAi

screen of putative direct Notch targets, we find that Notch activation in these uterine cells upregu-

lates ctg-1 expression, which encodes a Sec14-GOLD domain phosphatidylinositol transfer protein

that belongs to a class of proteins implicated in regulating vesicle trafficking (Grabon et al., 2015).

Finally, using photobleaching, CRISPR/Cas-9 targeted knockout, and cell-specific rescue experi-

ments, we demonstrate that CTG-1 functions in the uterine p cells to limit the cell surface trafficking

of DGN-1 (dystroglycan), and that reduction of DGN-1 is sufficient to promote BM sliding. Together

these studies identify a new morphogenetic pathway—from signaling mechanism to effector—that

promotes BM sliding, which can be used by invasive cells to enlarge BM openings and allow the

direct interaction of cells between tissues.

Results

Summary of AC invasion and BM gap expansion
During larval development, the uterine and vulval tissues in C. elegans are initially separated by the

juxtaposed gonadal and ventral BMs. A specialized uterine cell, the AC, breaches these BMs during

the mid-L3 larval stage to initiate uterine-vulval connection (Sherwood and Sternberg, 2003). AC

invasion and BM remodeling occur in tight coordination with vulval development and can be staged

according to the centrally located 1˚ fated P6.p vulval precursor cell (VPC) divisions. During invasion

(P6.p 2 and 4-cell stages) the gonadal and ventral BMs are breached and fuse at the edges of the

invading AC (Figure 1A, Ihara et al., 2011). Following AC invasion, the vulval cells grow, invaginate,

and divide (Ihara et al., 2011). The rapid expansion and invagination of the vulval cells generate

forces on the BM that promote expansion of the nascent BM opening through BM sliding over the

vulval and uterine cells that sit at the boundary of the BM gap. Expansion of the BM gap allows

direct contact between the cells that mediate uterine-vulval attachment (Ihara et al., 2011). Precisely

timed divisions of the BM gap boundary vulval P6.p descendants (the vulE and vulF cells) during the

late L3 stage reduce BM adhesion, allowing the BM to slide over these dividing vulval cells

(Matus et al., 2014). The BM gap halts its expansion over the non-dividing vulD cells during the

early L4 stage (P6.p 8-cell stage); the vulD cells further stabilize the BM gap boundary by upregulat-

ing the integrin heterodimer INA-1/PAT-3 and the adhesion regulator VAB-19 (the worm ortholog of

Kank) (see Figure 1A, Ihara et al., 2011; Matus et al., 2014). The ventral uterine (VU) cells neigh-

boring the AC are also initially in contact with the BM. During the time of AC invasion, the adjacent

six VU cells are specified to adopt a p fate through LAG-2/LIN-12 (Notch) signaling by the AC.
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Figure 1. BM sliding during uterine-vulval connection and isolation of lin-29(qy1). (A) Top left: During the mid-L3 larval stage (vulval P6.p 2-cell stage),

the uterine anchor cell (AC) breaches the juxtaposed gonadal and ventral BMs (green) and contacts the central 1˚ fated vulval precursor cells (VPCs; P6.

px cells, red). Middle: After AC invasion is completed at the late L3 (P6.p 4-cell stage), VPC growth, divisions, and invagination drive BM sliding, which

widens the BM gap. Ventral uterine (VU) p cells (blue) also begin to divide at the late L3. Right: By the early-to-mid L4 (P6.p 8-cell stage), the BM stops

sliding and is stabilized over the non-dividing 2˚ fated vulD cells (dotted line) by vulD expression of cytoplasmic VAB-19 (Kank) and cell surface integrin.

BM sliding allows direct connection between vulE and F cells with uterine p cells, which form the mature uterine-vulval connection. The regulation of

BM sliding by the uterine p cells is unknown (represented with ’?’). (B) A schematic diagram of the lin-29 gene. Allele qy1 (red) creates an early stop

codon affecting all three transcripts. Allele ga94 (blue) affects the lin-29a/b transcripts but leaves the translation of lin-29c largely unaffected, while n546

(green) introduces a nonsense mutation affecting all three encoded isoforms of the LIN-29 protein. (C) A lateral, central plane (with the AC in focus) DIC

image (top) with BM (laminin::GFP) and AC (cdh-3 > mCherry::PLCdPH) fluorescence (middle) and ventral view of laminin::GFP (bottom) showing the

circular opening of the BM at the uterine-vulval connection at the P6.p 8-cell stage. In lin-29(qy1) mutants the BM gap (top, white brackets=diameter;

middle, arrowheads=edges of gap; bottom, white dashed lines=outline of circular BM gap) failed to widen after AC invasion. Scale Bar, 5 mm. (D)

Quantification of the BM gap diameter at the P6.p 8-cell stage in wild type (n = 66) and lin-29(qy1) mutants (n = 65). Box signifies first and third

quartiles and median measurement; whisker ends signify minimum and maximum values that fall within 1.5 times the interquartile range. The asterisks

denote a statistically significant difference (*** indicates p<0.001 Wilcoxon rank sum test).

DOI: 10.7554/eLife.17218.003

Figure 1 continued on next page
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During BM sliding the uterine p cells undergo one round of division (Newman, 1995). The role of

the p cells, the uterine BM gap boundary cells, in regulating BM sliding is unknown.

The Kruppel-family early growth response (EGR) gene lin-29 promotes
BM sliding
To identify genes that regulate the morphogenetic process of BM sliding, we performed an F2 for-

ward mutagenesis genetic screen (Jorgensen and Mango, 2002; see Experimental Procedures). We

screened the F2 progeny of 12,000 mutagenized F1 animals and selected fertile mutants with a pro-

truding vulva (Pvl) phenotype, which often results from defects in uterine-vulval connection. Isolated

Pvl mutants were then examined at high magnification (1000x) using differential interference contrast

(DIC) microscopy at the early L4 stage when BM position can be visualized as a phase dense line

separating the uterine and vulval tissue. Through this screen we identified 10 mutants with defects in

BM remodeling during uterine-vulval attachment (see Materials and methods). We focused on the

mutant qy1, which had a highly penetrant defect in the BM gap expansion after the AC invasion (see

below).

To determine the molecular nature of the qy1 mutation, we used a single-nucleotide-polymor-

phism (SNP) based mapping strategy and complementation analysis (see Experimental Procedures;

Davis et al., 2005). Using this strategy, we mapped the causative mutation of the qy1 allele to lin-

29, which encodes a Kruppel-family EGR zinc-finger protein transcription factor (Harris and Horvitz,

2011; Rougvie and Ambros, 1995). We sequenced the qy1 allele and found that it introduces a

nonsense mutation near the start of the region encoding the DNA binding domain in all three known

isoforms of the gene (Figure 1B). As this disrupts translation prior to the previously characterized

null allele lin-29(n546) (Rougvie and Ambros, 1995), it suggests that qy1 is a null allele of the lin-29

gene.

To better visualize and precisely quantify the BM gap defect after the loss of lin-29, we crossed

integrated transgenes expressing a functional fusion of the main structural BM component laminin

to GFP (laminin::GFP) and an AC membrane marker (cdh-3 > mCherry::PLCdPH) into lin-29(qy1)

mutant animals (Figure 1C,D). Laminin::GFP shows the same localization as immunolocalized laminin

(Sherwood and Sternberg, 2003). To quantify the BM gap defect, we measured the diameter of

the BM gap at the early L4 (P6.p 8-cell stage) in the plane where the AC is in focus in wild type and

qy1 worms (Figure 1D). The gap in the BM was significantly reduced in qy1 mutant animals

(Figure 1C,D). Further, we found that that while in wild type animals, the BM moved away from

both the anterior and posterior sides of the AC in most animals (n = 13/20 animals; the remaining 7

moved on one side), in qy1 animals the BM never moved away from both sides of the AC (n = 0/20

animals) and only occasionally moved slightly away from one side (n = 5/20 animals).

We postulated that the defect in BM position in lin-29 mutant animals could result from the

absence of BM sliding or alternatively the inappropriate deposition of new BM after sliding. To dif-

ferentiate between these possibilities we directly examined BM sliding by performing optical

highlighting experiments using transgenic animals expressing laminin tagged with the photoconver-

tible fluorophore Dendra (laminin::Dendra; Figure 2A, Ihara et al., 2011). Dendra is a stable, photo-

convertible fluorescent protein that irreversibly switches from green to red following exposure to

short wavelength light (Gurskaya et al., 2006). Segments of the BM adjacent to the invading AC

were photoconverted at the P6.p 4-cell stage and imaged at the P6.p 8-cell stage. While marked

edges of the BM gap moved away from the AC and rested over the vulD cell in wild type animals (n

= 10/10 animals), optically highlighted segments maintained contact with the AC in lin-29(qy1)

mutants and failed to move over the vulD cell (n = 18/18 animals; Figure 2A). These observations

indicate that the BM in lin-29 mutant animals fails to slide away from the AC and excludes additional

BM deposition as a mechanism for the defect. Notably, the morphology of the developing vulva—

including the number of VPCs and their relative positions (n = 15/15 animals, Figure 2B) and vulval

Figure 1 continued

The following source data is available for figure 1:

Source data 1. BM gap diameter in wild type vs. lin-29(qy1).

DOI: 10.7554/eLife.17218.004
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Figure 2. lin-29(qy1) mutants are defective in BM sliding but have a normal vulval precursor morphology. (A) Fluorescence overlays of optical

highlighting (photoconversion) of ~5 mm long laminin::Dendra segments (magenta in top; white in middle; white arrowheads highlighted regions next

to BM gap, yellow arrowheads highlighted regions farther from gap) in wild type (left) versus lin-29(qy1) mutant (right). The fate of optically highlighted

BM at the P6.p 4-cell stage (T=0’) was assessed at the P6.p 8-cell stage (T=240’). In wild type animals, optically highlighted laminin::Dendra at the

edges of the BM gap slid from a position over the vulF precursor cell to over the vulD cell (indicated with dashed outline; n = 10/10 animals). In

contrast, in lin-29(qy1) mutants the optically highlighted laminin did not move over the vulD cell (n = 18/18 animals). The arrow in the bottom panels

indicates the AC. (B) Vulval morphology in wild type (left) versus a qy1 mutant (right). The number (see text) and positions of vulF, vulE, and vulD

(outlined in CAAX::GFP) were normal in lin-29(qy1) animals (top panels: grayscale, bottom panels: green), while the BM (laminin::mCherry, middle

panels: grayscale and bottom panels: magenta) gap boundaries are narrower in the lin-29(qy1) mutant. (bracket). The arrow in the middle panel for the

wild type denotes a puncta of laminin internalized by the AC during invasion, and does not represent the edge of the BM gap (which is located above

vulD in wild type and is characterized by a build-up of laminin). All images lateral, central plane. Scale Bars, 5 um.

DOI: 10.7554/eLife.17218.005

Figure 2 continued on next page
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height and width (Figure 2—figure supplement 1)—was the same in lin-29(qy1) mutants compared

with wild type animals. Taken together, these results indicate that lin-29 mutants have a specific

defect in BM sliding that is independent of the role of the vulval cell divisions in controlling BM

movement (Matus et al., 2014).

The LIN-29 protein is expressed and functions in the AC to promote BM
sliding
To determine where LIN-29 functions to promote BM sliding, we first examined the expression pat-

tern of the lin-29 gene. We fused 5-kb of the 5’ cis-regulatory element of the lin-29 gene to GFP (lin-

29a/b > GFP; see Experimental Procedures). Using this reporter, we detected expression of lin-29 in

the AC throughout the course of uterine-vulval connection (Figure 3A), but did not detect expres-

sion in the other cells in contact with or bordering the BM boundary. This expression pattern is con-

sistent with published immunofluorescence studies showing that the LIN-29 protein is expressed at

high levels in the AC during this time (Bettinger et al., 1997). We also fused GFP to the 5-kb region

upstream of the lin-29c isoform, but did not see any expression in the uterine or vulval cells at the

time of uterine-vulval connection. These results suggest that the lin-29a/b isoforms might act in the

AC to promote BM sliding.

To further test the idea that that the lin-29a/b isoforms have a specific function in BM sliding, we

scored lin-29(ga94) mutants. The ga94 mutation creates an early stop codon in exon IV of the lin-29a

and lin-29b isoforms but removes only the first two amino acids of the shorter lin-29c isoform (see

Figure 1B). Previous studies have reported that lin-29(ga94) mutants display some, but not all of the

phenotypes associated with lin-29 null alleles (Bettinger et al., 1997). We measured BM gap expan-

sion and found that ga94 mutants had a similar defect in the BM gap opening to qy1 mutants

(Figure 3B). These results suggest that LIN-29A and/or LIN-29B—but not LIN-29C—promote BM

gap expansion. We next performed an AC-specific rescue of lin-29a expression in lin-29(qy1) mutant

animals using an AC-specific promoter (cdh-3 > lin-29a::GFP; [Kirouac and Sternberg, 2003]). We

found that LIN-29A::GFP protein expressed only in the AC completely rescued BM gap expansion

(Figure 3C,D). We conclude that LIN-29 functions within the AC to promote BM sliding.

LIN-29 does not promote AC de-adherence from the BM to allow BM
sliding
As the BM remained in contact with the AC in most lin-29 mutants, we hypothesized that LIN-29

might be required for AC de-adhesion from the BM. We used laser-directed ablation to specifically

kill the AC in qy1 mutants immediately after AC invasion and then assessed BM gap expansion. We

found that the BM gap still failed to open in the absence of the AC in lin-29 mutant animals (n = 8/8

animals, Figure 4A). Ablation of the AC at this stage in wild type animals does not prevent BM slid-

ing and gap expansion (Ihara et al., 2011). These results suggest that LIN-29 does not facilitate slid-

ing by causing the AC to de-adhere from the BM.

LIN-29/AC-mediated uterine p cell fate specification is required for BM
sliding
We next hypothesized that the role of LIN-29 in the AC might be to regulate BM sliding through

interactions with the neighboring uterine cells at the BM gap boundary. During the early L3 stage

(just prior to the time of AC invasion), LIN-29 is required in the AC to specify the p cell fate in the six

ventral uterine cell descendants that directly neighbor the AC (Newman et al., 2000; New-

man, 1995). LIN-29 maintains the expression of the transmembrane Notch ligand LAG-2 in the AC,

which activates LIN-12 in the neighboring ventral uterine cells and specifies the p cell fate

(Newman et al., 2000; Newman, 1995). We thus investigated whether the p cell fate might be

required for BM sliding.

Figure 2 continued

The following figure supplement is available for figure 2:

Figure supplement 1. Vulval morphology measurements in lin-29 mutants.

DOI: 10.7554/eLife.17218.006
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Figure 3. LIN-29 functions within the AC to promote BM gap expansion. (A) Expression of GFP from a lin-29a/b > GFP transcriptional reporter in the

AC throughout the course of BM gap expansion. (B) Quantification of the BM gap in wild type (n = 16) and lin-29(ga94) (n = 22) at the P6.p 8-cell stage.

(C) Quantification of the BM gap in lin-29(qy1) (n = 16) and AC specific rescue of LIN-29A (n = 15) at the P6.p 8-cell stage. (D) Laminin::GFP overlaid on

DIC in wild type, lin-29(qy1), and a lin-29 mutant with AC specific rescue of LIN-29A protein showing diameter of the BM gap (brackets). In B and C, **

indicates p<0.01, Wilcoxon rank sum test. All images lateral, central plane. Scale Bars, 5 um.

DOI: 10.7554/eLife.17218.007

The following source data is available for figure 3:

Source data 1. BM gap diameter in wild type vs. lin-29(ga94).

DOI: 10.7554/eLife.17218.008

Source data 2. BM gap diameter in lin-29(qy1) vs. lin-29(qy1); cdh-3 > lin-29a::GFP.

DOI: 10.7554/eLife.17218.009
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We perturbed p cell fate specification by knocking down lag-2 expression specifically in the uter-

ine cells. Uterine-specific RNAi was attained with uterine-specific expression of the Argonaute/PIWI

gene rde-1 in an rde-1 mutant background, which restores RNAi only in the uterine tissue

(Hagedorn et al., 2009). Uterine lag-2 knockdown recapitulated the BM sliding defect seen in lin-29

mutants (Figure 4B,C), suggesting that the LIN-29 protein acts in a LAG-2 dependent manner to

Figure 4. AC-mediated Notch signaling to the uterine p cells promotes BM sliding. (A) Fluorescence overlays of laminin::GFP on DIC images show that

the BM gap (brackets) failed to expand in lin-29(qy1) mutants after the AC was ablated (left, n = 8/8) or in mock ablated lin-29 mutants (middle, n = 8/

8). However, the BM gap opened wider on the side of the AC in lin-29 mutants (BM slid over the vulD cell, outlined with dashed line) after laser ablation

of the uterine p cells on that side (right, arrow, n = 5/8 animals; p<0.001, Fisher’s Exact Test). (B) Uterine-specific RNAi targeting the L4440 empty vector

control (left) and the AC-expressed Notch ligand lag-2 (right) revealed that lag-2 is required for BM sliding (BM visualized with laminin::GFP, green)

away from the AC (mCherry::PLCdPH, magenta). (C) Quantification of the BM gap size after treatment L4440 control (n = 62) and uterine-specific lag-2

RNAi (right, n = 68). (D) In sel-12(ty11) mutants, which perturbs LIN-12(Notch) signaling in the uterine p cells, the BM gap (laminin::GFP, right; visualized

at P6.p 8-cell stage, DIC left) failed to expand. (E) Quantification of the BM gap in sel-12(ty11) (n = 15) and wild type (n = 15). For C and E, *** indicates

p<0.001 Wilcoxon rank sum test. All images lateral, central plane. Scale Bars, 5 mm

DOI: 10.7554/eLife.17218.010

The following source data and figure supplement are available for figure 4:

Source data 1. BM gap diameter in L4440 vs. lag-2 RNAi.

DOI: 10.7554/eLife.17218.011

Source data 2. BM gap diameter in wild type vs. sel-12(ty11).

DOI: 10.7554/eLife.17218.012

Source data 3. BM gap diameter in lag-2 vs. lin-12 and glp-1 RNAi.

DOI: 10.7554/eLife.17218.013

Figure supplement 1. The AC signals through Notch receptor LIN-12 to promote BM sliding.

DOI: 10.7554/eLife.17218.014
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promote BM sliding. Notably, the reduction in BM gap opening after lag-2 RNAi was less than in lin-

29 mutants (Figure 4C versus Figure 3C), which was likely due to the incomplete loss of lag-2 by

RNAi. Consistent with LAG-2 acting through the LIN-12 (Notch) receptor, we also used RNAi target-

ing lin-12 and glp-1 (the only other encoded Notch receptor in the C. elegans

genome) (Greenwald, 2005) and found that loss of lin-12, but not glp-1, phenocopied lag-2 RNAi

(Figure 4—figure supplement 1). Finally, we assessed gap expansion in mutants that lacked the

ability to transduce Notch signaling in the p cells (sel-12(ty11)). SEL-12 is a C. elegans presenilin that

cleaves ligand bound LIN-12 (Notch) so that the intracellular domain is released to translocate to the

nucleus and activate target gene expression. No other C. elegans presenilins act in the prospective

p cells (Cinar et al., 2001), so loss of sel-12 specifically targets p cell specification and circumvents

other phenotypes associated with the absence of Notch signaling. Loss of sel-12 led to a similar

defect in BM gap expansion as lin-29 mutants (Figure 4D,E). These observations offer strong evi-

dence that LIN-29 in the AC regulates BM sliding by specifying ventral uterine descendents adjacent

to the BM gap boundary to adopt the p cell fate.

Ablation of the ventral uterine cells restores BM sliding in lin-29
mutants
We next hypothesized that LIN-29 mediated specification of the p cells was required for them to

reduce their adhesion from the BM. If this were the case, removal of the unspecified uterine bound-

ary cells should restore BM sliding in lin-29 mutants. To test this notion, we ablated the precursors

of the p cells (ventral uterine cells) on one side of the AC in lin-29(qy1) mutants. We found that this

treatment rescued the BM sliding defect on that side (n = 5/8 animals, Figure 4A). These results sup-

port the idea that p cell fate specification leads to reduced adhesion to the BM, which facilitates BM

sliding.

Uterine p cell divisions are not required to facilitate BM sliding
When the vulval cells vulE and vulF divide at the BM gap boundary, the cells round and briefly

reduce their attachment to the BM. This loss of attachment during division promotes BM movement

over vulE and vulF, which then stops at the non-dividing vulD cell (Matus et al., 2014). We thus

hypothesized that the uterine p cell divisions, which occur near the time of primary vulval cell divi-

sions (see Figure 1A and Figure 5A), might be coordinated with the vulE and vulF divisions to facili-

tate the sliding of the linked ventral and gonadal BMs.

During the time of BM gap expansion (P6.p 4-cell to 6-cell transition) each p cell divides once

along the dorsal-ventral axis (Figure 5A). To examine the precise timing of these p cell divisions in

relation to the vulval divisions, we used a membrane bound GFP that marks both the VPCs and the

uterine cells (CED-10::GFP; [Ziel et al., 2009]). While the p cells began dividing near the same time

as the vuE and vulF cells, we found little correlation between the timing of their divisions (n = 8/46 p

cells in 13 animals dividing coincidently with vulE on the other side of the BM, n = 16/54 p cells in 12

animals dividing coincidently with vulF on the other side of the BM, Figure 5B). These observations

suggest that coordination of p cell divisions with vulE and vulF divisions are not required for BM

sliding.

To directly determine if p cell divisions are required to expand the BM gap, we blocked their divi-

sion by expressing the cyclin dependent kinase inhibitor cki-1 driven with an early p cell specific pro-

moter (egl-13 > cki-1::GFP) in wild type animals (Figure 5C). egl-13 initiates expression at the time

of p cell birth when there are six p cells in the late L3 stage (Cinar et al., 2003). We found no differ-

ence in the BM gap size at the P6.p 8-cell stage between animals (Hanna-Rose and Han, 1999) in

which p cell divisions had been arrested compared to wild type controls (Figure 5D). We conclude

that p cell divisions are not required for these BM boundary cells to loosen their adhesion to the BM

to promote BM sliding.

p cells do not completely lose contact with the BM during BM sliding
We next examined the relationship of the BM to the p cells during BM sliding and stabilization.

Notably, on the vulval side of the developing uterine-vulval connection, the BM moves completely

over the dividing vulE and vulF cells and the edge of the BM gap stabilizes on the non-dividing vulD

cell (Matus et al., 2014). In contrast, we found that as the BM slid along the p cells to expand the
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gap, the edge of the BM gap stabilized on the p cells; BM maintained contact with a significant por-

tion the ventral p cells (n = 13/13 animals imaged during the BM gap expansion, Figure 6A–C).

These observations indicate that, in contrast to the vulval cells that lose attachment to the BM, the

uterine p cells remain in contact with and are possibly adherent to the BM as the BM slides.

Notch promotes BM sliding by upregulating ctg-1 (Sec14-GOLD
protein) in the p cells
Based on our observations, we hypothesized that LIN-29-mediated LIN-12/Notch activation in the p

cells may result in transcriptional changes in the p cells that reduce but do not eliminate cell-BM

adhesion. During LIN-12/Notch activation, the intracellular domain of LIN-12/Notch is cleaved and

enters the nucleus where it forms a complex with the DNA binding protein LAG-1 (the worm ortho-

log of CSL) that promotes expression of LIN-12/Notch target genes (Greenwald, 2012). Bioinfor-

matic studies have previously identified 163 putative direct targets of LIN-12/Notch that contain

clusters of LAG-1 binding sites (Yoo, 2004). We conducted an RNAi screen of 104 of the 163 pre-

sumptive Notch targets to assess BM gap opening. Worms were scored as having a small BM gap

diameter if the BM remained in contact with the AC or vulF cells at the P6.p 8-cell stage—a time

when the BM stabilizes over vulD in control animals. Through this screen, we found that RNAi-medi-

ated knock down of ctg-1, which encodes a Sec14-GOLD protein, a poorly understood group of the

Sec14 family of phospholipid transfer proteins (Mousley et al., 2007; Saito et al., 2007), led to a

similar BM sliding defect as knock down of the LIN-12/Notch ligand lag-2

(Supplementary file 1). Furthermore, we found that RNAi-mediated knock down of ctg-1 expression

in a uterine-specific RNAi strain also resulted in a BM sliding defect and smaller BM opening

Figure 5. p cell division does not regulate BM sliding. (A) A schematic diagram presenting the hypothesis that uterine p cell (blue) divisions (along the

dorsal-ventral axis) are coordinated with divisions of the underlying vulE and vulF cells (red, which divide along the left-right axis) such that the BM

(green) is released on both sides when dividing cells lose contact with the BM, allowing it to slide. (B) Fluorescence overlay showing a cell membrane

marker (CED-10::GFP, green) of dividing vulE (dashed outline) and adjacent uterine p cells (asterisk denotes a dividing cell and arrowhead a non-

dividing cell) with the BM (laminin::mCherry, magenta). (C) A lateral, central plane DIC image of wild type (left) with inset showing divided p cells

expressing EGL-13::GFP driven by the egl-13 promoter (egl-13 > egl-13::GFP) had a similar BM gap size (bracket) to an animal expressing CKI-1::GFP in

the p cells (right, egl-13 > cki-1::GFP), thus arresting their divisions. (D) Quantification of the BM gap in wild type (n = 15) and egl-13 > cki-1::GFP

transgenic animals (n = 13). Only animals in which the p cells failed to divide were included in the analysis. No significant difference was observed

(p>0.05, Wilcoxon rank sum test).

DOI: 10.7554/eLife.17218.015

The following source data is available for figure 5:

Source data 1. BM gap diameter in wild type vs. egl-13 > cki-1.

DOI: 10.7554/eLife.17218.016
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(Figure 7A). These results are consistent with the possibility that ctg-1 is a primary target of LIN-12/

Notch signaling in the p cells and mediates BM sliding.

The upstream regulatory region of ctg-1 has 19 LAG-1 binding sites (Figure 7—figure supple-

ment 1), which is why it is predicted to have direct transcriptional regulation by LIN-12/Notch signal-

ing. To determine if ctg-1 is upregulated in the p cells, we created a transcriptional reporter for ctg-

1 by replacing the majority of the coding region with GFP using CRISPR/Cas9 genome editing (Fig-

ure 7—figure supplement 1; ctg-1 > GFP; qy11 allele) (Dickinson et al., 2013). Strikingly, we found

ctg-1 > GFP was specifically upregulated in the p cells during the time of BM sliding in wild type ani-

mals (Figure 7B), but not lin-29 mutants (Figure 7B,C). Furthermore, as this GFP insertion created a

ctg-1 loss of function mutation, we examined BM sliding in qy11 worms and confirmed that genetic

loss of ctg-1 led to a reduction in BM sliding and gap opening (Figure 7D,E). To assess whether res-

toration of CTG-1 in the ventral uterine cells in a lin-29 mutant could restore BM sliding, we

expressed a full-length GFP translational fusion of ctg-1 under the control of a pan-uterine promoter

(fos-1 > ctg-1::GFP) in lin-29 mutant animals. CTG-1::GFP predominantly localized to the cytosol of

the uterine cells (Figure 7—figure supplement 2), consistent with reports of Sec14 family protein

localization in yeast, plant and mammalian cells (Schnabl et al., 2003; Shibata et al., 2001). Restora-

tion of uterine expression of CTG-1::GFP in lin-29 mutants rescued BM sliding and gap opening

(Figure 7F,G). Taken together, these results offer compelling evidence that ctg-1 is a direct and

Figure 6. The p cells remain in contact with the BM during and after BM sliding. (A) A schematic diagram showing image planes of lateral view (orange)

and ventral view (purple) of the p cells in relation to the BM. (B) In the early P6.p 6-cell stage, the p cells (visualized with GFP driven by the egl-13

promoter, green) lie almost completely over BM (magenta). (C) By the P6.p 8-cell stage, the BM slides open farther and the p cells loose BM contact in

the central region, but maintain contact on the lateral edges of the cell. Scale bars, 5 mm. In B and C, ventral perspective is a max intensity projection of

all z-slices with the BM gap edge and the edge of the BM highlighted in merge (white dashed line).

DOI: 10.7554/eLife.17218.017
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Figure 7. Notch signaling promotes BM sliding through upregulation of the Sec14 family phospholipid transfer

protein CTG-1. (A) Quantification of uterine-specific RNAi targeting ctg-1. Loss of ctg-1 led to a smaller BM gap at

the early L4 (L4440 control, n = 65; ctg-1 RNAi, n = 64). (B) DIC and fluorescence images showing lateral views in

the p cell nuclei plane (see Figure 5F) of animals harboring a genomic insertion of GFP at the ctg-1 locus (ctg-1 >

GFP). ctg-1 expression is upregulated in the p cells of wild type worms at the time of Notch mediated induction of

p cell fate, which coincides with BM sliding (n = >5 animals each stage, top). Expression of ctg-1 was not induced

when the p cell fate was disrupted in a lin-29 mutant (n = >5 animals each stage; bottom). Brackets in DIC images

denote the location of the p cells in wild type and non-specified ventral uterine boundary cells in lin-29(qy1)

animals. (C) Quantification of fluorescence intensity of the GFP from the ctg-1> GFP genomic locus shows reduced

expression in lin-29 mutants relative to wild type (n = 20 for each). Values in the plot are normalized to the wild

type mean. The asterisks signify a statistically significant difference. (D) A CRISPR-cas9 mediated deletion allele of

ctg-1(qy11) (lateral central plane; DIC, top; laminin::mCherry, bottom) has a smaller BM gap (bracket and

arrowheads) compared to a wild type animal. (E) Quantification of BM gap diameter in ctg-1(qy11) (n = 18) and

wild type (n = 16) animals. (F) Pan-uterine cell expression of CTG-1 (fos-1 > ctg-1::GFP) in a lin-29(qy1) mutant

increased BM gap size (brackets). Lateral central plane; DIC, Top; GFP expression, bottom. (G) Quantification of

BM gap diameter in lin29(qy1) (n = 21) and lin-29(qy1) rescued with fos-1 > ctg-1::GFP (n = 21). For A, C, E, and G,

the asterisks signify a statistically significant difference (** indicates p<0.01 and *** indicates p<0.001, Wilcoxon

rank sum test). Scale bars, 5 mm.

DOI: 10.7554/eLife.17218.018

Figure 7 continued on next page
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crucial transcriptional target of LIN-29-mediated LIN-12/Notch signaling in the p cells that promotes

BM sliding.

LIN-29/CTG-1 reduces dystroglycan localization and trafficking in the p

cells
Sec14 domain-containing genes are a eukaryotic-specific gene family. Six Sec14 family proteins are

encoded in the S. cerevisae genome and more than 20 exist in vertebrates (Bankaitis et al., 2010).

We found that at least 16 Sec14 family members are encoded in the C. elegans genome

(Supplementary file 2), with 12 encoding Sec14-GOLD proteins. Evidence suggests that Sec14 fam-

ily proteins act as site-specific catalysts of phosphatidylinositol 4-OH kinases that generate phospha-

tidylinositol-4-phosphate (PI(4)P) (Bankaitis et al., 2010; Huang et al., 2016; Schaaf et al., 2008).

Many Sec14 family proteins are thought to regulate vesicular trafficking, yet very little is known

about the precise cellular processes controlled by most of these proteins (Curwin et al., 2009;

Grabon et al., 2015; LeBlanc and McMaster, 2010). In S. cerevisiae Sec14 regulates trafficking

through the PI4-kinase Pik1. To determine whether CTG-1 might regulate BM sliding through a PI4-

kinase, we examined uterine-cell specific RNAi-mediated knockdown of the four PI4-kinases

encoded in the C. elegans genome. We also examined knockdown of the sole C. elegans PI5-kinase,

ppk-1, which uses PI(4)P to generate PI(4,5)P2 (Weinkove et al., 2008). In support of a similar role

for CTG-1 as Sec14, we found that reduction of pifk-1(ortholog of Pik1 and vertebrate PI4KIIIb), but

not other PI4-kinases or ppk-1, decreased BM sliding and gap expansion (Figure 7—figure supple-

ment 3). As Sec14 and Pik1/ PI4KIIIb are implicated as regulators of vesicle trafficking

(Clayton et al., 2013; Sciorra et al., 2005), we hypothesized that ctg-1 might be upregulated in the

p cells to alter the trafficking and localization of BM adhesion receptor proteins to promote BM

sliding.

One of the major BM adhesion receptors in C. elegans is integrin. All integrins are heterodimers

composed of a single a and b subunit. C. elegans have two heterodimers, composed of aPAT-2 or

aINA-1 subunit bound to the sole b subunit, PAT-3 (Kramer, 2005). Only the INA-1/PAT-3 hetero-

dimer is expressed in uterine and vulval tissue at the time of uterine-vulval attachment. INA-1/PAT-3

integrin is necessary for the stabilization of the BM over vulD and its loss results in the Pvl phenotype

(Hagedorn et al., 2009; Ihara et al., 2011). We did not, however, find any changes in the expres-

sion or localization of the functional integrin reporter PAT-3::GFP (Hagedorn et al., 2009) in the lin-

29(qy1) mutant background, which lacks ctg-1 expression, compared to wild type (Figure 8—figure

supplement 1). Additionally, fluorescence recovery after photobleaching (FRAP) experiments indi-

cated that PAT-3::GFP was trafficked to the cell-BM interface normally at the time of BM sliding

(between P6.p 4-cell and 8-cell stages) in lin-29 mutants (Figure 8—figure supplement 1). Finally,

RNAi-mediated targeting of ina-1 in the uterine-specific RNAi background did not rescue BM sliding

Figure 7 continued

The following source data and figure supplements are available for figure 7:

Source data 1. BM gap diameter in L4440 vs. ctg-1 RNAi.

DOI: 10.7554/eLife.17218.019

Source data 2. Fluorescence intensity of GFP from ctg-1 > GFP in wild type vs. lin-29(qy1).

DOI: 10.7554/eLife.17218.020

Source data 3. BM gap diameter in wild type vs. ctg-1(qy11).

DOI: 10.7554/eLife.17218.021

Source data 4. BM gap diameter in lin-29(qy1) vs. lin-29(qy1); fos-1 > ctg-1::GFP.

DOI: 10.7554/eLife.17218.022

Source data 5. BM gap diameter in L4440 vs. pifk-1, C56A3.8, ZC8.6, Y75B8A.24, and ppk-1 RNAi.

DOI: 10.7554/eLife.17218.023

Figure supplement 1. LAG-1 binding sites in the ctg-1 promoter and ctg-1(qy11) schematics.

DOI: 10.7554/eLife.17218.024

Figure supplement 2. CTG-1::GFP expression.

DOI: 10.7554/eLife.17218.025

Figure supplement 3. PI4-kinase PIFK-1 is required for BM sliding.

DOI: 10.7554/eLife.17218.026
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in lin-29 mutants (BM gap diameter 8.13 ± 0.16 mm (L4440 empty vector control, n = 48), 8.30 ±

0.25 mm [ina-1 RNAi, n = 48]). These experiments strongly suggest that CTG-1 does not regulate

INA-1/PAT-3 localization in the p cells to promote BM sliding.

We next examined the expression and localization of DGN-1, the sole C. elegans ortholog of the

BM receptor dystroglycan. DGN-1 is expressed in the uterine tissue and, like integrin, its loss results

in a Pvl phenotype, indicating potential functions in uterine-vulval attachment (Johnson et al.,

2006). We detected a significant increase in the localization of DGN-1 at the cell-BM interface in the

p cells of lin-29 mutants compared to wild type animals (Figure 8A,B). This difference was not a

result of increased expression, as the transcriptional reporter for dgn-1 was similarly expressed in lin-

29 mutants and wild type (Figure 8C). In addition, the localization of DGN-1 in regions beyond the

edges of the BM gap (over the vulD cell) were similar in lin-29 and wild type, indicating that the

alteration in DGN-1 localization was specific to the region of BM sliding near the AC (Figure 8—fig-

ure supplement 2). FRAP experiments indicated that DGN-1 recovered more quickly after photo-

bleaching in lin-29 mutants versus wild type animals, which may account for the increased DGN-1::

GFP localization (Figure 8F,G). Faster recovery of DGN-1 at the cell-BM interface in lin-29 mutants

could indicate more rapid cell surface trafficking, slower endocytosis/removal, or faster lateral

plasma membrane mobility. Notably, the number of DGN-1 containing Rab-7 marked late endosome

vesicles in lin-29 mutants and wild type animals was similar, suggesting that CTG-1 might not direct

rapid removal of DGN-1 from the cell surface into the endosomal system (Figure 8—figure supple-

ment 3). There was, however, a reduction of F-actin at the basal surface in the p cells in lin-29

mutants (Figure 8—figure supplement 4). As F-actin is thought to act as a barrier to exocytosis (Eit-

zen, 2003), these observations support the idea of increased DGN-1 delivery to the cell surface.

Given the association of the GOLD domain, Sec14 proteins, and PI4-kinase regulation with vesicle

trafficking, (Anantharaman and Aravind, 2002; Clayton et al., 2013; Mousley et al., 2007), CTG-1

may direct a specific trafficking pathway that restricts the delivery of DGN-1 to the cell-BM interface.

Importantly, these observations do not rule out the possibility that CTG-1 enhances endocytic

removal from the cell surface at levels that we were unable to detect or that it regulates the mem-

brane mobility of DGN-1 to limit DGN-1 at the cell-BM interface.

We next determined if the increase of DGN-1 at the cell-BM interface in the lin-29 mutant could

be responsible for stronger adhesion of the uterine cells to the BM, causing BM sliding to fail. Con-

sistent with this idea, reduction of dgn-1 expression via uterine specific RNAi in the lin-29(qy1)

mutant restored BM sliding and gap expansion (Figure 8D,E). Taken together, these results suggest

that LIN-29 activity in the AC leads to LAG-2/LIN-12 (Notch)-mediated upregulation of ctg-1 expres-

sion in the uterine p cells that restricts the cell surface trafficking and accumulation of the BM recep-

tor DGN-1, which facilitates BM sliding during uterine-vulval attachment.

Discussion
The shifting of cell-BM interfaces is crucial in many diverse morphogenetic events, including intesti-

nal epithelial renewal, branching morphogenesis, and BM deposition (Clevers, 2013; Glentis et al.,

2014; Morrissey and Sherwood, 2015). How BM sliding is controlled, however, remains poorly

understood. We show here that the AC in C. elegans further widens a breach it creates in BM during

uterine-vulval attachment by promoting BM sliding in neighboring uterine cells. LIN-29 maintains the

expression of the Notch ligand LAG-2 in the AC, which leads to the activation of Notch signaling

and induction of uterine p cell fate in the neighboring cells that sit over the nascent BM gap bound-

ary. Notch activation in turn leads to upregulation of the Sec14 family phospholipid transfer protein

CTG-1 in these BM gap boundary cells, which restricts trafficking of the receptor DGN-1 (dystrogly-

can) to the cell-BM interace. Our data suggest that the proper regulation of DGN-1 trafficking mod-

ulates cell-BM adhesion and allows the BM slide, which further widens the BM breach. This work

reveals a new morphogenetic signaling pathway that promotes cell-BM sliding (See Summary

Figure 9).

During cell-BM sliding, the cells, the BM, or both shift position in relationship to each other. Dur-

ing uterine-vulval attachment in C. elegans, the linked ventral and gonadal BMs slide over vulval and

uterine cells to expand the BM gap, and the vulval cells also appear to move (through migration and

invagination) inside the gap to form direct contacts with uterine cells (Ihara et al., 2011;

Schindler and Sherwood, 2013). It has previously been shown that vulval cell divisions at the BM
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Figure 8. LIN-29/CTG-1 restricts dystroglycan (DGN-1) levels and trafficking at the p cell-BM interface. (A) A functional translational fusion of the BM-

receptor DGN-1 (DGN-1::GFP, top) reveals that more DGN-1 localizes on the surface of the ventral uterine cells (blue dashed outlines) at the edges of

the BM gap in a lin-29 mutant compared to a wild type animal. Enlargement of boxes in top images (bottom) shows regions (red bars) where DGN-1

levels were measured in (B). (B) Quantification of the fluorescence intensity of a functional DGN-1::GFP translational reporter (dgn-1 > dgn-1::GFP) at

the BM gap boundary in the p cells in wild type and lin-29(qy1) animals (n = 22 for each). Values in plot are normalized to the wild type mean (**

indicates p<0.01, Wilcoxon rank sum test). (C) Quantification of the fluorescence intensity of a dgn-1 transcriptional reporter in wild type and lin-29(qy1)

animals (n = 21 for each) revealed no significant difference in expression levels (p>0.05 Wilcoxon rank sum test). Values in plot are normalized to the

wild type mean. (D) Uterine-specific dgn-1 RNAi rescued the BM gap (brackets) defect in a lin-29(qy1) background expressing BM and AC reporters

(laminin::GFP and cdh-3 > mCherry::PLCdPH). (E) BM gap diameters in uterine-specific RNAi knockdown of dgn-1 (n = 50) and L4440 control (n = 63) in

the lin-29 mutant background (*** indicates p<0.001, Wilcoxon rank sum test). (F) Fluorescence recovery after photobleaching (FRAP) of a 1.0-mm

Figure 8 continued on next page
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gap boundary controls BM sliding (Matus et al., 2014). During vulval invagination and growth, the

centrally located vulE and F cells divide and reduce their contact with the BM during cell rounding,

allowing the BM to slide over these cells. The BM ultimately ceases sliding and the BM gap boundary

stabilizes on the non-dividing vulD cell. Blocking the divisions of vulE and F halts BM sliding prema-

turely resulting in a narrower BM gap, while inducing vulD divisions causes the BM to slide further

and enlarges the opening (Matus et al., 2014). Here we have found that uterine cells at the BM gap

boundary regulate BM movement through a distinct mechanism independent of cell division. Uterine

p cell divisions are not coordinated with vulval cell divisions during BM movement. Further, blocking

uterine p cell divisions did not halt BM sliding. Instead, through a forward genetic screen, site of

action, and expression studies, our data indicate that the invading AC directs a morphogenetic sig-

naling program that promotes BM sliding in neighboring uterine cells: (1) the AC expresses the tran-

scription factor LIN-29, (2) LIN-29 activates Notch signaling and induction of the p cell fate in

neighboring uterine cells (Newman et al., 2000), (3) as a part of p cell fate induction, Notch activa-

tion upregulates ctg-1, which restricts trafficking of the BM adhesion receptor DGN-1 (dystroglycan)

to the cell-BM interface and allows BM sliding. Together, these observations suggest that after AC

invasion, the uterine p cells loosen BM adhesion, allowing the BM to slide along the p cells to a pre-

cise site determined by the dividing vulE and F cells and non-dividing vulD. This model is supported

by the observed flexibility of BM boundary position, which can be adjusted by manipulating vulval

cell divisions. The distinct, but temporally coordinated, mechanisms controlling BM movement in the

uterine and vulval cells precisely position the BM gap boundary to ensure robust uterine-vulval

attachment.

Figure 8 continued

region of DGN-1::GFP along the basal surface of the uterine p cells during the late the early P6.p 6-cell stage (time of BM sliding) in wild type and lin-29

(qy1) mutant animals. DGN-1::GFP recovers more quickly in the lin-29 mutant. (G) Graph reports DGN-1::GFP recovery in wild type and lin-29(qy1)

mutants (n = 9 animals for each). Error bars represent standard deviation and the asterisks signify a statistically significant difference at comparable time

points (p<0.05 Student’s t-test). T1/2 denotes time to recovery of 50% of initial fluorescence signal. All images lateral, central plane. Scale bars, 5 mm.

DOI: 10.7554/eLife.17218.027

The following source data and figure supplements are available for figure 8:

Source data 1. Fluorescence intensity of DGN-1::GFP in wild type vs. lin-29(qy1).

DOI: 10.7554/eLife.17218.028

Source data 2. Fluorescence intensity of GFP from a dgn-1 > GFP transcriptional reporter in wild type vs. lin-29(qy1) animals.

DOI: 10.7554/eLife.17218.029

Source data 3. BM gap diameter in L4440 vs. dgn-1 RNAi in lin-29(qy1) background.

DOI: 10.7554/eLife.17218.030

Source data 4. Fluorescence intensity recovered over time in DGN-1::GFP FRAP.

DOI: 10.7554/eLife.17218.031

Source data 5. Fluorescence quantifications for pat-3 transcriptional and translational markers.

DOI: 10.7554/eLife.17218.032

Source data 6. Fluorescence intensity recovered over time in PAT-3::GFP FRAP.

DOI: 10.7554/eLife.17218.033

Source data 7. Fluorescence intensity of DGN-1::GFP in wild type vs. lin-29(qy1) over vulD (past region of BM sliding).

DOI: 10.7554/eLife.17218.034

Source data 8. RAB-7 and DGN-1 co-localization in wild type vs. lin-29(qy1).

DOI: 10.7554/eLife.17218.035

Source data 9. Fluorescence intensity of moesinABD::mCherry in wild type vs. lin-29(qy1).

DOI: 10.7554/eLife.17218.036

Figure supplement 1. Integrin expression and localization are unaffected by LIN-29/CTG-1.

DOI: 10.7554/eLife.17218.037

Figure supplement 2. Loss of LIN-29/CTG-1 does not affect dystroglycan (DGN-1) localization in regions beyond the BM gap interface.

DOI: 10.7554/eLife.17218.038

Figure supplement 3. Loss of LIN-29/CTG-1 does not affect DGN-1 localization to late endosomes.

DOI: 10.7554/eLife.17218.039

Figure supplement 4. F-actin is reduced at the cell-BM interface with loss of LIN-29/CTG-1.

DOI: 10.7554/eLife.17218.040

McClatchey et al. eLife 2016;5:e17218. DOI: 10.7554/eLife.17218 17 of 27

Research article Cell Biology

http://dx.doi.org/10.7554/eLife.17218.027
http://dx.doi.org/10.7554/eLife.17218.028
http://dx.doi.org/10.7554/eLife.17218.029
http://dx.doi.org/10.7554/eLife.17218.030
http://dx.doi.org/10.7554/eLife.17218.031
http://dx.doi.org/10.7554/eLife.17218.032
http://dx.doi.org/10.7554/eLife.17218.033
http://dx.doi.org/10.7554/eLife.17218.034
http://dx.doi.org/10.7554/eLife.17218.035
http://dx.doi.org/10.7554/eLife.17218.036
http://dx.doi.org/10.7554/eLife.17218.037
http://dx.doi.org/10.7554/eLife.17218.038
http://dx.doi.org/10.7554/eLife.17218.039
http://dx.doi.org/10.7554/eLife.17218.040
http://dx.doi.org/10.7554/eLife.17218


Very few examples of gene regulatory networks guiding morphogenetic cellular behaviors leading

to cell fate specification are known (Christiaen et al., 2008). Using a focused RNAi screen we found

that ctg-1, which encodes a Sec14 family phosphatidylinositol-transfer protein (PITP) (Tripathi et al.,

2014), is a crucial target of Notch signaling during p cell fate specification that promotes BM sliding.

Consistent with ctg-1 being a direct transcriptional target of Notch, the ctg-1 upstream regulatory

region contains 19 predicted binding sites for the Notch transcriptional activator LAG-1 (Suppressor

Figure 9. Summary of uterine boundary cell regulation of BM sliding. (A) A schematic diagram of the mid L3 stage

in wild type (left). The Kruppel-family EGR protein LIN-29 acts in the AC to maintain LAG-2 (Notch ligand)

expression, which induces the p cell fate in the six VU cells that contact the AC. This specification event fails to

occur in lin-29 mutants (right). (B) During the late L3 stage after AC invasion, invagination, growth, and division of

the vulval cells generates forces that promote BM sliding in wild type animals (left). Within the p cells (inset), LAG-2

binding of LIN-12(Notch) activates transcriptional upregulation of ctg-1, which encodes a Sec14-GOLD

phospholipid transfer protein. CTG-1 restricts BM receptor DGN-1 (dystroglycan) trafficking to the cell-BM

interface of the p cells, thus decreasing their adhesion to the BM and allowing BM sliding. In lin-29 mutants (right)

ctg-1 expression is not upregulated in the unspecified ventral uterine descendant cells, and more DGN-1 is

trafficked to the cell-BM interface, maintaining cell adhesion to the BM and preventing sliding. (C) At the early-to-

mid L4, the BM gap edges have slid (arrowheads) and stabilize over the vulval D cells and at the edges of uterine

p cells in wild type animals (left). In contrast, the BM does not slide in lin-29 mutants and maintains its position

adjacent to the AC (right).

DOI: 10.7554/eLife.17218.041
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of Hairless) (Yoo, 2004). Furthermore, ctg-1 expression is upregulated in the p cells at the time of

activated LIN-12 (Notch) signaling, and its expression is dependent on LIN-29-directed Notch signal-

ing. In addition, uterine-cell specific RNAi and genetic loss of ctg-1 reduced BM sliding, which phe-

nocopies loss of Notch signaling in these cells. Sec14 family PITPs are unlikely to be true carriers of

phospholipids. Instead, studies suggest that Sec14 family PITPs function as scaffolds or nanoreactors

that present phosphatidylinositol to phosphatidylinositol-4 kinase (PI4K) to regulate specific protein

and membrane trafficking pathways in the trans-Golgi and endosomal recycling system

(Cockcroft and Garner, 2011; Curwin, 2013; Curwin et al., 2009; Mousley et al., 2008;

Schaaf et al., 2008; Tripathi et al., 2014). Consistent with this notion, our work also indicates that

the C. elegans PI4K, pifk-1, is required in the uterine cells to promote BM sliding.

The Sec14 family has expanded significantly in multicellular eukaryotes. Whereas yeast have six

Sec14 family members, we found C. elegans has at least 16 and vertebrates have at least 20

(Bankaitis et al., 2010). Little, however, is known about the cellular process controlled by many

these proteins (Grabon et al., 2015). Our work suggests that CTG-1 regulates the trafficking of

DGN-1(dystroglycan) to the cell surface and promotes de-adhesion from BM to control BM sliding.

Notably, localization and photobleaching studies indicate that the integrin heterodimer INA-1/PAT-

3, another key BM receptor, was unaffected by loss of ctg-1, suggesting that CTG-1 function is

highly specific. Loss of LIN-29-mediated Notch signaling (and thus ctg-1 expression in the uterine

cells) led to an increase of DGN-1 on the surface of uterine cells, but did not alter dgn-1 gene

expression. Photobleaching experiments in wild type and lin-29 mutants (lack upregulation of ctg-1)

indicated that ctg-1 expression in the p cells restricts the rate of DGN-1 trafficking to the cell-BM

interface. Interestingly, in CTG-1 the Sec14 domain is paired with a GOLD (Golgi Dynamics) domain,

which, though its function has yet to be completely characterized, may regulate the selection of pro-

teins being trafficked from the Golgi, thus affecting their secretion to the plasma membrane or rout-

ing to the endosome-lysosomal system (Anantharaman and Aravind, 2002; Schimmoller et al.,

1995). These results suggest that CTG-1 might reduce cell-BM adhesion by regulating a vesicular

pathway with specificity for DGN-1, possibly slowing DGN-1 delivery to the cell surface or directing

it to the endosome-lysosome system. The function of Sec14-GOLD proteins is poorly understood,

and CTG-1 does not show strong localization to any specific domain in the uterine p cells. Thus, we

cannot rule out possible functions for CTG-1 in mediating increased removal of DGN-1 from the cell

surface or slowing lateral plasma membrane trafficking to restrict DGN-1 at the cell-BM interface.

While the specific mechanism by which CTG-1 restricts DGN-1 trafficking remains unclear, we found

that reduction of DGN-1 restored BM sliding in the absence of ctg-1, strongly supporting the func-

tional significance of reduced localization and trafficking of DGN-1.

The two most prominent BM receptors that transduce signals and link the cells’ cytoskeleton to

the BM are integrin heterodimers and dystroglycan (Bello et al., 2015; Yurchenco, 2011). Unlike

mammals, which construct 24 known ab integrin heterodimers, C. elegans make only two, and only

one of these, aINA-1/bPAT-3, is expressed with DGN-1 (dystroglycan) in the uterine p cells

(Hagedorn et al., 2009; Ihara et al., 2011). Integrin and dystroglycan are co-expressed widely, and

likely have many distinct roles, such as having opposing effects on extracellular-regulated kinase

(ERK) activation (Ferletta et al., 2003). However, how these proteins interact and coordinate func-

tions in regulating cell-BM communication and adhesion has been challenging to elucidate as a

result of tissue complexity and the large family of integrin heterodimers in vertebrates (Bello et al.,

2015; Nakaya et al., 2013). Interestingly, our data suggest that INA-1/PAT-3 is not downregulated

to promote BM sliding in the uterine p cells. Further, unlike loss of dgn-1, uterine-specific loss of ina-

1 did not rescue BM sliding in the lin-29 mutant background. Our results indicate that DGN-1 is the

primary BM adhesion receptor that controls cell-BM sliding in the uterine p cells, while integrin

appears to have a function(s) independent of BM sliding in these cells. These results suggest that dif-

ferent BM receptors may allow cells to have diverse and concurrent signaling and adhesive interac-

tions with BM.

While dystroglycan has been most extensively studied in its association with the dystrophin com-

plex and muscular dystrophies, it is broadly expressed and implicated in regulating many cellular

processes, including BM assembly, cell migration, axon outgrowth, retinal layering, and Schwann cell

wrapping (Bello et al., 2015; Moore and Winder, 2010). Notably, dystroglycan is also required for

branching morphogenesis in glandular epithelium, a process that is thought to require BM sliding

(Durbeej et al., 2001; Harunaga et al., 2014). Further, it has been shown that loss of basally
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localized dystroglycan during chick gastrulation promotes breakdown of BMs during the epithelial-

to-mesenchymal transition that forms mesoderm (Nakaya et al., 2011). Thus, dystroglycan may have

a fundamental role in mediating BM remodeling events during development. Importantly, loss or

reduction of dystroglycan is also emerging as a common event in the progression of epithelial

derived cancers, including breast, prostate, colon, cervical, and renal adenocarcinomas (Cross et al.,

2008; Esser et al., 2013; Sgambato et al., 2007, 2003, 2006). As regulated loss or reduction of

dystroglycan during development creates and widens BM gaps through BM loss and sliding, uncon-

trolled loss of dystroglyan during cancer progression may lead to the breakdown of BM barriers to

facilitate tumor spread. Thus, understanding mechanisms that control dystroglycan levels at the cell

surface are not only important in understanding tissue morphogenesis, but may provide new strate-

gies to halt cancer progression.

Materials and methods

Worm strains
Worms were reared under standard conditions at 15˚C, 20˚C, or 25˚C (Brenner, 1974). N2 Bristol

strain was used as wild-type nematodes. Strains were reared and viewed at 20˚C or 25˚C using stan-

dard techniques. In the text and figures, we use a ’>’ symbol for linkages to a promoter and use a

’::’ symbol for linkages that fuse open reading frames (Ziel et al., 2009). The following alleles and

transgenes were used: qyEx439 [egl-13 > cki-1::GFP], cgEx308 [dgn-1(+), rol-6(su1066), dgn-1 >

GFP], qyEx557 [fos-1 > moesinABD::mCherry, myo-2 > GFP], qyEx558 [fos-1 > moesinABD::

mCherry, myo-2 > GFP], qyEx561 [fos-1 > rab-7::GFP, dgn-1 > dgn-1::mCherry, unc-119(+)], qyIs28

[ced-10::GFP], qyIs43[pat-3 > pat-3::GFP, genomic ina-1], qyIs102 [fos-1 > rde-1; myo-2 > GFP],

qyIs108 [laminin::Dendra], qyIs127 [laminin::mCherry], qyIs251 [cdh-3 > lin-29a::GFP], qyIs330[lami-

nin::mCherry], qyIs351 [unc-62 > GFP::CAAX], qyIs361[lin-29a/b > GFP], qyIs486 [dgn-1 > dgn-1::

GFP], qyIs508 [fos-1 > ctg-1::GFP]; LGI, ctg-1(qy11); rhIs2 [pat-3::GFP]; LGII, lin-29(ga94), lin-29(qy1),

rrf-3(pk1426); LGIV, qyIs8 [laminin::GFP]; LGV, kuIs29 [egl-13::GFP(pWH17) + unc-119(+)], rde-1

(ne219); LGX, sel-12(ty11), qyIs24 [cdh-3 > mCherry::PLCdPH], qyIs86 [egl-13 > GFP]. Because the

protruding vulva of qy1 homozygotes prevents male mating, the lin-29(qy1)-containing chromosome

was balanced by the balancer mIn1[mIs14 dpy-10(e128)] for effective mating (Edgley and Riddle,

2001).

Mutagenesis screen and mutant isolation
L4 N2 Bristol strain worms were mutagenized in 4 ml M9 buffer with N-ethyl-N-nitrosourea (ENU) at

a concentration of 0.5 mM in a 15 ml conical tube. The tube was placed on the rocker for 4 hr at

room temperature then subject to centrifugation to collect worms for recovery. Worms were washed

3 times with 3 ml M9 buffer and resuspended in a few drops of M9, then transferred to a plate using

a glass pipette. One h later, healthy worms were transferred to new plates at a density of 2 worms/

plate. Five rounds of mutagenesis were performed. F2 progeny produced from the mutagenized

worms were examined for the protruding-vulva (Pvl) phenotype. The fertile Pvl mutants were then

subject to microscopic examination for defects in uterine-vulval attachment. During this examination,

10 fertile Pvl mutants were identified with defects in BM remodeling during uterine-vulval attach-

ment. Nine of these had defects in AC invasion, and one, qy1, had a defect in the BM hole opening

after invasion, suggesting that mutants that affect BM hole opening are rarer than those that alter

AC invasion. Of the nine mutants with defects in AC invasion, four were mapped further. One AC

invasion mutant is putative allele of unc-6 and another an allele other unc-40, genes that are known

to promote AC invasion (Ziel et al., 2009).

Genetic mapping
A single-nucleotide-polymorphism (SNP) based mapping strategy (Davis et al., 2005) was used to

locate the qy1 mutation to between 11777294 and 12029092 on Chromosome II. Briefly, three hun-

dred F2 Pvl progeny of multiple qy1/CB4856 F1 hermaphrodites that were produced by crossing

CB4856 males into qy1/mIn1 were individually isolated onto each well of 24-well plates. After four

days, self-progeny from these F2 progeny were washed off the plate using water (>30 worms/plate)

and placed in a single well of a 96-well plate. Worms were allowed to settle to the bottom of the
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wells at 4˚C for 15 min (min). Excess solution was removed to leave a final volume of 90 ml/well.

Plates were stored at �80˚C. For mapping PCR, the plates were thawed and 1X lysis buffer (50 mM

KCl, 2.5 mM MgCl2, 10 mM Tris pH 8.3, 0.45% Tween 20, 0.04% gelatin, 100 mg/ml proteinase K

(freshly added)) was added. Worms were lysed by incubation at 65˚C, 1 hr and 95˚C, 15 min to

extract DNA. PCR templates were frozen at �80˚C and thawed prior to each use. For each PCR, 1 ml

of worm lysate was added into each well of the 96-well plate that then received 19 ml of a PCR mix

containing 14 ml water, 2 ml 10X buffer, 0.4 ml 10 mM dNTP, 2 ml each primer (10 mM), and 0.2 ml Taq

(5 units/ml). PCR conditions: 93˚C, 2 min, 35 cycles (93˚C, 20 s (s), 58˚C, 30 s, 72˚C, 1 min), 72˚C,
5 min, 10˚C for holding. The restriction enzyme DraI 0.26 ml (20 unit/ml) with its 10x buffer was added

into each PCR well to make final digestion volume of 22.26 ml. Within the region identified, 4 genes

were previously reported to have a Pvl phenotype: ZK930.3, lin-29, ash-2, and mcm-2, which we con-

firmed by RNAi. qy1 was identified as lin-29 when it failed to complement lin-29(n546).

Photoconversion of Dendra tagged laminin
Transgenic animals expressing laminin::Dendra were photoconverted using a Zeiss LSM 510 confocal

microscope (Zeiss Microimaging), equipped with a 63x objective, scanning regions of interest with a

405 nm laser at 1 mW power for 30 s. After photoconversion, images were captured using a spin-

ning disc confocal microscope. Animals were recovered from the agar pad, left to develop on the

plates with OP50 at 25˚C for the specified amount of time then reimaged. Identical settings were

used to acquire images at all times. Acquired images were processed using Imaris (Bitplane).

Cell ablations
Laser-induced cell ablations of the AC and VU were performed as previously described (Barg-

mann, 1995). ACs were ablated at the P6.p 4-cell stage after clearing of the BM by the AC was com-

plete. For ventral uterine (VU) cell ablations, the 2 VUs that flanked the AC on either the anterior or

posterior side (Z4.aaa and Z1.ppa or Z4.aap and Z1.ppp) were ablated at the early P6.p 2-cell stage

prior to p cell specification. Worms were recovered from slides to OP50 plates at 25˚C and imaged

at the L4 stage.

Microscopy, image acquisition and quantitative analysis of BM opening
Images were acquired using a Zeiss AxioImager microscope with a 100x Plan-APOCHROMAT objec-

tive and equipped with a Yokogawa CSU-10 spinning disc confocal controlled by iVision (Biovision

Technologies) or Micromanager software, or using a Zeiss AxioImager microscope with a 100x Plan-

APOCHROMAT objective and with a Zeiss AxioCam MRm CCD camera controlled by Axiovision

software (Zeiss Microimaging). Acquired images were processed using ImageJ 1.40 ImageJ 1.47d

and Photoshop CS3 Extended or Photoshop CC (Adobe Systems). Fluorescence intensities were

measured as Mean Gray Values using ImageJ. Three-dimensional reconstructions were built from

confocal z-stacks, analyzed and exported using Imaris 7.4 (Bitplane). The diameter of the BM open-

ing along the anterior-posterior axis was measured as the size of the opening using single-channel

images of laminin::GFP, laminin::mCherry or the phase dense line of the BM seen by DIC in plane of

focus for the AC using ImageJ. For CKI-1 p division arrest, examination of the number of p cell nuclei

by DIC as well as GFP expression in the p cells were used to determine whether p cell division had

occurred, and only animals in which all 6 p cells failed to divide were scored.

Molecular biology and transgenic strains
Standard molecular biology and transgenic techniques were used to generate PCR fusion products

(Hobert, 2002), plasmids, and transgenic animals (Mello and Fire, 1995). To generate the transcrip-

tional reporter for the lin-29a/ b gene, the 5’ cis-regulatory element (5’ CRE) 5.4 kb upstream of the

ATG start codon of the lin-29a/ b gene was amplified. The 5’ CRE sequence was then fused in frame

to GFP coding sequence (PCR amplified from the vector pPD95.81) using PCR fusion. For the tran-

scriptional reporter of the lin-29c gene, the 5’ CRE 4.2 kb upstream of lin-29c coding sequence was

PCR amplified and fused in frame to GFP coding sequence (PCR amplified from the vector

pPD95.81) using PCR fusion. AC-specific lin-29a::GFP was generated by fusing GFP coding

sequence with the amplicon cdh-3 > lin-29a using PCR fusion. To generate the amplicon cdh-3 > lin-

29a, lin-29b cDNA was first PCR amplified and subcloned into the vector pPD95.81 containing the
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cdh-3 promoter (Sherwood et al., 2005) at XhoI and HindIII sites. The coding sequence of cdh-3 >

lin-29a was PCR amplified from the vector cdh-3 > lin-29b using the New England Laboratory site-

directed-mutagenesis protocol with a primer containing a sequence encoding four lin-29a specific

amino acids. To generate the egl-13 > cki-1::GFP construct, the 5 kb promoter region of egl-13 was

amplified from plasmid pWH17 and fused with to CKI-1::GFP amplified from the recombineered fos-

mid WRM0626bF02 (wTRG5.1_2491680425634929_G10). To generate the DGN-1 translational

reporter, 2.6 kb upstream of the start codon to the end of the coding sequence of dgn-1 was ampli-

fied from N2 genomic DNA and fused in frame to the GFP coding sequence amplified from vector

pPD95.75, based on a previously published construct that rescues the sterility phenotype of dgn-1

(Johnson et al., 2006). To generate fos-1 promoter containing constructs, pBlueScript containing

the fos-1 promoter (Sherwood et al., 2005) was digested with ApaI and BamHI, then fused with the

ctg-1 coding sequence amplified from genomic DNA and the GFP coding sequence amplified from

pPD95.75 for fos-1 > ctg-1::GFP, the moesin::ABD coding sequence amplified from pJWZ6 for fos-1

> moesinABD::mCherry, and the rab-7::GFP coding sequence amplified from pHD69 for fos-1 > rab-

7::GFP, using NEBuilder HiFi DNA Assembly Cloning. Transgenic worms were created by co-injec-

tion of expression constructs with the transformation marker pPD#MM016B (unc-119 ), or the co-

injection marker (myo-2 > GFP) or both into the germline of unc-119(ed4) mutants or wild type

worms. These markers were injected with EcoRI-digested salmon sperm DNA and pBluescript II at

50 ng/ml as carrier DNA along with the expression constructs, which were normally injected at 10–50

ng/ml. Integrated strains were generated as described previously (Inoue et al., 2002). To generate

Y75B8A.24 RNAi, the first 800 bp of the coding sequence of the gene were amplified from genomic

DNA and inserted into the vector L4440, which was digested with HindIII and KpnI.

CRISPR-Cas9 mediated generation of ctg-1(qy11)
A GFP knock-in that removes the majority of the coding region of ctg-1 was generated using the

CRISPR-Cas9 system (Dickinson et al., 2013). Two sgRNAs with sequences 5’- AATTCGACAACTAC

TATTCG-3’ and 5’-AATATTGTAGCGCAATTGCT-3’ were used to induce double stranded breaks in

the final exon of ctg-1. A repair template was constructed with 1.5 kb upstream of the coding start

site plus the first 20 bp of ctg-1, followed by GFP, cbr-unc-119, and 1.7 kb of sequence downstream

of the ctg-1 stop codon. Plasmids containing guide RNAs and Cas9 were co-injected at a concentra-

tion of 25 ng/mL each, and the repair template was injected at a concentration of 10 ng/mL.

Fluorescence reovery after photobleaching (FRAP) experiments
A Zeiss LSM 510 laser scanning confocal microscope with a 100x objective was used for initial

bleaching and imaging the DGN-1::GFP reporter. In the plane of focus for the AC, a 1 mm by 1 mm

region of interest was defined at the edge of the BM gap or next to the boundary of the AC if no

visible gap in the BM was present. Regions of interest were bleached at 488 nm for 100 iterations at

100% power. Further imaging was conducted every 30 s for 9 min. The protocol was repeated for

DGN-1::GFP and PAT-3::GFP using a Nikon Ti-U with the ‘Plan Apo VC’ 100x objective, Yokogawa

spinning disc unit, Andor iXon EM-CCD, and Andor ALC601 series laser. ROIs were bleached for 20

iterations at 10% intensity.

RNA interference
dsRNA was delivered via feeding to synchronyzed L1 larvae. Phenotypes were subsequently scored

at the early L4 stage. All RNAi experiments examining BM gap opening were conducted in a blinded

manner, where the treatment was masked from person quantifying the opening. Constructs were

obtained from the Vidal (Rual et al., 2004) and Ahringer (Simmer et al., 2003) libraries. The L4440

empty vector was used as a negative control. Clones targeting lag-2, ctg-1, ina-1, dgn-1 were veri-

fied by sequencing. Screening of Notch targets was scored in rrf-3 worms containing laminin::

mCherry and the AC marker (CAAX::GFP). Uterine-specific RNAi was scored in strains containing

RDE-1 expressed under the control of the fos-1a promoter in an rde-1 mutant background

(Hagedorn et al., 2009). Data was collected in 3 independent trials for uterine-specific lag-2 RNAi

and dgn-1 RNAi in the lin-29(qy1) background, and 2 trials for ctg-1 RNAi and PI4-kinase RNAi.
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F-actin quantification
Fluorescence intensities were measured as the mean gray values of 0.3- mm x 0.3- mm regions of

interest selected either adjacent to the edge of the expanding BM gap or no longer in contact with

the BM (past the zone of BM sliding) in the p cells at the P6.p 6-cell stage. In lin-29(qy1) mutants,

only areas adjacent to the edge of the BM gap were measured, as regions beyond the zone of BM

sliding were not visible (due to the loss of BM sliding). To account for the varied expression levels

seen in extrachromosomal array lines, fluorescence intensities were normalized using the fluores-

cence intensity of an apical region of the same size.

RAB-7 and DGN-1 Co-localization
RAB-7::GFP positive vesicles were selected and marked using ImageJ. Regions of interest were then

overlaid on images of corresponding DGN-1::mCherry and assessed for overlap.

Identification of C. elegans Sec14 family members
Textpresso homology/orthology data and Gene ontology and BLAST from the WS249 version of

Wormbase were searched for hSEC14L2, SEC14, and CRAL-TRIO.

Statistical analysis
Statistical analysis was performed using JMP version 12.0 (SAS Institute) or Microsoft Excel, using a

two-tailed unpaired Student’s t test, two-tailed Fisher’s exact test, or nonparametric Wilcoxon rank

sum test. Figure legends specify when each test was used. Sample sizes were validated a posteriori

for statistical significance and variance (for parametric tests). Normality was assessed using a Sha-

piro-Wilk’s normality test.
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