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Abstract We exploit the reduced space of C. elegans postures to develop a novel tracking

algorithm which captures both simple shapes and also self-occluding coils, an important, yet

unexplored, component of 2D worm behavior. We apply our algorithm to show that visually

complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics

and a head-curvature pulse. We demonstrate the precise 
-turn dynamics of an escape response

and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations

occur not only through classical 
-shaped postures but also through larger postural excitations

which we label here as d-turns. We find that omega and delta turns occur independently,

suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right

step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt

to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias.

DOI: 10.7554/eLife.17227.001

Introduction
Much of our fascination with the living world, from molecular motors to the dynamics of entire socie-

ties, is with emergence — where the whole is surprisingly different than the sum of its parts (see, e.

g., [Laughlin, 2014]). Yet, the existence of such collective organization also suggests that living sys-

tems, despite their enormous potential complexity, often inhabit only a much smaller region of their

potential ‘phase space’, and evidence for this lower-dimensional behavior is ubiquitous. For exam-

ple, the motor control system produces movements that are far less complex than what the musculo-

skeletal system allows (d’Avella et al., 2003) and this hints at the presence of an organizational

principle. In a typical daily movement like walking, the central nervous system is thought to produce

the full walking gait by combining low-level ‘locomotory modules’, some of which appear to be uni-

versal among species (Dominici et al., 2011). Similarly, the dynamics in brain networks are organized

in low-dimensional activity patterns (Tkačik et al., 2014; Gao and Ganguli, 2015) and these patterns

— not individual neurons — might be the carriers of information and computation (Hopfield, 1982;

Yoon et al., 2013).

The emergent dynamics of behavior, how animals move and interact, is particularly important as

the ultimate function of the system (Tinbergen, 1963) and the scale on which evolution naturally

applies. Yet, our quantitative understanding of behavior is substantially less advanced than the

microscopic processes from which it is produced, even as recent efforts have expanded this frontier

(Mirat et al., 2013; Berman et al., 2014; Cavagna and Giardina, 2014). How do we analyze high-

resolution behavioral dynamics and what does this reveal about an animal’s movement strategy?

How do we build effective models on the behavioral level where a ‘bottom-up’ approach is
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daunting? How do we connect analysis on the organism-scale to the properties of molecules, cells

and circuits? We approach these questions through the postural movements of the nematode C.

elegans.

In C. elegans, the 2D space of body postures can be captured precisely and is also low-dimen-

sional (Stephens et al., 2008) so that the worm’s motor behavior is faithfully encoded as a time

series of only four ‘eigenworm’ variables. These shape projections are collective coordinates in the

space of natural worm postures and provide a notable reduction in complexity. However, an impor-

tant limitation of previous work is the inability to deduce the geometry of self-occluding body

shapes. Such coiled body postures occur during ‘omega turns’ (a maneuver during which the worm’s

body briefly resembles the Greek letter 
 [Croll, 1975]) and are a general and important feature of

the worm’s behavioral repertoire, ranging from foraging (Stephens et al., 2010; Salvador et al.,

2014), and chemotaxis (Pierce-Shimomura et al., 1999), to escape from noxious stimuli

(Mohammadi et al., 2013). For example, during escape behaviors worms use coiled shapes to reori-

ent by 180
� and the benefit seems obvious: it steers the worm back to safety. But how does a ‘blind’

organism achieve this result without any visual reference to the outside world? While some of the

neural and molecular mechanisms driving omega turns have been uncovered (Gray et al., 2005;

Donnelly et al., 2013) and there has been previous work on crossed shapes (Huang et al., 2006;

Wang et al., 2009; Roussel et al., 2014; Nagy et al., 2015), a quantitative analysis of such self-

occluded posture dynamics is lacking.

Here, we exploit low-dimensionality to develop a novel and conceptually simple posture tracking

algorithm able to unravel the worm’s self-occluding body shapes. We apply our approach to analyze

coiled shapes during two important behavioral conditions: the escape response induced by a brief

heat shock to the head, and spontaneous turns while foraging on a featureless agar plate. We find

that, in general, complex deep turn sequences can be viewed as a simpler superposition of body

wave phase dynamics with a bimodal head swing followed by a unimodal curvature pulse. In the

escape response we show that, while turning accounts for much of the ~180˚ reorientation, the full

eLife digest We all instinctively recognize behavior: it’s what organisms do, whether they are

single cells searching for food, or birds singing to mark their territory. If we want to understand

behavior, however, we have to be able to characterize such actions as precisely and completely as

their underlying molecular and cellular mechanisms.

For the millimeter-sized roundworm C. elegans, video tracking and analysis has produced a

compact characterization of naturally occurring worm postures. Simply put: every body posture of

the worm is a different mix of four fundamental postures called ‘eigenworms’. The worm’s snake-like

motion is then a series of combinations of these projections, which can be analyzed to provide an

automatic and measureable read-out of the worm’s behavior.

There is, however, an important caveat: when the worm makes a ‘loop’, and crosses over itself,

such posture analysis is inapplicable. That is unfortunate: some of the worm’s most interesting

behavior involves looping. One example is the “omega turn”, named after the shape of the Greek

letter W. This sharp turn is used by the worm to steer away from harm, and more generally to

abruptly reorient during the search for food and for mates.

Broekmans et al. have now created an algorithm, based on eigenworms, which can analyze worm

images that encompass both looped and normal shapes. The result is a complete ‘behavioral

microscope’ that shows how C. elegans moves in 2D. Focusing this microscope in particular on the

omega turn, Broekmans et al. found that such turns are not, as has been previously described, a

single behavior. Instead, they are two separate behaviors that represent the worm’s equivalent of a

left-right step.

Together with previous posture analysis the work presented by Broekmans et al. allows for the

full and precise measurement of the body shapes of C. elegans in 2D. This, combined with

remarkable recent progress in global brain and gene expression imaging, should help to uncover

new mechanisms that ultimately produce and control a worm’s behavior.

DOI: 10.7554/eLife.17227.002
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distribution of reorientation angles is shaped by significant contributions from the reversal, turn and

post-turn behaviors, a result consistent with the presence and action of the monoamine tyramine

during the entire response (Donnelly et al., 2013). In natural crawling, the peak amplitudes of the

curvature pulse reveal two distinct coiling behaviors — the classical omega turn accomplishing large

ventral-side reorientations, and a previously uncharacterized ‘delta’ turn which produces dorsal reor-

ientations by overturning through the ventral side. The omega and delta turns occur independently

in time, suggesting a separate triggering process, but have similar rates, as expected if they contrib-

ute little overall bias in the trajectories.

Results

Tracking posture using low-dimensional worm shapes
Previously, we analyzed movies of C. elegans freely crawling on an agar plate (Figure 1A)

(Stephens et al., 2008). For each movie frame, we identified the body of the worm, and applied a

thinning algorithm to find the centerline. The worm’s 2D body posture was characterized as a 100-

dimensional vector of tangent angles along this centerline (Figure 1B–C). Principal Component Anal-

ysis revealed that more than 95% of the variance in naturally-occurring body postures was captured

by just four eigenvectors of the posture covariance matrix (Figure 1D). As a result, any worm posture

can be decomposed as a linear combination of these ‘eigenworms’ (Figure 1E). Worm behavior

then becomes a smooth, low-dimensional trajectory through posture space (Figure 1F). As an exam-

ple, forward and backward crawling appear as approximately circular trajectories in the ða1; a2Þ

plane, and correspond to limit-cycle attractors. However, for coiled shapes such as shown in

Figure 1H, the thinning algorithm does not produce a faithful reconstruction of the worm’s actual

posture (Figure 1G).

s

θ t ̂
a

1

a
2

a
3

φ a
1

a
2

a
3

a
4

+

++

=

1 2 3 4 5 6 7 8
0

1

σ
K

2

K
0 1

−π

0

π/2

π

−π/2

θ
 (

ra
d

)

s

θ

t ̂s

A B C D

EFGH

Figure 1. Inverting posture analysis to generate worm images. (A–E) We previously showed that the space of C.

elegans body postures is low-dimensional. (A) For a set of images of a freely moving worm, (B) we find the

centerline of the body using image thinning (black point indicates the head). (C) At equidistant points along the

centerline, we measure the direction �ðsÞ of the tangent t̂. After subtracting h�i, this gives a description of the

worm’s shape that is intrinsic to the worm itself. (D) Principal Component Analysis reveals that only four

eigenvectors of the shape covariance matrix are needed to account for ~ 95% of the variance in �ðsÞ. (E) Hence,

any body shape can be decomposed as a linear combination of postural ‘eigenworms’. (F) Alternatively, we can

think of any body posture as a point in a low-dimensional ‘posture space’, spanned by the eigenworms (gray).

Forward crawling is then represented by clockwise progression along a circular trajectory in the ða1; a2Þ plane (blue

oval, body wave phase angle ’). (G) For any point in this space, we can easily calculate the shape of the backbone.

A series of filled circles with radii representing the worm’s thickness, are used to draw an image of the worm’s

body (H), inverting the original postural analysis to generate an image. For self-overlapping shapes, image

thinning (H, magenta) does not produce an accurate reconstruction of the posture (G, red).

DOI: 10.7554/eLife.17227.003
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The above procedure can also be implemented in reverse to generate worm images. For any

point p in posture space (Figure 1F), we can reconstruct the shape of the backbone (Figure 1G).

Knowing the thickness of the worm at each point along the body (which we estimate by averaging

over many worm images), we are able to draw a reconstructed body image (Figure 1H; see Materi-

als and methods). We then track the posture by finding, for each movie frame, the point in posture

space (and thus the correct centerline) for which the reconstituted worm image is the most similar to

the original image. This approach works for all worm postures — in contrast to image thinning,

which fails for self-overlapping shapes (Figure 1H).

Our ‘inverse’ tracking algorithm consists of three basic elements. (i) An image error function ferr

quantifies how well a reconstituted worm image ~WðpÞ matches the movie frame W (Figure 2A); (ii)

an efficient optimization scheme to search for a global error minimum over all possible postures,

and; (iii) a method to resolve ambiguity, as different self-occluding body shapes can give rise to the

same image. We measure image similarity using two specific shape metrics (Yang et al., 2008): out-

line shape, and coarse-grained pixel density (Figure 2A). By mapping this error function onto pos-

ture space: ferrðpÞ ¼ ferr W; ~WðpÞ
� �

, we create a fitness landscape, in which the position of the global

minimum corresponds to the tracking solution. We find this minimum using a pattern search algo-

rithm (a form of direct search [Kolda et al., 2003]). To resolve ambiguity, we retain multiple minima

for each frame, until a final step which minimizes total sequence error. We sketch this process for a

single mode in Figure 2C.

Tracking reproduces both simple and self-occluding worm shapes with
small errors
Tracking results for a typical movie that includes complex, self-occluding shapes are shown in

Figure 2D (see also Videos 1 and 2). In the gray rows at the top are the original movie frames;

the reconstituted images from our inverse algorithm are below. While some minor inaccuracies are

visible by eye, the overall result is remarkably similar. To quantify posture tracking accuracy, we

first compared the results of our algorithm to image thinning, which allows for verification based

on a large dataset. We used image thinning to construct a 100-dimensional vector of tangent

angles u, defined the tracking ’error’ as d� ¼ uinv � uthinning






, and we plot the distribution of these

errors in Figure 2E (magenta). We also show the discrepancy in u that results from dimensionality

reduction to the postural eigenmodes (black). Additionally, we show Euclidean distances between

tangent angle vectors of consecutive frames in a 16 Hz movie, representing limited time resolution

(gray). For this dataset of non-crossed frames, our algorithm provides excellent performance, with

tracking errors bounded by time resolution and dimensionality reduction. Even for deviations in

the tail of the distribution (d� ¼ 3 rad), backbones from the thinning and the ‘inverse’ algorithm are

quite similar (inset, gray backbones).

A more relevant quantity for low-dimensional trajectories is the mode discrepancy dai ¼

ainvi � a
thinning
i











 which is negligible for simple shapes, as shown in Figure 2F (yellow). Finally, we cre-

ated a dataset of self-overlapping body shapes for which backbones were manually drawn. In

Figure 2F (blue), we show that, for the majority of crossed frames, the mode error is less than 10%

of the total range of naturally occurring mode values. As a visual reference, the reconstituted worm

shapes corresponding to mode errors of dai ¼ 1 are shown in gray: these are noticeably flat.

Coiled dynamics in the escape response reveal precise reorientations
and the superposition of the body wave and a head-curvature pulse
We first applied our postural tracking algorithm to quantify the full shape dynamics of the C. elegans

‘escape response’. This is a stereotyped behavioral sequence, consisting of a pause, a reversal and

an 
-turn, that quickly moves the worm away from a threatening stimulus. Featuring only relatively

simple coiled shapes, the escape response provided a useful test of our algorithm. While recent

work has connected the escape response with genetic, molecular, and neural mechanisms

(Donnelly et al., 2013), the behavior itself has been described only qualitatively. Here, we elicited

an escape response by using an infrared laser pulse administered to the head of the worm, which

raised the temperature by ~0.5˚C. 10 s of pre-stimulus behavior and 20 s of post-stimulus behavior
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Figure 2. Tracking coiled shapes by searching for image matches in posture space. Top: tracking algorithm

sequence. (A) For each movie frame W and reconstituted worm image ~WðpÞ for posture p, we apply two metrics,

one based on the shape of the boundary (left), and one based on a coarse-grained pixel density matrix (right). (B)

An error function ferr based on these two shape metrics generates a fitness landscape (schematically shown). The

position of the global minimum of ferr corresponds to the tracking solution; if a frame is ambiguous, multiple

minima may be present. (C) For non-crossed body postures, a simple image thinning algorithm suffices to obtain

time series of the modes ai (blue line, schematically shown). For crossed frames, we use the procedure outlined in

A–B. Due to the inherent ambiguity of such images, multiple solutions are generally found for each frame (light

gray points). Using the filtering algorithm described in the Materials and methods, we identify the correct solutions

(dark gray points). The resulting smooth trajectory (magenta, dotted line) forms the full tracking solution. (D)

Sample tracking results (bottom, white background), contrasted with original images (top, gray background), for a

turning sequence. Bottom: the inverse algorithm accurately tracks both simple and coiled worm shapes with small

error. (E) Histogram of tracking errors for non–self-overlapping worm shapes, quantified as the Euclidean distance

d� between the tangent angle vector u from our algorithm, and u found by image thinning (magenta). For scale,

the error due to dimensionality reduction to five postural eigenmodes is shown in black. We also show the

Euclidean distance between u in consecutive frames, representing the confidence in u due to the finite time

resolution of the movie (gray). Even for an extreme value of d� ¼ 3 rad (gray arrow), backbones from the ‘classic’

algorithm (top) and our algorithm (bottom) are nearly indistinguishable by eye (inset). (F) Tracking error in

eigenmode values for the first four modes. For uncrossed worm shapes (yellow/light), our algorithm shows

negligible tracking errors. For a smaller set of crossed frames, we compare to a manually found solution (blue/

dark). For scale, we show reconstituted images for worms with a single nonzero mode value of ai ¼ 1; these ‘error

worms’ are essentially flat.

DOI: 10.7554/eLife.17227.004

The following figure supplement is available for figure 2:

Figure supplement 1. The eigenworms fek¼1...4g derived from the fully-tracked data show only minor changes

compared to those computed without crossings.

DOI: 10.7554/eLife.17227.005
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were recorded at 20Hz. Each worm was only

assayed once, to prevent adaptation. In total,

N ¼ 92 worms were recorded, of which N ¼ 91

successful trackings were used in the final

analysis.

A schematic of the response is shown in

Figure 3A, with the associated postural mode

dynamics in Figure 3B,C. During normal, for-

ward locomotion (i in Figure 3A, t<10 s in

Figure 3C), the worm crawls by propagating a

sine-like wave through its body. This is reflected

as a pair of phase-locked sinusoidal oscillations

in a1 and a2 and we define the body wave phase

angle ’ ¼ � arctanða2=a1Þ, where the minus sign

ensures that d’=dt is positive during forward

crawling. When the worm is stimulated by the

infrared pulse (ii in Figure 3A, pink line in

Figure 3C at t = 10 s), it immediately backs up (iii), seen as a decrease in ’. The end of this reversal

and the beginning of the 
-turn is marked by a head-swing, visible as a bimodal pulse in a4. The 
-

turn itself (iv) occurs as a large, unimodal pulse in a3, and propagates head-to-tail. This implies

another switch of the direction of the body wave, and hence a return to increasing ’. Finally, as the

turn is finished, the worm resumes forward crawling (v). The mode dynamics outlined above illustrate

that the complexity of the escape sequence can be seen as a superposition of two simpler patterns:

the body wave phase dynamics in ða1; a2Þ, and the head-curvature dynamics of ða3; a4Þ. An animation

of these mode dynamics is available as Video 3.

A notable feature of the escape response is how closely the worm controls its reorientation. Our

tracking algorithm also makes it possible to track the overall orientation continuously, across the dif-

ferent phases of the escape response. In Figure 3D–E, we calculate how much each of the three

response segments reorients the worm. The distribution of reorientations for the full escape

response is largely similar to the distribution during the omega turn, but includes contributions from

the reversal and post-turn segments. In the trial-averaged reorientation Figure 3E, we find hD�i ¼

�0:89p � 0:05p rad for the full response. The omega turn itself results in hD�i ¼ �0:90p � 0:04p rad,

while pre- and post-omega phases show smaller but significant contributions, hD�i ¼ 0:13p �

0:03p rad and hD�i ¼ �0:12p � 0:03p rad, respectively (errors are calculated using bootstrap across

trials and are equivalent to standard errors of the mean). In Figure 3D, the interval ð0;�pÞ corre-

sponds to a final ventral-side reorientation, and ð�p;�2pÞ to a final dorsal-side reorientation. The

small number of reorientations between ð0;pÞ are also final dorsal-side reorientations but are

achieved using a shallow dorsal bend, not an omega turn, and excluding these worms results in a

total mean reorientation angle hD�i ¼ �0:97p � 0:04p rad.

Remarkably, the mean reorientation in the reversal and post-turn segments precisely cancel, sug-

gesting a correction mechanism at the level of the average response so that the mean overall reori-

entation is entirely determined by the omega-

turn. No such precision is apparent in the vari-

ance, where we find d�2 ¼ 0:69p � 0:16p rad2 for

the full response compared to the smaller d�2 ¼

0:45p � 0:16p rad2 for the turn segment. Thus,

while the omega turn is an effective maneuver

for turning away from the stimulus, the full

response orientation change is broadened by

the reversal d�2 ¼ 0:23p � 0:05p rad2 and post-

omega d�2 ¼ 0:19p � 0:04p rad2 behaviors.

These observations allow us to hypothesize a

subtle link between the behavior of the worm

and the escape response at the neurotransmitter

level (Donnelly et al., 2013). As the worm enters

Video 1. Tracking results for the escape response. Left

images are data, while on the right, there are

reconstructed images from our tracking algorithm.

DOI: 10.7554/eLife.17227.006

Video 2. Tracking results for a complex, spontaneous

coil. Left images are data, while on the right, there are

reconstructed images from our tracking algorithm.

DOI: 10.7554/eLife.17227.007
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Figure 3. Tracking coiled postures and reorientation in the escape response. (A) Schematic overview

(Donnelly et al., 2013) with worm body shapes extracted from tracking data: i forward locomotion and

exploratory head motions; ii infrared laser stimulus; iii reversal phase; iv omega turn; v resumption of forward

locomotion in the opposite direction. (B) Trajectory through posture space. ’ indicates direction of increasing

body wave phase angle, and color encodes time, with blue for t = 0 and red at t = 30 s. The worm’s reorienting

coiling behavior is evident as a large excursion along the third mode, starting at the red arrow. (C) The same

trajectory as in B, in terms of the body wave phase angle ’ and the postural modes ða3; a4Þ. The heat shock occurs

at t = 10 s (pink bar). The omega turn is initiated by a head swing, as seen in a4, followed by a large pulse in a3,

and is linked to a ‘re-reversal’, a return to forward movement. (D) An important feature of the escape response is

the change in the worm’s overall orientation, and we apply our algorithm to track this reorientation for each

response segment. While turning accounts for much of the reorientation, the full response distribution is shaped

by significant contributions from all three segments. In particular, the small but biased reorientations of the

reversal and post-turn segments originate in the a3 fluctuations outside the turn (see the time series in C and also

Figure 3—figure supplement 1). This is consistent with the release and presence of the monoamine tyramine

during the entire response. (E) The precision of the escape response is evident in the trial-mean reorientation

where we find hD�i ¼ �0:89p � 0:05p rad for the full response and hD�i ¼ �0:97p � 0:04p rad if we exclude (four)

worms that only make small dorsal reorientations. Notably, the mean reorientation in the reversal and post-turn

segments closely cancel, suggesting a correction mechanism at the level of the average response. In the inset to

Figure 3 continued on next page

Broekmans et al. eLife 2016;5:e17227. DOI: 10.7554/eLife.17227 7 of 17

Short report Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.17227


the reversal phase, release of tyramine sets up an asymmetry in the worm’s body, and this appears

as a baseline shift in the fluctuations of the third mode (see also Figure 3—figure supplement 1)

leading to a positive bias in the reorientation, Figure 3D,E (reversal). After the turn, lingering effects

of the tyramine produce a similar baseline shift, but as the worm is moving forward instead of back-

ward, this now leads to an opposite orientation bias, Figure 3D,E (post-omega).

Coiled dynamics in foraging reveal a surprising dichotomy in large-
amplitude turns
To analyze more complex coiled shapes, we applied our posture algorithm to foraging worm behav-

ior on a flat agar plate. Under these conditions, worms navigate using a combination of maneuvers

(Gray et al., 2005), including short and long reversals, pirouettes and also gradual turns (Iino and

Yoshida, 2009). We are particularly interested in the pirouettes, as they involve deep coils. Such

body bends are primarily encoded in the third postural eigenmode (a3) and, as discussed in the pre-

vious section, peaks in a3 are a characteristic feature of omega turns, and have a known role in reori-

entation of the worm (Stephens et al., 2010).

In Figure 4A, we show the full distribution of postural mode a3 for all local extrema. Note that

the modes have been normalized so that negative a3 amplitudes correspond to dorsal turns; ventral

turns have strictly positive amplitudes. A clear asymmetry can be observed so that on top of a sym-

metric background distribution of shallow turns in both directions, we see, on the ventral side, two

distinct additional peaks. Drawing reconstituted worm images for the center values of these two

peaks, it is clear that the peak at a3 ~ 15 corresponds to a ‘classic’ 
 shape. The second peak, at

a3 ~ 23, shows a body shape with a much higher characteristic curvature. In Figure 4A (right), we

have ‘folded’ the dorsal side of the distribution

over the ventral side, highlighting the ventral

asymmetry at high a3 amplitudes. As noted in the

figure, we refer to turns in the lower-amplitude

peak as omega turns and distinguish these from

the higher-amplitude delta (d) turns in the second

peak. As for the omega turn, the name delta turn

is chosen to reflect the d-like shape of the worm

during a typical sequence.

Returning to the original tracking movies, the

presence of these two classes of turns is clearly

visible. In Figure 4B, we display movie stills for

two example turns: one omega turn, and one

delta turn. During the classical omega turn, the

worm slides its head along its body, similar to the

escape response, ending up with a large, primar-

ily ventral reorientation. A delta turn, on the

other hand, is much deeper: the worm

completely crosses its head over its body, result-

ing in a dorsal reorientation by ‘over-turning’

across the ventral side.

Figure 3 continued

(D, Omega turn), we also show the distribution of a3 amplitudes, which is peaked near coiled shapes in which the

worm barely touches.

DOI: 10.7554/eLife.17227.008

The following figure supplement is available for figure 3:

Figure supplement 1. Bias in the turning mode a3, and resulting reorientation, occurs during all epochs of the

escape response.

DOI: 10.7554/eLife.17227.009

Video 3. The dynamics of the escape response in the

space of the first three eigenworms. On the right, we

show the full body posture, which turns red at the

moment of the thermal stimulus. On the left are the

dynamics in mode space. The large-amplitude omega

turn is visible as a ‘figure-8’ trajectory. Note that, even

during the turn, the body wave is progressing. In

general, turning behavior is a superposition of the

body wave and curvature dynamics.

DOI: 10.7554/eLife.17227.010
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Figure 4. Unraveling coiled shapes during foraging reveals two distinct ventrally-biased classes of large-amplitude

turns. (A) (left) Probability of the amplitude of all local extrema in the time series of the third postural eigenmode

a3. Colors represent the sign of the a3 amplitude, and hence the dorsal (gray) or ventral (blue) direction of the

resulting turn. (A) (right) As previously, with all negative a3 amplitudes now plotted as positive. The peaked excess

in the distribution for large ventral bends corresponds to ‘classic’ 
 (omega) shapes, and previously undescribed,

deeper d (delta) turns. Insets in A (left) show reconstructed worm shapes for the indicated a3 amplitudes. (B) Stills

from a movie of a worm making a classical omega turn (left, yellow), and a deep delta turn (right, blue). The head

is marked with a red dot; dashed lines indicate postures determined from our inverse tracking algorithm. The

dynamics of delta turns are largely similar to omega turns, differing primarily in the amplitude of the bending

mode a3, and the overall time to complete the maneuver (see Figure 4—figure supplement 1). (C) Histogram of

orientation change (Dh�i) due to ventral omega turns (yellow/light) and ventral delta turns (blue/dark). Ventral

reorientations are accomplished through omega turns. To reorient to the dorsal side, however, C. elegans

employs delta turns, which ‘over-turn’ through the ventral side. (D) Average turning rate during the tracking

experiment. Ventral omega and delta turns are temporally independent, suggesting a separate triggering

mechanism, but occur with approximately equal rates that adapt similarly with time spent away from food, a

simple strategy to avoid any dorsal-ventral navigational bias.

DOI: 10.7554/eLife.17227.011

The following figure supplements are available for figure 4:

Figure supplement 1. Omega and delta turns follow similar kinematics; while visually quite distinct, the primary

difference is the amplitude of the curvature pulse a3.

DOI: 10.7554/eLife.17227.012

Figure supplement 2. The shifted mutual information between delta turn and omega turn time series.

DOI: 10.7554/eLife.17227.013

Figure supplement 3. (left) Location of one of the 12 tracked worms over the course of a 35-min tracking

experiment (off-food), starting at (0, 0) (black arrow).

DOI: 10.7554/eLife.17227.014
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Delta and omega turns are the serpentine analog of a left-right step
and occur independently in a navigational strategy
In postural dynamics, d- and 
-turns differ primarily in their a3 pulse amplitude; their turn kinematics

are otherwise very similar (Figure 4—figure supplement 1). However, when turns do occur, they

result in a dramatically different change of overall orientation. As in the escape response, we use our

algorithm to track the worm’s overall body reorientation, and in Figure 4C, we show how the worm

reorients using both omega (orange) and delta (blue) turns. Simply put, omega turns reorient the

worm by large, ventral angles, while delta turns reorient the worm dorsally by ‘over-turning’ through

the ventral side. The difference in reorientation angle may provide a hint as to why these two behav-

iors exist. Earlier, we saw that the neural mechanisms that produce the escape-response omega

turn, are fundamentally asymmetric, producing only ventral turns (through disinhibition of the VD

motor neurons) (Donnelly et al., 2013). If the worm uses the same neural infrastructure during free

crawling, this would only ever allow it to reorient itself towards its ventral side. Lacking a dorsal

‘copy’ of the same neural infrastructure, the worm could instead hyper-activate the existing infra-

structure to produce ventral ‘over-turning’. These ‘over-turns’ are what we call delta turns, and

enable the worm to also reorient towards its dorsal side. We also find that delta and omega turns

occur seemingly independently; the mutual information between time-binned, time-shifted series for

both turning event time series has a maximum of less than a few percent (see

Materials and methods and Figure 4—figure supplements 2 and 3). On the other hand, evidence

that the turns can be jointly controlled is shown in Figure 4D. Here, we plot the frequency of turning

events over the course of the experiment. As the worm searches for food in a larger area, the turn

frequency decreases significantly — a well-known phenomenon (Gray et al., 2005; de Bono and

Villu Maricq, 2005; Srivastava et al., 2009) — and both omega and delta turns show similar fre-

quencies and adaptation.

Discussion
The ability to track self-overlapping shapes of C. elegans together with the eigenworm projection of

postures, provides a complete and quantitative accounting of the worm’s locomotory behavior in

2D. Among living systems with a nervous system, such an exact behavioral description is unique, and

is likely to be especially important as new techniques emerge for the simultaneous imaging of a sub-

stantial fraction of the worm’s neurons during free behavior (Nguyen et al., 2016;

Venkatachalam et al., 2016). Our posture tracking algorithm itself is conceptually simple and relies

on an optimized image search within the low-dimensional space of worm shapes. Indeed, while the

identification of low-dimensionality occupies an important role in quantitative approaches to living

systems (see e.g. Machta et al., 2013; Daniels and Nemenman, 2015; Ganguli and Sompolinsky,

2012), here we have leveraged low-dimensionality to elucidate important and previously unknown

aspects of C. elegans coils. Interestingly, we were able to apply the characterization of body pos-

tures developed previously for non–self-overlapping body shapes (Stephens et al., 2008), to cap-

ture shapes that do self-overlap; even the simpler eigenworm space allows for substantial postural

diversity.

We applied our tracking algorithm to two important behaviors: an evoked escape response; and

the deep, spontaneous turns that occur during foraging. Viewing the coiled turn as a trajectory

through the low-dimensional posture space, a simple model emerges: a superposition of the body

wave (a circular trajectory in posture space corresponding to simple forward and backward crawling),

and coupled pulses along the third and fourth mode (corresponding to the deep coil and a preced-

ing head oscillation). This model is consistent with the molecular mechanisms found to orchestrate

the escape response (Donnelly et al., 2013). Our results also hint at a possible answer as to how

reorientations of 180˚ are accomplished: the worm could use its own body as a ‘guide’ for reorienta-

tion. During the omega turn, the distribution of a3 peak amplitudes (Figure 3D [Omega turn, inset])

lies close to a value of 15: the lowest a3 value that generates a self-touching body shape. This sug-

gests that the worm might have evolved to coil until it just intersects its own body, which it then

slides along to find its way back.

While the omega turn has previously been considered as a single class of C. elegans behavior,

our analysis of the amplitudes of the curvature mode a3 pulses associated with deep coils, reveals

the presence of distinct subpopulations. In foraging, we show that ‘classic’ omega turns, featuring
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the signature 
 body shape, primarily reorient the worm to the ventral side, while delta turns reori-

ent the worm dorsally by over-turning through the ventral side. These deep dorsal and ventral reor-

ientations occur independently in time with approximately equal rates, which is important if there is

to be no overall bias in the trajectories. On the other hand, in an evoked escape response, we

observed only 
-type turns with reorientations of ~180˚.
While distinct in visual appearance, omega and delta turns differ only in the amplitude of the cur-

vature mode, and we have shown that these behaviors are discretely separable during foraging.

Interestingly, the neuronal basis for omega bend initiation and execution has been studied in some

detail (Gray et al., 2005), where in particular the SMD and RIV motor neurons are, respectively,

implicated in the amplitude and the ventral bias of the turn. Coiling is also observed in other con-

texts, including a variety of mutants (Yemini et al., 2013; Nagy et al., 2015), and we expect that

our methods will be useful in further analyzing such shapes, and as a guide for uncovering coiling

behavior.

Deep turns and reorientations form an important component of the taxis strategy of C. elegans

(Croll, 1976; Pierce-Shimomura et al., 1999; Gray et al., 2005; Stephens et al., 2010;

Salvador et al., 2014). Under foraging and chemotaxis conditions, these behaviors are seemingly

stochastic (Srivastava et al., 2009; Gallagher et al., 2013), producing a broad distribution of reori-

entation angles analogous to tumbling in the bacteria E. coli (Berg and Brown, 1972). However,

unlike bacterial tumbling (which occurs through an instantaneous switch in the rotation direction of a

molecular motor and the resulting unbundling of the flagellar tail, see, e.g., Berg, 2006) the worm’s

reorientation is driven by a long, controlled sequence of stereotyped postural changes. Thus, an

important question is how the worm effectively randomizes its direction of motion. We have shown

here that half the variability in C. elegans foraging reorientations is due simply to the initial random

choice of delta or omega turns. However, even the level of stochasticity can be modulated, as evi-

denced by the largely deterministic reorientation in the escape response, differing response variabil-

ity depending on the strength of a thermal stimulus (Mohammadi et al., 2013), and the slow

adaptation of the reversal rate (Gray et al., 2005; Stephens et al., 2011). Overall, such a combina-

tion of behaviors, flexible and stochastic combined with patterned and deterministic, is likely to be

observed even in more complex organisms, including humans. In initiating the detailed analysis of C.

elegans turning behavior, we hope that our work offers a first step towards a general understanding

of these processes.

Materials and methods

Data
We used two datasets encompassing both foraging and escape response behavioral conditions

(Broekmans et al., 2016a). The foraging data were explored previously (Stephens et al., 2011); for

more details on data collection, see also (Stephens et al., 2008). In short, young L4-stage C. elegans

N2-strain worms were imaged with a video tracking microscope at f ¼ 32Hz. Worms were grown at

20˚C under standard conditions (Sulston and Brenner, 1974). Before imaging, worms were removed

from bacteria-strewn agar plates using a platinum worm pick, and rinsed from E. coli by letting them

swim for 1 min in NGM buffer. They were then transferred to an assay plate (9-cm Petri dish) that

contained a copper ring (5.1 cm inner diameter) pressed into the agar surface, preventing the worm

from reaching the side of the plate. Recording started approximately 5 min. after the transfer, and

lasted for 2100 s (35 min). In total, data from N = 12 worms was recorded. The second dataset, the

‘escape response’ condition, was recorded following procedures as described in ref.

(Mohammadi et al., 2013). In short, worm recordings took place in a temperature-controlled room

(22.5˚C ± 1˚C). A 100 ms, 75-mA infrared laser pulse from a diode laser (l = 1440 nm) was adminis-

tered to the head of the worm, raising the temperature in a FWHM-radius of 220 m by ~0.5˚C. 10 s

of pre-stimulus behavior and 20 s of post-stimulus behavior were recorded at a frame rate of 20 Hz.

Each worm was only assayed once, to prevent adaptation. In total, N = 92 worms were recorded, of

which N = 91 successful trackings were used in the final analysis.
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Image processing and shape reconstruction
All movie frames were converted to binary images and cropped, using standard image processing

functions in MATLAB (R2014b, The Mathworks, Natick, MA) (Stephens et al., 2008). For faster proc-

essing, before analysis with the inverse tracking algorithm, the foraging data was down-sampled to

16 Hz by dropping every second frame. To reconstitute an image of a worm with a body posture

p ¼ ða1; . . . ; a5Þ, we first calculated the vector of backbone tangent angles from u ¼
P

i piei, with ei

the i’th eigenworm. Knowing the total arc length l of the worm, we could calculate the position of

each of the 100 points along the backbone. At each backbone point j, we then drew a filled circle

with radius rj to capture the worm’s body thickness (see also Figure 1G,H) and thus create the

worm image. Circle radii rj for a particular worm were computed from movies of uncrossed worm

postures for that specific worm. In each such frame, after finding the centerline (backbone) and out-

line of the worm (Stephens et al., 2008), we could find rj as the minimum distance between back-

bone point and outline. This was averaged across all frames. Similarly, the total arc length l of the

worm was computed by averaging across frames. For the error function described below, the overall

orientation of the worm in the image is important, and we generate images of worms in all possible

orientations by adding an overall orientation value h�i 2 ½0; 2pÞ to the backbone tangent angle vec-

tor. This gives us a full backbone vector uF ¼ h�i þ
P

5

i¼1
aiei. For the postural dynamics, the eigen-

worm shape projections were taken from Stephens et al. (2008). Recomputing the eigenworms on

the fully-tracked data here showed only minor changes (see Figure 2—figure supplement 1).

Image error function and inverse algorithm
The shape error function compares two binary worm images W1 and W2, and is computed as

ferr ¼ foutline � fpixel. For foutline, we calculate a set of tangent angles  to the perimeter of the worm

shape (Figure 2A, bottom left). We find the 4-connected outline of the worm in the binary image

Wi, fit a spline through these points, and discretize it into 201 segments sampled at equal arc

length. The 200 resulting angles between the segments form a vector ci ¼ ð i;1;  i;2; . . . ;  i;200Þ; the

total length of the segments is ‘i. foutline is now foutline ¼ C0 c1
� c

2
j j2þC1 ‘1 � ‘2ð Þ2, for arbitrary con-

stants C0 and C1. Note that the value of foutline is sensitive to the choice of starting points for tracing

the 4-connected outline in each image; this is resolved by choosing the pair of starting points that

minimizes foutline. For fpixel, we first align the images W1 and W2 so that their centroids overlap. Each

image is then divided into a grid of 10x10-pixel ‘blocks’ (Figure 2A, bottom right). For each block

ðj; kÞ (j ¼ 1; . . . ; n; ) in image Wi, the fraction diðj; kÞ of black pixels in the block is calculated. This

coarse-graining into blocks allows for, e.g., minor inaccuracies in the generation of worm images

from mode values, without affecting the error function. We then calculate fpixel as

fpixel ¼
1

nm

P

j;k d1ðj; kÞ � d2ðj; kÞð Þ2. In earlier trials, we found that using five postural eigenmodes gave

us significantly better tracking results than only using four. Since our error function is sensitive to the

overall rotation of the worm, we amended the five-dimensional posture space with an extra dimen-

sion for the overall orientation h�i. This means that the search space for our algorithm is six-dimen-

sional, with 5 postural dimensions, and 1 rotational dimension. To find a tracking solution for a

frame, we ran hundreds of pattern searches (using MATLAB’s ‘patternsearch’ function) from ran-

domly distributed starting points in search space, with the error function described above as objec-

tive function. Only solutions with an error value less than 1:0, a threshold value obtained through

trial-and-error, were kept. Solutions within a given hypercube of dimensions ½3:0; 3:0; 3:0; 3:0; 2:5�

were merged, leaving only the solution with the lowest error value. This finally resulted in zero, one,

or more potential tracking solutions per movie frame. To speed up the optimization, we applied two

additional constraints. Firstly, we bounded the absolute value of the eigenmodes to ð18; 18; 34; 12; 6Þ,

for each of the five modes respectively. We verified that the distributions of eigenvalues ai found in

our tracking data tailed off before reaching these limits. Secondly, we set a limit to the maximum

local curvature of the worm’s backbone, so that elements in the resulting theta vector that are 10

indices apart must not be different by more than 1.95 rad. This limit rules out body shapes that were

unnaturally coiled.

Importantly, we note that our inverse problem is fundamentally ill-posed: multiple body postures

may produce the same two-dimensional worm image (e.g., Figure 2B, bottom) and for each movie

frame j ¼ 1; . . . ;N, we generally find multiple potential solutions which we label fpkj g, with
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k ¼ 1; . . . ;Mj. Even for simple, non-crossed postures, there can be two solutions (Mj ¼ 2), corre-

sponding to the swapped locations of the head and tail. Across the movie, we label the indices of

the correct solutions as a vector b ¼ ðb1; . . . ; bNÞ. We explicitly allow bj ¼ 0 in case the optimization

process fails, and use a cubic spline to interpolate across any such gaps. Let us call the point in pos-

ture space for movie frame j, resulting from this interpolation step, ~pjðbÞ. To find b� for the full, cor-

rect tracking solution of the movie, we seek the solution vector that minimizes the total sequence

error EðbÞ ¼
PN

j¼1
ferr Wj; ~W ~pjðbÞ

� �� �

. We constrain the mode changes between two successive

frames to be below vmax, which simply reflects the fact that the worm can only change posture

continuously.

Tracking pipeline
In a first pass of the data, the ‘classic’ worm tracking algorithm based on image thinning was used

on all frames (Stephens et al., 2008). This fast algorithm yields high-accuracy tracking results for

frames with simple, non–self-overlapping body shapes. It also automatically labels crossed frames.

For the foraging dataset, the data were cut into smaller segments to allow for faster parallel process-

ing. Each segment consisted of a series of non-crossed frames, followed by a series of crossed

frames, followed by more non-crossed frames. This effectively segmented the data by deep turns

(936 segments in total for the 12 worm trajectories). For the escape response dataset, such segmen-

tation was not necessary, due to the smaller size of the data for each worm. Frames that were

labeled by the ‘classic’ algorithm as ‘crossed’ were tracked using the inverse algorithm described

above. The result was an interpolated, smooth trajectory through posture space. When using this

pipeline as-is, the algorithm would occasionally swap the locations of head and tail between frames.

To resolve head/tail orientation correctly throughout a segment, we implemented four steps. (1)

During the filtering and interpolation step, we allowed the algorithm to pick, for each non-crossed

frame, not just the solution given by the ‘classic’ algorithm; it could also pick an alternative version in

which head and tail were swapped (this version can be trivially computed). (2) We explicitly included

a limit for the maximum change of overall orientation h�i between frames of ~p rad per second in

the maximum velocity vector vmax. Any head/tail swaps between frames violate such a maximum

change of h�i. (3) After the filtering and interpolation step had produced a full tracking solution, we

computed the error for both that tracking solution, as well as a version in which the head and tail

were swapped for all frames in the segment. This fixed the overall head/tail orientation for the full

segment. (4) As a final check, we manually verified and, if necessary, corrected head/tail orientations

during post-processing. A minimal working set of our tracking code, plus a sample movie that can

be successfully tracked using the code’s default parameters is available on Figshare as detailed in

the author response (code: https://figshare.com/s/3ac08fbfec9ae3d5a531, movie: https://figshare.

com/s/658dd86e3847d5926257). A minimal working set of our tracking code, plus a sample movie

that can be successfully tracked using the code’s default parameters is available on Figshare

(Broekmans et al., 2016b; Broekmans et al., 2016c).

Tracking quality
In total, 92 escape responses and 936 free-crawling segments (each containing one self-overlapping

turn; see above) were analyzed. The escape response tracking results were inspected manually, and

91 trackings (99%) were considered successful, as they were visually close to the appearance of the

original worm. For the free crawling dataset, instead, after inspection of a representative sample of

236 segments across multiple worms, 96% were estimated to be successful. First, we assessed the

quality of our tracking algorithm for non-crossed worm shapes (Figure 2E). We used both the ‘clas-

sic’ algorithm and the ‘inverse’ algorithm to track N = 15433 non-crossed frames from the foraging

dataset. For each frame, we calculated the Euclidean distance between the two resulting u vectors

giving the ‘inv. tracking’ distribution. In the same figure, the ‘dim. reduct.’ distribution was calcu-

lated from Euclidean distances between the full u vector from the classic algorithm, and

ureduct ¼
P

5

i¼1

aiei, where ei are the eigenworms from (Stephens et al., 2008) (see also Figure 2—figure

supplement 1). This represents the information lost in only using the first five postural eigenmodes.

The ‘time res.’ distribution represents the Euclidean distance between u vectors from consecutive

frames in a movie. In Figure 2F, we additionally collected a dataset of four movies, featuring visually
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distinct types of omega turns. For the N ¼ 348 crossed frames in these four movies, backbones were

hand-drawn on the worm images, independently from the tracking results. We compared these

backbones to the final results of our inverse tracking / filtering and interpolation algorithms. The

resulting mode errors dai are plotted as the blue/dark distributions. We also include the mode errors

for the set of 15433 non-crossed frames (yellow).

Definition of large-amplitude turns
For the escape response data, the largest peak in a3 between t = 10 s (the time of the stimulus)

and t = 29 s was identified as the apex of the omega turn. To locate the end of the omega turn, the

first zero of a4 after the apex was found; any point after that root that had a3<3 was considered to

be the end of the omega turn. This ensured that the negative peak in a4, representing a high-curva-

ture state of the tail at the end of the omega turn, had finished, and that the worm had reached a

relatively ‘straight’ shape. For such straight shapes, the overall orientation h�i has a straightforward,

intuitive interpretation. The same criterion was used, in the opposite direction, to find the start of

the omega turn. If no starting point and/or end point of the omega turn could be found, the record-

ing was excluded from the analysis. (In the escape response dataset, this was the case for 15 out of

91 recordings). We used the same criterion to find both omega and delta turns in the foraging con-

dition. For detection of local extrema in a3, a standard peak-finding algorithm was used to detect

both minima and maxima (based on the MATLAB ‘findpeaks’ function, which defines a peak as a

data point with a greater value than its immediate neighbors). Only extrema with a minimum promi-

nence of 0.5 were kept, resulting in 1187 large-amplitude ja3j � 10 peaks throughout the entire for-

aging dataset. Some a3 peaks featured smaller sub-peaks in their shoulders; such sub-peaks were

discarded.

Orientation
Orientation changes were computed by comparing the overall orientation h�i between two refer-

ence points around each omega or delta turn. The apex of each deep turn was the largest a3 peak

identified previously. The first reference point was the last frame before the turn’s apex that featured

a ‘straight’ body shape — i.e., a body shape with a low maximum local curvature. Only for such rela-

tively ‘flat’ worm shapes does the overall orientation h�i correspond directly to the intuitive orienta-

tion assigned to the worm. Similarly, the second reference point was the first frame after the turn’s

apex with such a straight body shape. Importantly, our postural tracking algorithm allows us to con-

tinuously follow the orientation angle through coiled shapes and this is important for identifying the

‘overturning’ reorientation effects of delta turns. For the analysis of the worm’s reorientation during

the escape response (Figure 3D,E), N = 91 escape responses were analyzed. Each 30-second

recording was segmented by first finding the omega turn. After identification of the omega turn, the

reversal phase was simply defined as the first frame after the stimulus with a negative body wave

phase velocity d’=dt, up until the start of the omega turn. The ‘post-omega’ phase was any data

after the end of the omega turn until the end of the recording at t = 30 s. For reorientation during

foraging, we analyzed the angle change for segments with self-overlapping turns.

Mutual information between omega and delta-turn event time series
To calculate the mutual information between the omega and delta turns during foraging, we created

a binary event time series by first identifying the time of the a3 peak and then binning these times

into bins of width 2, 4, 10, or 20 s. We then calculated the mutual information between these binary

time series as in ref. (Strong et al., 1998). The mutual information was calculated for different rela-

tive shifts, ranging from �60 to +60 s and the results are shown in Figure 4—figure supplement 2.

Mutual information across time shifts never exceeded ~3% of the maximum entropy of each time

series, indicating that these turns occur independently. There is also no apparent spatial correlation

(see Figure 4—figure supplement 3).

Omega and delta turn frequency adaptation
In Figure 4D, we show how the average turn frequencies for omega and delta turns change over the

course of the 35 min foraging experiments. Turns were detected by using the peak detection algo-

rithm outlined above, applying the amplitude boundaries ja3j � 10. The total of these extrema
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consists of three populations: the tail of a dorsal/ventral symmetric distribution of shallower turns,

and two types of ventral deep turns, the delta and omega turns. To find the number of omega turns,

we counted the number of a3 peaks with an amplitude between �20 and �10 in each time window,

and subtracted this from the total number of a3 peaks with an amplitude between +10 and +20. We

then computed the average number of omega turns per unit time, across the 12 experiments, in a

10-minute sliding window, shifted across the data in 5-minute steps. The first 200 s of each experi-

ment were discarded. An identical procedure with ja3j>20 gives the number of delta turns. Over the

foraging time analyzed in Figure 4D, we find 274� 64 omega turns and 305� 35 delta turns, where

the errors denote bootstrap errors produced by resampling the N = 12 different worm recordings

with replacement. The equality of turn counts, within error bars, signals an approximate overall bal-

ance in turn events, in agreement with the rate calculations. The total turn rate in Figure 4D is com-

parable to previous work (e.g., Gray et al., 2005), though there are notable differences in turn

definitions and experimental conditions. We also note, however, that there are spatiotemporal fluc-

tuations in the turn counts, with an increased number of both turns, as well as a specific bias towards

omega turns near the location of the copper ring, likely reflecting an increased rate of ring-induced

escape responses. In addition, we find an early-time bias towards delta turns, during which we

believe that the behavior is strongly influenced by the mechanical perturbation of picking. In future

work, it will be fruitful to examine these spatiotemporal patterns in a larger experimental arena and

with increased turn statistics.

Acknowledgements
We thank SURFsara (www.surfsara.nl) for help with the Lisa Compute Cluster. ODB was supported

by start-up funds from the Department of Physics and Astronomy, Vrije Universiteit Amsterdam. GJS

acknowledges funding from the Department of Physics and Astronomy, Vrije Universiteit and The

Okinawa Institute of Science and Technology Graduate University. WSR and JBR thank The National

Science and Engineering Council of Canada (NSERC).

Additional information

Funding

Funder Grant reference number Author

Natural Sciences and Engi-
neering Research Council of
Canada

Discovery Grant William S Ryu

Vrije Universiteit Amsterdam Startup Funds Greg J Stephens

Okinawa Institute of Science
and Technology Graduate
University

Unit Funds Greg J Stephens

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

ODB, GJS, Conception and design, Analysis and interpretation of data, Drafting or revising the arti-

cle; JBR, Conception and design, Acquisition of data, Drafting or revising the article; WSR, Concep-

tion and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the

article

Author ORCIDs

Onno D Broekmans, http://orcid.org/0000-0001-8849-7100

William S Ryu, http://orcid.org/0000-0002-0350-7507

Greg J Stephens, http://orcid.org/0000-0003-3135-3514

Broekmans et al. eLife 2016;5:e17227. DOI: 10.7554/eLife.17227 15 of 17

Short report Computational and Systems Biology Neuroscience

http://www.surfsara.nl
http://orcid.org/0000-0001-8849-7100
http://orcid.org/0000-0002-0350-7507
http://orcid.org/0000-0003-3135-3514
http://dx.doi.org/10.7554/eLife.17227


Additional files

Major datasets

The following datasets were generated:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Rodgers JB, Ryu
WS

2010 Foraging dataset http://dx.doi.org/10.
5061/dryad.t0m6p

Available at Dryad
Digital Repository
under a CC0 Public
Domain
Dedication

Ryu WS 2015 Escape response dataset http://dx.doi.org/10.
5061/dryad.t0m6p

Available at Dryad
Digital Repository
under a CC0 Public
Domain Dedication

References
Berg HC. 2006. Marvels of bacterial behavior. Proceedings of the American Philosophical Society 150:428–442.
Berg HC, Brown DA. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:
500–504. doi: 10.1038/239500a0

Berman GJ, Choi DM, Bialek W, Shaevitz JW. 2014. Mapping the stereotyped behaviour of freely moving fruit
flies. Journal of the Royal Society Interface 11:20140672. doi: 10.1098/rsif.2014.0672

Broekmans O, Rodgers J, Ryu W, Stephens G. 2016a. Data from: Resolving coiled shapes reveals new
reorientation behaviors in C. elegans. Dryad Digital Repository. doi: 10.5061/dryad.t0m6p

Broekmans OD, Rodgers JB, Ryu WS, Stephens GJ. 2016b. EigenWormTracker code. MATLAB code for the
EigenWormTracker project, for postural tracking of crawling C. elegans. FigShare. https://figshare.com/s/
3ac08fbfec9ae3d5a531

Broekmans OD, Rodgers JB, Ryu WS, Stephens GJ. 2016c. EigenWormTracker movie. An example movie that
can be successfully tracked with the EigenWormTracker. FigShare. https://figshare.com/s/
658dd86e3847d5926257

Cavagna A, Giardina I. 2014. Bird Flocks as Condensed Matter. Annual Review of Condensed Matter Physics 5:
183–207. doi: 10.1146/annurev-conmatphys-031113-133834

Croll NA. 1975. Components and patterns in the behaviour of the nematode Caenorhabditis elegans. Journal of
Zoology 176:159–176. doi: 10.1111/j.1469-7998.1975.tb03191.x

Croll NA. 1976. When Caenorhabditis elegans (Nematoda: Rhabditidae) bumps into a bead. Canadian Journal of
Zoology 54:566–570. doi: 10.1139/z76-065

d’Avella A, Saltiel P, Bizzi E. 2003. Combinations of muscle synergies in the construction of a natural motor
behavior. Nature Neuroscience 6:300–308. doi: 10.1038/nn1010

Daniels BC, Nemenman I. 2015. Automated adaptive inference of phenomenological dynamical models. Nature
Communications 6:8133–8138. doi: 10.1038/ncomms9133

de Bono M, Maricq AV, Villu Maricq A. 2005. Neuronal substrates of complex behaviors in C. elegans. Annual
Review of Neuroscience 28:451–501. doi: 10.1146/annurev.neuro.27.070203.144259

Dominici N, Ivanenko YP, Cappellini G, d’Avella A, Mondı̀ V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini
C, Poppele RE, Lacquaniti F. 2011. Locomotor primitives in newborn babies and their development. Science
334:997–999. doi: 10.1126/science.1210617

Donnelly JL, Clark CM, Leifer AM, Pirri JK, Haburcak M, Francis MM, Samuel AD, Alkema MJ. 2013.
Monoaminergic orchestration of motor programs in a complex C. elegans behavior. PLoS Biology 11:
e1001529. doi: 10.1371/journal.pbio.1001529

Gallagher T, Bjorness T, Greene R, You YJ, Avery L. 2013. The geometry of locomotive behavioral states in C.
elegans. PLoS One 8:e59865. doi: 10.1371/journal.pone.0059865

Ganguli S, Sompolinsky H. 2012. Compressed sensing, sparsity, and dimensionality in neuronal information
processing and data analysis. Annual Review of Neuroscience 35:485–508. doi: 10.1146/annurev-neuro-062111-
150410

Gao P, Ganguli S. 2015. On simplicity and complexity in the brave new world of large-scale neuroscience.
Current Opinion in Neurobiology 32:148–155. doi: 10.1016/j.conb.2015.04.003

Gray JM, Hill JJ, Bargmann CI. 2005. A circuit for navigation in Caenorhabditis elegans. PNAS 102:3184–3191.
doi: 10.1073/pnas.0409009101

Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS
79:2554–2558. doi: 10.1073/pnas.79.8.2554

Huang KM, Cosman P, Schafer WR. 2006. Machine vision based detection of omega bends and reversals in C.
elegans. Journal of Neuroscience Methods 158:323–336. doi: 10.1016/j.jneumeth.2006.06.007

Broekmans et al. eLife 2016;5:e17227. DOI: 10.7554/eLife.17227 16 of 17

Short report Computational and Systems Biology Neuroscience

http://dx.doi.org/10.5061/dryad.t0m6p
http://dx.doi.org/10.5061/dryad.t0m6p
http://dx.doi.org/10.5061/dryad.t0m6p
http://dx.doi.org/10.5061/dryad.t0m6p
http://dx.doi.org/10.1038/239500a0
http://dx.doi.org/10.1098/rsif.2014.0672
http://dx.doi.org/10.5061/dryad.t0m6p
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133834
http://dx.doi.org/10.1111/j.1469-7998.1975.tb03191.x
http://dx.doi.org/10.1139/z76-065
http://dx.doi.org/10.1038/nn1010
http://dx.doi.org/10.1038/ncomms9133
http://dx.doi.org/10.1146/annurev.neuro.27.070203.144259
http://dx.doi.org/10.1126/science.1210617
http://dx.doi.org/10.1371/journal.pbio.1001529
http://dx.doi.org/10.1371/journal.pone.0059865
http://dx.doi.org/10.1146/annurev-neuro-062111-150410
http://dx.doi.org/10.1146/annurev-neuro-062111-150410
http://dx.doi.org/10.1016/j.conb.2015.04.003
http://dx.doi.org/10.1073/pnas.0409009101
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1016/j.jneumeth.2006.06.007
http://dx.doi.org/10.7554/eLife.17227
https://figshare.com/s/3ac08fbfec9ae3d5a531
https://figshare.com/s/3ac08fbfec9ae3d5a531
https://figshare.com/s/658dd86e3847d5926257
https://figshare.com/s/658dd86e3847d5926257


Iino Y, Yoshida K. 2009. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans.
Journal of Neuroscience 29:5370–5380. doi: 10.1523/JNEUROSCI.3633-08.2009

Kolda TG, Lewis RM, Torczon V. 2003. Optimization by direct search: New perspectives on some classical and
modern methods. SIAM Review 45:385–482. doi: 10.1137/S003614450242889

Laughlin RB. 2014. A perspective: Robert B Laughlin. Physical Biology 11:053003. doi: 10.1088/1478-3975/11/5/
053003

Machta BB, Chachra R, Transtrum MK, Sethna JP. 2013. Parameter space compression underlies emergent
theories and predictive models. Science 342:604–607. doi: 10.1126/science.1238723

Mirat O, Sternberg JR, Severi KE, Wyart C. 2013. ZebraZoom: an automated program for high-throughput
behavioral analysis and categorization. Frontiers in Neural Circuits 7:107. doi: 10.3389/fncir.2013.00107

Mohammadi A, Byrne Rodgers J, Kotera I, Ryu WS. 2013. Behavioral response of Caenorhabditis elegans to
localized thermal stimuli. BMC Neuroscience 14:66. doi: 10.1186/1471-2202-14-66

Nagy S, Goessling M, Amit Y, Biron D. 2015. A Generative Statistical Algorithm for Automatic Detection of
Complex Postures. PLOS Computational Biology 11:e1004517. doi: 10.1371/journal.pcbi.1004517

Nguyen JP, Shipley FB, Linder AN, Plummer GS, Liu M, Setru SU, Shaevitz JW, Leifer AM. 2016. Whole-brain
calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. PNAS 113:E1074–E1081.
doi: 10.1073/pnas.1507110112

Pierce-Shimomura JT, Morse TM, Lockery SR. 1999. The fundamental role of pirouettes in Caenorhabditis
elegans chemotaxis. Journal of Neuroscience 19:9557–9569.

Roussel N, Sprenger J, Tappan SJ, Glaser JR. 2014. Robust tracking and quantification of C. elegans body shape
and locomotion through coiling, entanglement, and omega bends. Worm 3:e982437. doi: 10.4161/21624054.
2014.982437

Salvador LCM, Bartumeus F, Levin SA, Ryu WS. 2014. Mechanistic analysis of the search behaviour of
Caenorhabditis elegans. Journal of the Royal Society Interface 11:20131092. doi: 10.1098/rsif.2013.1092

Srivastava N, Clark DA, Samuel AD. 2009. Temporal analysis of stochastic turning behavior of swimming C.
elegans. Journal of Neurophysiology 102:1172–1179. doi: 10.1152/jn.90952.2008

Stephens GJ, Bueno de Mesquita M, Ryu WS, Bialek W. 2011. Emergence of long timescales and stereotyped
behaviors in Caenorhabditis elegans. PNAS 108:7286–7289. doi: 10.1073/pnas.1007868108

Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. 2008. Dimensionality and dynamics in the behavior of C.
elegans. PLoS Computational Biology 4:e1000028. doi: 10.1371/journal.pcbi.1000028

Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. 2010. From modes to movement in the behavior of
Caenorhabditis elegans. PLoS One 5:e13914. doi: 10.1371/journal.pone.0013914

Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W. 1998. Entropy and Information in Neural Spike
Trains. Physical Review Letters 80:197–200. doi: 10.1103/PhysRevLett.80.197

Sulston JE, Brenner S. 1974. The DNA of Caenorhabditis elegans. Genetics 77:95–104.
Tinbergen N. 1963. On aims and methods of Ethology. Zeitschrift Für Tierpsychologie 20:410–433. doi: 10.1111/
j.1439-0310.1963.tb01161.x
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