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Abstract During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz

sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops.

Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of

memory, but the specific neural mechanism for this process remains unclear. We show here that

cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing

neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale

networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over

hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns

through hundreds of reverberations. These results provide a novel mechanistic account for how

global sleep oscillations and synaptic plasticity could strengthen networks distributed across the

cortex to store coherent and integrated memories.

DOI: 10.7554/eLife.17267.001

Introduction
Memories are stored in distributed networks across the cortex. In the two-stage model of memory

consolidation (McClelland et al., 1995; Rasch and Born, 2007), memories are integrated in the hip-

pocampus and then linked in the neocortex for long-term storage, where information represented in

visual, auditory, somatosensory, or cognitive regions must be bound into a coherent whole

(Wheeler et al., 2000; Horner et al., 2015). It is well established that sleep oscillations actively con-

tribute to this process: during stage 2 sleep spindles, the thalamus generates a rhythmic activity pat-

tern that becomes widespread through large-scale thalamocortical loops (Contreras et al., 1996),

and spindles are critical to sleep-dependent memory consolidation (Gais et al., 2002;

Mednick et al., 2013). Long-range connections in cortex result primarily from excitatory pyramidal

cells (Sholl, 1956; Schüz et al., 2002), but precisely how sleep oscillations aid strengthening of these

excitatory connections between distributed cortical networks through spike-time dependent plastic-

ity (STDP) remains unclear, particularly in the presence of long axonal conduction delays

(Lubenov and Siapas, 2008). Here, we identify a global activity pattern repeatedly observed during

sleep spindle oscillations in human neocortex that could serve this role.

We study intracranial electrocorticogram (ECoG) recordings of five clinical patients in stage 2

sleep and apply recently developed computational methods (Muller et al., 2014) to classify
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spatiotemporal dynamics at the level of individual oscillation cycles. ECoG arrays were implanted in

subjects undergoing evaluation for resective surgery of epileptogenic cortex (Figure 1A, left). Over

several days of recording, these subjects exhibit long periods without major epileptic events. During

that time, subjects express a relatively normal sleep architecture, with well-defined sleep oscillations.

Stage 2 sleep epochs were then manually identified by an expert rater, and sleep spindles recorded

on the ECoG were isolated using automated techniques (Hagler et al., 2016). These spindles

appeared physiologically normal and well-isolated from background noise (Figure 1A, right and Fig-

ure 1—figure supplement 1). Our algorithmic approach classifies spatiotemporal patterns as

expanding waves, defined as a significant linear increase in phase offset with distance from a point

source (Figure 1—figure supplement 2; see Materials and methods – Spatiotemporal dynamics), or

rotating waves, defined as a significant increase in phase offset with rotation about a wave center

(Figure 1—figure supplement 3). In 41,860 spindle oscillation cycles tested across subjects, a large

proportion (50.8%) was classified as rotating waves, along with a smaller subset (15.6%) as expand-

ing. After inspecting these results, we observed further that the rotating waves exhibited a clear bias

towards travel in the temporal ! parietal ! frontal (TPF) direction (69.5%, p<10�10, one-tail bino-

mial test against equal occurrence, 14,796 TPF cycles, 21,272 total; for each individual subject

p<10�3, see Figure 1—source data 1 for individual wave totals) (Figure 1B and Video 1). Propaga-

tion speed distributions peaked between 2–5 m/s (Figure 1C), varying within a narrow range from

the 20th to the 80th percentiles (3–9 m/s for the full distribution; 4–10, 3–8, 3–10, 2–3, and 4–13 m/s

for individual subjects, respectively), within the range of conduction speeds for the short

(Girard et al., 2001) and long (Schüz et al., 2002; Swadlow and Waxman, 2012) white matter asso-

ciation fibers. Further, this rotating TPF organization occurred consistently across subjects and

implantation hemispheres (Figure 1D; see also Figure 1—figure supplements 5–7).

Spike-time dependent plasticity is a well-studied mechanism for regulating synaptic strengths

that depends on the relative timing of presynaptic inputs and postsynaptic spikes (Markram et al.,

1997; Bi and Poo, 1998), but for establishing large-scale neural assemblies during sleep oscillations

through synaptic plasticity, axonal conduction delays pose a specific problem (Lubenov and Siapas,

2008). For example, cortical white matter association fibers have conduction delays up to 50

eLife digest When you wake up in the morning after a good night’s sleep you feel refreshed.

You can also think more clearly because your memory has been re-organized, a process called

memory consolidation. The problem that the brain has to solve during sleep is how to integrate

memories of experiences that happened during the day with old memories, without losing the older

memories.

Scientists know that waves of electrical activity, referred to as spindles, help to consolidate and

integrate memories during sleep. Spindles are active in the cerebral cortex, the part of your brain

used for thinking, in the time between dream sleep and deep sleep. Yet it is not known exactly how

these bursting patterns of electrical activity help to strengthen memories.

Now, Muller et al. explored how the spindles could strengthen and connect parts of memories

stored in distant parts of the brain. First, a computer algorithm analyzed electrical recordings of

brain activity taken while five patients with epilepsy slept. The patients were being monitored to

help with their seizures, and the recordings showed that spindles do not occur at the same time

throughout the cortex as previously thought. Instead, the spindle is a wave that begins in portion of

the cortex near the ear, spirals through the cortex toward the top of back of the head and then on

to the forehead area before circling back.

These repeated circular waves of electrical activity strengthen connections between brain cells in

distant parts of the brain. For example, these waves may help strengthen connections between the

cells of the cortex that separately store memories of the sound, sight and feel of an event during the

day, whether that’s being bitten by a dog or talking with a friend. Next, Muller et al. plan to develop

computer models of the spindles and verify whether their models make accurate predictions by

studying spindles in sleeping mice and rats.

DOI: 10.7554/eLife.17267.002
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Figure 1. Rotating waves during spindles. (A) Electrode placement for subject 1 (left), with a stereotypical spindling epoch observed on the array (right).

The right panel depicts the average over channels (black) together with the individual channels (gray). (B) When visualized on the cortex, individual

spindle cycles are often organized as rotating waves traveling from temporal (+0 ms, top) to parietal (+20 ms, middle) to frontal (+40 ms, bottom) lobes.

(C) Phase speed distributions across subjects. Plotted is the kernel smoothing density estimate for individual subjects (gray dotted lines) and for the full

distribution (black line). (D) The field of propagation directions, aligned on the putative rotation center and averaged across oscillation cycles and

across subjects, shows a consistent flow in the temporal ! parietal ! frontal (TPF) direction. The center point is marked in red.

DOI: 10.7554/eLife.17267.003

The following source data and figure supplements are available for figure 1:

Source data 1. Patient information and wave classification totals.

DOI: 10.7554/eLife.17267.004

Figure supplement 1. Power spectral density and spatial correlation analysis.

Figure 1 continued on next page
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milliseconds across the cortex (Figure 2A, left)

(Girard et al., 2001; Schüz et al., 2002;

Swadlow and Waxman, 2012).

It is well established that spindles cause pyra-

midal cells and interneurons in cortex to fire pref-

erentially at the peak of the surface-positive

(depth-negative) LFP oscillation, both in intracel-

lular (Contreras and Steriade, 1995,

1996; Kandel and Buzsáki, 1997) and extracellu-

lar (Peyrache et al., 2011) recordings. If cortical

spindles were perfectly synchronized, spikes

emitted during one cycle of the spindle oscilla-

tion would arrive at their post-synaptic targets

with this temporal delay, leading to a pairing

within the window for persistent long-term

depression (LTD) that would progressively

weaken long-range connections (Figure 2A,

right). If, however, spindles are self-organized

into large-scale wave-like activity patterns, with

phase speeds matching those of the underlying

fiber networks and stereotyped, precisely repeat-

ing trajectories (Figure 2B, left), then EPSPs

caused by spikes traveling along pyramidal axons

to distant regions in the cortex would align with

the local burst of population activity (Figure 2B,

right), creating the conditions necessary for syn-

aptic strengthening to occur.

Next, we wanted to understand whether these

population activity patterns repeat with the tem-

poral precision required for strengthening of

Figure 1 continued

DOI: 10.7554/eLife.17267.005

Figure supplement 2. Method for isolating expanding spatiotemporal patterns.

DOI: 10.7554/eLife.17267.006

Figure supplement 3. Method for isolating rotating spatiotemporal patterns.

DOI: 10.7554/eLife.17267.007

Figure supplement 4. Analysis of 1528 spindles in Subject 1.

DOI: 10.7554/eLife.17267.008

Figure supplement 5. Vector field averaging controls.

DOI: 10.7554/eLife.17267.009

Figure supplement 6. Vector field distribution control.

DOI: 10.7554/eLife.17267.010

Figure supplement 7. Vector field averages for each subject.

DOI: 10.7554/eLife.17267.011

Figure supplement 8. Distribution of rotation center.

DOI: 10.7554/eLife.17267.012

Figure supplement 9. Summary statistics across subjects.

DOI: 10.7554/eLife.17267.013

Figure supplement 10. Consistent, coherent phase flow during spindles occurs uniquely in the 9–18 Hz frequency band.

DOI: 10.7554/eLife.17267.014

Figure supplement 11. Robustness to noise and center position.

DOI: 10.7554/eLife.17267.015

Figure supplement 12. Local versus global simulated rotating waves.

DOI: 10.7554/eLife.17267.016

Video 1. Rotating waves over five spindle oscillation

cycles. Normalized activity for bandpass filtered

timeseries is plotted in falsecolor at electrode positions

on the cortical surface of Subject 1. The cortical

electrode marked with a red dot (bottom) corresponds

to the black timecourse in the inset (top). The other

ECoG channels are plotted in gray. The time period

visualized corresponds to approximately 300

milliseconds, or five cycles of the spindle oscillation.

Note that no spatial smoothing is applied in these

data.

DOI: 10.7554/eLife.17267.017
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large-scale assemblies. We defined the correlation magnitude over phase values on the electrode

array between individual oscillation cycles to be a pairwise similarity index (see

Materials and methods), in order to detect similar spatiotemporal patterns across oscillation cycles

(Video 2). By calculating this metric over all cycle

pairs in different wave classes (all cycles, expand-

ing, rotational), we can directly compare the tem-

poral precision mediated by each type. The

cumulative distribution function (CDF) of similar-

ity indices among identified rotational waves is

highly shifted to the right (Figure 3A, black) com-

pared to the CDF for all cycles (5 subjects, 42/54

sleep epochs, 77.8% significant, one-tailed two-

sample Kolmogorov-Smirnov test, a ¼ 0:01, Bon-

ferroni correction), indicating higher intra-class

similarity between these cycles than for other

wave types. Note that this is not simply a conse-

quence of the rotational phase pattern itself, as

expanding waves emanating from a consistent

point source could certainly exhibit higher intra-

class similarity than rotational waves with a vary-

ing center. Further, the median similarity index

consistently increases in individual subjects when

rotational waves of progressively increasing

strength are considered (Figure 3B). This
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Figure 2. Schematic of spindles and axonal delays. (A) Spikes emitted from region A will arrive at B with a temporal delay of 20 milliseconds (left). If

spindle oscillations were perfectly synchronized across the cortex, EPSPs from region A would occur after the spikes in region B, within the window for

long-term depression (right). (B) In contrast, if spindles are spatiotemporally organized with stereotyped trajectories (left), then EPSPs from region A

would align with population spiking in region B, allowing for synaptic strengthening to occur.

DOI: 10.7554/eLife.17267.018

Video 2. Rotating waves with high spatiotemporal

similarity. Two rotating waves with high phase similarity

on the ECoG array, separated by 5.62 min of stage 2

sleep. Bandpass filtered timeseries are normalized to

their maximum within the interval and plotted in

falsecolor (bottom panels). Activity for each channel is

plotted as a function of time (top panels), with an

indication of temporal progression (red dotted line).

DOI: 10.7554/eLife.17267.019
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indicates the observed rotating waves strongly modulate temporal precision in repeated patterns of

population activity. To be specific, by utilizing the average temporal frequency for these spindle

oscillations (13.5 Hz), we can estimate that in two cycles whose similarity index falls into the highest

bin in Figure 3C (0.9–1.0), 50% of electrodes will experience an alignment of the spatiotemporal

activity pattern within a 5 millisecond temporal window. Recent experiments have shown a tight

temporal link between field potentials and synaptic currents (both EPSPs and IPSPs; Haider et al.,

2016). By detecting these precisely recurring activity patterns in ECoG recordings, we can infer that

distributed networks composed of local excitatory and inhibitory groups, whose firing is modulated

by thalamocortical fibers during the sleep spindle, are repeatedly activated with a millisecond accu-

racy that is well within the temporal precision required for STDP.

If this millisecond precision in fact mediates formation and maintenance of corticocortical assem-

blies, we would then expect spiking associated with these synaptic currents to drive increased rever-

beration throughout the night, as excitatory connections between local groups of pyramidal cells

and interneurons are strengthened and in turn promote more replay of the expressed activity pat-

tern. High gamma-band power (HGP, 80–120 Hz), a reliable electrophysiological correlate of spiking
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Figure 3. Phase pattern analysis. (A) Rotating waves exhibit higher intra-class similarity. Cumulative distribution functions (CDFs) for shuffled data

(purple), expanding waves (red), all cycles (blue), and rotating waves (black) are given for an example 15 min epoch of stage 2 sleep (subject 5). (B)

Spindle cycles exhibiting stronger rotating patterns also express greater intra-class similarity. Gray lines indicate the median similarity index (ordinate)

for the population of oscillation cycles expressing rotational waves above a threshold strength (abscissa), averaged over individual sleep epochs. Red

dots and error bars indicate the median and median absolute deviation for the full distribution, respectively. (C) Spindle cycles exhibiting high similarity

index are temporally precise. The distribution of phase difference at each electrode across spindle cycles is given as a function of the similarity index

(indicated by colors, inset). By utilizing the mean spindle oscillation frequency (13.5 Hz), the midspread (interquartile range) of each distribution is given

in units of time (inset).

DOI: 10.7554/eLife.17267.020
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activity (Ray et al., 2008; Ray and Maunsell, 2011; Ray, 2015; similar in nature to the ’broadband

power shift’ described in Manning et al., 2009), consistently increases around spindles (Figure 4A).

Further, HGP is modulated by spindle phase (Figure 4B), increasing towards the surface-positive

(depth-negative) peak, consistent with previous animal (Peyrache et al., 2011) and human

(Andrillon et al., 2011) recordings. Finally, by studying repeats of rotating waves over 2.5 hr of con-

tinuous sleep recording in Subject 1, we observe a preliminary indication of increased reverberation

consistent with strengthening of distributed excitatory networks: similarity in the next identified

rotating wave is highly predictive of the number of strong reverberations throughout the night (black
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Figure 4. Spiking activity and increased reverberation. (A) High gamma-band power (HGP) consistently increases around spindle onset. Plotted are the

normalized amplitude envelopes for spindles (black) and HGP (red), averaged over 186 spindles in Subject 1. (B) HGP is modulated by spindle phase.

Plotted is the mean high gamma-band power at each phase of the spindle oscillation (20 bins), for varying amplitudes of the spindle oscillation (see

colorbar), each normalized by the mean HGP in matched non-spindle epochs. (C) Strength of the first repeat predicts the number of strong

reverberations. The number of similar rotational patterns (above similarity index 0.7) following a spindle oscillation cycle is given as a function of the

next cycle’s similarity index (black dots, mean + SEM) over 2.5 hr of sleep in Subject 1. Error bars are obscured by markers. Light blue lines indicate

results from a shuffling permutation test (10 iterations).

DOI: 10.7554/eLife.17267.021

The following figure supplements are available for figure 4:

Figure supplement 1. Strong increase of reverberation observed for rotating, but not expanding, waves.

DOI: 10.7554/eLife.17267.022

Figure supplement 2. Increase in reverberation observed across subjects.

DOI: 10.7554/eLife.17267.023

Figure supplement 3. Modulation of high-gamma power (HGP) by spindle phase across subjects.

DOI: 10.7554/eLife.17267.024

Muller et al. eLife 2016;5:e17267. DOI: 10.7554/eLife.17267 7 of 16

Short report Neuroscience

http://dx.doi.org/10.7554/eLife.17267.021
http://dx.doi.org/10.7554/eLife.17267.022
http://dx.doi.org/10.7554/eLife.17267.023
http://dx.doi.org/10.7554/eLife.17267.024
http://dx.doi.org/10.7554/eLife.17267


dots, Figure 4C). Randomizing the relationship between the next rotating wave and the rest of the

sleep recording eliminates this effect (shuffling control, Figure 4C), and such increased reverberation

is not observed for expanding waves under similar conditions (Figure 4—figure supplement 1). Sim-

ilar observations are consistent across subjects (Figure 4—figure supplement 2). These results sup-

port the hypothesis that precisely repeating rotating waves may enable strengthening of large-scale

corticocortical assemblies throughout the night.

Early animal sleep spindle studies, using up to 8 electrodes in a linear array (Andersen et al.,

1967; Kim et al., 1995; Contreras et al., 1996, 1997), in addition to preliminary EEG evidence in

the human (Achermann and Borbély, 1998), proposed that spindles involve global synchronization

of cortical circuits, raising the possibility that this sleep oscillation places neocortex into a specialized

state for consolidation of long-term memories. In recent years, several studies have reported a mix-

ture of ’local’ and ’global’ spindles using amplitude-duration thresholding approaches (Nir et al.,

2011; Andrillon et al., 2011). By carefully studying the phase information in the spindle frequency

band recorded on large-scale ECoG arrays, we have uncovered that a substantial number of spindle

oscillation cycles are organized into global, hemisphere-spanning patterns of rotating and expanding

waves (Figure 1—figure supplement 7). These patterns most likely represent the characteristic spa-

tiotemporal organization of the ’global’ spindles observed in Andrillon et al. (Andrillon et al., 2011)

(�40% involvement, cf. their Figure 5C), with more localized patterns left unclassified by our detec-

tion approach (Figure 1—figure supplements 9 and 12). These global patterns are likely estab-

lished through widespread thalamocortical loops, placing the cortex into a state of large-scale

coherence (Contreras et al., 1996), shaped into rotating and expanding waves through corticocorti-

cal white matter connections with axonal conduction speeds consistent with the observed propaga-

tion speeds (Figure 1C). Future computational modeling work will address in detail the role of

thalamocortical, corticocortical, and corticothalamic connections in generating the spatiotemporal

activity patterns reported here.

Spindles have recently been specifically and causally implicated in the sleep-dependent consoli-

dation of long-term memories (Mednick et al., 2013; Hennies et al., 2016). While some memories

integrate content from single sensory modalities, requiring consolidation in only single cortical

regions (such as motor cortex, Khazipov et al., 2004), many memories integrate multimodal sensory

and cognitive information (Gibson and Maunsell, 1997), and require ’global’ integration of distrib-

uted networks across the cortex. In this work, we have identified a novel mechanism by which this

process could occur: the stereotyped activity patterns reported here may enable STDP to establish

large-scale neuronal assemblies at scales where axonal conduction delays are long relative to the

oscillation cycle (Fries, 2005; Lubenov and Siapas, 2008), and repeat many times throughout sleep

with millisecond accuracy. While the schema illustrated in Figure 2 is a highly simplified view of the

microscale interactions between long-range excitatory projections and local networks during spindle

oscillations, computational and theoretical studies have previously obtained a detailed understand-

ing of STDP dynamics with neurons receiving sequenced (Rao and Sejnowski, 2001, 2003), bursting

(Song et al., 2000), and oscillating inputs (Muller et al., 2011; Luz and Shamir, 2016). This theoreti-

cal understanding of the interplay between STDP and population activity can allow in future work a

precise account of how microscale synaptic interactions are shaped by global oscillation patterns,

and how variability in these patterns (e.g. variation in wave speed, Figure 1C) will affect this mecha-

nism. Taken together, these results provide insight into how distributed information stored across

cortical regions may be bound into a coherent, integrated, but specific memory through spike-time

dependent synaptic plasticity.

Materials and methods

Subjects
Patients with longstanding pharmacologically resistant complex seizures gave fully informed consent

according to NIH guidelines as monitored by the local Institutional Review Board (Massachusetts

General Hospital). Electrocorticogram (ECoG) recordings during natural sleep were made over the

course of clinical monitoring for spontaneous seizures. Electrode placement was determined solely

by clinical criteria, with electrode grids usually spanning the Sylvian fissure and multiple lobes of the

cerebral cortex (frontal, parietal, and temporal). Patients were informed that participation in the
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research would not alter their clinical treatment in any way, and that they may withdraw their consent

at any time without jeopardizing clinical care.

Electrodes
ECoG contacts (Ad-Tech Medical Instrument Corp., Racine, WI) were 3 mm platinum-iridium (90%

platinum) discs arranged in a two-dimensional grid (8 rows and 8 columns, Subjects 1, 3, and 4; 8

rows and 12 columns, Subject 2; 8 rows and 6 columns, Subject 5) implanted semi-chronically on the

pial surface in an effort to localize the seizure origin. Within the grid, electrodes were spaced 10 mm

apart. In some patients, linear ECoG arrays provided additional spatial coverage; application of our

multichannel detection approach, however, focused on the two-dimensional electrode grid. One

strip of electrodes positioned over the pial surface and facing the skull served as the reference dur-

ing the recordings; results were additionally verified using an average reference. Note that due to

reference artifacts, an average reference was employed for the recordings in Subject 4. We note as

well that the temporal extent of the waves, over tens of milliseconds, makes electrophysiological

artifacts such as volume conduction an unlikely explanation for the observations reported here.

Recordings were performed with clinical EEG monitoring equipment (XLTEK, Natus Medical Inc.,

Pleasanton, CA) and sampled at 500 or 512 Hz.

Electrode localization
Post-implantation electrode localization utilized coregistration of preoperative magnetic resonance

imaging (MRI) with postoperative computed tomography (CT), as described by Dykstra

et al. (Dykstra et al., 2012). Cortical surfaces were computed with FreeSurfer (Dale et al., 1999;

Fischl et al., 1999). To account for the misalignment between the MRI and CT due to the craniot-

omy, the locations of the grid electrodes were projected onto the cortical surface (Dykstra et al.,

2012). Geodesic electrode distances, which take into account the folded geometry of the cortical

surface and were used in some calculations (e.g. estimation of spatial correlation values), were esti-

mated using a shortest paths approach on the cortical surface mesh.

Sleep spindle detection
During the monitoring period for spontaneous seizures, the subjects slept in the clinical environment

and expressed relatively normal sleep patterns. ECoG recordings that did not have a seizure in the

preceding or following 12 hr were scored visually by an expert rater following the standard sleep

stage classification (Silber et al., 2007). For each patient, we obtained from 15 to 101.5 min of

NREM stage 2 sleep, when the spindles are most prevalent. Individual sleep spindles were then

detected during stage 2 sleep using one of several complementary methods, either based on ampli-

tude-duration thresholding (Gais et al., 2002; Warby et al., 2014) or a similar wavelet-based

approach with additional verification steps (Hagler et al., 2016). The number of spindles detected

was in agreement with previous reports of spindle density (Gais et al., 2002; Warby et al., 2014).

The results were additionally verified using a novel approach quantifying the signal-to-noise ratio

(SNR) of power in the bandpass (9–18 Hz, 8th-order Butterworth filter) versus the bandstop (1–

100 Hz bandpass, with 9–18 Hz bandstop) signal. In this approach, the SNR metric is calculated on

short (500 ms) sliding windows in each channel. When the SNR metric reaches 0 dB, the signal and

noise power are at parity, corresponding to a sharp, narrowband epoch in the recording. Picking a

constant SNR threshold (5 dB) corresponds roughly to the constant false alarm rate (CFAR) tech-

nique in radar. This approach yields a conservative but approximately amplitude-invariant method

for detecting arbitrary narrowband epochs in multichannel data.

Power spectral density analysis
Following spindle detection, we made a verification analysis by calculating the average power spec-

tral density (PSD) over isolated spindle epochs in each subject. Data were initially filtered to remove

line noise artifacts, and PSDs were then calculated in 1 s intervals during the spindle and matched

non-spindle epochs. PSDs for individual channel and spindle epochs were concatenated into a large

array and averaged in each case. A clear peak in the 11–15 Hz frequency band for the spindle

epochs can be seen, while no peak is observed in the matched non-spindle epochs (Figure 1—fig-

ure supplement 1A). Divisive normalization is calculated by dividing the power at each frequency in
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the spindle epochs by the power in the matched non-spindle epochs, and expressing the result in

dB (Figure 1—figure supplement 1A, inset). If the divisive normalization over an epoch of stage 2

sleep reached 5 dB, then the spindles were taken to be well-isolated and possessing the spectral

characteristics necessary for an accurate phase representation, and were then included in further

analysis. Based on this calculation, 54 individual epochs of stage 2 sleep, varying from 30 s to 35 min

in duration, were selected in five clinical subjects.

Temporal filtering
Temporal filtering of stage 2 sleep recordings was carried out with an 8th-order digital Butterworth

bandpass filter (9–18 Hz), forward-reverse in time to prevent phase distortion (see MATLAB function

filtfilt). All results were checked with multiple cutoff frequencies to ensure against parametric

sensitivity.

Spatial correlation analysis
To assess spatial correlation during spindle oscillations as a function of distance in the cortex, we

adapted standard methods (Destexhe et al., 1999) with a Monte Carlo implementation more suited

for sampling correlations on two-dimensional electrode arrays. To calculate this metric, one elec-

trode is first selected at random, and a second is then selected from the set of electrodes within a

binned distance di from the first. The temporal correlation between these electrode pairs is then

computed in the bandpass timeseries between the start and end points of the spindle. This process

is repeated for a given number of iterations Nk at each distance bin di, and the average spatial corre-

lation is computed as the mean of the correlation values for the individual epochs (Figure 1—figure

supplement 1B, black). The spatial correlation values were computed for non-spindle epochs

matched to the temporal extent of the individual tested spindle epochs (Figure 1—figure supple-

ment 1B, red). The average spatial correlation values are elevated during spindle oscillations with

respect to the matched non-spindle periods of stage 2 sleep, indicating that a coherent, large-scale

increase in global activity occurs during spindles, in agreement with previous studies

(Destexhe et al., 1999).

Spatiotemporal dynamics
To study spatiotemporal dynamics in these neural recordings, we adapted our previously introduced

method for detecting arbitrarily shaped traveling waves (Muller et al., 2014) to multisite ECoG

arrays (Figure 1—figure supplements 2 and 3). This approach allowed us to characterize and clas-

sify the spatiotemporal dynamics during thousands of episodes of spindling activity in many hours of

sleep recordings. The method proceeds in three steps: (1) analytic signal representation for charac-

terization of instantaneous signal characteristics at each electrode, (2) center localization at each

individual oscillation cycle, and (3) quantification of the spatiotemporal pattern in each oscillation

cycle as a function of distance from (or rotation about) the isolated center point. In the following, we

describe in detail the method for isolating expanding and rotating waves in multichannel data.

To estimate instantaneous signal characteristics, we employ the well-known analytic signal repre-

sentation. This approach entails transforming a real-valued timeseries into a complex phasor, whose

modulus (length) and argument (angle) in the complex plane represent the signal instantaneous

amplitude and phase, respectively. Specifically, if vx;y;t is a real-valued, narrowband timeseries at a

point ðx; yÞ; x 2 ½1;Nc�; y 2 ½1;Nr�, where Nc and Nr denote the number of rows and columns, and t 2

½1;Nt� is the sample number, then its analytic signal representation is

Vx;y;t ¼ vx;y;t þ iv̂x;y;t (1)

where i is the complex unit and f̂ denotes the Hilbert transform of a signal f . The instantaneous

phase of vx;y;t is then the argument at each point in this complex sequence

fx;y;t ¼ ArgðVx;y;tÞ ; (2)

and instantaneous amplitude is the modulus. At several points in the analysis, results were confirmed

with an FIR implementation of the Hilbert transform, in addition to the standard FFT-based approach

(Marple, 1999). We evaluated phase values at a set of time points T ¼ ft1; t2; . . . ; tKg in each spindle
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near the positive oscillation peaks. The phase fields were then smoothed using a robust approach

(Garcia, 2010) for center localization to reduce noise and interpolate values from missing electrodes;

note that the smoothed values were not used in the calculations for detecting expanding and rota-

tional wave patterns.

These phase values are then used to capture spatiotemporal dynamics in the multichannel data.

To isolate putative expanding or rotating wave centers in each oscillation cycle, we first assess the

spatial gradient of phase

~gx;y;tj ��rfx;y;tj
(3)

with tj 2 T . For the spatial gradient, derivatives are taken across the two dimensions of space and

are approximated by the appropriate forward and centered finite differences. As in previous work,

phase derivatives were implemented as multiplications in the complex plane (Feldman, 2011;

Muller et al., 2014).

Detection of expanding waves
To detect expanding waves, we assess the divergence of the phase gradient field

dx;y;tj ¼r�~gx;y;tj ; (4)

and define the putative wave source to be that point which satisfies the arg max over space in each

cycle

S � ðx;y; tjÞ ¼
x;y

arg maxdx;y;tj ; (5)

where argmax f ða;bÞ � fa;b j8p;q : f ðp;qÞ � f ða;bÞg. This step allows us to find the source for a possi-

ble expanding wave in each cycle (step 2, Figure 1—figure supplement 2), about which the phase

field is then evaluated to quantify the evidence for an expanding wave spatiotemporal organization

(step 3, Figure 1—figure supplement 2). For this next step, we calculate the circular-linear correla-

tion coefficient �f;d (Jammalakadaka and Sengupta, 2001; Berens, 2009) between signal phase f

and radial distance d from the source point in the original, unsmoothed phase field

�f;d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2cd þ r2sd � 2rcdrsdrcs

1� r2cs

s

; (6)

where rcd represents the Pearson correlation between the cosine of the circular variable f and the

linear variable d, rsd between the sine of f and the variable d, and rcs between the cosine and sine of

f. This approach allows us to quantify the strength of the spatiotemporal pattern of activity on the

array in a single number, which is then compared to the value produced by repeating the calcula-

tions many times under random shuffling of the data (blue dotted line, Figure 1—figure supple-

ment 4A and Materials and methods – Shuffling Controls).

Detection of rotating waves
Analogous to the above case, we start by assessing the curl of the phase gradient field

~cx;y;tj ¼r�~gx;y;tj ; (7)

and defining the putative center to be that point which satisfies the arg max over space

C � ðx;y; tjÞ ¼
x;y

argmax jj~cx;y;tj jj : (8)

This center point then defines an anchor about which we can pass into a polar coordinate system,

describing the distance d and rotation angle � about that point (step 2, Figure 1—figure supple-

ment 3). With the putative rotation center isolated in each oscillation cycle, we then proceed to cal-

culate the circular-circular correlation coefficient �f;� between signal phase f and rotation angle

� (Fisher, 1993; Berens, 2009) in the original, unsmoothed phase field
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�f;� ¼�

P

xy sinðfxy�fÞ sinð�xy� �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

xy sin
2ðfxy�fÞ sin2ð�xy� �Þ

q ; (9)

where overbar indicates circular mean

f¼ Arg

�

X

xy

eifxy

�

: (10)

Similar to the previous case, this number �f;� quantifies the evidence for a rotational wave organi-

zation on the array, which is then compared to the value derived from a random-shuffling permuta-

tion test (red dotted line, Figure 1—figure supplement 4A and Materials and methods – Shuffling

Controls). For each case, additional control analyses with simulated rotating waves embedded in

noise were used to verify the robustness of our approach (Figure 1—figure supplement 11). Finally,

in the case that both expanding and rotational elements are detected, the pattern is classified as

rotational, because sub-patterns of rotational waves tend to be detected as expanding elements

(verified in Figure 1—figure supplement 5; see also Materials and methods – Average vector field

controls).

Shuffling controls
To quantify the level of spatiotemporal phase flow expected in the data by chance, we implemented

a shuffling procedure to establish a permutation-based threshold for both the expanding and rotat-

ing wave measures. To do this, we shuffled the phase values in each oscillation cycle randomly across

space a number of times (100 or 1000 times in initial tests, then reduced to 25 without changing

results), repeating each time the same calculation as for the un-shuffled data. The 99th percentile of

the resulting distribution then determines a threshold above which the value for the correlation met-

ric (either for expanding or rotational waves, considered separately) exceeds chance, with the spatial

autocorrelation erased.

A possible confound resulting from this shuffling procedure is that the data intrinsically possess

some spatial autocorrelation (Figure 1—figure supplement 1B), which is ignored by the so-con-

structed permutation test. To address this point in the context of rotational wave detection, we con-

ceived an additional permutation test control. In this second control, we considered the set of points

at a Chebyshev (i.e. King’s chessboard) distance di 2 ½1; dm� from the putative rotation center, where

dm indicates the maximum distance on the electrode array from that point. We then shuffled chan-

nels at distances di for all i, and repeated the calculation for the rotational wave detection. The

resulting permuted data have a spatial correlation function identical to that in the un-shuffled data,

but with the rotational structure fully destroyed. The 99th percentile cutoff determined from this sec-

ond control analysis fell within 0.01 of the originally estimated value (3% difference), validating the

original shuffling permutation test employed above.

Simulated data controls
Using simulated expanding waves of the form

f ðt;dÞ ¼ Aeið!t�kdÞþshðtÞ ; (11)

and simulated rotating waves

f ðt; �Þ ¼ Aeið!t�g�ÞþshðtÞ ; (12)

where A is the oscillation amplitude, ! is the oscillation angular frequency, k is the wavenumber, g is

the polar wavenumber, and hðtÞ is a Gaussian white noise term, we verified the robustness of our

detection approach under noise of varying amplitudes. Note that d and � are defined with respect to

the wave center, left unspecified for simplicity. Oscillation amplitude was set to unity, without loss of

generality, and other oscillation parameters were matched to those observed during stage 2 sleep

spindles. Oscillation frequency ! was set to the average instantaneous frequency estimated from

702 spindles in Subject 1 (13.5 Hz), and wavenumbers were adjusted to approximate the wave-

lengths observed in the data. Varying systematically the level of added noise, we ran the algorithms
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for detecting expanding and rotating waves described above for 25 trials at each point and

recorded the algorithm’s detection performance in each case (mean � SEM, Figure 1—figure sup-

plement 11C). These results illustrate the approximate invariance of our computational approach to

random noise.

In another test, we systematically varied the position of the wave center on the simulated 64 elec-

trode array, for both expanding and rotational waves (Figure 1—figure supplement 11D). Parame-

ters were set as above, and simulations were again run over 25 trials at each point. This test probed

the sensitivity of the rotational detection approach to border effects, which is expected to be negli-

gible at the encountered noise levels in comparison to the thresholds established by the permuta-

tion controls (dotted lines, Figure 1—figure supplement 11D).

In a third test, we verified that the spatiotemporal patterns observed here are not due to varia-

tions in spindle frequency, which are known to occur along the rostro-caudal axis (Peter-

Derex et al., 2012). To do this, we re-ran our analysis on one stage 2 sleep session containing 179

spindles in Subject 1, generating surrogate data as follows. Each electrode evolved in time accord-

ing to its mean instantaneous frequency during the spindle, but with a randomized initial phase

angle. These surrogate data thus possessed the same frequency content on average as in the origi-

nal data, but with their spatial organization of phase removed. In this control, both rotating and

expanding wave patterns were highly decreased (3.5% and 0.8% of cycles, respectively, compared

to 64% and 14% in the original data).

Average vector field controls
The algorithmic classification of wave patterns in individual oscillation cycles involves several steps,

and we wanted to make an independent check to verify these results. To do this, we adopted a re-

centered averaging approach, shifting the vector field of propagation directions from the smoothed

phase fields at each oscillation cycle to the putative rotation center (red dots, Figure 1—figure sup-

plement 5), and taking the circular mean (Fisher, 1993; Berens, 2009) of propagation direction at

each point. Performing the calculation in this way prevents regions with noise or high phase gradient

magnitude from dominating the result. The obtained vector fields for rotational TPF (Figure 1—fig-

ure supplement 5A) and expanding (Figure 1—figure supplement 5B) waves illustrate the accuracy

of the algorithm and the general validity of our classification approach in separating waves into

expanding and rotational groups.

Phase map correlation analysis
To quantify the precision of repeated spatiotemporal patterns during across spindle oscillations over

several minutes of data, we calculated the circular-circular correlation between phase values in indi-

vidual oscillation cycles. For two phase maps ax;y and bx;y, the circular correlation is defined as

above (Fisher, 1993; Berens, 2009)

�a;b ¼

P

xy sinðaxy�aÞsinðbxy�bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

xy sin
2ðaxy�aÞsin2ðbxy�bÞ

q : (13)

This correlation value defined between individual phase maps then constitutes elements of an

M�M matrix Cij, where M is the number of isolated oscillation cycles in question:

Cij ¼

1 �1;2 �1;3 �1;4 � � � �1;M
�2;1 1 �2;3 �2;4 � � � �2;M
�3;1 �3;2 1 �3;4 � � � �3;M
�4;1 �4;2 �4;3 1 � � � �4;M

..

. ..
. ..

. ..
. . .

. ..
.

�M;1 �M;2 �M;3 �M;4 � � � 1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

where all elements in the diagonal and lower triangle (Cij 8 i� j) are not considered, without loss

of generality. We then construct this matrix for all cycles in an individual wave classification (all

cycles, expanding, rotational), and consider the cumulative distribution function (CDF) of values in

the upper triangle (Figure 3A). To construct the CDF in the permutation case (Figure 3A, purple
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line), we first randomly shuffled the phase maps in all spindle cycles and then proceeded with the

calculation as normal.

Code availability
A MATLAB toolbox for analysis of traveling waves and complex spatiotemporal dynamics in noisy

multisite data is available as an open-source release on BitBucket: http://bitbucket.org/lylemuller/

wave-matlab
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