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Center for Biomembrane Physics, University of Southern Denmark, Odense,
Denmark

Abstract There is evidence that lipids can be allosteric regulators of membrane protein

structure and activation. However, there are no data showing how exactly the regulation emerges

from specific lipid-protein interactions. Here we show in atomistic detail how the human b2-

adrenergic receptor (b2AR) – a prototypical G protein-coupled receptor – is modulated by

cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates

b2AR by limiting its conformational variability. The mechanism of action is based on the binding of

cholesterol at specific high-affinity sites located near the transmembrane helices 5–7 of the

receptor. The alternative mechanism, where the b2AR conformation would be modulated by

membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to

cholesterol binding sites and impede the structural flexibility of b2AR, however cholesterol

generates the strongest effect. The results highlight the capacity of lipids to regulate the

conformation of membrane receptors through specific interactions.

DOI: 10.7554/eLife.18432.001

Introduction
G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate diverse cellular

responses. With over 800 members, GPCRs constitute the largest family of integral membrane pro-

teins in human genome and represent roughly half of all drug targets in modern medicine

(Gilchrist, 2010).

The human b2-adrenergic receptor (b2AR) is one of the best-characterized GPCRs. It is expressed

in pulmonary and cardiac myocyte tissues and is a therapeutic target for asthma and heart failure

(Lefkowitz, 2000). The functional diversity of b2AR is associated with its structural dynamics

(Manglik and Kobilka, 2014; Kobilka, 2013). Recently found structures of b2AR in the inactive and

active states have provided valuable insights into the structure-function relationship of b2AR

(Cherezov et al., 2007; Hanson et al., 2008; Rasmussen et al., 2011). Subsequent biophysical and

biochemical studies have provided direct evidences of multiple distinct conformational states for

specific GPCRs, such as b2AR (Manglik and Kobilka, 2014; Kobilka, 2013; Nygaard et al., 2013).

Meanwhile, molecular dynamics (MD) simulations have depicted the dynamic behavior of b2AR and

have significantly enhanced our understanding of the activation mechanism of GPCRs (Dror et al.,

2009; Ozcan et al., 2013; Dror et al., 2011). Intriguingly, it is now evident that the activation of

GPCRs is modulated by lipids (Oates and Watts, 2011).

The lipid raft concept (Lingwood and Simons, 2010; Allen et al., 2007) essentially states that

cell membranes include functional nanoscale domains where the function emerges from proteins

whose structure and activation are modulated by lipids. However, despite a large body of research
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data, direct substantiation of lipid-induced protein modulation remains limited. Contreras et al.

showed that the COPI machinery protein p24 is recognized by a specific sphingomyelin

(Contreras et al., 2012). Coskun et al. showed that monosialoganglioside GM3 influences the acti-

vation of the epidermal growth factor receptor (Coskun et al., 2011), however the mechanism is not

known. Lipid modulation also holds to GPCRs (Oates and Watts, 2011; Neale et al., 2015;

Dawaliby et al., 2016) in particular through cholesterol (Oates and Watts, 2011; Paila and Chatto-

padhyay, 2009; Gimpl et al., 1997; Paila et al., 2011; Muth et al., 2011), which changes the physi-

cal properties of cellular membranes and supports the dynamic assembly of nanoscale membrane

domains (Simons and Ikonen, 2000).

The best known case is b2AR, which is a prototype of cholesterol-interacting GPCRs. b2AR

belongs to the family of class A GPCRs. GPCRs belonging to this class show a high structural similar-

ity and functional diversity. The literature reporting on the specific functional role of cholesterol and

other lipids is extensive (Pucadyil and Chattopadhyay, 2006; Gimpl, 2016). It has been experimen-

tally shown that cholesterol affects the conformation (Muth et al., 2011; Casiraghi et al., 2016) and

function (Gimpl et al., 1997; Paila et al., 2011; Pucadyil and Chattopadhyay, 2006;

Casiraghi et al., 2016; Jafurulla et al., 2014) of many GPCRs. Based on X-ray crystal structures cho-

lesterol has specific contacts with b2AR (Cherezov et al., 2007; Hanson et al., 2008), suggesting

that b2AR has binding sites for cholesterol. Spectroscopic (Gater et al., 2014) and MD simulation

(Cang et al., 2013; Prasanna et al., 2014; Lee et al., 2012) studies have reported direct interactions

between cholesterol and GPCRs, including b2AR. Experimental data show that cholesterol binding

to b2AR changes its structural properties (Hanson et al., 2008; Zocher et al., 2012). Cholesterol is

also necessary in crystallizing b2AR (Cherezov et al., 2007; Hanson et al., 2008), and cholesterol

and its analogue cholesteryl hemisuccinate (CHS) have been exhibited to improve b2AR stability

(Zocher et al., 2012; Loll, 2014). Since the structure and function of GPCRs are closely related, cho-

lesterol binding specifically to b2AR is also expected to change the functional properties of the

receptor. Indeed experimental studies indicate that cholesterol has a functional role in b2AR

eLife digest Proteins known as G protein-coupled receptors, or GPCRs for short, detect and

respond to hormones and other signaling molecules found outside cells. A signaling molecule

activates a GPCR by binding to it and causing the receptor to change its shape. This triggers a

cascade of signals inside the cell that leads to the cell responding in a particular way. There are over

800 different GPCRs in human cells, making them the largest family of cell surface proteins.

GPCRs span the membrane that surrounds each cell. This membrane is made of molecules called

lipids and previous studies have shown that many lipids are able to bind to GPCRs and influence

their shape and activity. Lipids can cause these changes via so-called ‘allosteric’ regulation, in which

the lipid binds to a site on the receptor that is separate to where the signal molecule binds. Lipid

binding can either enhance or inhibit the activity of the receptor.

Human b2-adrenergic receptor is one of the best-studied GPCRs. It responds to a hormone called

epinephrine (also known as adrenaline), which plays important roles in many organs in the body,

including the heart and lungs. A lipid called cholesterol, which is plentiful in the cell membrane, can

also bind to this receptor and influence its shape, but how this happens was not fully understood.

Manna et al. now use computer simulations to analyze the interaction between cholesterol and b2-

adrenergic receptor in more detail.

The simulations reveal that cholesterol makes the b2-adrenergic receptor less flexible so that it

can only adopt certain shapes. This helps to stabilize both the inactive and active states of the

receptor so that it is not as easy for the receptor to switch between them. The cholesterol molecules

bind to specific sites on the receptor within the region of the protein that crosses the cell

membrane.

The new findings of Manna et al. provide detailed insights into how cholesterol governs the

shape and activity of the b2-adrenergic receptor. The next step is to extend this analysis to other

types of lipids and GPCRs.

DOI: 10.7554/eLife.18432.002
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(Paila et al., 2011; Pontier et al., 2008; Xiang et al., 2002). Further, inhibition of b2AR-associated

signaling has been observed with increasing membrane cholesterol content (Pontier et al., 2008).

However, as with GPCRs in general, the atomic-scale mechanism cholesterol uses to regulate b2AR

is not known. Does cholesterol modulate b2AR activity through membrane-mediated effects by alter-

ing the physical properties of the membrane? Alternatively if regulation takes place through specific

direct interactions, then what is the atom-scale mechanism?

We performed extensive atomistic MD simulations (totaling >100 ms, Table 1) to clarify the mech-

anism responsible for the modulatory role of cholesterol on b2AR. In essence, we show that as cho-

lesterol concentration reaches ~10 mol%, the conformational distribution of b2AR is drastically

altered. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites

of the receptor.

Results

Cholesterol restricts b2AR conformation
We first studied the impact of cholesterol on the conformational distribution of b2AR by systemati-

cally increasing the cholesterol concentration from 0 to 40 mol% in a DOPC (1,2-dioleoyl-sn-glycero-

3-phosphocholine) bilayer. Crystallographic studies and previous biophysical and biochemical studies

have shown that helices 5–6 (H5-H6) (Figure 1A) constitute a highly dynamic region of b2AR

(Kobilka, 2013). Upon activation, the most dramatic conformational change, which is conserved

among many GPCRs, is a 7–14 Å outward movement of the intracellular end of H6 from the hepta-

helical core of the receptor (Manglik and Kobilka, 2014; Kobilka, 2013). The large rearrangement

in the G protein-coupling interface is accompanied by a comparatively subtle change in the ligand-

binding pocket. In a conformational change from the inactive to the active state b2AR, H5 (around

S2075.46) has been found to move inward by 2 Å to establish an optimal interaction between the

agonist and the two anchor sites (D1133.32/N3127.39 and S2035.42/S2045.43/S2075.46) on the receptor

(Kobilka, 2013).

In the present work where we started from the inactive structure of b2AR (Manna et al., 2015),

we calculated the distance between the Ca atoms of D1133.32 and S2075.46 (referred to as LL) to

measure the displacement of H5 in the ligand-binding site, and the distance between the Ca atoms

of R1313.50 and E2686.30 (referred to as LG) to determine the displacement of H6 in the G protein-

binding site (Figure 1A); the position of H3 does not change noticeably (RMSD < 0.8 Å) during the

simulations. These two parameters (LL and LG) have been used in many previous studies to monitor

changes in b2AR conformation (Manglik and Kobilka, 2014; Kobilka, 2013; Nygaard et al., 2013;

Dror et al., 2009; Ozcan et al., 2013; Dror et al., 2011; Manna et al., 2015), thus here we discuss

the conformational distribution of the receptor as a function of LL and LG (Figure 1B,C and Fig-

ure 1—figure supplement 1). In the inactive crystal structure, the LL and LG values are 12.07 and 11

Å, respectively (Hanson et al., 2008).

In a cholesterol-free DOPC bilayer, we find b2AR to adopt a wide range of conformations with LL
varying between ~11.5–17.5 Å and LG ranging between ~7.5–12.5 Å (Figure 1B). The receptor popu-

lates two major conformational states. One of them has a relatively open G protein site (LG being

10–12 Å) and a smaller ligand-binding site (LL ~ 13 ± 1 Å). The other conformation is characterized

by a shift of ~3–4 Å from the intracellular end of H6 towards the receptor core that blocks the G pro-

tein interface (LG ~ 8.5 Å). At the same time, the ligand-binding pocket expands as the extracellular

part of H5 moves ~ 4–5 Å away from H3 (LLnow ~16 ± 1 Å). This conformation represents an alterna-

tive inactive structure of the receptor, as both changes occur in the opposite direction compared to

the case of agonist binding (Kobilka, 2013); we do not observe any transition to the active state of

b2AR. Figure 1D shows the receptor oscillating between the different inactive conformations during

2.5 ms. The closing of the intracellular G protein-binding surface is found to correlate with the open-

ing of the extracellular ligand-binding pocket, and vice-versa (Figure 1D). The conformational corre-

lation between the two distal sites supports the view of allosteric regulation in GPCRs

(Kobilka, 2013; Ozcan et al., 2013).

In the presence of cholesterol, the picture changes quite dramatically. With a cholesterol concen-

tration of 10 mol%, the conformational flexibility of b2AR reduces significantly (Figure 1C). The

receptor stays predominantly in one conformation and no further opening of the ligand-binding site
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or the opening/closing of the G protein-binding site is observed, unlike in a cholesterol-free mem-

brane. As shown in Figure 1E, LL and LG fluctuate around ~13 and~9.5 Å, respectively. The slowing

down of the movements of H5 and H6 correlates with the observed high-density spots of cholesterol

at these helices (IC2 and EC1 in Figure 2 discussed in detail below). To further quantify this,

Figure 1F depicts the standard deviation for the fluctuations of the intracellular and extracellular

ends of H5 and H6, when these ends are bound or unbound to cholesterol. The data show that the

deviations of these helices from their respective average positions are much smaller when they are

Table 1. Descriptions of systems simulated: b2AR in bilayers with varying lipid compositions. ‘Chol’ stands for cholesterol.

Systems* Initial lipid arrangement around b2AR Lipids Sterol mol %
No. of
repeats†

Time
(ms)‡

DOPC Random DOPC 0 3 3�2.5

DOPC-active Random DOPC 0 3 3�2.5

C
H
O
L

Chol2 Random DOPC + Chol 2 3 3�2.5 R
A
N
D
O
M

Chol5 Random DOPC + Chol 5 3 3�2.5

Chol10 Random DOPC + Chol 10 3 3�2.5

Chol25 Random DOPC + Chol 25 2 2�2

Chol40 Random DOPC + Chol 40 3 3�2.5

Chol40-active Random DOPC + Chol 40 3 3�2.5

C
H
S

CHS10 Random DOPC + CHS 10 2 2�2

CHS40 Random DOPC + CHS 40 2 2�2

CHSA10
[A for anionic]

Random DOPC +
CHSA

10 1 2

CHSA40 Random DOPC +
CHSA

40 1 2

O
X
Y
S
T
E
R
O
L

27-OH-Chol Random
[16 mol % Chol was randomly replaced by 27-
OH-Chol]

DOPC +
Chol +
27-OH-Chol

25
(4 mol% 27-OH-Chol + 21 mol
% Chol)

3 2 + 1 + 1

4b-Chol Random
[16 mol% Chol was randomly replaced by 4b-
OH-Chol]

DOPC +
Chol +
4b-OH-Chol

25
(4 mol% 4b-OH-Chol + 21 mol
% Chol)

3 1 + 1 + 1

Chol-Bound§ 8 cholesterols bound at sites predicted by
simulations

DOPC + Chol 1.9 3 3�2.5 B
O
U
N
D

Chol-IC1 2 Chol bound at IC1 DOPC + Chol <1 2 2�2

CHS-IC1 2 CHS bound at IC1 DOPC + CHS <1 1 2

CHSA-IC1 2 CHSA bound at IC1 DOPC +
CHSA

<1 1 2

PC-20:0–22:1 c13
[Double bond at car-
bon 13]

Random PC-20:0–22:1
c13

0 3 3�1.5

Pyrene20 Random DOPC +
20 mol%
pyrene

0 3 3�1.5

*In the DOPC-active and Chol40-active systems, we used the active-state conformation of the receptor as the starting structure; for all the other sys-

tems, we used the inactive conformation.
†For systems with no sterols initially bound to b2AR, i.e., the systems which started with a random distribution of lipids, a number of different repeat sim-

ulations for each lipid composition were performed with different initial lipid arrangements around the receptor. For systems with sterols initially bound

to b2AR (seed and BOUND), different replicas were generated with different starting velocities.
‡Listed are the simulation times of production simulations; the equilibration time of the systems (100 ns) is not included.
§In the Chol-Bound system, eight cholesterol molecules were initially (at time zero of the simulation) bound at eight binding sites predicted by the pres-

ent simulations, while the rest of the system had no cholesterol at all.

DOI: 10.7554/eLife.18432.003
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bound to cholesterol. The effect is particularly strong for the extracellular end of H5 at the ligand-

binding site and for the intracellular end of H6 at the G protein-binding site.

The restricted dynamics of b2AR is also observed at higher cholesterol concentrations (25 and 40

mol%; Figure 1—figure supplement 1D,E). In these cases, the receptor samples a similar conforma-

tional space as observed with 10 mol% cholesterol. At lower concentrations (2 and 5 mol%), the dis-

tribution of the receptor’s conformation is much wider (Figure 1—figure supplement 1A,B).

Particularly when the membrane contains a very small percentage of cholesterol (2 mol%), the range

of conformations accessible to b2AR is almost comparable to that of a cholesterol-free membrane.

A broad conformational distribution (Figure 1—figure supplement 1F) is also observed in control

simulations, where eight cholesterol molecules were initially placed at the cholesterol-binding sites

Figure 1. Conformational dynamics of b2AR. (A) The distances between the Ca atoms of D1133.32–S2075.46 (distance defined as LL) and R1313.50–

E2686.30 (LG) pairs used to measure the fluctuations at the ligand and G-protein binding sites, respectively. (B–C) The conformational distributions of

b2AR in membranes with 0 and 10 mol% cholesterol (Chol) as a function of LL and LG. The gray dotted lines represent the corresponding LL and LG
values in the inactive crystal structure of b2AR (Hanson et al., 2008). The cartoon diagram shows the fluctuations of LL and LG at the ligand and

G-protein binding sites of the receptor, respectively. (D–E) The time evolution of LL (light red) and LG (light blue) in systems with 0 and 10 mol%

cholesterol. Corresponding 50-point running averages are shown in dark colors. (F) Standard deviation for the distribution of the distance between the

intracellular (IC) (or extracellular (EC)) end of H5 and its average position, and its dependence on whether the given end of H5 is in contact with

cholesterol or not; similarly for H6.

DOI: 10.7554/eLife.18432.004

The following figure supplement is available for figure 1:

Figure supplement 1. Conformational distributions of b2AR in lipid bilayers with various cholesterol (Chol) concentrations.

DOI: 10.7554/eLife.18432.005
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Figure 2. Cholesterol interaction sites on b2AR. (A–B) 2D number densities of cholesterol (Chol) around b2AR. The data are averaged over all

independent trajectories for a given cholesterol concentration (Table 1) and normalized with respect to the maximum density for that particular

cholesterol concentration. The intracellular (IC) and extracellular (EC) bilayer leaflets are depicted separately. The major cholesterol interaction sites

(IC1, IC2 and EC1) are marked in the density plots. The IC and EC sides of the transmembrane regions (H1–H7) of b2AR are shown in gray scale (the

darker the color, the higher is the number density) and numbered accordingly. (C–D) Cartoon representation of three main cholesterol interaction sites

in b2AR. IC1 (H1–H4) and IC2 (H5–H6) are located on the intracellular side, and EC1 comprised of two closely placed cholesterols between H5-H6 and

H6-ECL3-H7 is located on the extracellular side of b2AR.

DOI: 10.7554/eLife.18432.006

The following figure supplements are available for figure 2:

Figure supplement 1. Residues of b2AR involved in cholesterol binding, and cholesterol interaction sites on b2AR.

DOI: 10.7554/eLife.18432.007

Figure supplement 2. Sequence alignment of b2AR orthologues around the cholesterol-binding site IC1.

DOI: 10.7554/eLife.18432.008

Figure supplement 3. Sequence alignment of b2AR orthologues around the cholesterol-binding site IC2.

DOI: 10.7554/eLife.18432.009

Figure supplement 4. Sequence alignment of b2AR orthologues around the cholesterol-binding site EC1.

DOI: 10.7554/eLife.18432.010

Figure supplement 5. Cholesterol density around the receptor at low cholesterol concentrations.

DOI: 10.7554/eLife.18432.011

Figure 2 continued on next page
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of b2AR predicted by our simulations (see below), and this receptor-cholesterol complex was then

embedded in a cholesterol-free membrane. Here (Figure 1—figure supplement 1F) the concentra-

tion of cholesterol in the annular region is therefore high in the beginning of the simulation, while it

is zero elsewhere. Cholesterols dissociate from b2AR during the course of the simulation (discussed

in detail below) and at long times the system corresponds to a dilute (cholesterol-poor) system,

where the total average cholesterol concentration is low (1.9 mol%). One finds that as the data are

averaged over the simulation period, the conformational behavior (Figure 1—figure supplement

1F) translates from cholesterol-rich (Figure 1—figure supplement 1E) to cholesterol-poor behavior

(Figure 1—figure supplement 1A,B).

Further, we studied the effect of cholesterol on the active conformation of b2AR in its apo form in

the absence of the G protein (Rasmussen et al., 2011). In the active state, the intracellular end of

H6 is splayed outward from the helical bundle, providing room for the G protein (Figure 3A). We

observe inward swinging of H6 towards H3 in the absence of cholesterol (which occurred in two out

of three replica simulations). As shown in Figure 3B,E, the intracellular end of H6 spontaneously

approaches H3 with LG dropping from 18.97 Å in the starting active conformation to ~11.5 Å that is

comparable to the crystallographically observed inactive conformation of b2AR (LG ~ 11 Å)

(Hanson et al., 2008). Such spontaneous deactivation of the receptor in the absence of the intracel-

lular binding partner and cholesterol is in agreement with recent simulations (Dror et al., 2011;

Neale et al., 2015) and experimental studies (Rosenbaum et al., 2011). Meanwhile, with 40 mol%

cholesterol, we observe that the active-like open conformation is stable during the simulations (Fig-

ure 3—figure supplement 1). As shown in Figure 3C,E, the LG value remains stable around 16.5 Å

and no deactivation is observed unlike in cholesterol-free systems. Interestingly, here again we found

a high cholesterol density at the intracellular segments of H5-H6 (IC2 in Figure 3C,D,F as discussed

in detail below).

These results show that cholesterol restricts the intrinsic conformation dynamics of b2AR and gov-

erns changes between different conformational states, thereby modulating its function.

Specific binding of cholesterol
In all of the simulations (Table 1), cholesterol is observed to diffuse spontaneously to the receptor’s

surface. Time-averaged two-dimensional (2D) number density maps demonstrate that there are pre-

ferred cholesterol positions around b2AR (Figure 2A,B).

Localized cholesterol hot spots are often used as an indicator of potential cholesterol binding

sites. We identify three such cholesterol interaction sites – two on the intracellular side (IC1 and IC2)

and one on the extracellular side (EC1) (Figure 2, Figure 2—figure supplement 1A,B). Here we call

them high-affinity sites since they reproducibly exhibit high cholesterol densities (normalized number

density above 0.7) at different cholesterol concentrations (Figure 2A,B) and also have large lifetimes

as the below discussion shows. IC1 is a shallow groove formed by the intracellular parts of trans-

membrane helices H1-H4 and coincides well with the location of cholesterol observed in the crystal

structure of b2AR (Cherezov et al., 2007; Hanson et al., 2008). In IC2 cholesterol penetrates deep

into the cleft between H5 and H6 on the intracellular side. A high density of cholesterol is observed

at IC2 not only in the inactive but also in the active b2AR conformation (Figure 3C,D,F), which sug-

gests that this site is biologically important.

Figure 2 continued

Figure supplement 6. Structure of cholesterol analogues and properties of sterol-containing bilayers.

DOI: 10.7554/eLife.18432.012

Figure supplement 7. Interactions of cholesterol and cholesterol-like molecules with b2AR.

DOI: 10.7554/eLife.18432.013

Figure supplement 8. Densities of sterols around b2AR.

DOI: 10.7554/eLife.18432.014

Figure supplement 9. Conformational distributions of b2AR in lipid bilayers with different cholesterol analogues.

DOI: 10.7554/eLife.18432.015

Figure supplement 10. IC1 interaction site.

DOI: 10.7554/eLife.18432.016
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EC1 is comprised of two closely spaced cholesterol hot spots located in the extracellular part of

H5-H6 and H6-ECL3-H7 (where ECL stands for the extracellular loop). The occupancy of two choles-

terol molecules at EC1 is in good agreement with the crystal structure of the adenosine receptor

A2AAR (Liu et al., 2012), while IC2 is so far unidentified among the experimentally determined struc-

tures (Gater et al., 2014). Notably, the cholesterol binding residues of the three interaction sites are

conserved to a large degree among b2AR orthologues (Figure 2—figure supplement 2, Figure 2—

figure supplement 3, Figure 2—figure supplement 4), indicating that these sites have conserved

during the evolution of the receptor. In addition, a few comparatively low-affinity cholesterol binding

sites (IC3-4, EC2-3) with 10 and 40 mol% cholesterol are observed (Figure 2—figure supplement 1).

When cholesterol concentration is lowered below 10 mol%, many of the interaction sites, particularly

IC1 and EC1, are occupied by cholesterol at concentrations as low as 5 mol% (Figure 2—figure

Figure 3. Effect of cholesterol on the active conformation of b2AR. Cytosolic view of b2AR (A) in the beginning of a simulation (active state) as well as in

representative simulation snapshots in (B) a DOPC bilayer and (C) in the presence of 40 mol% cholesterol. The dotted line represents the distance

between the Ca atoms of R1313.50–E2686.30 (defined as LG), used to measure the fluctuation at the G protein-binding site. (D) Simulation snapshot (in

the presence of 40 mol% cholesterol) showing cholesterol binding at the interaction sites of b2AR. (E) The time evolution of LG in systems with 0 (light

red) and 40 mol% cholesterol (light blue). Corresponding 50-point running averages are shown in dark colors (red, blue). (F) 2D number densities of

cholesterol around b2AR (cytosolic view). The individual transmembrane helixes of b2AR are numbered and shown in gray scale (as in Figure 2A,B).

DOI: 10.7554/eLife.18432.017

The following figure supplement is available for figure 3:

Figure supplement 1. Conformational distribution of b2AR starting from the active state.

DOI: 10.7554/eLife.18432.018
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supplement 5). A few sites (IC2 and EC1) are visited, though transiently, by cholesterol even at 2

mol% (Figure 2—figure supplement 5).

In addition to the above-discussed cholesterol hot spots, we observed two sites with compara-

tively weak cholesterol occupancies (reproducible at both 10 and 40 mol% cholesterol concentra-

tions): IC3 between H3 and H5, and IC4 between H1 and H8, both on the intracellular side

(Figure 2A,B and Figure 2—figure supplement 1). IC4 recaptures the predicted cholesterol posi-

tion at the dimerization interface of b2AR found by X-ray crystallography (Cherezov et al., 2007).

Besides these, another site with a low cholesterol density was observed near the extracellular part of

H3-H4 (EC2) in the 10 mol% cholesterol system, and a high-density site was observed on the extra-

cellular side of H1-H2-EC1 (EC3) in the 40 mol% cholesterol system (Figure 2A,B).

Concluding, we find cholesterol to bind to b2AR in specific binding sites. These sites are in agree-

ment with those found in the crystallographic structures of GPCRs (Cherezov et al., 2007;

Hanson et al., 2008; Gimpl, 2016; Warne et al., 2011; Liu et al., 2012; Gater et al., 2014).

Membrane-mediated interactions not the key
Is it possible that the effects we observed on b2AR conformation could be due to cholesterol-

induced changes in membrane properties, and the changes in b2AR would hence not be due to the

specific direct binding of cholesterol in the hot spots? To unlock this issue, we study the conforma-

tional properties of b2AR in cholesterol-free membranes whose physical properties (thickness, order,

diffusion) match those of membranes with a large concentration of cholesterol.

A. Effect of increased bilayer thickness. We studied b2AR embedded in a bilayer composed of
long-chain mono-unsaturated phosphatidylcholine (PC) lipids PC-20:0/22:1 c13 (Koynova and
Caffrey, 1998). The thickness of this membrane is larger than the thickness of a DOPC bilayer
with 40 mol% cholesterol, while its lipid chain order is comparable to a DOPC bilayer with 5%
cholesterol (Figure 4—figure supplement 1A,B). Figure 4A depicts that the increased bilayer
thickness is unable to restrict the conformational dynamics of b2AR. The receptor just adjusts
itself to the hydrophobic mismatch by inducing bilayer thinning (4–8 Å) in its vicinity
(Figure 4B).

B. Effect of increased bilayer order. We then studied b2AR placed in a DOPC bilayer with 20 mol
% pyrene, which is known to induce similar (ordering and condensing) effects as cholesterol
(Curdová et al., 2007). Figure 4D highlights that pyrene does not show any preference for
specific binding on the b2AR surface except for the slowed-down diffusion of pyrene near the
receptor surface. b2AR exhibits a very broad conformational distribution, with LL and LG fluctu-
ating between ~9–17.5 and ~7–13.5 Å, respectively (Figure 4C). This conformational behavior
of the receptor is distinctly different from the one induced by �10 mol% cholesterol, although
the order of the pyrene-containing bilayer is similar to a DOPC bilayer with 10 mol% of choles-
terol (Figure 4—figure supplement 1D).

Summarizing, the changes in physical membrane properties, similar to those induced by choles-

terol, do not restrict the conformational dynamics of b2AR. We conclude that the cause of the

observed changes in b2AR conformation and dynamics is the specific binding of cholesterol to b2AR.

Binding lifetime depends on cholesterol
When cholesterol is specifically bound to b2AR, how stable is the binding? Figure 5 depicts the

time-correlation function of cholesterol binding in the three main binding sites (IC1, IC2, EC1) on

b2AR and shows that at low cholesterol concentrations (2–5 mol%) the binding lifetime is short, of

the order of 100 ns or less. However, at ~10 mol% there is a clear transition to longer lifetimes (see

Video 1 and Video 2) given that the lifetime of binding increases to the microsecond time scale for

10 and 40 mol% cholesterol.

In three control simulations where cholesterols were initially bound at the eight cholesterol-bind-

ing sites identified in our simulations and no further cholesterol was in the bilayer (Figure 5—figure

supplement 1), cholesterols underwent rapid unbinding from the majority of the binding sites in a

timescale of tens to hundreds of nanoseconds (Figure 5—figure supplement 1), similarly to the

short binding lifetime observed for cholesterol-poor systems (2 mol%, Figure 5). However, at a few

sites cholesterol stayed for the entire simulation time (IC1 and IC2 in two out of three simulations) or

dissociated in the ms timescale (IC3 and EC3 in one simulation).
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The results show that the lifetime of cholesterol is of the order of microseconds in the high-affinity

binding sites, where the lifetime at large cholesterol concentrations is largely independent of choles-

terol concentration.

Cholesterol analogues interact with b2AR
We next explore how cholesterol analogues, in comparison to cholesterol, interact with b2AR. We

focus on four different analogues (Table 1): (i-ii) cholesteryl hemisuccinate (CHS) and its deproto-

nated form (CHSA), and (iii-iv) two oxysterols, 4b-hydroxycholesterol (4b-OH-Chol) and 27-hydroxy-

cholesterol (27-OH-Chol), oxidized at the cholesterol ring and tail, respectively (Figure 2—figure

supplement 6A). As compared to cholesterol, CHS is a more water-soluble cholesterol ester and is

Figure 4. Impact of membrane-mediated effects on the b2AR conformation. The conformational distribution of b2AR in bilayers composed of (A) long-

chain PC-20:0/22:1 c13 lipids and (C) DOPC with 20 mol% pyrene (Pyrene20). (B) 3D-distribution of bilayer thickness in the thicker PC-20:0/22:1 c13

membrane. The receptor is shown as a purple cartoon. (D) 2D number density of pyrene around b2AR.

DOI: 10.7554/eLife.18432.019

The following figure supplement is available for figure 4:

Figure supplement 1. Properties of thick and/or ordered cholesterol-free bilayers.

DOI: 10.7554/eLife.18432.020
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widely used in structural biology and biophysical studies as a cholesterol analogue (Zocher et al.,

2012; Loll, 2014). Oxysterols, on the other hand, are derivatives of cholesterol with additional oxy-

gen-containing substitutions at different positions of cholesterol (Olkkonen and Hynynen, 2009;

Kulig et al., 2015a; Neuvonen et al., 2014). Due to the structural similarities with cholesterol, these

analogues mimic cholesterol as to the effects on membrane properties (e.g., increasing bilayer order

and thickness), although to different extents (Figure 2—figure supplement 6) (Kulig et al., 2015a,

2015b).

CHSA is found to interact strongly with b2AR due to the enhanced electrostatic coupling resulting

from its negatively charged head-group (Figure 2—figure supplement 7), however it favors to

reside around the receptor at locations different from those of cholesterol (Figure 2—figure supple-

ment 8A,B). Meanwhile, CHS closely mimics the behavior of cholesterol (Figure 2—figure supple-

ment 7). Among the three major cholesterol interaction sites observed in our simulations, we find a

very high CHS density at IC2 (Figure 2—figure supplement 8C–F). High occupancy of CHS is also

observed near IC1 (at 40 mol% CHS concentration) but not at all at EC1. Occupancy of CHS at IC1 is

consistent with the crystal structure of b1AR (Warne et al., 2011).

4b-OH-Chol interacts only weakly with b2AR (Figure 2—figure supplement 7). Almost all of the

interaction sites on the receptor surface are occupied by cholesterol rather than 4b-OH-Chol

Figure 5. Binding time of cholesterol. (A–C) Time-correlation function of cholesterol (Chol) at the three major interaction sites (IC1, IC2, EC1) on the

b2AR surface. Initially cholesterol is bound to the site (distance � 0.5 nm) and the correlation function describes the probability that cholesterol remains

bound to the given site for increasing time. Data are shown for DOPC-cholesterol membranes with 2, 5, 10, and 40 mol% of cholesterol. (D–E)

Schematic representation showing the transition from fast to slow exchange as cholesterol concentration increases from 2 to 40 mol%. Color code:

b2AR (blue), DOPC (thin grey lines), cholesterol molecules bound to the interaction sites (purple), and other cholesterol molecules not bound to the

receptor (yellow sticks).

DOI: 10.7554/eLife.18432.021

The following figure supplement is available for figure 5:

Figure supplement 1. Interaction of cholesterol with b2AR.

DOI: 10.7554/eLife.18432.022
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(Figure 2—figure supplement 8G–J). As a result,

the average density maps, showing the lateral

arrangement of these sterols around b2AR, are

similar to those of 10 and 40 mol% cholesterol

systems (Figure 2A), and reproducible. Unlike

4b-OH-Chol, 27-OH-Chol prefers to interact with

the receptor directly (Figure 2—figure supple-

ment 7). For the IC1 site, 27-OH-Chol competes,

though weakly, with cholesterol, while at EC1

and IC3, 27-OH-Chol exhibits preference over

cholesterol (Figure 2—figure supplement 8K–

N).

Altogether, our results show that also other

cholesterol-like molecules interact with b2AR and

may occupy the same binding sites on the recep-

tor surface as cholesterol. However, the effects of

cholesterol-analogues on b2AR are weaker com-

pared to those induced by cholesterol (Figure 2—

figure supplement 9). All the cholesterol ana-

logues studied here have a rigid ring structure,

yet their slightly different chemical compositions

influence their occupancy as well as the strength

of binding to the cholesterol-binding sites

(Table 2). This is assessed here in terms of the

van der Waals energy, which as a short-range

interaction reflects how strongly two molecules are in contact and therefore serves as an appropriate

measure for the gravity of lipid-protein binding in the binding site.

The results in Table 2 show that among the three major interaction sites, the binding of CHS at

IC1 is much weaker than that of cholesterol. At IC2 the strength of interaction of CHS and choles-

terol is comparable. Meanwhile, the extracellular EC1 site remains unoccupied by CHS indicating the

binding energy to be low. As to the two oxysterols, 4b-OH-Chol interacts with b2AR only at EC1 and

the interaction is weak, while 27-OH-Chol binds

at EC1 as tightly as cholesterol, but its interac-

tion at the two other binding sites (IC1 and IC2)

is much weaker than in the case of cholesterol.

Concluding, CHS interacts at IC2 as strongly as

cholesterol but its interactions at IC1 and EC1

are negligible compared to those of cholesterol.

The oxysterol 27-OH-Chol interacts at EC1 as

strongly as cholesterol but its interactions at IC1

and IC2 are negligible compared to those of

cholesterol. The oxysterol 4b-OH-Chol does not

interact with b2AR to a significant degree.

These data can be considered in the context

of molecular structures. In CHS, the difference

compared to cholesterol is the additional chain

bridged to the cholesterol structure via an ester

bond (Figure 2—figure supplement 6A). This

additional chain does not interfere binding at

IC2, but it does alter the binding at IC1 and

EC1. In 27-OH-Chol, the oxidation has taken

place in the short acyl chain that is the terminal

subunit of the molecule. This does not interfere

the binding at EC1 but does alter the binding at

IC1 and IC2. Finally, in 4b-OH-Chol, the oxida-

tion has occurred in the rigid steroid moiety,

Video 1. Spontaneous binding/unbinding of

cholesterol at the three main cholesterol interaction

sites of b2AR during a 2.5-ms simulation with 10 mol%

of cholesterol. Cholesterols interacting at the

cholesterol-binding sites are highlighted (yellow at IC1;

green at IC2; and blue and red at EC1). Other

cholesterols are shown in gray. For clarity, other lipids

in a membrane are not shown.

DOI: 10.7554/eLife.18432.023

Video 2. Spontaneous binding/unbinding of

cholesterol at the three main cholesterol interaction

sites of b2AR during a 2.5-ms simulation with 40 mol%

of cholesterol. Cholesterols interacting at the

cholesterol-binding interaction sites are highlighted

(yellow and green at IC1; red, blue and orange at IC2;

and pink, purple and cyan at EC1). Other cholesterols

are shown in gray. For clarity, other lipids in a

membrane are not shown.

DOI: 10.7554/eLife.18432.024
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making the a-side of the molecule rougher. In cholesterol, the a-side is exceptionally flat. Given this

change in surface roughness, and the importance of the surface-surface contact in lipid-b2AR binding

in the binding site, it is quite obvious why this oxysterol does not bind to any of the cholesterol bind-

ing sites (IC1, IC2, EC1).

The results support the view that the restriction of b2AR dynamics arises from specific lipid bind-

ing to the receptor binding sites: the tighter the binding, the more is the receptor dynamics sup-

pressed, and cholesterol induces the strongest effect.

Discussion
Our results show that cholesterol has a preference to bind to b2AR at specific locations on its sur-

face. We identified three high-affinity cholesterol interaction sites in b2AR (Figure 2C,D): IC1 (at the

cleft of H1-H4 on the intracellular side), IC2 (H5-H6 on the intracellular side), and EC1 (the H5-H6-

ECL3-H7 region on the extracellular side). IC1 and EC1 are in agreement with the locations of cho-

lesterol found in GPCR crystal structures (Cherezov et al., 2007; Hanson et al., 2008; Liu et al.,

2012). IC1 contains a cholesterol consensus motif that predicts cholesterol binding for 44% of

human class A receptors (Hanson et al., 2008). Moreover, these binding sites appear to be evolu-

tionarily conserved in b2AR, which suggests their possible allosteric role in receptor function. A

recent simulation study reported a correlation between cholesterol occupancy at IC1 and b2AR

dimerization (Prasanna et al., 2014). However, not much is known about the functional relevance of

cholesterol binding to the other sites of b2AR.

The present work for the inactive conformation of b2AR shows that cholesterol binding at IC2 and

EC1 (Figure 2C,D) strongly influences the conformational dynamics of b2AR (Figure 1). In a choles-

terol-free membrane the receptor samples multiple conformational states (Figure 1B) accounting for

the high basal activity of b2AR (Manglik and Kobilka, 2014; Kobilka, 2013). Our results show that

the presence of cholesterol in high densities around H5-H6-H7 impedes the dynamic nature of the

receptor. In cholesterol-containing (�10 mol% cholesterol) membranes (Figure 1C and Figure 1—

figure supplement 1D,E), the overall structural flexibility of the receptor is significantly reduced to

one predominant conformation. We observed that in the presence of strongly bound cholesterol, H5

and H6 undergo much smaller displacements from their average positions as compared to the situa-

tion without cholesterol (Figure 1F). Cholesterol analogues that occupy the same interaction sites

also restrict the b2AR conformation (Figure 2—figure supplement 9), although their effects are

weaker compared to those of cholesterol. Cholesterol or cholesterol-like molecules bound at these

inter-helical clefts can thus confine the movement of the respective helices to a substantial degree,

thus dampening the overall conformational dynamics of the receptor. At IC2 of inactive b2AR, cho-

lesterol pushes the intracellular end of H6 more towards the core of the helical bundle and prevents

the outward movement of H6 required for G protein binding. The restriction of H6 movement by

cholesterol is a potentially important allosteric effect, which can be used to modulate the receptor

activity.

Table 2. Interactions* of sterols at the three high-affinity cholesterol-binding sites.

Cholesterol/Cholesterol
analogue

High-affinity cholesterol interaction sites

IC1 IC2 EC1

vdW interaction energy
(kJ/mol)

No. of
contacts

vdW interaction energy
(kJ/mol)

No. of
contacts

vdW interaction energy
(kJ/mol)

No. of
contacts

Cholesterol† �138.04 ± 0.20 141.02 ± 0.22 �95.06 ± 0.12 90.65 ± 0.16 �129.51 ± 0.29 104.38 ± 0.28

CHS �29.63 ± 0.14 28.78 ± 0.16 �98.75 ± 0.11 96.30 ± 0.16 - -

27-OH-Chol �32.17 ± 0.30 34.95 ± 0.33 �22.69 ± 0.23 28.41 ± 0.28 �132.85 ± 0.27 120.20 ± 0.30

4b-OH-Chol - - - - �41.80 ± 0.48 33.41 ± 0.42

* Shown are the total van der Waals (vdW) interaction energy and the number of contacts between cholesterol and b2AR, when cholesterol is in the IC1,

IC2, or EC1 binding site (and similarly for the cholesterol analogues).
† Calculations are based on systems having �10 mol% cholesterol. Shown here are the average values over different trajectories.

DOI: 10.7554/eLife.18432.025
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Interestingly, our study on the active-state b2AR also exhibits a high cholesterol density at IC2

(Figure 3D,F). Here cholesterol bound at IC2 acts as a spacer between H5-H6 and restricts the

movement of H6, thereby stabilizing the open active-like conformation of the receptor (Figure 3D),

while in the absence of cholesterol the receptor is more prone to undergoing spontaneous deactiva-

tion (Figure 3E; Figure 3—figure supplement 1). This result supports the postulate that cholesterol

restricts the conformational dynamics of the receptor by binding at specific interaction sites and gov-

erns changes between different receptor states, therefore modulating its function. Moreover, choles-

terol binding at IC2 in both inactive and active states of b2AR as found in our simulations highlights

the biological relevance of this interaction site in allosteric regulation of the receptor conformation.

The highly conserved IC1 site shows no major influence on the mobility of H5-H6. On the other

hand, IC1 exerts a stabilizing effect on H4 (Figure 2—figure supplement 10), in agreement with

experiments (Hanson et al., 2008). As H4 is one of the weakest points of the b2AR fold, its

decreased mobility may account for the enhanced stability of the receptor.

Cholesterol modulates the physical properties of membranes by increasing the bilayer thickness

and order, and slowing down the dynamics. These general membrane effects can also influence the

dynamic nature of a membrane protein (Manna and Mukhopadhyay, 2011). However, here we

found that membrane-mediated interactions do not affect b2AR conformation to a significant degree

(Figure 4).

GPCRs are signaling machines that function by toggling between multiple conformers

(Latorraca et al., 2016). The dynamic nature of GPCRs has made their crystallization process

extremely challenging (Kobilka, 2013). Besides techniques like protein engineering and use of

detergents to increase the intrinsic stability of the receptor (Loll, 2014), cholesterol/CHS has

emerged as a necessary component for crystallization of many GPCRs, including b2AR

(Cherezov et al., 2007; Hanson et al., 2008; Zocher et al., 2012; Loll, 2014). Our work shows that

in the presence of more than ~10 mol% cholesterol, inactive b2AR partly loses conformational vari-

ability and populates just one major conformation. Achieving conformational homogeneity is the key

to crystallize membrane proteins (Loll, 2014). In agreement with our results, a recent experimental

study showed that CHS impacts the conformational dynamics of a GPCR leading to a restricted con-

formational space (Casiraghi et al., 2016). Earlier it was experimentally reported that cholesterol

induces a more compact conformational state of the oxytocin receptor (Muth et al., 2011). Our

results are also in agreement with a recent dynamic single-molecule force spectroscopic study, which

showed that CHS strengthens interactions that stabilize the structural segments in b2AR and thereby

considerably increase the kinetic, energetic, as well as the mechanical stability of the receptor

(Zocher et al., 2012). In addition, the function of adrenergic receptors is known to be modulated by

cholesterol: cholesterol depletion enhances b2AR-associated signaling, while increased cholesterol

content inhibits signaling (Paila et al., 2011; Pontier et al., 2008).

To our knowledge, the results presented in this work provide the first atomic-scale picture of how

lipids can govern the conformation of membrane receptors through direct lipid-protein interactions

in specific lipid binding sites, and hence dictate the state of a receptor. The receptor-cholesterol

interactions, such as those observed in our simulations for b2AR, can conceivably govern the signal-

ing of many GPCRs in the given protein family.

Materials and methods
We performed all-atom molecular dynamics simulations of b2AR embedded in lipid bilayers with vari-

ous lipid compositions (Table 1) using the GROMACS 4.6.x software package.

Force field parameters
All simulations were performed using the GROMACS 4.6.x package (Berendsen et al., 1995;

Hess et al., 2008). The all-atom OPLS-AA (optimized potentials for liquid simulations) force field

was used to parameterize the protein, ions, and pyrene (Jorgensen et al., 1996; Kaminski et al.,

2001). Force field parameters for cholesterol, cholesteryl hemisuccinate, and oxysterols were taken

from previously published papers (Manna et al., 2015; Kulig et al., 2015a, 2015b, 2014). For the

studied phosphatidylcholines (DOPC and PC-20:0/22:1 c13), we used new torsional and Lennard-

Jones parameters derived for saturated (Maciejewski et al., 2014) and unsaturated hydrocarbons

(Kulig et al., 2015c, 2016) and the torsional potential developed for the glycerol backbone and the
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phosphatidylcholine head group (Maciejewski et al., 2014). The TIP3P model, which is compatible

with the OPLS parameterization, was used for water molecules (Jorgensen et al., 1983).

Simulation protocols
All simulations of the systems considered in this work (Table 1) were performed under the isobaric-

isothermal (NpT) ensemble. A time step of 2 fs was used for integrating the equations of motion.

Periodic boundary conditions were applied in all three directions of the system. The temperature of

the system was maintained at 310 K by employing the v-rescale (stochastic velocity rescaling) ther-

mostat (Bussi et al., 2007) with a time constant of 0.1 ps. The temperatures of the receptor, lipids,

and solvent molecules were controlled independently. The pressure of the system (1 bar) was main-

tained semi-isotropically using the Parrinello–Rahman barostat (Parrinello and Rahman, 1981) with

a 1 ps time constant. The LINCS algorithm was applied to preserve hydrogen covalent bond lengths

(Hess et al., 1997). Lennard-Jones interactions were cutoff at 1.0 nm. The particle mesh Ewald

(PME) method (Essmann et al., 1995) was employed for long-range electrostatic interactions using

a real space cutoff of 1.0 nm, b-spline interpolation (order of 6), and a direct sum tolerance of 10�6.

Protein structure
The initial coordinates of b2AR were taken from our recently published work (Manna et al., 2015), in

which the structural modifications made for crystallization of the inactive b2AR structure [PDB id:

3D4S] (Hanson et al., 2008) were reverted back to its original sequence. This inactive crystal struc-

ture of b2AR bound to the partially inverse agonist timolol was heavily engineered to facilitate crys-

tallization (Hanson et al., 2008). We reverted all the structural modifications from the

experimentally determined structure, i.e., we removed mutations (E1223.41W on the transmembrane

helix H3 and the N1875.26E mutation on the extracellular loop 2), removed the T4-lysozyme attached

between the transmembrane helices 5 and 6, and replaced it with the missing intracellular loop 3.

We did not attempt to model the unresolved N-terminal (32 residues) and C-terminal (71 residues)

parts. The details of the procedure used to prepare the receptor model for our simulations are

described elsewhere (Manna et al., 2015). In the present work, we considered the apo-receptor

(without a ligand), as we were interested in the intrinsic dynamics of b2AR.

For simulations with the active-state b2AR conformation, the starting structure was taken from the

crystal structure of the receptor bound to an agonist and a Gs protein (Rasmussen et al., 2011).

Here again we considered the apo-form of the receptor without the ligand and the G protein. Addi-

tionally, we removed the lysozyme and modeled the missing loop regions (A176-H178 and F240-

F264), but the mutations were kept as such.

System setup
We simulated b2AR embedded in a number of lipid bilayers (Table 1) with varying lipid composition.

The lipid contents used in the studies were as follows:

. DOPC bilayers with different cholesterol (Chol) concentrations: 0, 2, 5, 10, 25, and 40 mol%.

. DOPC bilayers with a cholesterol analogue cholesteryl hemisuccinate (CHS; 10 and 40 mol%)
or its deprotonated form CHSA (10 and 40 mol%). CHS is known to enhance the stability of
GPCRs. It is frequently used for GPCR characterization (Zocher et al., 2012; Yao and Kobilka,
2005).

. DOPC bilayers mixed with several sterols: 21 mol% cholesterol and 4 mol% oxidized sterol
(4b-hydroxy-cholesterol (4b-OH-Chol) or 27-hydroxy-cholesterol (27-OH-Chol)). Oxysterols
used in this study are among the most common oxysterols found in human serum
(Olkkonen and Hynynen, 2009; Kulig et al., 2015a).

. A single-component bilayer composed of the long-tail monounsaturated phospholipid PC-
20:0/22:1 c13.

. DOPC bilayers with 20 mol% pyrene.

The lipid bilayers (without b2AR) were constructed using in-house scripts, and they were subse-

quently solvated with water. These lipid bilayers were then equilibrated for 100–200 ns.

Next, b2AR was placed into the above-mentioned pre-equilibrated bilayers in such a manner that

the lipid arrangement around the receptor was completely random and that there was no choles-

terol or cholesterol analogue initially bound to b2AR. For incorporating the receptor into a pre-
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equilibrated lipid bilayer, we followed our recently published method, where the receptor was

pushed into a lipid membrane from its side by applying a high lateral pressure on the system

(Javanainen, 2014).

Each system contained one b2AR and 256–512 lipids. Each of the systems was explicitly solvated

by water. In all cases, counterions (8 Cl– ions for b2AR, and additional Na+ counter ions for bilayers

containing the anionic CHSA) were added to maintain electroneutrality of the systems. NaCl salt was

added to achieve the physiological salt concentration of 150 mM. Subsequently each system was

energy minimized and then equilibrated in two stages with position restraints first on protein heavy

atoms and then on the backbone. Following equilibration (100 ns), all restraints were released and

the equilibrated systems were subjected to microsecond length (1–2.5 ms) production simulations.

Multiple independent simulations were performed for each lipid composition, either by starting from

a different lipid arrangement around b2AR (for systems with no sterols initially bound to the recep-

tor) or starting with different initial velocities (for systems with sterols initially bound to the receptor).

Additional simulations were performed where cholesterol or its analogues were initially attached

to certain locations on the surface of the receptor, and this receptor-lipid complex was then embed-

ded to a cholesterol-free DOPC bilayer. Here we performed two sets of control simulations. In one

set of simulations, two cholesterol or CHS (neutral or anionic) molecules were bound at the cleft

formed by the intracellular side of the transmembrane helices H1-4 as predicted from the crystal

structure (Hanson et al., 2008). In another set of control simulations, cholesterol molecules were ini-

tially bound at the eight interaction sites of b2AR predicted by our simulations (see discussion in the

main article). The simulation conditions (as to counterions and salt, release of restrains, simulation

times, etc.) were as described above.

The systems investigated in this study are summarized in Table 1. The total simulation time for

the atomistic systems studied in this work covers a period of more than 100 ms.

Analysis of helix deviation
For calculation of deviations of helix ends, we first calculated their time series of X, Y, and Z coordi-

nates. The coordinates were then divided into two groups based on whether the upper and lower

halves of the helixes (backbone atoms) were in contact ( � 0.5 nm) with cholesterol (heavy atom) or

not. Separately in each group, the distance from the average point of the group at each time frame

(say ith frame) was calculated by:

d2i ¼ ðxi � xgÞ
2 þðyi� ygÞ

2 þ zi� zg
� �2

;

where xi, yi, zi were the coordinates of the ith frame, and xg, yg, zg were the average values. The

standard deviation of each group was then calculated by:

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Ng

X

Ng

i¼1

d2i

v

u

u

t

The average standard deviation of different simulations was calculated as a weighted average

depending on the number of frames (Ng) of the group in each simulation.

Two-dimensional (2D) number density map
The 2D number density maps were calculated using the g_densmap tool of GROMACS. The two

bilayer leaflets were calculated separately. The output was then processed (using an in-house script)

to normalize the maximum number density to one. We calculated the 2D number densities of choles-

terol (non-hydrogen atoms) and b2AR (backbone atoms of transmembrane region) separately.

Cholesterol occupancy time per residue
A residue of b2AR was considered to be in contact with cholesterol, when any of its non-hydrogen

atoms was within �0.5 nm of any heavy atom of cholesterol. The total occupancy time was then nor-

malized over the entire length of a simulation, i.e., an occupancy time of one means that the particu-

lar residue of b2AR was in contact with cholesterol throughout the simulation, whereas a value of

zero means no contact. The calculated total occupancy time per residue of b2AR was mapped onto

the receptor’s surface to highlight the regions of b2AR involved in cholesterol binding.

Manna et al. eLife 2016;5:e18432. DOI: 10.7554/eLife.18432 16 of 21

Research article Biophysics and Structural Biology Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.18432


Sequence alignment at cholesterol-binding sites
We analyzed amino acid sequences of b2AR orthologues from the available databases. We used the

PhylomeDB server (http://phylomedb.org/) (Huerta-Cepas et al., 2014) for finding orthologues and

Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al., 2011) for sequence align-

ment. The amino acid residues of b2AR segments constituting the cholesterol binding sites as

obtained from our simulations were used for the set of sequences obtained (Figure 2—figure sup-

plement 2, Figure 2—figure supplement 3, Figure 2—figure supplement 4). The sequences in

question belong to diverse species, such as insects, fish, birds, reptile, mammals, etc.

Lipid tail order parameter
The order parameter of lipid acyl chains was calculated using :

SCD ¼
3

2
cos

2 �i
� �

�
1

2

� �

where �i is the angle between a C-D bond (C-H in simulations) of the ith carbon atom and the bilayer

normal. The angular brackets denote averaging over time and molecules in a bilayer.

Bilayer thickness
Bilayer thickness was defined as the distance between the average planes formed by phosphorous

atoms in the two bilayer leaflets. We used the g_lomepro tool (Gapsys et al., 2013) to generate the

2D distribution of bilayer thickness.

Lifetime of cholesterol binding
For the calculation of the lifetime of cholesterol bound to the cholesterol interaction sites on the

receptor surface, we first monitored the binding/unbinding events of each individual cholesterol

molecule along the simulation trajectory. A cholesterol molecule was considered bound when any of

its heavy atoms came within �0.5 nm from an interaction site. To define the three major interaction

sites on the b2AR surface, we used the amino acid residues (with contact fraction � 0.4) as shown in

Figure 2—figure supplement 2. The time series was then additionally smoothed (over one ns time

windows) to discard very rapid ‘leave and return’ motions of cholesterol that take place due to ther-

mal fluctuations. Given that lateral diffusion of lipids at the protein surface is very slow, and the lipids

essentially do not move at all during a 1-ns time window, these fluctuations were then taken care of

by the smoothing procedure. We then calculated the normalized time correlation function (to

describe the time-dependent probability of cholesterol that is next to the receptor to stay in contact

with the receptor) over all individual cholesterol binding/unbinding events occurred in all indepen-

dent simulation trajectories for all cholesterol molecules present in a system at a given cholesterol

concentration (Arnarez et al., 2013; Horn et al., 2014).

Equilibration and error bar estimation associated with analysis
For all analysis to measure time-averaged properties, the first 100 ns of production simulations were

excluded from the calculation. Error bars were estimated through standard error, calculated by

dividing the standard deviation of a given data set with the square root of its sample size

(Manna et al., 2015; Kulig et al., 2014). We used the g_analyze tool of GROMACS for error

estimation.
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