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Abstract1

Determining the structures, kinetics, thermodynamics and mechanisms that underlie conformational2

exchange processes in proteins remains extremely difficult. Only in favourable cases is it possible to pro-3

vide atomic-level descriptions of sparsely populated and transiently formed alternative conformations.4

Here we benchmark the ability of enhanced-sampling molecular dynamics simulations to determine the5

free energy landscape of the L99A cavity mutant of T4 lysozyme. We find that the simulations capture6

key properties previously measured by NMR relaxation dispersion methods including the structure of7

a minor conformation, the kinetics and thermodynamics of conformational exchange, and the effect of8

mutations. We discover a new tunnel that involves the transient exposure towards the solvent of an9

internal cavity, and show it to be relevant for ligand escape. Together, our results provide a compre-10

hensive view of the structural landscape of a protein, and point forward to studies of conformational11

exchange in systems that are less characterized experimentally.12
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Introduction16

Proteins are dynamical entities whose ability to change shape often plays essential roles in function.17

From an experimental point of view, intra-basin dynamics is often described via conformational en-18

sembles whereas larger scale (and often slower) motions are characterized as conformational exchange19

between distinct conformational states. The latter are often simplified as a two-site exchange process,20

G
 E, between a highly populated ground (G) state, and a transiently populated minor (or ‘excited’,21

E) state. While the structure of the ground state may often be determined by conventional struc-22

tural biology tools, it is very difficult to obtain atomic-level insight into minor conformations due to23

their transient nature and low populations. As these minor conformations may, however, be critical to24

protein functions, including protein folding, ligand binding, enzyme catalysis, and signal transduction25

[1, 2, 3] it is important to be able to characterize them in detail. While it may in certain cases be26

possible to capture sparsely populated conformations in crystals under perturbed experimental con-27

ditions, or to examine their structures by analysis of electron density maps [4], NMR spectroscopy28

provides unique opportunities to study the dynamical equilibrium between major and minor confor-29

mations [3, 5] via e.g. chemical-exchange saturation transfer [6], Carr-Purcell-Meiboom-Gill (CPMG)30

relaxation dispersion [7], or indirectly via paramagnetic relaxation enhancement [2] or residual dipolar31

coupling [8] experiments. In favorable cases such experiments can provide not only thermodynamic32

and kinetic information (i.e. the population of G and E states and the rate of exchange between them),33

but also structural information in the form of chemical shifts (CS), that can be used to determine the34

structure of the transiently populated state [5].35

Despite the important developments in NMR described above, it remains very difficult to obtain36

structural models of minor conformations, and a substantial amount of experiments are required.37

Further, it is generally not possible to use such experiments to infer the mechanisms of interconversion,38

and to provide a more global description of the multi-state free energy landscape [9, 10]. In the language39

of energy landscape theory [11], free energy basins and their depths control the population and stability40

of functionally distinct states, while the relative positions of basins and the inter-basin barrier heights41

determine the kinetics and mechanism of conformational exchange. As a complement to experiments,42

such functional landscapes can be explored by in silico techniques, such as molecular dynamics (MD)43

simulations, that may both be used to help interpret experimental data and provide new hypotheses44

for testing [12, 13]. Nevertheless, the general applicability of simulation methods may be limited by45
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both the accuracy of the physical models (i.e. force fields) used to describe the free energy landscape46

and our ability to sample these efficiently by computation. We therefore set out to benchmark the47

ability of simulations to determine conformational free energy landscapes.48

The L99A variant of lysozyme from the T4 bacteriophage (T4L) has proven an excellent model system49

to understand protein structure and dynamics. Originally designed a ‘cavity creating’ variant to50

probe protein stability [14] it was also demonstrated that the large (150 Å3) internal cavity can bind51

hydrophobic ligands such as benzene [15, 16]. It was early established that the cavity is inaccessible to52

solvent in the ground state, but that ligand binding is rapid [17], suggesting protein dynamics to play53

a potential role in the binding process. This posts a long-standing question of how the ligands gain54

access to the buried cavity [18, 19, 20].55

NMR relaxation dispersion measurements of L99A T4L demonstrated that this variant, but not the wild56

type protein, displayed conformational exchange on the millisecond timescale between the ground state57

and a minor state populated at around 3% (at room temperature) [1]. Such small populations generally58

lead only to minimal perturbations of ensemble-averaged experimental quantities making structural59

studies difficult, and hence it was difficult to probe whether the exchange process indeed allowed for60

ligand access to the cavity. A series of additional relaxation dispersion experiments, however, made it61

possible to obtain backbone and side chain CSs of the minor E state of L99A [22, 21]. The backbone62

CS data were subsequently used as input to a CS-based structure refinement protocol (CS-ROSETTA)63

to produce a structural model of the E state (EROSETTA; Fig. 1) of the L99A mutant [21]. This model64

was based in part on the crystal structure of the ground state of L99A (referred to in what follows65

as GXray), but perturbing the structure in regions that the experiments demonstrated to undergo66

conformational change in a way so that the final model (EROSETTA) agrees with experiments. The67

structure was further validated by creating and solving the structure of a triple mutant variant that68

inverts the populations of the G and E states. The EROSETTA structure revealed substantial local69

rearrangements in T4L L99A, in particular near the cavity which gets filled by the side chain of a70

phenylalanine at position 114 (F114). Because the cavity is filled and solvent inaccessible in the E-71

state, the structure did, however, not reveal how ligands might access the cavity.72

In an attempt to benchmark the ability of simulations to map conformational free energy landscapes,73

we have here employed a series of in silico experiments designed to probe the structure and dynamics74

of L99A T4L and have compared the results to NMR measurements. We used enhanced-sampling MD75

simulations in explicit solvent and with state-of-the-art force fields to map the free-energy landscape76

including the exchange between the major and minor conformations of the protein. We used a series77

of recently developed metadynamics methods [23] to sample the conformational exchange process and78

associated structure and thermodynamics, as well as to determine the kinetics and mechanisms of79

exchange. We obtained additional insight into the structural dynamics of the E state using simulations80

that employed the experimental CSs as replica-averaged restraints. Our results provide a coherent81

picture of the conformational dynamics in L99A and extends recent simulations of a triple mutant of82

T4L[24], by providing new insights into the mechanisms of exchange and the transient exposure of83

the internal cavity. Together with previous results for Cyclophilin A [25] the results described here84

reiterate how simulation methods have now reached a stage where they can be used to study slow,85

conformational exchange processes such as those probed by NMR relaxation dispersion even in cases86

where less information is available from experiments.87

Results and Discussion88

Mapping the free-energy landscape89

As the average lifetime of the G and E states are on the order of 20–50ms and 1ms, respectively90

[1, 22, 21], direct and reversible sampling of the G-E transition at equilibrium would be extremely91

demanding computationally. Indeed, a recent set of simulations of a triple mutant of T4L, which92

has a substantially faster kinetics, was able only to observe spontaneous transitions in one direction93
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[24]. We therefore resorted to a set of flexible and efficient enhanced sampling methods, collectively94

known as ‘metadynamics’ [23], that have previously been used in a wide range of applications. In95

metadynamics simulations, a time-dependent bias is continuously added to the energy surface along96

a small number of user-defined collective variables (CVs). In this way, sampling is enhanced to reach97

new regions of conformational space and at the same time allows one to reconstruct the (Boltzmann)98

free-energy surface. The success of the approach hinges on the ability to find a set of CVs that together99

describe the slowly varying degrees of freedom and map the important regions of the conformational100

landscape.101

We first performed a set of metadynamics simulations in the well-tempered ensemble [26] using so-102

called path CVs (Spath and Zpath) [27, 28] with the aid of recently developed adaptive hills to aid103

in convergence of the sampling [29, 30] (see details in Appendix and Appendix-Table S1). In short,104

the Spath variable describes the progress of the conformational transition between the GXray and105

EROSETTA structures with additional ‘interpolation’ using an optimal ‘reference’ path in a simplified106

model (see details in Appendix and Figure 2-figure supplement 1), while Zpath measures the distance107

to this reference path. In this way, the two-dimensional free energy landscape along Spath and Zpath108

provides a useful description on conformational exchange between ground and excited states that does109

not assume that the initial reference path describes perfectly the actual path(s) taken.110

Projecting the sampled free energy landscape along Spath (upper panel of Figure 2) reveals a deep,111

narrow free energy basin around Spath = 0.2 (labeled by red sphere and corresponding to the G112

state), and a broader, shallow free energy basin with Spath ranging from 0.6 to 0.8 (labeled by blue113

sphere and corresponding to the E state). Additional information is obtained from the two-dimensional114

landscape (shown as a negative free energy landscape of -F(Spath, Zpath) in the lower panel of Figure115

2) which reveals a complex and rough landscape with multiple free energy minima (corresponding to116

mountains in the negative free energy landscape). Subsequently, structural inspection of these minima117

identified that the conformations in the basins around Spath = 0.2 and Spath = 0.75 to correspond to118

the structures of GXray and EROSETTA, respectively.119

The broad nature of the free energy landscape in the region of the minor state is consistent with120

the observation that our MD simulations initiated from EROSETTA display significant conformational121

fluctuations (RUN20 and RUN22 in Appendix-Table S1). Furthermore, our metadynamics simulations122

revealed multiple local free energy minima adjacent to the EROSETTA basin, together composing a123

wider basin (highlighted by the black curve in Figure 2). Thus, these simulations suggest that the124

E state displays substantial conformational dynamics, a result corroborated by simulations that have125

been biased by the experimental data (see section ‘Simulations of the minor state using chemical shift126

restraints’).127

In addition to free-energy minima corresponding to the G and E states, we also found a free energy128

minimum around Spath = 0.36 and Zpath = 0.05nm2 (denoted as I0.36 and labeled by yellow sphere129

in Figure 2) that is located between the G and E states on the one-dimensional free-energy surface.130

We note, however, that it is difficult to infer dominant reaction pathways from such free energy sur-131

faces, and so from this data alone we cannot determine whether I0.36 occurs as an intermediate in132

G-E conformational transitions. Indeed, it appears from the two-dimensional surface that there exist133

multiple possible pathways between G and E, as illustrated by grey lines along the mountain ridges of134

the negative free energy landscape in the lower panel of Figure 2. (We also explored the mechanism135

of exchange by reconnaissance metadynamics simulations [31], the results of which are described and136

discussed further below.)137

Effect of mutations on the free energy landscape138

Based on the encouraging results above for L99A T4L, we examined whether simulations could also139

capture the effect of mutations of the free energy landscape. Using Rosetta energy calculations on the140

GXray and EROSETTA structures it was previously demonstrated that two additional mutations, G113A141

and R119P, when introduced into the L99A background, cause an inversion in the populations of the two142

4



states [21, 24]. Indeed, NMR data demonstrated that the triple mutant roughly inverts the populations143

of the two states so that the minor state structure (of L99A) now dominates (with a 96% population)144

the triple mutant. We repeated the calculations described above for L99A also for the triple mutant.145

Remarkably, the free energy profile of the triple mutant obtained using metadynamics simulations146

reveals a free energy landscape with a dominant minimum around Spath=0.7 and a higher energy147

conformation around Spath=0.15 (Figure 2-figure supplement 2). Thus, like our previous observations148

for a ‘state-inverting mutation’ in Cyclophilin A [25], we find here that the force field and sampling149

method are sufficiently accurate to capture the effect of point mutations on the free energy landscape.150

Further, we note that the barrier height for the conformational exchange in the triple mutant is151

very similar to the value recently estimated using a completely orthogonal approach [24]. Finally,152

we attempted to determine the free energy landscape of the L99A,G113A double mutant, which has153

roughly equal populations of the two states[21], but this simulation did not converge on the simulation154

timescales at which the two other variants converged.155

Calculating conformational free energies156

With a free-energy surface in hand and a method to distinguish G- and E-state conformations we157

calculated the free energy difference, ∆G, between the two conformational states, and compared with158

the experimental values. We divided the global conformational space into two coarse-grained states by159

defining the separatrix at Spath = 0.46 which corresponds to a saddle point on the free energy surface,160

on the basis of the observations above that the E state is relatively broad. Although a stricter definition161

of how to divide the reaction coordinate certainly helps the precise calculation, here we just used this162

simple definition to make an approximate estimation of the free energy difference. Further, since the163

barrier region is sparsely populated, the exact point of division has only a modest effect on the results.164

By summing the populations on the two sides of the barrier we calculated ∆G as a function of the165

simulation time (Figure 3). Initially during the simulations the free energy profile varies substantially166

(Figure 2) and the free energy difference equally fluctuates. As the simulations converge, however, the167

free energy difference between the two states stabilize to a value at approximately ∆G=3.5 kcal mol−1168

(Figure 3, black line). This value can be compared to the value of 2.1 kcal mol−1 obtained from NMR169

relaxation dispersion experiments [1], revealing reasonably good, albeit not exact, agreement with the170

experiments.171

Similar calculations using the simulations of the triple mutant also converge, in this case to about172

-1.6 kcal mol−1 (Figure 3, blue line), in excellent agreement with the experimental measurement (-173

1.9 kcal mol−1) [21]. Combining these two free energy differences we find that the G113A, R119P174

mutations cause a shift in the G-E free energy of 5.1 kcal mol−1 in simulations compared to 4.0 kcal175

mol−1 obtained by experiments. Thus, we find that the simulations with reasonably high accuracy are176

able to capture the thermodynamics of the conformational exchange between the two states. While177

the generality of such observations will need to be established by additional studies we note here178

that comparably good agreement was obtained when estimating the effect of the S99T mutations in179

Cyclophilin A [25].180

In our previous work on Cyclophilin A [25] we sampled the conformational exchange using parallel-181

tempering metadynamics simulations [32] using four CVs that we chose to describe the structural182

differences between the G and E states in that protein. We note here that we also tried a similar183

approach here but unfortunately failed to observe a complete G-to-E transition, even in a relatively184

long trajectory of about 1µs per replica (CVs summarized in Appendix-Table S2, parameters shown185

in Appendix-Table S1). This negative results is likely due to the CVs chosen did not fully capture the186

relevant, slowly changing degrees of freedom, thus giving rise insufficient sampling even with the use187

of a parallel tempering scheme.188
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Calculating the rates of conformational exchange189

Enhanced-sampling simulations such as those described above provide an effective means of mapping190

the free-energy landscape and hence the structural and thermodynamic aspects of conformational191

exchange. While the same free-energy landscape also determines the kinetics and mechanisms of ex-192

change it may be more difficult to extract this information from e.g. path-CV-based metadynamics193

(PathMetaD) simulations. To examine how well simulations can also be used to determine the rates194

of the G-to-E transitions, quantities that can also be measured by NMR, we used the recently devel-195

oped ‘infrequent metadynamics’ method (InMetaD, see details in Appendix) [42, 43, 44, 45]. Briefly196

described, the approach calculates first-passage times for the conformational change in the presence of197

a slowly-added bias along a few CVs, here chosen as the path CVs also used to map the landscape. By198

adding the bias slowly (and with lower amplitude) we aim to avoid biasing the transition-state region199

and hence to increase the rate only by lowering the barrier height; in this way it is possible to correct200

the first-passage times for the bias introduced.201

Using this approach on L99A T4L we collected 42 and 36 independent trajectories with state-to-state202

transition starting from either the G state or E state, respectively (Appendix-Figure S1 and S2). The203

(unbiased) rates that we calculated (Table 1 and Appendix-Figure S3) are in good agreement with the204

experimental rates [1, 21] (within a factor of 10), corresponding to an average error of the barrier height205

of ∼1 kcal mol−1. We also performed similar calculations for the ‘population-inverting’ triple mutant,206

where we collected 30 transitions (15 for each direction) using InMetaD simulations. As for L99A, we207

also here find similarly good agreement with experimental measurements[24] (Table 1 and Appendix-208

Figure S4). We estimated the reliability of this computational approach using a Kolmogorov-Smirnov209

test to examine whether the first-passage times conform to the expected Poisson distribution [43], and210

indeed the results of this analysis suggest good agreement (Table 1-Appendix-Figure S5 and S6).211

The ability to calculate forward and backward rates between G and E provided us with an alternative212

and independent means to estimate the free energy difference between the two states (Table 1), and213

to test the two-state assumption used in the analysis of the experimental NMR data. We therefore214

calculated the free energy difference from the ratio of the forward and backward reaction rates. The215

values obtained (2.9±0.5 kcal mol−1 and -1.2±1.1 kcal mol−1 for L99A and the triple mutant, respec-216

tively) are close both to the values obtained above from the equilibrium free energy landscape (3.5 kcal217

mol−1 and -1.6 kcal mol−1) and experiment (2.1 kcal mol−1 and -1.9 kcal mol−1). In particular, the218

relatively close agreement between the two independent computational estimates lends credibility both219

to the free energy landscape and the approach used to estimate the kinetics. The observation that220

both values for L99A are slightly larger than the experimental number suggests that this discrepancy221

(ca. 1 kcal mol−1) can likely be explained by remaining force field deficiencies rather than lack of222

convergence or the computational approach used.223

Simulations of the minor state using chemical shift restraints224

While the simulations described above used available structural information of G and E states to guide225

and enhance conformational sampling, the resulting free energy surfaces represent the Boltzmann226

distributions of the force field and are not otherwise biased by experimental data. To further refine227

the structural model of the E state we used the relaxation-dispersion derived CSs that were used to228

determine of EROSETTA (BMRB [33] entry 17604) as input to restrained MD simulations. In these229

simulations, we used the experimental data as a system-specific force field correction to derive an230

ensemble of conformations that is compatible both with the force field and the CSs. Such replica-231

averaged simulations use the experimental data in a minimally-biased way that is consistent with the232

Principle of Maximum Entropy [34, 35, 36, 37].233

We performed CS-restrained MD simulations of the E state of L99A averaging the CSs over four234

replicas. Although the number of replicas is a free parameter, which should in principle be chosen as235

large as possible, it has been demonstrated that four replicas are sufficient to reproduce the structural236
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heterogeneity accurately [38] without excessive computational requirements. The agreement between237

calculated and experimental CSs was quantified by the root-mean-square deviation between the two238

(Figure 4-figure supplement 1). In particular, it is important not to bias the agreement beyond what239

can be expected based on the inherent accuracy of the CS prediction methods (we assumed that240

the error in the experimental CS measurement even for the E state is negligible in comparison).241

Thus, we compared the experimental CS values of the minor state with the values calculated using the242

EROSETTA structure as input to CamShift[39], Sparta+[40] and ShiftX[41] (Figure 4-figure supplement243

2). The average RMSDs for five measured nuclei (Hα, HN , N , C ′ and Cα) are 0.2, 0.4, 2.0, 0.8 and244

1.1ppm, respectively (Appendix-Table S3), which are close to the inherent uncertainty of the CS back-245

calculation, indicating that the level of agreement enforced is reasonable.246

To compare the results of these experimentally-biased simulations with the experimentally-unbiased247

simulations described above, we projected the CS-restrained MD trajectories onto either one (Figure248

4) or both (Figure 4-figure supplement 3) of the Spath and Zpath variables used in the path-variable-249

driven simulations (PathMetaD). The distribution of conformations obtained using the E-state CSs250

as restraints is in good agreement with the broad free energy profile of the E-state obtained in the251

metadynamics simulations that did not include any experimental restraints. To ensure that this ob-252

servation is not merely an artifact of both simulations using the same force field (CHARMM22*), we253

repeated the biased simulations using the Amber ff99SB*-ILDN force field and obtained comparable254

results. We also verified that the conclusions obtained are reasonably robust to other variables such255

as the number of replicas and the strength of restraints (Figure 4-figure supplement 4).256

As a final and independent test of the structural ensemble of the minor conformation of L99A we used257

the ground state CSs of the triple mutant (BMRB entry 17603), which corresponds structurally to the258

E state of L99A, as restraints in replica-averaged CS-biased simulations (Figure 4-figure supplement 5).259

Although not fully converged, these simulations also cover roughly the same region of conformational260

space when projected along Spath (Figure 4).261

Thus, together our different simulations, which employ different force fields, are either unbiased or262

biased by experimental data, and use either dispersion-derived (L99A) or directly obtained (triple263

mutant) CS all provide a consistent view of the minor E-state conformation of L99A. We also note264

that the CS-derived ensembles of the E-state support the way we divided the G- and E-states when265

calculating conformational free energy differences between the two states.266

Mechanisms of conformational exchange267

Having validated that our simulations can provide a relatively accurate description of the structure,268

thermodynamics and kinetics of conformational exchange we proceeded to explore the molecular mecha-269

nism of the G-to-E transitions. We used the recently developed reconnaissance metadynamics approach270

[46], that was specifically designed to enhance sampling of complicated conformational transitions and271

has been employed to explore the conformational dynamics of complex systems [31, 47].272

We performed three independent reconnaissance metadynamics simulations of L99A starting from273

the G state (summarized in Appendix-Table S1) using the same geometry-based CVs that we also274

used in the parallel-tempering simulations described above. We observed complete conformational275

transitions from the G to E state in the reconnaissance simulations in as little as tens of nanoseconds276

of simulations (Figure 5-figure supplement 1) — at least 1–2 orders of magnitude faster than standard277

metadynamics. These G-to-E and E-to-G transitions, although biased by the CVs, provide insight into278

the potential mechanisms of exchange. To ease comparison with the equilibrium sampling of the free279

energy landscape we projected these transitions onto the free energy surface F(Spath,Zpath) (Figure 5).280

The results reveal multiple possible routes connecting the G and E states, consistent with the multiple281

gullies found on the free energy surface (Figure 2). The trajectories also suggested that the G-to-E282

interconversion can either take place directly without passing the I0.36 state or indirectly via it.283

In the context of coarse-grained kinetic models the results above would suggest at least two possible284
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mechanisms operate in parallel: G 
 E or G 
 I0.36 
 E. Further inspection of the structures285

along these different kinetics routes (see the trajectories of other order parameters in Figure 5-figure286

supplement 2 and Videos 1-4) suggested an interesting distinction between the two. In the G
 I0.36 
287

E route the side chain of F114, which occupies the cavity in the E state, gets transiently exposed to288

solvent during the transition, whereas in the direct G 
 E transitions F114 can rotate its side chain289

inside the protein core (see also the solvent accessible surface area calculation of F114 in Figure 5-figure290

supplement 3).291

A potential pathway for ligand binding and escape292

As the internal cavity in L99A T4L remains buried in both the G and E states (and indeed occupied by293

F114 in the E state) it remains unclear how ligands access this internal cavity and how rapid binding294

and release is achieved. Visual inspection of our trajectories and solvent-accessible surface area analysis295

revealed structures with transient exposure of the internal cavity towards the solvent. The structures296

were mostly found in a region of conformational space that mapped onto the I0.36 basin (Figure 2), and297

the events of that basin mostly took place between 430ns and 447ns (see Video 5). Thus, we mapped298

these structures to the free energy surface (Figure 6-figure supplement 1) and analysed them. Overall,299

the structure is more similar to the G- than E-state, though is more loosely packed. The similarity to300

the G-state is compatible with rapid binding and position of F114 in this state.301

We used CAVER3[48] (see parameters in Appendix-Table S4) to analyse the structures and found302

multiple tunnels connecting the cavity with protein surface (Figure 6-figure supplement 1 and 2). The303

tunnels are relatively narrow with the typical radius of the bottleneck (defined as the narrowest part304

of a given tunnel) between ∼ 1Å – ∼ 2Å. We used CAVER Analyst1.0 [49] (see details in Appendix305

and parameters in Appendix-Table S4) to separate the tunnels into different clusters (Figure 6-figure306

supplement 3 and Appendix-Table S5) with the dominant cluster (denoted tunnel#1) having a entrance307

located at the groove between HF and HI . A typical representative structure of I0.36 is shown in Figure308

6A. The radii along the structures in cluster #1 vary, but share an overall shape (Figure 6-figure309

supplement 1), and we find that the maximal bottleneck radius is ∼ 2.5 Å, the average bottleneck310

radius is ∼ 1.3 Å, and the average length ∼ 11.2 Å.311

Interestingly, a series of structures of L99A were recently described, in which the internal cavity312

where filled with eight congeneric ligands of increasing size to eventually open the structure size[20].313

We performed a comparable tunnel analysis on those eight ligand-bound structures (PDB ID codes:314

4W52 – 4W59), revealing the maximal bottleneck radius of 1.8 Å (bound with n-hexylbenzene, 4W59).315

Although the size of the tunnel in these X-ray structures is slightly smaller than that in I0.36 structures,316

the location of the tunnel exit is consistent with the dominant tunnel#1 in I0.36 (Figure 6-figure317

supplement 3). We note, however, that the tunnels observed in our simulation and in the ligand-318

induced cavity-open X-ray structure (4W59), are too narrow to allow for unhindered passage of e.g.319

benzene with its a van der Waals’ width of 3.5 Å [15]. Thus, we speculate that the transient exposure320

in I0.36 might serve as a possible starting point for ligand (un)binding, which would induce [50, 19, 10]321

further the opening of the tunnel.322

As an initial step towards characterizing the mechanism of ligand binding and escape we used adiabatic323

biased molecular dynamics (ABMD) simulations [51, 52] to study the mechanism of how benzene es-324

capes the internal cavity (see Appendix for details). In ABMD the system is perturbed by a ‘ratcheting325

potential’, which acts to ‘select’ spontaneous fluctuations towards the ligand-free state. In particular,326

the biasing potential is zero when the reaction coordinate (here chosen to be the RMSD of the ligand to327

the cavity-bound state) increases, but provides a penalty for fluctuations that brings the ligand closer328

to the cavity. In this way, we were able to observe multiple unbinding events in simulations despite the329

long lifetime (1.2 ms) of the ligand in the cavity. Most of trajectories (15 of the 20 events observed)330

reveal that benzene escapes from the cavity by following tunnel #1 (Figure 6-figure supplement 4 and331

Appendix-Table S6). A typical unbinding path is shown in the right panel of Fig. 6 (see also Video 6).332

Because the ABMD introduces a bias to speed up ligand escape, we ensured that the observed pathway333
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was the same at two different values of the biasing force constants (Figure 6-figure supplement 4 and334

Appendix-Table S6). Future work will be aimed to perform a more quantitative analysis of the ligand335

binding and unbinding kinetics.336

Conclusions337

The ability to change shape is an essential part of the function of many proteins, but it remains difficult338

to characterize alternative conformations that are only transiently and sparsely populated. We have339

studied the L99A variant of T4L as a model system that displays a complicated set of dynamical340

processes which have been characterized in substantial detail. Our results show that modern simulation341

methods are able to provide insight into such processes, paving the way for future studies for systems342

that are more difficult to study experimentally.343

Using a novel method for defining an initial reference path between two conformations, we were able344

to sample the free energy landscape described by an accurate molecular force field. In accordance with345

experiments, the simulations revealed two distinct free energy basins that correspond to the major346

and minor states found by NMR. Quantification of the free energy difference between the two states347

demonstrated that the force field is able to describe conformational free energies to an accuracy of348

about 1 kcal mol−1. This high accuracy is corroborated by previous studies of a different protein,349

Cyclophilin A, where we also calculated conformational free energies and compared to relaxation dis-350

persion experiments and found very good agreement. For both proteins we were also able to capture351

and quantify the effect that point mutations have on the equilibrium between the two states, and also352

here found good agreement with experiments. We note, however, that comparable simulations of the353

L99A/G113A mutant did not reach convergence.354

Moving a step further, we here also calculated the kinetics of conformational exchange using a recently355

developed metadynamics method. For both the L99A variant and a population-inverting triple mutant356

we find that the calculated reaction rates are in remarkably good agreement with experiments. The357

ability to calculate both forward and backward rates provided us with the opportunity to obtain an358

independent estimate the calculated free energy difference. The finding that the free energy differences359

estimated in this way (for both L99A and the triple mutant) are close to those estimated from the360

free energy landscape provides an important validation of both approaches, and we suggest that, when361

possible, such calculations could be used to supplement conventional free energy estimates.362

The free-energy landscape suggested that the E state is relatively broad and contains a wider range of363

conformations. To validate this observation we used the same chemical shift information as was used364

as input to Rosetta and performed replica-averaged CS-restrained simulations. The resulting ensemble365

demonstrates that the experiments and force field, when used jointly, indeed are compatible with a366

broader E state. Thus, we suggest that the EROSETTA structure and CS-restrained ensemble jointly367

describe the structure and dynamics of the E state.368

While NMR experiments, in favourable cases, can be used to determine the structure, thermodynamics369

and kinetics of conformational exchange, a detailed description mechanism of interconversion remains370

very difficult to probe by experiments. We explored potential mechanisms of conformational exchange371

between the two states, finding at least two distinct routes. One route involved a direct transition with372

the central F114 entering the cavity within the protein, whereas a different possible mechanism involves373

transient partial-loosening of the protein. In both cases, the mechanism differ from the reference path374

that we used as a guide to map the free energy landscape, suggesting that high accuracy of the initial375

guess for a pathway is not absolutely required in the metadynamics simulations, suggesting also the376

more general applicability of the approach.377

Finally, we observed a set of conformations with a transiently opened tunnel that leads from the exterior378

of the protein to the internal cavity, that is similar to a recently discovered path that is exposed when379

the cavity is filled by ligands of increasing size. The fact that such a tunnel can be explored even in380
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the absence of ligands suggests that intrinsic protein motions may play an important role in ligand381

binding, and indeed we observed this path to be dominant in simulations of ligand unbinding.382

In total, we present a global view of the many, sometimes coupled, dynamical processes present in a383

protein. Comparison with a range of experimental observations suggests that the simulations provide384

a relatively accurate description of the protein, demonstrating how NMR experiments can be used to385

benchmark quantitatively the ability of simulations to study conformational exchange. We envisage386

that future studies of this kind, also when less is known about the structure of the alternative states,387

will help pave the way for using simulations to study the structural dynamics of proteins and how this388

relates to function.389

Materials and methods390

System preparation391

Our simulations were initiated in the experimentally determined structures of the ground state of L99A392

(GXray; PDB ID code 3DMV) or minor, E state (EROSETTA; 2LCB). The structure of the ground393

state of the L99A, G113A, R119P triple mutant, corresponding to the E state of L99A was taken from394

PDB entry 2LC9 (GTripleROSETTA). Details can be found in Appendix Materials and Methods.395

Initial reaction path396

Taking GXray and EROSETTA as the models of the initial and final structures, we calculated an397

initial reaction path between them with the MOIL software [53], which has been used to explore the398

mechanism of conformational change of proteins [54]. Further details can be found in the Appendix399

and in refs. [55, 54].400

Path CV driven metadynamics simulations with adaptive hills401

The adaptive-hill version of metadynamics updates the Gaussian width on the fly according to local402

properties of the underlying free-energy surface on the basis of local diffusivity of the CVs or the403

local geometrical properties. Here, we used the former strategy. Simulation were performed using404

Gromacs4.6[56] with the PLUMED2.1 plugin[57]. See parameter details in Appendix-Table S1.405

Replica-averaged CS-restrained simulations406

We performed replica-averaged CS restrained MD simulations by using GPU version of Gromacs5 with407

the PLUMED2.1 and ALMOST2.1 [58] plugins. Equilibrated structures of EROSETTA and GTripleROSETTA408

were used as the starting conformations. CS data of EROSETTA and GTripleROSETTA were obtained from409

the BMRB database [33] as entries 17604 and 17603, respectively.410

Reconnaissance metadynamics simulations411

Reconnaissance metadynamics [46] uses a combination of a machine learning technique to automatically412

identify the locations of free energy minima by periodically clustering the trajectory and a dimensional413

reduction technique that can reduce the landscape complexity. We performed several reconnaissance414

metadynamics simulations with different combinations of CVs starting from GXray using Gromacs4.5.5415

with PLUMED1.3 plugin. See parameter details on Appendix-Table S1.416
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Calculating kinetics using infrequent metadynamics417

The key idea of infrequent metadynamics is to bias the system with a frequency slower than the barrier418

crossing time but faster than the slow inter-basin relaxation time, so that the transition state region419

has a low risk of being substantially biased. As the first transition times should obey Poisson statistics,420

the reliability of the kinetics estimated from InMetaD can be assessed by a statistical analysis based421

on the Kolmogorov-Smirnov (KS) test [43]. See parameter details on Appendix and Appendix-Table422

S1.423
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Figure 1: Structures of the major G and minor E states of L99A T4L and the hidden state
hypothesis. The X-ray structure of the G state (GXray; PDB ID code 3DMV) has a large internal
cavity of within the core of the C-terminal domain that is able to bind hydrophobic ligands. The
structure of the E state (EROSETTA; PDB ID code 2LC9) was previously determined by CS-ROSETTA
using chemical shifts. The G and E states are overall similar, apart from the region surrounding the
internal cavity. Comparison of the two structures revealed two remarkable conformational changes
from G to E: helix F (denoted as HF ) rotates and fuses with helix G (HG) into a longer helix, and
the side chain of phenylalanine at position 114 (F114) rotates so as to occupy part of the cavity. As
the cavity is inaccessible in both the GXray and EROSETTA structures it has been hypothesized that
ligand entry occurs via a third ‘cavity open’ state [21, 20].
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Figure 1:

1Figure 2: Free energy landscape of the L99A variant of T4L. In the upper panel, we show
the projection of the free energy along Spath, representing the Boltzmann distribution of the force field
employed along the the progression along of the reference path. Differently colored lines represent
the free energy profiles obtained at different stages of the simulation, whose total length was 667ns.
As the simulation progressed we rapidly found two distinct free energy basins, and the free energy
profile was essentially constant during the last 100 ns of the simulation. Free energy basins around
Spath = 0.2 and Spath = 0.75 correspond to the previously determined structures of the G- and E-state,
respectively (labelled by red and blue dots, respectively). As discussed further below, the E-state is
relatively broad and is here indicated by the thick, dark line with Spath ranging from 0.55 to 0.83.
In the lower panel, we show the three-dimensional negative free energy landscape, -F(Spath, Zpath),
that reveals a more complex and rough landscape with multiple free energy minima, corresponding to
mountains in the negative free energy landscape. An intermediate-state basin around Spath = 0.36 and
Zpath = 0.05nm2, which we denote I0.36, is labeled by a yellow dot.
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Figure 3: Estimation of free energy differences and comparison with experimental mea-
surements. We divided the global conformational space into two coarse-grained states by defining
the separatrix at Spath = 0.46 (0.48 for the triple mutant) in the free energy profile (Figure 2-figure
supplement 2) which corresponds to a saddle point of the free energy surface, and then estimated the
free energy differences between the two states (∆G) from their populations. The time evolution of
∆G of L99A (upper time axis) and the triple mutant (lower axis) are shown as black and blue curves,
respectively. The experimentally determined values (2.1 kcal mol−1 for L99A and -1.9 kcal mol−1 for
the triple mutant) are shown as yellow dashed lines.

17



 0

 5

 10

 15

 20

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Fr
e
e
 E

n
e
rg

y
 (

kc
a
l/
m

o
l)

Po
p

u
la

ti
o
n

Spath

CHARMM22*,L99A
AMBER99SB*ILDN,L99A

CHARMM22*,Triple

Figure 4: Conformational ensemble of the minor state as determined by CS biased,
replica-averaged simulations. We determined an ensemble of conformations corresponding to the
E-state of L99A T4L using replica-averaged CSs as a bias term in our simulations. The distribution
of conformations was projected onto the Spath variable (orange) and is compared to the free energy
profile obtained above from the metadynamics simulations without experimental biases (black line).
To ensure that the similar distribution of conformations is not an artifact of using the same force field
(CHARMM22*) in both simulations, we repeated the CS-biased simulations using also the Amber
ff99SB*-ILDN force field (magenta) and obtained similar results. Finally, we used the ground state
CSs of a triple mutant of T4L, which was designed to sample the minor conformation (of L99A) as its
major conformation, and also obtained a similar distribution along the Spath variable (cyan).
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Figure 5: Mechanisms of the G-E conformational exchanges explored by reconnaissance
metadynamics. Trajectories labeled as Trj1 (magenta), Trj2 (blue) and Trj3 (green and orange)
are from the simulations RUN10, RUN11 and RUN12 (Appendix-Table S1), respectively. There are
multiple routes connecting the G and E states, whose interconversions can take place directly without
passing the I0.36 state or indirectly via it.
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Figure 6: A transiently formed tunnel from the solvent to the cavity is a potential ligand
binding pathway. (A) We here highlight the most populated tunnel structure (tunnel#1), that has
an entrance located at the groove between helix F (HF ) and helix I (HI). Helices E, F and G (blue)
and F114 (red) are highlighted. (B) The panel shows a typical path of benzene (magenta) escaping
from the cavity of L99A, as seen in ABMD simulations, via a tunnel formed in the same region as
tunnel #1 (see also Video 6).
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Table 1: Free energy differences and rates of conformational exchange

τG→E (ms) τE→G (ms) ∆G (kcal mol−1)
L99A

NMR 20 0.7 2.1
InMetaD 175±56 1.4±0.6 2.9±0.5

PathMetaD 3.5
L99A/G113A/R119P

NMR 0.2 4 -1.9
InMetaD 2.0±1.7 14.3±8.3 -1.2±1.1

PathMetaD -1.6
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Captions of figure supplements568

Figure 2-figure supplement 1: Approximately equidistant frames along the reference path.569

The plot reveals a ‘gullwing’ shape of the matrix of pairwise RMSDs of the frames of the reference path,570

indicating that frames along the reference path are approximately equidistant. We used 31 structures571

to discretize the path.572

Figure 2-figure supplement 2: One and two dimensional free energy landscape of L99A573

and the triple mutant. (A) The two-dimensional free energy surface F(Spath,Zpath) of L99A sampled574

by a 667 ns PathMetaD simulation. (B) The two-dimensional free energy surface F(Spath,Zpath) of the575

triple mutant sampled by a 961 ns PathMetaD simulation. (C) The free energy profiles as a function576

of Spath of both L99A (black) and the triple mutant (blue).577

Figure 4-figure supplement 1: Equilibrium sampling of conformational regions of the578

E state of L99A by CS-restrained replica-averaged simulation. We calculated the RMSD579

between the experimental CSs and the values back-calculated by CamShift [39] as implemented in580

ALMOST [58]. We projected a 250ns MD trajectory sampled using the CHARMM22* force field581

(RUN3 in Appendix-Table S1) was projected onto the RMSDs. The average RMSDs for the five582

measured nuclei (Hα, HN , N , C ′ and Cα) are 0.23ppm, 0.38ppm, 1.97ppm, 0.83ppm and 1.06ppm,583

respectively (Appendix-Table S2), which are close to the inherent uncertainty of the chemical shift584

calculation (Figure 3-figure supplement 2). This indicates the simulation yielded an ensemble in good585

agreement with experiments.586

Figure 4-figure supplement 2: Estimation of the inherent uncertainty of the chemical587

shift calculation by different softwares: CamShift[39], ShiftX[41] and Sparta+[40]. Using588

EROSETTA as the reference structure, we calculated the chemical shifts using different algorithms and589

compared the correlation coefficients and RMSD between them.590

Figure 4-figure supplement 3: Dependence of replica averaged MD simulations of L99A591

with chemical shift restraints on force fields. The chemical shifts of the E state of L99A (BMRB592

17604) were used. (A) The simulation with CHARMM22* force field. (B) The simulation with Amber593

ff99SB*-ILDN force field.594

Figure 4-figure supplement 4: Effect of changing the force constant and number of replicas595

in CS-restrained simulation of L99A. (A) N=4, εCS = 24kJ ·mol−1. (B) N=2, εCS = 24kJ ·mol−1.596

(C) N=2, εCS = 12kJ ·mol−1. N refers to the number of replicas that the CS values are averaged over.597

The CHARMM22* force field was used in these simulations. The results also support the conclusion598

that the conformational space of the minor (E) state covers a relatively wide set of structures including599

the EROSETTA structure.600

Figure 4-figure supplement 5: Replica-averaged CS-restrained MD simulation of a T4L601

triple mutant (L99A/G113A/R119P). Chemical shift restraints were from BMRB 17603 and602

CHARMM22* force field was used.603

Figure 5-figure supplement 1: Complete G-to-E transitions of L99A obtained by recon-604

naissance metadynamics simulations. The state-specific fraction of contacts [10], QG and QE ,605

were employed to monitor the conformational transitions to G and E state, respectively. Trajectories606

Trj1, Trj2 and Trj3 are from the simulations RUN10, RUN11 and RUN12 (Table S1), respectively.607

Figure 5-figure supplement 2: Conformational transitions between the G and E states608

monitored by other order parameters. Trajectories Trj1 (magenta), Trj2 (blue) and Trj3 (green609

and orange) are from the simulations RUN10, RUN11 and RUN12 (Table S1), respectively. The610

steepest descent path (SDP, black) used to define the initial path in PathMetaD is also shown as a611

reference. To measure the distance between helix F and helix I, and between F144 and helix D, we612

employed order parameters RHF−HI and RF114−HD. RHF−HI is defined as the Cα distance between613

E108 and R137, while RF114−HD is defined as the distance between the Cδ4 atom of F114 and the Cα614

atom of Y88.615
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Figure 5-figure supplement 3: Solvent accessible surface area (SASA) calculation of the616

side chain of F114. The figure suggests in the direct G � E transitions (Trj1 and first half of617

Trj3) F114 can rotate its side chain inside the protein core. In contrast, in the G � I0.36 � E route618

(Trj2 and second half of Trj3) the side chain of F114, which occupies the cavity in the E state, gets619

transiently exposed to solvent during the transition.620

Figure 6-figure supplement 1: A transiently formed tunnel from the solvent to the cavity621

forms in the I0.36 state. (A) Typical structures from the I0.36 state sampled in the simulation622

(between 430ns and 447ns) are mapped onto the free energy surface, and represented by yellow points.623

(B) The cavity-related regions (helix E, F and G) are coloured in blue, while F114 is coloured in red.624

F114 tends to be partially solvent exposed in I0.36, resulting in the internal cavity to be open. The625

tunnel#1 connecting the internal cavity and protein surface is coloured in yellow, and has a peanut-626

shell like shape. (C) shows the radius along the tunnel of structures belong to the cluster of tunnel#1.627

Lines in different colours represent different structures. Grey dotted line represents the average tunnel628

radius.629

Figure 6-figure supplement 2: Representative structures of the cavity region in the I0.36630

state. The figure shows six representative structures of the cavity region revealing multiple tunnels631

that connect the cavity with the protein surface. The different colours correspond to different tunnels632

observed, and a structure can have different tunnels with different widths present at the same time. The633

colours represent the relative size with yellow, purple and green corresponding to tunnels of decreasing634

width.635

Figure 6-figure supplement 3: Tunnel clustering analysis on I0.36 state. The clustering636

of tunnels was performed using the CAVER Analyst software [49] and the average-link hierarchical637

algorithm based on the calculated matrix of pairwise tunnel distances. We found that the most638

weighted tunnel (denoted as tunnel#1) populates 27% of the I0.36 basin. The second and third tunnels639

populate 20% and 15%, respectively, but their maximal bottleneck radii are 1.4 and 1.3 Å, in contrast640

to the maximal bottleneck radius of tunnel#1 of 2.5 Å. (A) Heat map visualization of the tunnel profile641

of tunnel#1. The colour map represents the radius of tunnel#1 along the tunnel length. (B) Average642

tunnel radius and minimal tunnel radius of individual structures belonging to tunnel#1 cluster. Note643

that the gaps indicate these snapshots do not have tunnels. (C) The tunnel radius as a function of644

the tunnel index which is ranked by the average radius (R). The second widest tunnel (tunnel#1)645

has the highest population and is highlighted in yellow. (D) A typical structure of I0.36 with an open646

tunnel#1. HE , HF and HG are coloured in blue, F114 is coloured in red, and tunnel#1 is coloured647

in yellow. (E) The figure shows the location of an alkylbenzene (magenta) in a crystal structure of648

L99A T4L (PDB ID: 4W59). The figure further shows (in yellow) the tunnel induced in the structure649

by the alkyl chain, as revealed by CAVER3 when applied to the structure after removing the ligand.650

Because the tunnel overlaps with the alkyl chain of the ligand, only the phenyl moiety of the ligand is651

visible.652

Figure 6-figure supplement 4: Ligand unbinding pathways revealed by ABMD simula-653

tions. The figure shows how ABMD simulations allow us to observe the ligand benzene escape from654

the internal binding site. We performed two sets of 20 simulations using two different force constants655

for the ABMD (upper: 50 kJ ·mol−1 ·nm−2; lower: 20 kJ ·mol−1 ·nm−2); note also the different time656

scales on the two plots. The simulations used the RMSD of the ligand to the bound state as reaction657

coordinate, but are here shown projected onto the distance between the benzene molecule and the side658

chain of F114. The three structures in the bottom panel provide representative structures.659

Video 1: Trajectory of the G-to-E conformational transition observed in Trj1, correspond-660

ing to the red trajectory in Figure 5. The backbone of L99A is represented by white ribbons,661

Helices E, F and G are highlighted in blue, while F114 is represented by red spheres.662

Video 2: Trajectory of the G-to-E conformational transition observed in Trj2, correspond-663

ing to the blue trajectory in Figure 5. The backbone of L99A is represented by white ribbons,664

Helices E, F and G are highlighted in blue, while F114 is represented by red spheres.665
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Video 3: Trajectory of the G-to-E conformational transition observed in Trj3, correspond-666

ing to the green trajectory in Figure 5. The backbone of L99A is represented by white ribbons,667

Helices E, F and G are highlighted in blue, while F114 is represented by red spheres.668

Video 4: Trajectory of the E-to-G conformational transition observed in Trj3, correspond-669

ing to the yellow trajectory in Figure 5. The backbone of L99A is represented by white ribbons,670

Helices E, F and G are highlighted in blue, while F114 is represented by red spheres.671

Video 5: Movie of the calculated two-dimensional free energy landscape of L99A as a672

function of simulation time. The figure shows the time evolution of the free energy surface as a673

function of Spath and Zpath sampled in a 667 ns PathMetaD simulation of L99A.674

Video 6: A typical trajectory of the benzene escaping from the buried cavity of L99A675

via tunnel #1 revealed by ABMD simulations. The backbone of L99A is represented by white676

ribbons, Helices E, F and G are highlighted in blue, while F114 and benzene are represented by spheres677

in red and magenta, respectively.678
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1 Molecular modeling and system preparation

We used the crystal structure of T4L L99A (PDB ID code 3DMV) as starting point for simulations of
the G state of L99A. For the E state of L99A and the G state of the L99A, G113A, R119P triple-mutant
we used the CS-ROSETTA structures with PDB ID code 2LCB and 2LC9, respectively.

Each protein was solvated in a dodecahedral box of TIP3P water molecules with periodic boundary
conditions. The protein-solvent box had a distance of 10 Å from the solute to the box boundary in
each dimension, which results in approximately 10,000 water molecules and more than 32,000 atoms.
Chloride counter-ions were included to neutralize the overall electric charge of the system. We used the
CHARMM22* force field[1] for most of our simulations, but also used the Amber ff99SB*-ILDN[2, 3, 4]
for some simulations to examine the dependency of the results on the choice of force field.

The van der Waals interactions were smoothly shifted to zero between 0.8 and 1.0 nm, and the
long-range electrostatic interactions were calculated by the means of the particle mesh Ewald (PME)
algorithm with a 0.12 nm mesh spacing combined with a switch function for the direct space between
0.8 and 1.0 nm. The bonds involving hydrogen atoms were constrained using the LINCS algorithm.
We employed the V-rescale thermostat [5] as the temperature control and simulated the system in the
canonical ensemble.

2 Reference transition path and path collective variables

We used path collective variables both to enhance sampling in path driven metadynamics (see below)
as well as to represent the conformational landscape sampled by other means. Path collective variables
have previously been shown to be very useful in finding free energy channels connecting two metastable
states, and also able to construct the global free energy surfaces even far away from the initial path
[6]. A reference path is defined by a set of conformations along the path, and the progress along this
path can be described mathematically as:

Spath(X) =

∑N−1
i=1 ie−λMi(X)∑N−1
i=1 e−λMi(X)

Here X are the coordinates of the instantaneous protein conformer sampled by MD simulations, N
is the number of frames used to describe the reference path (often dependent on the length scale of
the conformational transition process), Mi(X) is the mean-square deviation (after optimal alignment)
of a subset of the atoms from the reference structure of i’th frame, and λ is a smoothing parameter
whose value should roughly be proportional to the inverse of the average mean square displacement
between two successive frames along the reference path. With this definition, Spath quantifies how far
the instantaneous conformer, X, is from the reactant state and the product state, thus monitoring the
progress of the system along the conformational transition channel.

Using Spath as the sole CV would assume that the initial reference path contains a sufficient
description of the important degrees of freedom between the two states. It is, however, rarely possible
to guess such a path because determining the actual pathway taken is a goal of the simulation. Thus,
Spath is supplemented by a second CV, Zpath, which measures the deviation away from the structures
on the reference path. I.e. if Spath quantifies the progress along the path, Zpath measures the distance
away from the reference path:

Zpath(X) = − 1

λ
ln

N∑
i=1

e−λMi(X)

The combination of Spath and Zpath thus maps the entire conformational landscape to a two-
dimensional projection, which can also be thought of as a tube connecting the two end states, and
where S measures the progress along the tube and Z the width of the tube. The usefulness of the
path CVs is, however, dependent on the quality of reference path, which is determined amongst
other things by two factors: (1) the relative accuracy of the reference path and (2) how uniform
reference structures are distributed along the path. Because of the explosion in number of possible
conformations as one progresses along Zpath, simulations are mostly enhanced when Spath provides
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a relatively good description of the pathway taken. Further, if reference structures are only placed
sparsely along the path, one looses resolution of the free energy surface and also decreases the ability
to enhance sampling.

To obtain a good reference path, without knowing beforehand the mechanism of conversion, we
here developed a new method to construct snapshots along a possible initial path. Taking GXray and
EROSETTA as initial and final structures, we calculated the optimal reaction paths between them with
the MOIL software [7], which has previously been used to explore the mechanism of conformational
change of proteins [8]. After minimizing endpoint structures, we employed the minimum-energy-path
self-penalty walk (SPW) [9] functional embedded in the CHMIN module to obtain an initial guess
for the conformational transition path. This path was subsequently optimized in the SDP (steepest
descent path) module by minimizing the target function T consisting of two terms S and C. S is
an action function that provides approximate most probable Brownian trajectories connecting the
reactant and product states, while C is a restraint function aimed to distribute framesapproximately
uniformly along the path. They can be expressed by:

S =
N−1∑
i=1

√
Hs + (

∂U

∂xi
)2|xi+1 − xi|

C = λ
∑
i

(∆li,i+1− < ∆l >)2

where N is the number of frames along the reference path, xi is the entire vector of conformational
coordinates of frame i, U is a potential energy as a function of the mass-weighted coordinate vector, Hs

is a constant with an arbitrary positive value, which can be tuned to generate the optimal paths with
different thermal energies. ∆li,i+1 = M1/2|xi − xi+1| is the arc-length between consecutive frames. λ
controls the strength of the restraint function C.

The SDP or minimum energy path is the limiting path in which the action S is optimized with
Hs → 0. An important advantage of an SDP is that it is capable of giving a good guess of the minimal
energy path which can reflect the major mechanism, only with inexpensive computation. Further
details can be found in Refs. [8, 10].

The SDP was approximated as 31 discrete conformations. Most regions of theGXray and EROSETTA
structures are very similar, with the exception of the cavity-related atoms whose movement determines
the conformational transitions between the G and E states. To minimize computations, we used only
a subset of heavy atoms around the cavity from amino acid residues 99 to 126 to define Spath and
Zpath, resulting a ‘light version’ of the reference path which included only 212 atoms. We used the Cα
atoms of the whole peptide chain to align the molecule. It is important to note that by focusing only
on atoms surrounding the cavity in the calculation of the path-variables we only enhance sampling of
the conformational changes relating to the cavity. We used λ = 56.0 based on the consideration that
smooth change of the function of Spath can be achieved when e−λ<Mi(X)> ≥ 0.1 [11].

We defined Spath and Zpath using the SDP as described above. The equidistant requirement of the
path is satisfied by the penalty function as is evident from the RMSD matrix for path frames which
has a gullwing shape, indicating that each frame is closest to its neighbor and more different from all
other reference frames.

3 Metadynamics simulations

Metadynamics discourages the system from sampling already visited conformational regions by con-
tinuously adding an external history-dependent repulsive potential at the present value of the reaction
coordinates or CVs, which are assumed to include the slowly varying degrees of freedom and thus
describe the main features of the dynamics [12]. The biasing potential in metadynamics results in
an artificial (enhanced) dynamics but makes it possible to reconstruct the free energy surfaces by
removing the bias introduced. The bias is typically added as Gaussians at regular time intervals, τG,
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and is given by:

VG(S, t) =

|t/τG|∑
k=1

ωkδ(S(t), S(k · τG))

Here S denotes the CVs, k is the index of the individual Gaussians , ωk is the height of the k’th
Gaussian, and δ(S(t), S(k · τG)) is a short-ranged kernel function of the CVs:

δ(S(t), S(k · τG)) = e

∑n
j=1−

|sj(t)−sj(k·τG)|2

2σ2
kj

where n is the number of CV, j is the index of a CV, and σkj and sj(k · τG) are the width and the
position of the Gaussian hills, respectively.

We here used a range of different metadynamics approaches to determine the free energy landscape,
and the mechanism and kinetics of conformational exchange (see below).

3.1 Well-tempered metadynamics

In the well-tempered version of metadynamics, the height of the individual Gaussians, ωk, is decreased
as the total bias accumulates over time, in order to improve the convergence of the free energy:

ωk = ω0e
− 1
γ−1

VG(S,k·τG)

kBT

Here ω0 is the initial height, γ = (T + ∆T )/T is referred as the bias factor, which can be tuned to
control the speed of convergence and diminish the time spent in lesser-relevant, high-energy states.
Thus, the quantity T + ∆T is often referred as the fictitious CV temperature.

3.2 Adaptive-width metadynamics

In contrast to standard metadynamics in which the width of the Gaussians is constant, the adaptive-
width version of metadynamics updates the Gaussian width σkj on the fly according to local properties
of the underlying free-energy surface on the basis of local diffusivity of the CVs or the local geometrical
properties[13].

In the region of conformational space near the endpoints of the path CVs many conformations
are compressed on similar CV values, leading to high-density but low-fluctuation boundaries. It is
apparent that the use of a fixed width might give an inaccurate estimation of the free energy profile
in the boundaries where the free energy basins of reactant and product states are located, also makes
it more difficult for the simulations to converge. Therefore, the feature of shape adaptive of Gaussian
potential is particularly helpful for the case of using path CVs that have significant boundary effects.

3.3 Metadynamics with path variables (PathMetaD)

We sampled the free energy landscape along Spath and Zpath, as defined above, using adaptive-width
metadynamics, which resulted in a finer resolution and faster convergence of the free energy landscape,
in particular near the path boundaries, than standard metadynamics. The production simulations were
performed at 298K in well-tempered ensemble (Table S1: RUN1 and RUN2).

3.4 Reconnaissance metadynamics

To explore the mechanism of conformational exchange we used reconnaissance metadynamics[14].
This is a ‘self-learning’ approach which combines of a machine learning technique to automatically
identify the locations of free energy minima by periodically clustering the trajectory and a dimensional
reduction technique that can reduce the complex locations to a locally-definfed one-dimensional CV by
using information collected during the clustering. It has previously been shown that reconnaissance
metadynamics makes it possible to determine a path from a large set of input collective variables
[15, 16].
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3.5 Infrequent Metadynamics (InMetaD)

We used the recently described ‘infrequent metadynamics’ (InMetaD) to obtain the rates of the con-
formational exchange process[17]. In standard metadynamics simulations it is very difficult to obtain
kinetic properties because the biasing potential is added both to the free energy basins as well as the
barriers that separate them. While it is potentially possible to determine the rates from the height of
the free energy barriers, this requires both that the CVs used represent the entire set of slowly varying
degrees of freedom, and also a good estimate of the pre-exponential factor to convert barrier height
to a rate.

The key idea in InMetaD to circumvent these problems is to attempt to add the bias to the system
more slowly than the barrier crossing time but faster than the slow inter-basin relaxation time, so
that the transition state region has a lower risk of being biased, and therefore the transitions are less
affected. By filling up a free energy basin by a known amount it is possible to determine how much the
barrier has been decreased, and hence remove this bias from the rates determined. Thus, as described
in more detail below, the approach works by performing a large number of individual simulations
to obtain first passage times between the individual basins, which are then corrected by the known
enhancement factors to obtain estimates of the unbiased rates. This method has been successfully
used to reproduce the kinetics of conformational change of alanine dipeptide[17], unbinding of the
inhibitor benzamidine from trypsin [18], and slow unbinding of a simple hydrophobic cavity-ligand
model system[19].

In these simulations we used a deposition frequency of 80 or 100 ps (see parameters in Table
S1), a value much lower than the deposition frequency of 1 ps used in the PathMetaD simulations
described above. In this way we lower the risk of substantially corrupting the transition state region.
In addition, a tight upper wall potential on Zpath=0.10 nm2 is used to confine the sampling based on
our converged free energy surface which shows the conformational change majorly occurs within this
region.

With these parameters we collected dozens of trajectories that have a state-to-state transition in
the G-to-E and E-to-G directions. The passage times observed in each of these were then corrected
for the metadynamics bias as follows.

First, we calculate the acceleration factor α from:

α = τ/τM =< eV (s,t)/kT >M

where the anguluar brackets denote an average over a metadynamics run before the first transition,
and V (s, t) is the metadynamics time-depedent bias. The evolution of the acceleration factor α(t) can
be expressed by:

α(t) = (1/t)

∫ t

0
dt′eV (s,t′)/kT

Then the observed passage time, t, is reweighted by:

τtrue = α(t) ∗ t =

∫ t

0
dt′eV (s,t′)/kT

In principle, the transition time should be a Poisson-distributed random variable, and its mean,
µ, standard deviation σ and median tm/ln2 all should be equal to each other. In practice, however,
they are somewhat sensitive to insufficient sampling[20]. So rather than simply calculating averages
of the individual times, we estimated the average rate and transition time τ from a fit of the empir-
ical cumulative distribution function (ECDF) with the theoretical cumulative distribution function
(TCDF):

TCDF = 1− e−
t
τ

It has previously been shown that τ estimated in this way converges more quickly than the simple
average, µ. This is also consistent with our observation, and we find that 10–15 samples appear
sufficient to get a reasonably accurate estimation of the transition time. We used a bootstrap approach
to estimate the errors.
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To examine whether the observed times indeed follow the expected Poission distribution we used a
Kolmogorov-Smirnov (KS) test to obtain a p-value that quantifies the similarity between the empirical
and theoretical distributions. Traditionally, a threshold value typically of 0.05 or 0.01 (the significance
level of the test) is used to judge if the theoretical (TCDF) and empirical (ECDF) distributions are
in agreement. If the p-value is equal to or larger than the threshold value, it suggests that the
estimated transition time is quite reliable. If (a) the transition regions were perturbed significantly
with infrequent biasing or (b) there are hidden unidentified timescales at play (e.g. the CVs do not
capture the slow degrees of freedom) the KS test for time-homogeneous Poisson statistics would fail.

3.6 CS-restrained replica-averaged simulation

The simulation methods described above constitute different ways of exploring the thermodynamics
(PathMetaD), kinetics (InMetaD) and mechanism (Reconnaissance metadynamics) of conformational
exchange. In all of these simulations, sampling is determined by the molecular energy function (force
field), and the experimental information on T4L is used only in the construction of the path variables.
When additional experimental information is available, one may introduce an additional energy term
so as to bias the simulations to be in agreement with this information[21]. As the experimental values
are ensemble averages we apply these restraints only to averages calculated over a number of ‘replicas’
that are simulated in parallel. In this way, the information from the experimental data is incorporated
into the simulation as a perturbation following the maximum entropy principle[22, 23, 24, 25].

We used this approach to obtain conformational ensembles that include not only information from
the molecular force field, but also experimental NMR chemical shifts (CS). In particular, we used either
the chemical shifts of the E state of L99A obtained from the analysis of the CPMG experiments, or the
native state chemical shifts of a triple mutant that populates the same state as its ground state[26]. The
CS restraints were imposed by adding a pseudo-energy term (ECS) to a standard molecular-mechanics
force field (EFF ).

ECS = εCS

N∑
i=1

6∑
j=1

(δExpij − 1

M

M∑
k=1

δSimijk )2

Here εCS is strength of the CS restraints, i indicates the residue number (total of N), j indicates
each of the the six backbone atoms whose chemical shifts were used (Cα, Cβ, C ′, Hα, HN and N), k
is an index for the total of M replicas, and δExp and δSim are the experimental and simulated CSs,
respectively. The latter quantity, δSim, was calculated by CamShift[27] as a plugin of PLUMED. The
CS values of Pro, Gly, Asp, Glu, His and terminal residues were not included because the accuracy
in their predictions are too low to contain sufficient information in this approach[27]. We set εCS=24
kJ mol−1ppm−2) and used M=4 replicas. In principle, the number of replicas is a free parameter that
should be set as large as possible when the experimental data and the method for calculating it is
noise free [25]. In practice, one uses a finite set of replicas and it has been shown that M=4 replicas
is sufficient to capture the dynamics accurately [28].

We performed replica-averaged CS restrained MD simulations using GROMACS4.6 and the PLUMED2.1
plugin at 298K. The equilibrated structures of EROSETTA and GTripleROSETTA were used as the start-
ing configuration (of each of the four replicas) in the CS-restrained simulations of L99A and the

L99A,G113A,R119P triple mutant, respectively. The CS data for EROSETTA and GTripleROSETTA were
obtained from the Biological Magnetic Resonance Bank (BMRB) database [29] with entries 17604 and
17603 , respectively.

3.7 PT-WT-MetaD failed to get the converged free energy landscape

In practice, the choice of CVs plays a fundamental role in determining the accuracy, convergence and
efficiency of metadynamics simulations. If an important CV is missing, the exploration of the free
energy landscape will be difficult due to hysteresis. Finding a minimal set of CVs that include all
important degrees of freedom is a highly nontrivial task and one often has to proceed by several rounds
of trial simulations.
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At the beginning, we followed a strategy which had previously been successfully used in the ex-
ploration of protein conformational transitions [30, 31], to design a set of CVs on the basis of static
structural comparison between GXray and EROSETTA. In particular, by comparing these two struc-
tures we defined several CVs that described structural differences by individual dihedral angles and
hydrogen bonds, as well as dihedral correlation and coordination number (state-specific contact map)
[32] (summarized in Table S1). We combined these in a multiple-replica, parallel tempering approach
in the well-tempered ensemble (PT-WT-metaD) [33], to further enhance the sampling. In PT-WT-
metaD, the energy fluctuations are enlarged by using energy as a biased CV but the average energy is
the same as the canonical ensemble, allowing the use of a larger spacing between temperatures and a
much fewer number of replicas than normal PT simulations[34]. Coordinate exchange with high tem-
perature replicas can enhance the sampling of all the degrees of freedom, even those not included in
the biased CVs, and one may include a ‘neutral’ replica (without energy bias, at 298K). We performed
a series of simulations with different combinations of CVs starting from the G state of L99A (Table
S2). However, unfortunately, we only observed partial G-to-E transitions, even in a relatively long
trajectory of about 1µs for each replica. This negative results suggested that these manually chosen
CVs did not contain all the necessary slow degrees of freedom.

3.8 Tunnel analysis

We used CAVER3 [35] to analyse the structures and CAVER Analyst1.0 [36] (http://www.caver.cz/,
see also parameters in Table S4) to separate the tunnels into different clusters. CAVER Analyst is a
standalone program based on CAVER3.0 algorithm [35]. The settings for the tunnel calculations can
be set through the Tunnel Computation window, while the advanced parameters can be set in the
Tunnel Advanced Settings window. We used the center of mass of the cavity-related region (residue 93-
124) as the position of the starting point. Average-link hierarchical clustering algorithm is performed
to build a tree hierarchy of tunnel axes based on their pairwise distances. The size of the resulting
clusters is dependent on the Clustering threshold parameter which specifies the level of detail at which
the tree hierarchy of tunnel clusters will be cut. We used the default value so that the tree hierarchy
of tunnel clusters is cut at the value of 3.5.

3.9 Adiabatic bias molecular dynamics

Adiabatic biased molecular dynamics (ABMD) [37, 38] is an algorithm developed to accelerate the
transition from the reactant state to the productive state, here corresponding to the ligand bound
state and ligand-free state, respectively. In ABMD the system is perturbed by a ‘ratcheting potential’,
which acts to ‘select’ spontaneous fluctuations towards the ligand-free state. The ratcheting potential
is implemented in PLUMED2.2 as

V (ρ(t)) =

{
0.5K(ρ(t)− ρm(t))2, ρ(t) > ρm(t)

0, ρ(t) ≤ ρm(t)

where
ρ(t) = (S(t)− Starget)2

and
ρm(t) = min0≤τ≤tρ(τ) + η(t)

K is the force constant, S(t) is the instantaneous CV value, Starget is the target value of the CV and
η(t) is an additional white noise acting on the minimum position of ρ(t). Here, we used the RMSD of
the ligand to the cavity-bound state as the CV, and set Starget = 4.0nm and K=20 kJ ·mol−1 · nm−2
or 50 kJ ·mol−1 ·nm−2 to check the dependency of the force constant chosen. The biasing potential is
zero when the CV increases but provides a penalty when the CV decreases. In this way, we were able
to observe multiple unbinding events in simulations despite the long lifetime (1.2 ms) of the ligand in
the cavity.
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Table S2: Definition of collective variables

CV definitions parameters purpose

1 total energy bin=500 enhance energy fluctuations

2 dihedral angle of Cα atoms of consecutive
residues F104-Q105-M106-G107

σ=0.1

3 dihedral angle of Cα atoms of consecutive
residues G113-F114-T115-N116

σ=0.1

4 QG, distance in contact map space to the
GXray structure

σ=0.5

5 QE , distance in contact map space to the
EROSETTA structure

σ=0.5

6 distance between QG and QE σ=0.5

7 number of backbone hydrogen bonds
formed between M102 and G107

σ=0.1

8 dihedral correlation between the Cα di-
hedral angles of consecutive residues in
segment N101-G107

σ=0.1

9 global RMSD to the whole protein wall potential avoid sampling unfolding space

Table S3: Average root-mean-square deviation (< RMSD > in units of ppm) between
experimental CSs and those from the CS-restrained replica-averaged simulations

Nucleus RUN3 RUN4 RUN5 RUN6 RUN7 RUN8 RUN9

C ′ 0.833 0.655 0.776 0.854 0.793 0.907 0.727
Cα 1.055 0.879 0.929 1.065 0.940 1.103 0.894
N 1.966 1.707 1.771 1.967 1.780 2.011 1.828
HN 0.379 0.275 0.291 0.368 0.284 0.414 0.286
HA 0.232 0.183 0.186 0.242 0.182 0.246 0.183

Table S4: Parameter set used in tunnel analysis using CAVER3.0[35] and CAVER
Analyst1.0[36]

Minimum probe radius 0.9 Å
Shell depth 4
Shell radius 3

Clustering threshold 3.5

Starting point optimization
Maximum distance 3 Å

Desired radius 5 Å
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Table S5: Clustering Analysis of Tunnels (Top Three Listed)

Index Population Maximal bottleneck radius (Å) Average bottleneck radius (Å)

#1 27% 2.5 1.3
#2 20% 1.4 1.0
#3 15% 1.3 1.0

Table S6: Unbinding Pathways Explored by ABMD (RMSDBNZ as CV)

k=20 kJ/(mol · nm2) k=50 kJ/(mol · nm2)
Index Length Path Length Path

RUN1 56 ns P1 27 ns P2
RUN2 36 ns P2 78 ns P1
RUN3 43 ns P1 6 ns P1
RUN4 43 ns P1 35 ns P1
RUN5 77 ns P2 10 ns P1
RUN6 176 ns P1 44 ns P1
RUN7 41 ns P1 18 ns P1
RUN8 106 ns P1 15 ns P1
RUN9 72 ns P1 7 ns P1
RUN10 107 ns P1 2 ns P1
RUN11 61 ns P1 20 ns P2
RUN12 58 ns P2 26 ns P1
RUN13 64 ns P1 31 ns P2
RUN14 173 ns P2 20 ns P1
RUN15 172 ns P1 34 ns P1
RUN16 74 ns P2 22 ns P1
RUN17 20 ns P1 17 ns P1
RUN18 34 ns P1 35 ns P2
RUN19 91 ns P1 21 ns P2
RUN20 61 ns P1 18 ns P1

Cost 1.6 µs 0.5 µs

Summary

P1 75% (15/20) 75% (15/20)
P2 25% (5/20) 25% (5/20)
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Figure S1: Two representative InMetaD trajectories of L99A with G to E transitions.
The time point, t′, for the first transition from G to E is identified when the system evolves into
conformational region of Spath > 0.55 and Zpath < 0.01. We then calculate the unbiased passage time
by multiplying t′ by the corresponding accelerate factor α(t′). Upper panels show the evolution of
reweighted time as a function of metadynamics time. The kinks usually indicate a possible barrier-
crossing event. Middle panels show the trajectories starting from the G state and crossing the barrier
towards the E state. Lower panels show the biasing landscape reconstructed from deposited Gaussian
potential, which can be used to check the extent to which the transition state regions are affected by
deposited bias potential.
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Figure S2: Two representive InMetaD trajectories of L99A with E to G transitions
of L99A. First transition time for G to E transition is identified when the system evolves into
conformational region of Spath < 0.28 and Zpath < −0.01.
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Figure S3: Characteristic transition times between G and E states of L99A. The error
bars represent the standard deviation of τ obtained from a bootstrap analysis, and suggest that ten
simulations are sufficient to give a reliable estimation of the transition time.
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Figure S4: Characteristic transition times between G and E states of the triple mutant.
The figure shows the characteristic transition time τG→E (right panel) and τE→G (right panel) of the
triple mutant as a function of the size of a subsample of transition times randomly extracted from the
main complete sample. Errorbars represent the standard deviation of characteristic transition times
obtained by a bootstrap analysis. The calculated and experimental values of the transition times are
shown in blue and red texts, respectively.

Time (us)

Figure S5: Poisson fit analysis for G to E transitions and E to G transitions of L99A.
We show the ECDF (the empirical cumulative distribution function) and TCDF (the theoretical
cumulative distribution function) in black and blue lines, respectively. The respective p-values are
reasonably, albeit not perfectly, well above the statistical threshold of 0.05 or 0.01, indicating the
kinetics is not substantially modified by the deposited bias potential in InMetaD. Error bars are the
standard deviation obtained by a bootstrap analysis.
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Figure S6: Poisson fit analysis for G to E transitions and E to G transitions of the triple
mutant. The figure shows the p-values of the Poisson fit analysis of G → E (A) and E → G (B)
transition times as a function of the size of a subsample of transition times randomly extracted from
the main complete sample.
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