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ABSTRACT 48 
The threat of an influenza A virus pandemic stems from continual virus spillovers from 49 
reservoir species, a tiny fraction of which spark sustained transmission in humans. To 50 
date, no pandemic emergence of a new influenza strain has been preceded by detection 51 
of a closely related precursor in an animal or human. Nonetheless, influenza surveillance 52 
efforts are expanding, prompting a need for tools to assess the pandemic risk posed by 53 
a detected virus. The goal would be to use genetic sequence and/or biological assays of 54 
viral traits to identify those non-human influenza viruses with the greatest risk of 55 
evolving into pandemic threats, and/or to understand drivers of such evolution, to 56 
prioritize pandemic prevention or response measures. We describe such efforts, identify 57 
progress and ongoing challenges, and discuss three specific traits of influenza viruses 58 
(hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and 59 
polymerase complex efficiency) that contribute to pandemic risk.   60 
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INTRODUCTION  61 
Aquatic birds are the main reservoir of influenza A viruses in nature (1). Influenza viruses 62 
from aquatic birds sporadically enter terrestrial bird and mammalian host populations 63 
and achieve sustained circulation in these new hosts (2), sometimes after reassortment 64 
with influenza viruses already circulating in the new host (3). Adaptation of viruses from 65 
aquatic birds to mammals involves a change in tissue tropism from intestinal to 66 
respiratory epithelia (4, 5).  67 
Multiple influenza A subtypes—defined by the patterns of antibody recognition of two 68 
surface proteins, hemagglutinin (HA) and neuraminidase (NA)—circulate in avian species 69 
and swine at any given time. Among these, a number are known to cause sporadic 70 
zoonotic infections in humans (6). Hundreds of human infections with avian influenza 71 
viruses were detected in the last decade, for example H5N1 and H7N9 (7) as well as 72 
swine influenza viruses, e.g. an H3N2 variant that spilled over into humans attending 73 
agricultural shows in the early 2010s, H3N2v (8). In addition, zoonotic infections with 74 
other viruses from poultry have occurred, including for example H7N7 (9), H10N8 (10), 75 
H6N1 (11), H9N2 (12), and H5N6 (13); for more examples and a fuller discussion see 76 
(14). The severity of zoonotic influenza A infections ranges from clinically inapparent 77 
(15, 16) to fatal (17, 18).  78 
Although secondary transmission can occur following some of these spillover events 79 
(19), only a very small proportion of them—four in the last hundred years, which seems 80 
to be close to the historical average (20)—led to sustained person-to-person 81 
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transmission with global spread (Box 1). There are 18 known HA types and 11 known NA 82 
types (21), which could theoretically be found in any combination. So far, sustained 83 
spread in humans has been limited to the H1N1, H2N2, and H3N2 subtypes (22), though 84 
it is possible that other subtypes circulated prior to 1918, the year of the first pandemic 85 
from which viruses are available for study (23). Multiple virus–host interactions are 86 
necessary for replication and onward transmission; the differences in the genetic 87 
requirements to accomplish each of these interactions in humans versus other animals 88 
provide a barrier to sustained transmission following spillover (24).  89 
Experiments in ferrets have been used to measure viral transmissibility via respiratory 90 
droplets (in this review we use this term to refer to any transmission through the air 91 
between ferrets that are not in direct or indirect physical contact). Droplet transmission 92 
in ferrets is a useful, albeit imperfect, correlate of the potential of influenza strains to 93 
transmit efficiently in human populations (25). For this reason, some have argued that 94 
there is a general phenotype of "transmissibility by respiratory droplets in mammals" 95 
such that experiments to select for such transmission in droplets in ferrets are 96 
important models of the process of adaptation to human transmission (26, 27). This 97 
view is not universally shared (28).  Starting from an zoonotic highly pathogenic avian 98 
influenza isolate from a human case of infection (or a reassortant of the HA from a 99 
different zoonotic H5N1 highly pathogenic avian influenza isolate, with the other 100 
segments from the 2009 pandemic H1N1 strain), it was shown that certain specific traits 101 
that had been previously associated with mammalian host adaptation were required to 102 
achieve respiratory droplet transmission.  These ferret-transmission phenotypes in turn 103 
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were associated with certain genetic changes relative to the original avian viruses (26, 104 
27, 29). These specific changes occur both in HA and in polymerase-complex proteins. 105 
The rationale for these experiments was that, because the ferret model recapitulates 106 
many features of human infection, changes identified in adaptation to ferret 107 
transmission would also be important for adaptation to sustained transmission in 108 
humans (30, 31), though this can never be known with certainty (28). Notably, viruses 109 
isolated from humans who were infected by contact with birds show some of these 110 
changes (32, 33), particularly the change at amino acid 627 of the PB2 gene (34-36), 111 
which often affects polymerase complex efficiency (see below). This indicates that even 112 
the first generation of human infection from nonhuman hosts can initiate a process of 113 
host adaptation. It also indicates that not all the human-adaptive changes must be in 114 
place in the avian reservoir to initiate this process. Some human infections, including 115 
some zoonotic cases  (17, 35, 37, 38) and some cases early in a pandemic (39-43), 116 
involve viruses that are not yet fully human-adapted (see below and Tables 2–4). The 117 
interpretation of some of these isolates is complicated by uncertainty about whether 118 
they were passaged in hen’s eggs at some point in their history. 119 
Certain types of countermeasures against an influenza pandemic are effective only 120 
against one lineage of viruses – for example, creating stockpiles or seed stocks of 121 
vaccines against a particular subtype, or culling poultry infected with that subtype. It is 122 
not currently feasible to invest in such countermeasures against all viruses circulating in 123 
avian or other reservoirs, or even against all those causing known zoonotic cases. 124 
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Therefore, there would be value in an accurate system to assess the relative pandemic 125 
risks posed by each virus and prioritize them for the development of such strain-specific 126 
countermeasures, while directing fewer resources to strains of lower concern (44). This 127 
consideration has motivated calls for comprehensive analysis of all available data to 128 
assess the threat to public health posed by these strains. One response is the CDC’s 129 
Influenza Risk Assessment Tool (IRAT) (45), which incorporates elements including 130 
properties of the virus, field and epidemiological findings, and attributes of the human 131 
population to provide a framework to differentiate among novel influenza viruses 132 
thought to possess pandemic potential. Such risk assessments can help focus pandemic 133 
prevention and response efforts on the viruses thought to pose the highest risk of 134 
pandemic spread (30), in the most worrisome cases providing a rationale for costly 135 
measures such as poultry culling or vaccine seed stock development, or even stockpiling 136 
of large quantities of vaccine. A guiding question of this article is to examine the degree 137 
to which it is justified to rely on measurements and predictions of viral genetic and 138 
phenotypic traits in prioritizing responses to particular viral subtypes and within-139 
subtype lineages.  140 
 141 
There are several hurdles to evaluating the accuracy of such predictions (24). Factors 142 
limiting our ability to identify high-risk viruses and predict the risk they pose include: 143 
• limited surveillance of nonhuman influenza viruses, such that high-risk viruses 144 
may not be detected and hence cannot be assessed (46). Limitations include both the 145 
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number, geographic and species diversity of hosts sampled, and the difficulty in 146 
sampling all genetic variants present in a given infection (47, 48); 147 
• failure to fully characterize some viruses that are detected (49); 148 
• imperfect public health systems lacking capacity to detect zoonotic infections 149 
presenting in patients (50, 51); 150 
• epistasis and other complexities that prevent straightforward prediction of viral 151 
traits from genotype (24, 52-58); 152 
• technological limitations in molecular modeling and phenotypic assays that limit 153 
confidence in predicting and measuring viral traits (59); 154 
• uncertainties about the taxonomic level at which risk predictions should be 155 
made (Box 2); 156 
• practical, ethical and cost limitations of animal transmission experiments, as well 157 
as some exceptions to the correlation between human transmissibility and droplet 158 
transmissibility in nonhuman animal models (25); 159 
• lack of data on immediate animal precursors of viruses that caused previous 160 
pandemics; 161 
• multiple scales at which viral strains compete and hence experience selection 162 
(i.e. replication within hosts, transmission between hosts). Evolutionary theory for such 163 
multi-scale selection is incomplete. Viral fitness components are rarely measured at 164 
both scales for the same strain and are imperfectly correlated across scales(60-62); 165 
• the role of stochastic events in the ecology and evolution of influenza viruses 166 
during and after host-switching to humans (60, 63), including the potential for 167 
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transmission bottlenecks to either promote or inhibit emergence of human-adapted 168 
viruses (48, 64-66). 169 
 170 
These difficulties are exacerbated by the fact that influenza pandemics are rare events, 171 
and that risk assessments are not yet made with enough quantitative precision to 172 
formally evaluate their practical application. Even perfect information about the viral 173 
determinants of pandemic risk might only be enough to distinguish between strains with 174 
a low risk of causing a pandemic (say, 0.1% per year) and those with an extremely low 175 
risk (say, less than 0.01% per year), with unpredictable ecological or evolutionary 176 
contingencies determining which of these low-probability events will actually occur.  177 
One such contingency is that an avian influenza virus could acquire one or more of the 178 
determinants of pandemic potential by reassorting with a human seasonal influenza 179 
virus. 180 
With only one pandemic every few decades, the data set for testing the prediction of 181 
such rare events is inadequate, a problem that challenges predictions in many fields 182 
beyond infectious diseases (67, 68). Evolutionary events in which a strain increases 183 
human-to-human transmissibility, but not enough to spark a pandemic, are extremely 184 
hard to observe, but if we could do so it would increase our ability to characterize the 185 
process of adaptation (69).   186 
Despite these challenges, there has been tremendous interest and investment in making 187 
and using such predictions, and a number of new ideas to improve predictions are in 188 
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various stages of development (Box 3). Building on the findings of a previous workshop 189 
(24), we considered in detail the present state of knowledge concerning three 190 
phenotypic traits: HA receptor binding specificity, and HA pH of activation, and 191 
polymerase complex activity, (Figure 1). These were chosen from a longer list of 192 
candidate traits (Table 1) because they span the viral life cycle (Figure 1) and their role 193 
in host adaptation has been extensively studied. All three are believed to be required for 194 
an influenza virus to cause a pandemic; consistent with this assumption, all three traits 195 
have been present to some degree in the earliest viruses isolated in pandemics since the 196 
20th century, though some have been enhanced by subsequent evolution during 197 
seasonal transmission in humans.  Moreover, for each of these three traits, viruses 198 
isolated from avian hosts typically do not show the mammalian-adapted phenotype, 199 
reflecting divergent selection pressures in the two classes of hosts (Tables 2, 3, and 4). 200 
All three traits changed in the adaptation of zoonotic H5 influenza viruses to droplet 201 
transmission in ferrets (26, 29). We emphasize that each of these traits is quantitative, 202 
and that human-adaptation is not a threshold criterion but a continuum; in this review 203 
when we speak of human adaptation we mean a tendency to be better adapted to 204 
humans, rather than an absolute yes-or-no property.  205 
This review starts with a summary of our knowledge about the role of each of the three 206 
functional traits in conferring pandemic potential on a virus strain. Following these case 207 
studies, we draw some generalizations about the prospects of predicting pandemic risk 208 
from virus genotype or from assays of particular viral traits. For each trait we present a 209 
table showing the degree to which the sequence changes or phenotypic properties 210 
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associated with avian or human adaptation are present in isolates from birds and 211 
humans, respectively. If the avian traits were always found in avian isolates and human 212 
traits always in human isolates, only the shaded cells on the main diagonal would be 213 
filled. In such a case, however, it is hard to see how viruses would ever make the jump 214 
from birds to humans, since so many traits would have to change simultaneously, and 215 
indeed the off-diagonal cells are not empty. Finding avian-adapted traits in viruses 216 
isolated from humans most often occurs in zoonotic cases, showing that not all human-217 
adapted traits are required for the first human infection. In some cases there are also 218 
viruses isolated from humans after a pandemic starts that retain some degree of avian-219 
like traits, and we discuss these in more detail in the text -- these represent the greatest 220 
challenge to use of genotypic or phenotypic information for pandemic prediction 221 
because they run the risk of false negatives. The other off-diagonal cell, which 222 
represents avian isolates with some human-like traits, simply shows that some 223 
circulation of viruses in birds is possible without the classical "avian" phenotypes. How 224 
this happens is a phenomenon worthy of further study. We conclude with some 225 
recommendations for future research and for the practice of pandemic risk assessment. 226 

227 
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 228 

 229 
FIGURE 1. Key phenotypic traits for the adaptation of avian influenza viruses to replicate 230 
efficiently in humans. A. A switch in receptor binding preference from avian-like (α2,3-linked 231 
sialic acid) to human-like (α2,6-linked sialic acid) receptors. The human form on the left shows 232 
the typical distribution of human adapted influenza viruses determined by their receptor 233 
binding preference for a2,6, linked SA that is predominantly expressed in the upper respiratory 234 
tract but also in the lungs. The human form on the right shows that infection with avian 235 
influenza viruses is concentrated in the lungs where their preferred a2,3 linked SA receptor is 236 
expressed. B. Lower HA pH of activation and increased polymerase complex efficiency. Free-237 
floating viruses that enter the human respiratory tract (upper part of figure) encounter mucus 238 
and a mildly acidic extracellular environment that act as innate barriers to virus infection. If NA 239 
is able to desialylate decoy receptors on mucus and  HA has a sufficiently low pH of activation, 240 
then the virus particle may reach the apical surface of the respiratory epithelium intact. There 241 
through a multiplicity of interactions between HA and cell-surface sialic acid, the virus enters the 242 
target cell. After the virus is internalized, it passes through the endosomal pathway where the 243 
pH is progressively decreased. The low pH of the endosomal environment triggers an 244 
irreversible conformational change in HA that fuses the viral and endosomal membranes and 245 
ultimately results in the release of virus genetic material in the form of the viral 246 
ribonucleoprotein complex (vRNP) into the cell cytoplasm. The eight vRNPs are subsequently 247 
imported into the cell nucleus by interactions between the vRNPs and cellular nuclear import 248 
machinery. Inside the nucleus  the virus polymerase complex replicates the virus genome in 249 
conjunction with co-opted cell proteins. 250 
  251 
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 252 
TABLE 1: Influenza virus adaptations that appear to be required for human-to-human 253 
transmission 254 
Trait Adaptation  

HA receptor binding 

specificity 

Preference for α2,6-linked mammalian sialic acid receptors over 

α2,3-linked avian ones (70) 

HA pH of activation  HA avoids extracellular inactivation and undergoes 

conformational changes leading to membrane fusion at 

appropriate pH for human cells (5.0-5.4 or perhaps 5.5) (59) 

Polymerase complex 

efficiency 

Efficient replication in human cells (71, 72) 

Virus morphology  Filamentous morphology associated with several adaptations to 

mammals (73-76) 

Length of NA stalk Longer stalk of NA required to penetrate human mucus and 

deaggregate virions (77) 

Antagonism of interferon 

production 

Species-specific binding of the NS1 protein to host factors (78) 

HA-NA “balance” Substrate selectivity and catalytic rate of NA are calibrated to 

“balance” avidity of HA for the cell-surface glycan receptor (79-

82) 
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Trait 1: Hemagglutinin receptor binding specificity 255 
A. Definition of the trait 256 
Attachment of an influenza virus to a host cell requires binding of the viral HA to a      257 
sialylated glycan receptor (sialic acid) on the surface of the host cell. Cells of the avian 258 
gut and a minority of cells in deep lung in mammals predominantly express receptors 259 
terminated with an α2,3-linked sialic acid: hereafter, α2,3 glycans or avian receptors (70, 260 
83-85). By contrast, in humans and other mammals, upper respiratory epithelial cells 261 
express mainly glycan receptors terminated by α2,6-linked sialic acid: α2,6 glycans or 262 
human receptors (41, 85, 86). The human upper respiratory epithelium is the primary 263 
target site for infection of human-adapted viruses, and infection at this site is thought to 264 
be a prerequisite for efficient human-to-human transmission via respiratory droplets. 265 
Thus, it appears that human adaptation of an HA is associated with a switch in its 266 
binding preference from avian to human receptors. Receptor binding is not either-or; 267 
human-adapted influenza virus HA may show some binding to avian receptors, and vice 268 
versa.  269 
Receptor binding preference is defined as the ratio of affinity (or avidity) of an HA 270 
molecule for an α2,6 glycan relative to that for an α2,3 glycan, with higher values 271 
associated with greater human adaptation. The evolution of receptor binding specificity 272 
is driven by the host environment, with selection for specificity during the infection 273 
process within a host and during the process of transmission. The error-prone 274 
replication of influenza genomes can facilitate rapid emergence of viruses with amino 275 
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acid substitutions that alter the receptor binding characteristics of the HA (87). 276 
Increased transmissibility may result from mammalian receptor adaptation, either 277 
because the virus shedding form the infected donor host is increased, or because the 278 
ability of virus to infect the recipient host at a low dose is enhanced, or for both of these 279 
reasons. Recent experimental evidence in ferrets implicates the soft palate as an 280 
important site of selection for α2,6 specificity (87).  281 
 282 
B. Genetic and structural determinants of hemagglutinin-receptor interactions 283 
Preference for binding human or avian glycan receptors is determined by the structure 284 
of the viral HA. Except for a few conserved amino acids in the sialic acid receptor binding 285 
pocket, the influenza HA has considerable structural plasticity to evolve variation at the 286 
rim of the pocket to engage different sialic acid linkages. Importantly, antigenic regions 287 
of the HA are located nearby regions that determine receptor-binding preference, 288 
meaning that selection for antigenic escape may be constrained by the need to maintain 289 
receptor preference (88). More speculatively, selection for changes in receptor 290 
preference might also alter recognition of the HA by host antibodies. 291 
Conformation of the hemagglutinin as a determinant of receptor-binding preference. 292 
Although the co-crystal structures of HA and sialylated glycans have not been solved for 293 
all pairs, there is evidence that avian- or human-adapted HA bind to different 294 
conformations of the avian and human receptors: the cis conformation of human 295 
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receptors and the trans conformation of avian receptors (41, 89-97). This finding has led 296 
to the concept of “hallmark” residues within the receptor-binding site of avian- and 297 
human-adapted HAs. Avian-adapted HAs typically carry Glu at position 190, Gln at 298 
position 226, and Gly and position 228 (H3 numbering), and the Gln226->Leu, Gly228-299 
>Ser substitutions have been associated with a switch to human receptor preference in 300 
HAs of H2, H3 (98), and H5 (99) viruses.  In H1 HA, Glu190→Asp and Gly225→Asp have 301 
been considered as hallmark amino acid changes to switch receptor specificity leading 302 
to greater human adaptation (42, 100). The determinants of specificity are reviewed in 303 
much more detail in (101). 304 
Additional structural features involved in receptor binding preference.  The cis and trans 305 
definition of glycan conformation does not fully describe HA binding to a range of 306 
structurally diverse glycans displayed on human respiratory cells and tissues (86). This 307 
limitation motivated studies that revisited the definition of glycan conformation, 308 
extending the conformational analysis beyond the terminal sialic acid linkage to 309 
describe overall topology and dynamics of the glycan receptor upon binding to the 310 
receptor-binding site of avian and human-adapted HAs (86, 102). HA sequence 311 
determinants of preference for the “cone”-like topology of avian receptors, versus the 312 
“umbrella”-like topology of human receptors, are still being defined (56). 313 
 314 
C.  Experimental assays to measure hemagglutinin receptor binding specificity 315 



18  

Experimental evidence on differential binding of avian and human viruses to sialic acid 316 
receptors in avian and human conformations, respectively, was first obtained by 317 
hemagglutination assays with erythrocytes whose surfaces had been chemically 318 
modified to display glycans terminating with either homogeneous α2,3 or homogeneous 319 
α2,6-linked sialic acids (103). Subsequent analysis of the repertoire of glycan structures 320 
in erythrocytes of various animal species informed the use of cells from different species 321 
as probes of HA receptor binding preference in hemagglutination assays (104).  322 
Greater precision and reproducibility has been achieved with the use of purified 323 
sialylated glycans to create solid-phase binding assays with fluorogenic or enzymatic 324 
detection (105, 106). With these assays, it is possible to characterize the relative direct 325 
binding of whole virions or recombinant trimeric HA oligomers to glycans attached to a 326 
solid phase or the competition of such glycans with binding to a generic glycoprotein 327 
attached to the solid phase (106). In recent work, biosensor interferometry and 328 
thermophoresis have been used to measure glycan-binding avidities and affinities in a 329 
more precise manner and to relate the two (107).The development of glycan 330 
microarrays represented a turning point in the analysis of influenza virus receptor 331 
binding specificity, because it allowed simultaneous evaluation of virion or recombinant 332 
HA binding to a large repertoire of sialoglycans (41, 108, 109). Several measures of 333 
preference for an HA molecule or whole virus have been defined, including the ratio of 334 
the number of α2,6 to α2,3 glycans bound (41, 110) or the corresponding ratio of 335 
binding affinity or avidity (26, 107). A limitation to predictive power is that glycans 336 
tested on current arrays may not match those present in the human respiratory tract 337 
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(111). These arrays may also not present glycans in the same fashion as respiratory 338 
epithelial cells, so strategies such as measuring the binding of labelled viruses to human 339 
respiratory tissues (99) or explant cultures (112) may be promising alternatives, 340 
although challenges remain in standardization and quantification of such assays. 341 
Structural studies of wild-type and mutant HA in complex with representative 342 
sialoglycans provide the ultimate level of detail by characterizing interactions at the 343 
atomic level. X-ray crystallography advances in recent years have accelerated structural 344 
determination, and similar progress in recombinant protein purification techniques 345 
combined with robotic crystal screening have reduced the amount of protein and labor 346 
required.   347 
In summary, genetic and protein sequence analysis, glycan arrays, and X-ray 348 
crystallography studies provide complementary data towards understanding the 349 
sialoglycan interactions of emerging viruses, with tradeoffs of equipment and reagent 350 
costs and throughput against level of precision and detail provided. 351 
D. Receptor binding preference as a predictor of host adaptation of influenza 352 
viruses and pandemic risk 353 
At present, estimating the contribution of receptor specificity to the pandemic risk 354 
posed by a novel virus relies primarily on the similarity between the receptor binding 355 
characteristics of the emerging virus and that of the most closely related HA with known 356 
transmissibility among humans or a surrogate animal model.  357 
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As noted above, hallmark residues have substantial predictive power. These distinct sets 358 
of hallmark residues in the H1, H2 and H3 subtype (101) correlate with human-359 
adaptation in known sequences collected from birds or humans (40, 101); they induce 360 
changes in receptor-binding specificity when introduced experimentally (113, 114); and 361 
experimental selection for receptor binding in vitro (113) or in ferrets (26) cause these 362 
changes to appear.  363 
However, hallmark residue predictions of receptor-binding specificity are imperfect, as 364 
evidenced by a failure to switch in vitro receptor-binding preference from avian to 365 
human when changes observed in H5N1 strains after selection in ferret gain-of-function 366 
experiments were introduced to other H5N1 viruses (57). The involvement of other 367 
features in human adaptation, such as the topology of the bound HA-receptor complex, 368 
further complicate the genetic prediction of human adaptation, as the residues involved 369 
in these features are less well characterized (115). 370 
In principle, phenotypic assays that directly measure the receptor-binding preference of 371 
HA – if performed under realistic conditions that capture the interaction of the HA 372 
trimer with the receptor (83, 116, 117)—may better capture the trait of interest than 373 
genetic predictions of this preference. However, even here, a simple equivalence 374 
between binding preference for α2,6-linked glycans and pandemic risk could be 375 
misleading. Several viruses circulating in humans during the early phase of previous 376 
pandemics were found to show either a preference for avian receptors (39, 40) or a 377 
mixed preference for both human and avian receptors (39, 42, 109). In the case of early 378 
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2009 pandemic viruses, findings are mixed (109, 118).   Some of the findings of dual or 379 
avian specificity may reflect artifacts introduced when human isolates were passaged in 380 
eggs before receptor specificity was assayed; alternatively, they may genuinely reflect a 381 
transitional stage in the evolution of HA genes in human populations after transmission 382 
from other species (40-42, 119), (Table 2).  Consistent with this latter possibility, an 383 
H5N1 virus isolated from a human zoonotic case in Vietnam displayed strong avian 384 
receptor preference (120). This preference changed in the course of experiments to 385 
adapt it to respiratory droplet transmission in ferrets (26). Taken together, these 386 
findings confirm that there is a strong correlation between measured receptor 387 
preference and the host from which a virus is isolated. However, they raise questions 388 
about the predictive value of human receptor binding preference. Indeed, the examples 389 
of mixed receptor preference in human isolates from the early phase of the H1 or H2 390 
pandemics suggest that the ability to evolve human receptor specificity over a chain of 391 
human infections, which may be present in many avian-receptor-adapted viruses, may 392 
be sufficient for pandemic emergence. 393 
In summary, detection of a human receptor preference in a spillover virus may be an 394 
indication of increased risk, but exclusive human receptor preference is probably not 395 
necessary  for an influenza A virus to initiate a pandemic. With several possible 396 
exceptions noted above, most viruses isolated to date fall within the shaded cells in 397 
Table 2, which indicates concordance between the source of the isolate and the virus 398 
trait. Thus, prioritizing pandemic countermeasures against virus lineages with inferred 399 
or measured human receptor preference will likely lead to better targeting of such 400 
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countermeasures on average – that is, increase the chance of taking countermeasures 401 
against a strain that truly poses pandemic risk. However, the counterexamples of 402 
human-to-human transmission of incompletely adapted viruses (bottom left and middle 403 
cells of Table 2) suggest that in particular cases, reliance on this trait as a necessary  404 
condition to justify countermeasures may not identify all virus lineages that are in fact 405 
capable of causing a pandemic. 406 
  407 
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TABLE 2: Hemagglutinin receptor binding preference and examples of viruses isolated 408 
from avian and human hosts showing preference for human or avian receptors, or 409 
mixed preference 410 
 Avian receptor 

preference 
Mixed receptor preference  Human receptor 

preference 

Expected sequence, 
trait. Hallmark 
residues HA 190, 225 
(H1,H3), 226 (H3); 
many others  

Preferential binding 
to α2,3 sialylated 
glycans. HA 190Glu, 
225Gly, 226Gln  

Similar binding to both classes of 
glycans 

Preferential 
binding to α2,6 
sialylated glycans.  
HA 190Asp, 
225Glu, 226Leu 

Found in avian 
isolates 

Many examples: 
many avian isolates 
of subtypes H5N1 
(32, 120), H2 (40) 
and H3 (40) 

avian isolates of H5N5 (121), North 
American H7 (122), H7N9 (123), as 
well as examples from H2 (40, 92) 
and H3 (40) 

Some H9N2 avian 
isolates (124, 125) 

Found in human 
isolates 

H5N1 zoonotic 
isolate (26, 120); 
one H1N1 isolate 
from 1957  (39)*; 
some early H2N2 
pandemic/seasonal 
isolates (40, 43, 98)* 

Early H1N1 pandemic isolates from 
2009(109) and 1918 (41, 42); 
several H1N1 from the 1918-1956 
period (39)*; early H2N2 isolate 
from 1958 (43); human isolate of 
zoonotic H7N9 (126) 

Many examples: 
H1N1 post-1977 
(39); early H1N1 
pandemic isolates 
from 2009 (118) 
and 1918 (41, 42); 
most human H2 
and H3 seasonal 
isolates (40, 98) 

*These anomalous results are speculated by the authors to be possibly, or even 411 
probably the result of laboratory adaptation to egg passage and may not reflect the 412 
properties of the primary isolate. A possible counter to this interpretation is that it is 413 
seen only in the earliest isolates from human pandemic viruses, while nearly all isolates 414 
from after the pandemic year, which should also have been passaged in eggs, show 415 
human-adapted phenotypes.  416 
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 417 
Trait 2: Hemagglutinin pH of activation 418 
A.  Definition of the trait 419 
After entry into the cell, influenza viruses are internalized into endosomes, where the 420 
pH is progressively decreased. The pH of early and late endosomes, as well as 421 
lysosomes, varies between cell types, tissues, and host species. The HA must undergo a 422 
low-pH triggered conformational change to a state capable of fusing the viral and 423 
endosomal membranes. For human-adapted viruses, HA activation typically occurs 424 
between pH 5.0 to 5.5. HA variants that undergo this transition at a higher pH, as is 425 
typical for avian influenza isolates, are poorly adapted to infect human cells because the 426 
transition can happen prematurely, leading to extracellular inactivation in the mildly 427 
acidic mammalian respiratory tract  (127, 128) The pH of activation can be defined as a 428 
continuous measurement representing the least acidic (highest) pH at which a particular 429 
HA molecule is triggered. Greater acid stability (lower pH of activation) is associated 430 
with greater human adaptation. 431 
B. Functional, structural and genetic determinants of hemagglutinin pH of 432 
activation and its consequences 433 
The HA is synthesized and folded such that the fusion peptide is buried and inactive until 434 
specific activation signals are provided. The structural changes that expose the fusion 435 
peptide and lead to fusion have been described in detail (129). If the virion is exposed to 436 
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sufficiently low pH outside of a host or host cell, the HA protein undergoes irreversible 437 
structural changes too early and is unable to mediate virus entry; such virions become 438 
inactivated. Thus the term acid stability is more broadly used to define the threshold for 439 
acidification that triggers membrane fusion (in the endosome) or inactivation (if 440 
triggered outside of the cell for an HA that is not sufficiently stable). During endocytosis, 441 
an influenza virion is exposed to sequentially lower pH values in early endosomes (pH 442 
6.0-6.5), late endosomes (pH 5.0-5.5), and lysosomes (pH 4.6-5.0) (130). If the HA is too 443 
stable, and fusion is not triggered in the acidic endosome of the host cell, further traffic 444 
into lysosomes results in virus inactivation by lysosomal proteases (129). 445 
Based on surveillance studies, human-transmissible influenza isolates appear to have HA 446 
proteins that are more acid stable (have a lower activation pH) than avian influenza 447 
viruses (59). The HA activation pH values for H1N1, H2N2, and H3N2 seasonal viruses 448 
during the 20th Century range from pH 5.0 to 5.4 (131). In 2009, emerging pandemic 449 
H1N1 viruses had HA activation pH values of approximately 5.5, but numerous 450 
subsequent isolates have acquired mutations that lower the activation pH to the range 451 
of the 20th Century human influenza viruses (132-134). Broad surveys of avian and swine 452 
influenza isolates have shown that HA activation pH can vary substantially with a range 453 
from pH 4.6-6.0 (131, 135). Among avian viruses, low-pathogenic duck viruses appear to 454 
range in acid stability from pH 5.3-6.0 and highly pathogenic avian viruses range from 455 
5.6-6.0 (131). 456 
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Consistent with observed patterns in natural isolates, some experimental evidence 457 
indicates that within the range of natural variation, lower activation pH is adaptive for 458 
mammalian replication while higher activation pH is adaptive for replication in avian 459 
hosts. For isolates of H5N1 highly pathogenic avian influenza virus, an increase in HA 460 
activation pH within the range of 5.2-6.0 has been associated with increased replication 461 
and pathogenicity in chickens (136). Conversely, a mutation that decreased the HA 462 
activation pH of A/chicken/Vietnam/C58/2004 (H5N1) from 5.9 to 5.4 has been shown 463 
to attenuate virus growth and prevent transmission in mallard ducks (137) but increase 464 
virus growth in the upper respiratory tracts of mice and ferrets (128, 138). Therefore, 465 
for H5N1 viruses, a higher HA activation pH (5.6-6.0) has been associated with a 466 
component of fitness in birds, and a lower HA activation pH (pH 5.0-5.4) has been linked 467 
to greater replication in the mammalian upper respiratory tract. Two H5N1 viruses were 468 
adapted to transmit by the airborne route between ferrets (26, 27). After a switch in 469 
receptor-binding specificity from avian to human receptors (as described above) and 470 
deletion of a glycosylation site, in both studies a final mutation that decreased the HA 471 
activation pH was shown to be necessary for airborne transmissibility in ferrets. 472 
However, these and other studies have shown that this acid stability change is not 473 
sufficient in the absence of human receptor-binding specificity (128, 139). Recently, an 474 
HA protein whose activation pH was 5.5 or lower was shown to be required for the 475 
pandemic potential of 2009 pH1N1 influenza virus (134). 476 
Nearly 100 mutations have been described to alter the HA activation pH values of 477 
various influenza A virus subtypes (59, 140). These acid stabilizing/destabilizing residues 478 
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are located throughout the HA1 and HA2 subunits and tend to be positioned in regions 479 
of the molecule that undergo large-scale changes in structure during pH-activated 480 
protein refolding (59, 141, 142). Mutations that modify the activation pH do not appear 481 
to alter the prefusion HA protein backbone in X-ray crystal structures (136, 143, 144). 482 
Therefore, an experimental determination or modeling of intermediate structures may 483 
be required in order to reliably predict HA pH of activation. Further complicating genetic 484 
prediction of HA activation pH values are observations that the NA and M proteins can 485 
also modulate HA acid stability in some cases (145-148). 486 
C. Experimental assays to measure hemagglutinin activation pH 487 
A variety of experimental techniques have been developed to measure the activation pH 488 
of the HA protein, quantified as the highest pH at which the HA protein is activated to 489 
undergo the irreversible structural changes that mediate membrane fusion (149), or 490 
alternatively the highest pH at which, in the absence of a membrane with which to fuse, 491 
the HA protein is inactivated (inactivation pH). Classical membrane fusion assays have 492 
measured the property in bulk (150). The pH of inactivation can be measured using 493 
aliquots of virions that are exposed to buffers of progressively lower pH and, after 494 
restoration to neutral pH, assayed for retention or loss of infectivity (135). In many 495 
classical fusion assays, fluorescent probes are used to label virions, HA-expressing cells, 496 
and/or target liposomes or cells. In these in vitro assays, HA-bound target cells are 497 
typically exposed to buffers of various pH values and then lipid and/or contents mixing 498 
are measured by fluorescence (151, 152). Alternatively, cell monolayers expressing 499 
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cleaved HA proteins can be pulsed by low-pH buffers and then incubated to readout HA-500 
mediated cell-to-cell fusion either microscopically by syncytia formation or by reporter 501 
gene expression. If HA conformation-specific monoclonal antibodies are available for 502 
the subtype being studied, HA-expressing cells can be pulsed with low pH and then 503 
analyzed for conformational changes by flow cytometry (137). If such antibodies are 504 
lacking, HA-expressing cells can be assayed for trypsin susceptibility after low-pH 505 
exposure, with prefusion HA being resistant and postfusion HA susceptible to trypsin 506 
degradation (153). Recently, methods have been developed to study HA activation and 507 
membrane fusion by individual virions, including single virion fusion using total internal 508 
reflection fluorescence microscopy (149).  509 
Although the biological trigger for HA’s conformational change is a drop in pH, HA 510 
refolding can also be triggered by other destabilizing agents such as heat and urea (135, 511 
154, 155). Stability at a lower pH is associated with stability at higher temperatures and 512 
higher urea concentrations, permitting the use of these agents instead of, or in addition 513 
to, pH in assays of stability. Thermal stability has been determined by measuring the 514 
threshold temperature at which denatured HA protein loses its ability to bind 515 
erythrocytes and cause hemagglutination (29). 516 
D. Role of hemagglutinin activation pH in pandemic risk prediction 517 
Many questions remain regarding whether HA activation pH plays a similar role in all 518 
influenza subtypes isolated from a wide variety of avian species. For early isolates of the 519 
H1N1pdm lineage in 2009, the HA protein has an activation pH of 5.5, which appears 520 
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intermediate between the canonical human (lower) and avian (higher) ranges. 521 
Subsequent H1N1pdm isolates have HA activation pH values ranging from 5.2-5.4, 522 
suggesting pH 5.5 may be the upper limit for human pandemic potential and a lower 523 
value may be preferred. Indeed, a destabilizing HA mutation in the background of 524 
H1N1pdm results in a loss-of-function of airborne transmissibility in ferrets and has 525 
been reported to be followed by re-gain-of-function by mutations that lower the HA 526 
activation pH to 5.3, a value representative of human-adapted H1N1pdm viruses (134).  527 
For the moment, it appears that while HA pH of activation that is shown experimentally 528 
to be suitable for human infection is highly typical of isolates from human pandemic and 529 
seasonal influenza (Table 3, bottom right) (131), it is possible for humans to have 530 
symptomatic infection with (though not extensively transmit) viruses with activation pH 531 
closer to the range associated with terrestrial birds (Table 3, bottom left). Conversely 532 
(Table 3, top right), there are avian H9, H10, H14, and H15 isolates that display 533 
activation pH typical of human viruses (131). The existence of these human-like avian 534 
viruses is perhaps unsurprising, as they may lack other essential adaptations for human 535 
transmission. As in the case of receptor binding, reliance on this trait to prioritize 536 
pandemic prevention measures should consider this property in conjunction with other 537 
properties associated with pandemic potential and will likely enrich the coverage of 538 
truly high-risk strains on average. 539 
Systematic assessment of the predictive value of HA activation pH will require broad 540 
empirical testing, since nearly 100 residues throughout the HA molecule have been 541 
implicated in regulating HA pH of activation. Predicting activation pH from sequence will 542 
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therefore require more extensive data. To address this issue, sequencing studies 543 
combined with phenotypic assays could be performed on a large range of HA variants to 544 
determine the effects of pH-altering mutations in different HA subtypes. High-resolution 545 
determination of HA structural intermediates may assist in developing molecular 546 
modeling approaches to calculate HA stability from sequence. In the interim, there is a 547 
pressing need to develop high-throughput assays for HA pH of activation, along with 548 
other properties believed important to interspecies adaptation, in the thousands of 549 
surveillance samples obtained annually.  550 
  551 
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 552 
TABLE 3: Hemagglutinin pH of acivation 553 
 Avian-adapted for 

transmissibility 

Human-adapted for 

transmissibility 

Expected trait 

 

pH of fusion >5.4 

(147) 

pH of fusion 5.0-5.4 

(5.5 for early 

H1N1pdm) (134) 

Found in avian 

isolates 

Avian H1-H4, H11 

isolates (131, 134, 

136, 147) 

Avian H5, H8, 

H9,H10,H14,H15 

isolates (131) 

Found in human 

isolates 

H5N1(26, 29) and 

H7N9 (123) human 

zoonotic isolates 

with pH ≥5.6. One 

human H1N1 (2008) 

isolate. 

Human isolates of 

H1N1 (1918 and 

2009 lineages), 

H2N2, H3N2 (131) 

 554 
 555 
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Trait 3: Polymerase complex efficiency 556 
A. Definition of the trait 557 
The heterotrimer of influenza polymerase subunits (PA, PB1, PB2 gene products, 558 
together forming the RNA-dependent RNA polymerase) and the nucleoprotein (NP gene 559 
product) is required to transcribe and replicate the viral genome (156). The polymerase 560 
genes of viruses isolated from avian hosts show a number of genetic differences from 561 
their counterparts in viruses isolated from humans (37), and avian virus polymerase 562 
typically performs inefficiently in replicating the viral genome in human cells (71, 72). 563 
Adaptation to efficient human-to-human transmission requires efficient activity of this 564 
complex of proteins, which we refer to as the polymerase complex, in human cells (71, 565 
72). 566 
B. Genetic basis of polymerase complex efficiency. 567 
Some mutations in PB2 are consistently associated with efficient function of the 568 
polymerase complex in mammalian cells (Figure 2). As long ago as 1977, it was shown 569 
that an avian influenza virus could achieve efficient replication in mammalian cells by 570 
acquiring mutations solely in the PB2 subunit of the viral polymerase (157). The most 571 
famous of these mutations was later described as PB2 residue 627 (158), which is a 572 
glutamic acid (Glu) in avian influenza viruses but a lysine (Lys) in human-adapted viruses, 573 
including those that emerged in the pandemics of 1918, 1957 and 1968, and their 574 
seasonal descendants.  An important exception is the virus that sparked the pandemic 575 
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of 2009. In this virus, the PB2 segment had been introduced from an avian precursor 576 
into swine viruses in the 1990s, and mammalian adaptation had been achieved by a 577 
different set of PB2 mutations including changes at residues at 271, 590 and 591 (159). 578 
Now that the 3-dimensional structure of the viral polymerase has been elucidated, we 579 
can see that residue 627, 271, 590 and 591 lie on the same external surface. 580 
Mammalian-adapting mutations increase the positive charge of this domain, suggesting 581 
that they either adapt the virus for interaction with an enhancing host factor or enhance 582 
its ability to repel a restriction factor (159). Recently a host factor, ANP32A, that differs 583 
between mammals and flighted birds was shown to be a cofactor of the influenza 584 
polymerase, and the species specific difference could explain the inefficient function of 585 
avian virus polymerase and the stringent selection for the 627Glu->Lys adaptive 586 
mutation in mammals (160). 587 
Another residue implicated in mammalian adaptation of the polymerase is residue 701 588 
of PB2, which lies close to but is distinct from the 627 cluster. It has been suggested that 589 
this mutation and others in this domain at residues 702 and 714 affect the interaction 590 
between PB2 and importin-alpha isoforms either in a way that enhances nuclear import 591 
of newly synthesized PB2 or that affects polymerase function once inside the nucleus, 592 
the site of viral RNA replication (161-163). Other mutations have been described that 593 
adapt PB2 for the mammalian nucleus (for example the triplet threonines at positions 594 
147, 339 and 588) but whether they affect interaction with ANP32A, importins or as yet 595 
unidentified host factors is not yet elucidated. 596 
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The adaptive value of these mutations is shown by experimental or observational data 597 
in which a mammalian host is infected with a virus whose PB2 is not adapted for 598 
efficient mammalian replication, but such a mutation becomes common in the virus 599 
population over the course of infection. Such evolution has been observed in a fatal 600 
human case of influenza A/H7N7 (34) and in mouse experiments following serial lung 601 
passage using an isolate from this outbreak (164). Lys at position 627 has also been 602 
associated with greater severity in zoonotic H7N9 (38) and H5N1 (17) cases  However, 603 
reverse genetics experiments show that certain strains of avian influenza may be less 604 
able to accept these mutations than others (165). 605 
C.  Experimental assays to measure polymerase complex efficiency in human cells 606 
Polymerase complex efficiency in human cells can be measured by an in situ assay in 607 
which the influenza polymerase is reconstituted from cloned cDNAs in plasmids and 608 
then coexpressed with “minigenome,” a viral-like RNA encoding a reporter, such as 609 
luciferase. By measuring the rate of reporter accumulation in the transfected human cell 610 
line, specific combinations of RNA sequences for the polymerase-complex viral genes 611 
can thereby be screened directly for their efficiency in producing the mRNA encoding 612 
the reporter gene product, providing a measure of human adaptation of the polymerase 613 
complex (166). 614 
The original form of the in situ reconstituted polymerase assay requires expression of 615 
just the minimal set of four viral proteins to replicate the minigenome RNA: PB1, PB2, 616 
PA and NP. However, recent work showed an important additional role for another 617 
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protein, the nuclear export protein (NEP), which is translated from a spliced mRNA 618 
derived from RNA segment 8 (that also encodes the major interferon antagonist NS2) 619 
(167). In human H5N1 isolates that do not contain PB2 host-adapting mutations, the 620 
inefficient activity of these avian polymerases in human cells could also be compensated 621 
for by certain mutations in NEP (168). It appears that NEP is an important regulator of 622 
the balance between transcription and replication (169, 170), and can thus enhance 623 
fitness in viruses containing otherwise inefficient polymerases. The mechanism of this is 624 
as follows: the polymerase-enhancing domain of NEP is masked when NEP is folded in 625 
one conformation. However, mutations that increase the ability of NEP to rescue avian 626 
polymerase function allow more ready unfolding of the protein, unmasking the 627 
“activating” domain at the lower temperature of the mammalian respiratory tract. 628 
Interestingly, NEP overexpression in cells in which human-adapted polymerase is 629 
reconstituted is inhibitory because excess complementary RNA   accumulates at the 630 
expense of messenger RNA and further viral RNA replication (171). Thus although a 631 
short-term adaptation of avian virus polymerase to mammalian cells can be achieved in 632 
this way, it may be that further compensatory changes rebalance NEP function in the 633 
face of polymerase adaptation during continued circulation in humans, although direct 634 
evidence for this selection is lacking. Indeed, although the rescue of low polymerase 635 
activity by NEP may explain the human infections by H5N1 viruses that lack other 636 
polymerase adaptations, it is not clear that such rescue is sufficient to create a level of 637 
transmissibility consistent with pandemic spread. Nonetheless, this finding shows that 638 
the minimal polymerase assay is not always sufficient to predict viruses that have 639 
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functionally adapted polymerase activity to human cells and that a role for other viral 640 
proteins including at least NEP should also be considered in assessment of polymerase 641 
function. 642 
Alternatively, polymerase activity could be measured in the context of viral infections 643 
(although this will require proper containment). This could be achieved by measuring 644 
intracellular levels of viral transcripts using transcriptomics or qRT-PCR. Such 645 
experiments would provide important information if they are performed using 646 
appropriate cell lines (or respiratory explants) at the temperature of the human airway 647 
(33oC). ). It has been suggested that plaque size at 33oC  can be used as a surrogate 648 
measure of polymerase function but plaque size is a mutligenic trait. The predictive 649 
value of such assays for transmissibility is limited.  650 
Ultimately, it would be valuable to develop a simple screen to assess the ability of a viral 651 
polymerase to support replication and transmission in humans. This phenotype is 652 
influenced by at least 4 different viral genes and involves interactions with several 653 
different human host factors. If all the relevant host factors were enumerated, one 654 
could imagine quickly converting sequence information into an assay that tested for 655 
interactions that should support activity. Along these lines the recent description of a 656 
host factor, ANP32A that differs between flighted birds and mammals and explains the 657 
poor activity of avian polymerase in mammalian cells is a step forward (160).  658 
D.  Role of polymerase complex efficiency in pandemic risk prediction 659 
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The inefficient polymerase of avian influenza viruses in mammalian cells is one of the 660 
host-range barriers that likely diminishes pandemic risk. Unlike the requirement for 661 
adaptive mutation in the novel HA, this polymerase barrier can be rather readily 662 
overcome by reassortment in which an avian virus with novel antigenicity can acquire 663 
one or more polymerase genes from mammalian-adapted viruses. In addition, 664 
adaptation of avian virus polymerase by accumulation of adaptive mutations in either 665 
the polymerase genes or possibly in other viral genes such as the NS segment encoding 666 
NEP can enhance avian virus polymerase function sufficiently to support a host range 667 
jump. 668 
Many H5N1 viruses that circulate today in the avian reservoir already have mutations in 669 
PB2 at 627 (165) or 701 (17), likely resulting from the reintroduction of mammalian-670 
adapted strains back into the wild bird reservoir. These have been associated in human 671 
infections with more severe cases (17). The fact that these strains have not achieved 672 
sustained human-to-human transmission demonstrates that while polymerase 673 
adaptations to humans are likely necessary, they are not sufficient for a strain to spark a 674 
pandemic. Moreover, the absence of the signature PB2 627K mutation in the 2009 H1N1 675 
pandemic strain demonstrates the limitations of relying on any single mutation for risk 676 
prediction (172); viruses with the avian-like residue have also been isolated from 677 
zoonotic human cases of H5N1, H7N9, and H9N2 infections (Table 4, bottom left). On 678 
the other hand, the concept that adaptation of the polymerase is necessary for 679 
sustained human transmission is validated by findings that the 2009 pandemic strain 680 
had adapted to replication in human cells by changes other than E627K within the 681 
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polymerase (159). Identification of biophysical mechanisms common to mammalian-682 
adaptive mutations may in the future provide the basis for new biological or biophysical 683 
assays of polymerase function to inform risk predictions. 684 
In summary, no single polymerase mutation appears to be predictive of pandemic risk 685 
for all viruses, but the concept that the polymerase must adapt to human cells before it 686 
can cause extensive human-to-human transmission appears consistent with the four 687 
pandemic jumps that have occurred in modern times.  688 
  689 
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TABLE 4: Polymerase complex efficiency; entries list amino acid at PB2 627, though 690 
other residues are clearly relevant to this trait. 691 
 Avian-adapted Human-adapted 

Expected trait  Low efficiency in mammals, PB2 

590/591 G/Q, 627E, 701D 

High efficiency in mammals, PB2 

590/591 S/R, PB2 627K, 701N;  

Found in avian 

isolates  

Nearly all avian sequences in 

databases as of 2005 (37) 

A few entries in databases  show 

sequences associated with human 

adaptation as of 2005 (37)***  

Found in 

human isolates 

zoonotic H9N2 (37); some 

zoonotic H5N1 (17, 37); some 

zoonotic H7N9 (associated with 

milder course) (38); one zoonotic 

H5N6 (173)** 

Pandemic and seasonal H1N1, H2N2, 

H3N2 from 1918-2008 (71) ; some 

zoonotic H5N1 (37); some zoonotic 

H7N9 (associated with more severe 

course) (38); H1N1pdm (172)* ; one 

zoonotic H5N6 and one zoonotic 

H10N8 (173) 

*the role of amino acids 590 and 591 in adaptation was not recognized until after the 692 
2009 strain had already emerged (159); it has the residues associated with avian 693 
adaptation at sites 627 and 701 that were known at that time (172). 694 
** complete sequence information not given in the paper 695 
*** the rarity of these raises questions about possible sequencing errors. 696 
 697 
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 698 
 699 
FIGURE 2: Influenza A polymerase complex from structure PDB:4WSB (174) consisting of 700 
PA (grey), PB1 (cyan), PB2 (green) and bound vRNA promoter (purple). Key host 701 
adaptation sites are indicated as red balls. Sites for importin-alpha interaction are 702 
shown as blue balls. Structure visualized with YASARA (175). 703 
  704 
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 705 
DISCUSSION 706 
There has been tremendous progress in understanding the traits involved in the 707 
adaptation of avian influenza viruses for efficient human-to-human transmission and 708 
the genetic and structural basis of each of these traits. While the ability to use virus 709 
sequence data to inform risk assessment of pandemic potential is improving, it 710 
remains essential to consider these data alongside other experimental and 711 
epidemiological data. For example, in 2013 there was a substantial increase in the 712 
number of human infections with A/H5N1 viruses in Cambodia. The increase in 713 
infections was cause for substantial concern by itself. Enhancing the level of concern 714 
was the finding that some of the viruses collected from infected humans contained 715 
previously identified genetic mutations suggestive of human adaptation (30). These 716 
findings led to extensive epidemiological and experimental investigations and then to 717 
the decision to produce a candidate vaccine virus from a virus representative of the 718 
2013 Cambodian outbreaks. 719 
While predictions of virus phenotypes from sequence data can be informative, they are 720 
not infallible, for several reasons, notably the large number of sites involved in 721 
determining such traits(56, 59, 71, 159, 168, 172), the important role of epistasis 722 
(dependence of a mutation’s effect on the genetic background in which it appears) in 723 
determining these traits (24, 52-58), and the consequent imperfections in our ability to 724 
map single sequence polymorphisms to a trait value. For example, the hallmark HA 725 
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amino acid residues 190, 226 and 228 are important to human adaptation,  but “human-726 
adapting” mutations at these residues do not always change receptor-binding 727 
specificity; it depends on the genetic background. Similarly, amino acid residues 627 and 728 
701 of the PB2 protein are often involved in human adaptation, but both carried the 729 
“avian-adapted” residue in the 2009 H1N1 pandemic strain. When these changes were 730 
introduced individually or together in the laboratory, the resulting polymerase showed 731 
greater activity in a minigenome assay, but replication was unchanged or attenuated in 732 
vitro, in mice, and in ferrets (172, 176). After the pandemic strain was identified and its 733 
anomalous residues at these sites noted, other sites within PB2 were identified 734 
and found to be responsible for human adaptation (159, 177).  735 
Based on the evidence to date, it seems clear that all three of the traits considered in 736 
this review, and possibly others in Table 1, must be simultaneously present at least to 737 
some degree for a strain to cause a pandemic. Yet with only a few instances of 738 
pandemic strains emerging per century, it should not be surprising that a new pandemic 739 
strain would violate an apparent rule of human adaptation that applied perfectly to 740 
previous pandemic strains, as in the case of the PB2 residues associated with human 741 
adaptation in 2009, or as in the case of activation pH of HA in early 2009 isolates (134), 742 
which had a value outside the range previously seen in human influenza viruses. It is 743 
unclear whether the list of sites and phenotypic traits associated with human adaptation 744 
is nearly complete or will continue to grow as we experience additional pandemics.. At 745 
least for the traits of receptor binding (109) (Table 2) and acid stability(134)  (Table 3), 746 
full human adaptation may not be required to initiate a pandemic in a virus that is 747 
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otherwise well-adapted for humans. Thus, whether or not the list of traits required for 748 
pandemic is now complete, our understanding of where the threshold lies for being 749 
sufficiently human-adapted continues to change.  750 
There are three complementary approaches to address these limitations: improving 751 
genetic prediction of biological traits, improving assays of these traits, and improving 752 
animal models of human transmission; all approaches are currently progressing in 753 
parallel (178, 179). The first approach aims to further refine our understanding of 754 
sequence-to-trait relationships by continued studies of diverse, naturally or artificially 755 
produced mutations and their effects on the traits of interest. Such research could use 756 
all of the approaches described above and higher-throughput assays that could be 757 
developed with improved technology, for example as described in Box 3. This will 758 
include generating mutations not found in known strains in nature to probe for those 759 
that could be involved in human adaptation in the future(180, 181). The goal would be 760 
to identify classes of functionally equivalent substitutions, sufficient individually or in 761 
defined combinations to confer a trait of interest when introduced into a defined, avian-762 
adapted genetic background. Use of in vitro approaches with noninfectious viruses or 763 
viral components, or infectious viruses containing surface proteins to which there was 764 
already population-wide immunity would reduce the possible biosafety and biosecurity 765 
risks of such studies (182). 766 
The second approach is to develop and improve the throughput and accuracy of 767 
biochemical and cell-biological assays of these traits, so that virus isolates can be 768 



44  

characterized phenotypically in a routine manner, reducing reliance on sequence-based 769 
predictions. It seems feasible to develop high-throughput versions of many of the assays 770 
described in this review for each of the three traits discussed, which could then be 771 
routinely run on surveillance isolates to contribute to risk prediction. For none of these 772 
three traits is there a single gold standard assay, and different assays may provide 773 
different estimates of risk.  774 
The third approach is to improve animal models to more precisely study phenotypes 775 
that are important for human adaptation, and to clarify whether the notion of 776 
"mammalian adaptation" is in fact a valid category. Ferrets are the closest known model 777 
for human transmission (see Box 4). Respiratory-droplet transmission studies in ferrets, 778 
and potentially in other animal models, have shown a remarkably strong correlation 779 
with human transmissibility of influenza A strains (25). While these assays  are not 780 
perfectly predictive, they may be the most reliable way at present to assess the 781 
transmission potential of a virus in human populations. Here a partial counterexample 782 
to their overall strong predictive value is H7N9 avian influenza isolates from human 783 
zoonotic cases. These viruses transmit in ferrets, albeit less efficiently than human 784 
seasonal strains, yet human-to-human transmission has been extremely rare in the 785 
hundreds of human zoonotic cases caused by H7N9 (25). A challenge is the expense and 786 
practical challenge of using large enough numbers of ferrets (25, 183, 184) to assess 787 
transmissibility; this will remain a technique of limited throughput for the foreseeable 788 
future. Nonetheless, the value of ferret testing for risk assessment can be enhanced in 789 
at least two ways: first, by standardizing the conditions for ferret transmission 790 
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experiments, so these can be more confidently compared between laboratories; and 791 
second, by continuing to combine ferret studies with studies of viral traits and 792 
sequence/structural studies to further identify correlates of transmissibility in ferrets. 793 
While the biological properties of a virus certainly play a large role in determining the 794 
pandemic risk posed by a strain, it is possible that even a virus perfectly adapted for 795 
human-to-human transmission might fail to transmit extensively, due to ecological 796 
factors, chance, or both. Initiation of a pandemic requires not only a well-adapted virus 797 
but ecological opportunity to spill over into humans (perhaps multiple times if the first 798 
introduction is not “successful” (185)), as well as a human population that is 799 
immunologically susceptible and sufficiently connected to establish ongoing 800 
transmission (Box 5). Additional complexity arises from the fact that selection pressures 801 
for within-host proliferation and competition may diverge from those needed for 802 
efficient transmission (61). Genetic bottlenecks at the time of transmission (47, 48, 66) 803 
may further enhance the role of chance, as a highly adaptive variant arising in a host 804 
may not get transmitted in a particular event. However, selective bottlenecks, which 805 
have been observed in experimental transmission of H5N1 and avian-like H1N1 viruses 806 
in ferrets, could lower the barrier to emergence of human-adapted viruses (64, 65). 807 
Both ecological and host factors are considered in the CDC’s IRAT (45).  808 
Evolutionary factors also play a role in pandemic risk evaluations. Even with excellent 809 
surveillance, we may never isolate exactly the virus that is destined to cause a pandemic 810 
from an animal reservoir or a zoonotic human case; rather, we may isolate its 811 
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evolutionary precursor. Understanding the potential of a strain to produce pandemic-812 
capable progeny is yet a further scientific challenge. Perhaps the most startling finding 813 
of the gain-of-transmissibility experiments with H5N1 avian influenza viruses was that 814 
so few mutations were required to convert a strain circulating in birds to mammalian 815 
transmission. This concern was reinforced by a finding that many of these mutations, 816 
including combinations of some of them, were already present in strains isolated during 817 
surveillance (32). The interpretation of the latter finding, however, is complicated by the 818 
problem of epistasis: the effect of these mutations in the genetic background of field 819 
strains may or may not be the same as in the strain studied in the laboratory.  820 
It seems clear that a pandemic risk assessment informed by genetic sequence data is 821 
better than one uninformed by such sequence data, but the thought experiment of 822 
considering the 2009 swine-origin virus, had it been seen prior to initiating the 823 
pandemic, shows that such efforts may fail to identify the risk posed by strains that 824 
subsequently cause a pandemic. According to the knowledge at the time, early human 825 
isolates of 2009 (and presumably their swine precursors) would have had an HA 826 
intermediate between human and avian adaptation in terms of receptor binding. They 827 
had an activation pH outside the range previously seen in human viruses and more 828 
typical of avian viruses. Moreover, these viruses lacked the amino acid residues then 829 
thought to confer human adaptation for the polymerase complex. We must imagine 830 
that had this strain been detected in swine surveillance prior to the pandemic 831 
emergence, genetic as well as phenotypic considerations would have marked it as low 832 
risk, creating a false-negative risk assessment. Given that this virus did in fact create a 833 
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pandemic, it is evident that failure of a nonhuman influenza virus to fully meet the three 834 
criteria discussed in this review does not disqualify it from posing a significant risk of a 835 
pandemic. 836 
 Whether false positive predictions of high pandemic risk are also possible is more 837 
difficult to determine, because even a strain that is truly high risk may fail to cause a 838 
pandemic for any number of reasons; thus it is challenging to prove that an assessment 839 
of high risk for a particular strain was erroneous. From a decision-making perspective, a 840 
false positive is perhaps less worrisome than a false negative, as a false positive may 841 
motivate expenditure on prevention measures directed at a strain that would not have 842 
caused a pandemic, while a false negative may lead to a failure to respond to a strain 843 
that would.  844 
As we seek to improve our understanding of genetic and phenotypic bases of efficient 845 
human transmission of influenza viruses, there are multiple possible approaches. One 846 
approach that has received considerable attention recently is to perform gain-of-847 
transmissibility studies in highly pathogenic avian viruses; this has been controversial 848 
because of concerns about the unusual biosafety and biosecurity risks entailed in such 849 
studies (for contrasting perspectives on these risks, see the exchange in 2014-5 between 850 
Lipsitch and Inglesby, and Fouchier (182, 186, 187)).  851 
 852 
There are alternative approaches to ferret gain-of-transmission experiments in highly 853 
pathogenic avian influenza viruses, though disagreement remains about the level of 854 
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evidence such alternatives provide. One alternative is to perform similar experiments 855 
starting from avian viruses that are not highly pathogenic in mammals, and/or are 856 
related to currently circulating human seasonal viruses, so that immunity would already 857 
be present in the population. Such experiments can provide the same degree of causal 858 
rigor as gain-of-function in highly pathogenic avian viruses with novel surface antigens 859 
and can elucidate general principles of mammalian adaptation, but they cannot confirm 860 
that the same changes would be observed in other strains that are not used in the 861 
experiment. A recent report shows a related way forward: the recreation of the steps of 862 
mammalian adaptation using viruses whose HA and NA are already circulating in 863 
humans (87). Such loss+gain-of-transmissibility experiments reconstruct the properties 864 
of naturally occurring seasonal human strains, from laboratory-generated, avian-865 
adapted (or at least human-deadapted) precursors. Reconstructing such seasonal strains 866 
should pose a risk similar to that of working with the seasonal strains themselves, less 867 
than that of a novel subtype. A 2011 report employed a similar strategy, demonstrating 868 
the importance of HA activation pH in mouse adaptation by selection experiments on a 869 
live attenuated H5N1 vaccine strain lacking the NS1 gene (188). More recently, a 2009 870 
H1N1 pandemic virus was modified to express a mutation that increased pH of HA 871 
activation, then selected in ferrets for droplet transmission, and it was found that a 872 
second site mutation partially restored the lower pH of activation of the selected virus 873 
(134). One limitation of de-adaptation strategies is that the acquisition of 874 
transmissibility is perhaps most likely to evolve by reversion of the de-adaptation 875 
changes.  As with all gain-of-function and loss-of-function studies, epistatic effects of 876 
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other loci in the genetic background of the viruses used in such studies set limits to the 877 
generalizability of such experiments. Another kind of alternative is simple 878 
characterization of ferret transmissibility of naturally occurring highly pathogenic strains 879 
without selection for airborne transmission. This approach can provide correlative 880 
evidence for the importance of genetic differences but cannot prove the mechanistic 881 
role of any particular change. 882 
Even if strain-based assessment methods were much better, surveillance would be a key 883 
rate-limiting step for pandemic risk assessment to direct countermeasure development. 884 
If a virus about to cause a pandemic is not found in surveillance it cannot be assessed. 885 
The fact that we have yet to identify a pandemic strain in nonhuman hosts or in human 886 
spillover cases before the pandemic starts indicates there is much work to be done. 887 
Although surveillance has expanded since the 2009 pandemic, it has not been designed 888 
to optimize the chances of detecting a pandemic strain before it becomes pandemic; 889 
indeed, how to do so is not clear at present. Some possible considerations would be to 890 
maximize the diversity of isolates collected, to preferentially sample strains that are 891 
known to cause human infections, and to feed back information from risk assessments 892 
to inform choice of sampling. Rapid sequencing and phenotypic characterization of 893 
strains and dissemination of this information, along with interpretations of the risk 894 
profiles implied, is also important to maximizing the value of surveillance. Further 895 
thought should be given to the possibility of using high-throughput sequencing as a 896 
screen for which viruses should be subjected to phenotypic testing, which for the 897 
moment is typically more costly, slower, and lower-throughput than sequencing. More 898 
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deliberate approaches to the design of surveillance systems would also depend on 899 
answering the question addressed in Box 2: how different must a virus be from 900 
previously characterized viruses to merit separate evaluation of its pandemic risk? The 901 
uncertainties noted above about the phenotypic characteristics of viruses isolated from 902 
previous pandemics (which may have been present in the primary isolate or may have 903 
arisen during egg passage in the laboratory) underline the need for careful attention to 904 
passage histories of surveillance isolates to avoid altering their genotype and phenotype 905 
post-isolation (189). Expanding and rationalizing surveillance in this way would require 906 
overcoming political, logistical and financial constraints that vary between countries and 907 
regions. 908 
Even with all of the foregoing suggestions in place, it may be improbable that we can 909 
reliably identify the "needle in the haystack" that is the next pandemic influenza strain. 910 
Ultimately, the goal is not risk assessment for its own sake, but preparedness and early 911 
response to pandemic threats. In other areas where security is at stake, it has been 912 
argued that making and improving predictions should be accompanied by a systematic 913 
effort to design responses that will not fail even if the predictions are wrong (190). In 914 
the influenza context, the value of some countermeasures is strongly reliant on our 915 
ability to identify truly high-risk prepandemic threats: notably, preparation of seed 916 
vaccine stocks for candidate pandemic strains, stockpiling of subtype-specific vaccines, 917 
and culling of poultry infected with such strains. Other types of countermeasures, 918 
ranging from strengthening local public health departments to stockpiling antivirals or 919 
ventilators to developing faster processes for vaccine manufacture to universal vaccines 920 
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that should be effective against any influenza A strain, should provide benefits whether 921 
or not we have advance notice of the strain causing the next pandemic. A 922 
comprehensive assessment of priorities to prevent or mitigate the next influenza 923 
pandemic should consider the balance between improving our risk assessment capacity 924 
and developing responses robust to the possibility that we will once again be caught by 925 
surprise. 926 
  927 
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 974 
BOXES 975 
BOX 1 Steps in pandemic emergence 976 
For an avian-adapted strain of influenza A to become a pandemic strain, several events 977 
are required:  978 
1. The avian-adapted strain must become sufficiently widespread in wild or domestic 979 
birds, swine or other reservoir species to expose at least one human to infection. 980 
2. One or more humans must acquire infection from the reservoir species. 981 
3. The infection must replicate sufficiently in a zoonotic case to produce infectious virus 982 
in respiratory or other secretions. 983 
4. The infection must be transmitted to additional humans, avoiding an "early" 984 
termination of the transmission chain due to chance. Such early termination is a 985 
significant risk given the relatively low infectiousness of influenza and the moderate 986 
degree of overdispersion in the number of secondary cases infected by each case, both 987 
of which contribute to the probability that a transmission chain will terminate by chance 988 
(191, 192). It must also avoid extinction due to deliberate control efforts put in place by 989 
public health authorities (193, 194).  990 
5. Finally, the infection must spread beyond the local area to infect members of distant 991 
populations, a process accelerated by modern global travel (195). This step and the one 992 
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before are enhanced if the level of population susceptibility is high, as occurs when the 993 
surface proteins of the new strain are dissimilar to those on any currently or recently 994 
circulating human influenza A strains. 995 
We know from serologic studies and human infections that several different influenza A 996 
viruses have achieved steps 1 and 2 at any given time (15, 16). Steps 3 and/or 4 appear 997 
to be the rare, rate-limiting steps; that is, the conditional probability of achieving step 3 998 
and 4 given the previous steps is low, so that sustained human-to-human transmission 999 
of a novel strain occurs a few times per century while zoonotic infections must occur 1000 
thousands or more times per year. No case is known in which an influenza A strain has 1001 
reached stage 4 but failed to reach stage 5, although it may have happened undetected. 1002 
The appearance -- by mutation or reassortment -- and selection of genetic changes that 1003 
encode human-adaptive viral traits may be seen as a process that can accelerate or 1004 
increase the probability of one or more of these steps (though there is no guarantee 1005 
that a given change that enhances one of these steps will enhance all of them . This is 1006 
why the detection of phenotypes associated with human adaptation in avian or zoonotic 1007 
isolates of novel influenza A viruses is thought to correlate with increased risk of 1008 
pandemic emergence. As we describe throughout the paper, the process of human 1009 
adaptation need not be complete to initiate a pandemic, so it may continue to occur at 1010 
various stages throughout this progression. 1011 
 1012 
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BOX 2  Granularity of pandemic risk prediction – for what taxonomic level does 1013 
it make sense? 1014 
 1015 
Determining the appropriate taxonomic level for influenza virus risk assessment 1016 
is a challenging endeavor. Influenza virus subtype is a convenient classification 1017 
but there can be substantial variation in estimable risk within subtype. For 1018 
example, H5N1 viruses can be roughly segregated into high pathogenicity and 1019 
low pathogenicity phenotypes with the high pathogenicity variants generating 1020 
substantially greater concern for both human and animal populations. Even 1021 
within the high pathogenicity H5N1 variants, risk to animal populations and 1022 
potential for adaptation to humans is likely to vary by phylogenetic lineages or 1023 
clades of viruses. Much of the difficulty for predicting the threat posed by 1024 
subtypes or coarse grained concepts of virus variants stems from two factors: 1025 
first, a lack of understanding of how genetic context affects the ability of a virus 1026 
to adapt for efficient spread in humans; and second, the critical, and 1027 
geographically variable, role of ecology in determining likelihood of cross species 1028 
transmission.  1029 
 1030 
Phylogenetic clade is a practical unit for risk prediction. However, in species 1031 
where reassortment is frequent, phylogenetic clade must be considered on a 1032 
gene by gene basis. The definition of phylogenetic clades can be challenging and 1033 
arbitrary, but recent efforts to develop a unified nomenclature for highly 1034 
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pathogenic H5N1 viruses may offer a transferrable framework for the 1035 
classification of other viruses(196, 197). Clades of viruses circulating in poultry, 1036 
swine or other domestic animals with extensive human interactions should be 1037 
prioritized for surveillance and further study. Foundational efforts are required 1038 
to assess the diversity of viruses present in these animal populations, particularly 1039 
for low pathogenic avian influenza viruses. Further study will then be required to 1040 
assess the abundance and prevalence of different virus subtypes and clades, 1041 
along with geographic spread and overlap with ecological risk factors(198, 199), 1042 
e.g. live animal markets, cohabitation of humans and animals, and biosecurity in 1043 
animal processing facilities.  1044 
 1045 
Antigenic characterization of animal influenza viruses should form part of a 1046 
comprehensive risk assessment, particularly of viruses from swine and possibly 1047 
dogs. Swine influenza virus diversity is driven in large part by introductions of 1048 
viruses from humans to swine (200-202). The substantial antigenic diversity of 1049 
viruses circulating in swine and antigenic differences with viruses circulating in 1050 
humans poses an ever increasing risk for re-introduction into humans. Much of 1051 
the antigenic variation in swine has a strong relationship to phylogenetic clade 1052 
(202). Similarly, the high contact rates between humans and dogs, combined with 1053 
increased circulation of H3N2 canine influenza viruses, may present increasing 1054 
opportunities for reassortment (203) and for zoonotic infections (204). 1055 
 1056 
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BOX 3: Novel approaches to identifying genomic predictors of traits and transmission 1057 
phenotypes 1058 
The advent of inexpensive, large-scale sequencing, combined with improved computing 1059 
power and novel algorithms to interpret nucleotide and protein sequences, have 1060 
generated new approaches to characterizing the genotype-trait and genotype-1061 
transmission phenotype maps in influenza viruses. Some are well-established, while 1062 
others are under active development. They include: 1063 
Protein structural analysis to identify properties of individual amino acid residues and 1064 
pairs of residues. A number of approaches have been devised to make use of databases 1065 
of genome sequences and inferred protein sequences of influenza virus isolates, alone 1066 
or in combination with metadata on the source (species), date of isolation and passage 1067 
history of the isolates.  1068 
Characterizing the predictors – at the level of individual amino acid residues within a 1069 
protein – of variability or conservation can assist in identifying the major selection 1070 
pressures on that protein. Evolutionary analysis of the predictors of high rates of 1071 
nonsynonymous substitutions within HA showed solvent accessibility and proximity to 1072 
the sialic acid receptor binding site are the strongest predictors of high nonsynonymous 1073 
evolutionary rates (205). Comparisons of residue-specific evolutionary rates in avian and 1074 
human lineages can help to assess which sites are specifically involved in human 1075 
adaptation and which may be evolving in avian reservoirs with potential consequences 1076 
for human adaptation (206). 1077 
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Innovative use of metadata associated with sequences deposited in databases will be 1078 
required to ensure that computational inferences from these databases are reliable. For 1079 
example, methods that aim to identify sites under positive selection in the HA protein 1080 
frequently find regions or sites that seem to contradict experimental evidence (205, 1081 
207, 208). Several of these apparent contradictions can be resolved by accounting for 1082 
viral passaging. For example, passaging in regular MDCK cells produces a strong signal of 1083 
positive adaptation underneath the sialic-acid binding site; this signal is entirely absent 1084 
in unpassaged virus or virus passaged in SIAT1 MDCK cells (209) .At the same time, 1085 
passage bias mutations are assumed to increase fitness of the strain in the respective 1086 
species and are often necessary to grow in culture at all. Therefore, sites associated with 1087 
isolates passaged in mammalian cultures vs. those passaged in embryonated hen’s eggs 1088 
have the potential to further identify sites associated with mammalian or human 1089 
adaptation.  1090 
Metadata can also help to point to individual amino acids associated with human 1091 
adaptation. For example, one proposed computational approach is to find potentially 1092 
zoonotic human-isolated sequences when the majority of their database hits from 1093 
preceding years were of animal origin. This serves, on one hand, as systematic survey to 1094 
derive lists of times and places of likely zoonotic events and, on the other hand, 1095 
provides close sequence pairs of zoonotic human and their putative animal precursors. 1096 
In those pairs, common sites that repeatedly changed from the animal to the human 1097 
zoonotic isolates could be reasoned as being involved in human adaptation. Combining 1098 
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these sites with those from passage changes, provides strong evidence for the 1099 
involvement of a particular site in host adaptation. 1100 
Network analysis of the level of sequence covariation of pairs of residues among protein 1101 
sequences in the database has led to the identification of groups of mutually covarying 1102 
sites, which have been used to define features of the HA protein that play a role in 1103 
determining glycan receptor usage (210, 211).  Complementary to such covariation 1104 
analysis is the analysis of predicted molecular interactions. Using X-ray co-crystal 1105 
structures or modeled structural complexes of HA-glycan receptors, molecular features 1106 
have been defined as distinct networks of inter-residue interactions involving key 1107 
residues that make contacts with the different glycan receptor topologies. These 1108 
features go beyond hallmark residue analyses and more accurately predict how amino 1109 
acid variations in the receptor binding site impact the inter-residue interactions and 1110 
glycan receptor binding specificity (56). Similarly, network analysis of amino acid 1111 
residues predicted to have significant interactions has shown that antigenic sites on the 1112 
HA interact with residues controlling glycan receptor binding specificity, and that 1113 
changes in these antigenic residues can then lead to changes in receptor-binding affinity 1114 
(212).  1115 
It seems likely that as these different lines of evidence – structural location, biophysical 1116 
interaction, sequence covariation, sequence evolutionary rates, association with 1117 
zoonotic or in vitro adaptation, etc.—begin to be understood at the resolution of 1118 
individual amino acids within an influenza protein, such overlapping approaches will 1119 
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yield clearer understanding of the genetic and structural bases of host adaptation to 1120 
human infection and transmission. A significant step toward such integration is the 1121 
recent release of the FluSurver online tool which automatizes influenza sequence and 1122 
structure analysis and highlights mutations that could alter the discussed traits based on 1123 
extensive literature-derived genotype to phenotype lists, structural visualization of the 1124 
mutation positions and their geographic and temporal frequency of occurrence and co-1125 
occurrence for epidemiological relevance (http://flusurver.bii.a-star.edu.sg and directly 1126 
from within GISAID http://www.gisaid.org). In particular, the tool has been successful in 1127 
picking up mutations affecting host receptor binding (213) as well as pH dependency 1128 
(132, 133). However, also in this approach, annotations of the effects of mutations are 1129 
based on inference from similarity to mutations studied in specific sequence contexts, 1130 
which in most cases will not be identical to the investigated input sequences. 1131 
Association studies.  Understanding the genetic basis of adaptive phenotypic change is a 1132 
central goal in biology, and influenza poses special challenges and advantages relative to 1133 
other organisms. Association studies have begun mapping the genomes of Arabidopsis 1134 
thaliana to over 107 quantitative traits and the genomes of humans to over 100,000 1135 
(214, 215). These studies often investigate genetic variation at the scales of single 1136 
nucleotide polymorphisms, alleles, and loci. Motif-based approaches have already 1137 
proven useful in influenza (e.g., the insertion of multiple basic amino acids indicates 1138 
highly pathogenic H5 and H7), and such simple, robust correlations simplify the 1139 
prediction of phenotypic traits. Recent investigations of influenza (181, 216, 217) have 1140 
shown that many mutations have roughly consistent impacts across diverse 1141 
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backgrounds. A complication of all association studies is confounding from genetic 1142 
linkage and diverse environmental selective pressures. Although influenza’s genes might 1143 
be tightly linked over short time scales, the virus evolves quickly, and many traits can be 1144 
assumed to be under stabilizing selection. Thus, association studies that appear 1145 
statistically impractical now may be feasible with a few more years of expanded 1146 
surveillance.  1147 
As reviewed here, however, influenza often breaks simple genetic rules, perhaps due to 1148 
epistasis (e.g., (54)). High-dimensional genotype-phenotype relationships obscure 1149 
simple correlations from association studies. A relevant lesson comes from The Cancer 1150 
Genome Atlas (TCGA), which amassed sequences from thousands of diverse tumors to 1151 
investigate the mutations leading to different cancer types. Although metastatic cancers 1152 
are typically conceptualized as possessing six main phenotypic traits (218), TCGA 1153 
revealed that the genetic commonality among tumors of any given type is shockingly 1154 
low (219, 220). Human genomes are much larger and more complex than influenza’s, 1155 
however, and so it is possible that an influenza atlas might reveal more patterns, which 1156 
could inspire hypothesis-driven experiments (221). 1157 
High-throughput, large-scale screens of mutational effects on hemagglutinin receptor 1158 
binding. Binding of upper-respiratory-tract glycans by the influenza virus hemagglutinin 1159 
is one of the best-understood ingredients in making a virus capable of efficient human 1160 
transmission. Yet the viral sequence determinants of this trait have been mapped only 1161 
for a limited number of variants. A systematic screening strategy to scan the genetic 1162 
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“landscape” for sequences with a preference for human glycan receptors might include 1163 
four components:  1) selection of viral genetic background, 2) large-scale mutagenesis, 1164 
3) screening and selection, and 4) confirmatory assays.  Because both mutations near 1165 
and far from the sialic-acid-binding site on hemagglutinin have been shown to alter 1166 
glycan specificity, this should be based on a minimally biased approach to mutagenesis: 1167 
screening combinations of all possible substitutions at all hemagglutinin residues that 1168 
are not absolutely conserved across known subtypes. Critical considerations include 1169 
choice of viral genetic background (both subtype and strain identity), extent of 1170 
mutagenesis (if conserved sites are omitted, up to 4 simultaneous mutants can be 1171 
screened with some effort), and design of highly parallel screening, selection, and 1172 
confirmatory assays. The mutagenesis and screening involved would be extremely large 1173 
in scope: (before eliminating conserved residues, ~550 residues x 20 amino acids)4 = 1.4 1174 
x 1016 variants for each subtype tested and would thus require substantial effort.  1175 
However, some computational pre-screening to narrow the set of residues tested 1176 
combined with contemporary mutagenesis and screening technologies such as deep 1177 
scanning codon mutagenesis (181, 222, 223) make such an endeavor feasible. 1178 
 1179 
 1180 
  1181 
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BOX 4: Ferret model: validity and limitations in pandemic risk assessment 1182 
 1183 
The use of small mammalian models in influenza virus pathogenesis and transmission 1184 
has proven invaluable for the study of these complex, polygenic traits. The ferret model 1185 
is particularly valuable, as ferrets are highly susceptible to most influenza A viruses 1186 
without the need for prior host adaptation. However, even this gold-standard model is 1187 
not a true substitute for humans. Below, we summarize the benefits, drawbacks, and 1188 
alternatives to the ferret model for the study of influenza. 1189 
 1190 
Validity.  Influenza is a respiratory pathogen in humans, and employing mammalian 1191 
models that possess comparable lung physiology permits a greater extrapolation of 1192 
results from the laboratory. Importantly, the linkage types and distribution of sialic acids 1193 
throughout the ferret respiratory tract are generally comparable to humans (224, 225): 1194 
like humans, ferrets express the sialic acid N-acetylneuraminic acid (Neu5Ac), but not 1195 
the sialic acid N-glycolylneuraminic acid (Neu5Gc), on respiratory epithelia. As a result, 1196 
ferrets are uniquely suited for the study of influenza viruses compared with other small 1197 
mammalian models which express Neu5Gc (226). Furthermore, human and avian 1198 
influenza viruses exhibit comparable binding to upper and lower respiratory tract tissues 1199 
in ferrets and humans (84, 85).  1200 
 1201 
Secondly, ferrets infected with influenza viruses demonstrate numerous clinical signs 1202 
and symptoms of infection associated with human disease. Ferrets infected with human 1203 
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influenza viruses often exhibit transient weight loss, transient fever, and sneezing, 1204 
whereas infection with selected HPAI viruses in this species can lead to pronounced 1205 
weight loss, sustained fever, lethargy, dyspnea, and neurological complications (227). 1206 
Thus, ferrets represent a preclinical model to assess the ability of novel vaccine and 1207 
antiviral treatments to mitigate influenza virus. As ferrets are a suitable model for the 1208 
coincident study of pathogenesis and transmission, this model allows for a greater 1209 
understanding of virus-host interactions and the interplay between both of these 1210 
parameters.  1211 
 1212 
Finally, the ferret model can yield valuable insights about the potential human-to-1213 
human transmissibility of influenza viruses – the critical determinant of pandemic risk. A 1214 
recent meta-analysis showed that estimates of transmissibility derived from ferret 1215 
respiratory droplet transmission studies could explain 66% of measured variation in 1216 
human transmissibility, for influenza subtypes that have been detected in humans (25). 1217 
Furthermore, there is a strong statistical relationship between the attack rates 1218 
measured in particular ferret experiments and the probability that the influenza strain in 1219 
question is capable of sustained transmission among humans: if two-thirds or more of 1220 
contact ferrets become infected via respiratory droplets, then the strain is likely to have 1221 
pandemic potential (see figure). However, extrapolation of this relationship to novel 1222 
strains is inherently risky, and variable outcomes observed for H7N9 influenza 1223 
transmission in ferrets highlight the potential for false alarms. Further analysis of ferret 1224 
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transmission experiments, ideally in concert with molecular and virological research, 1225 
could raise their sensitivity and specificity for identifying pandemic threats.  1226 
 1227 
Limitations. There is no ‘perfect’ small mammalian model for influenza. A longstanding 1228 
challenge of the ferret model has been limited availability of ferret-specific commercial 1229 
reagents compared with other models, though recent sequencing of the ferret genome 1230 
should improve this situation (228). Ethical considerations, and the size and cost of 1231 
ferrets, necessitate generally small sample sizes in ferret experiments, limiting statistical 1232 
power (183). Like other vertebrate models, the ferret is not appropriate for high-1233 
throughput screens, so research in the ferret model is most potent when complemented 1234 
with in vitro and computational approaches. Finally, ferrets are not well suited to model 1235 
the multiple influenza exposures over several years that may be experienced by humans 1236 
and may mold their immune responses in ways that affect the infection risk with 1237 
subsequent viruses (229). Studies of first influenza infection in ferrets may thus 1238 
overestimate infection and/or transmission risk relative to that in populations with a 1239 
history of prior infection with related viruses (230). 1240 
 1241 
Alternatives. The ferret is but one of several well-characterized mammalian models for 1242 
influenza virus. Mice are widely used in the field as they offer a greater availability of 1243 
commercially available species-specific reagents, permit studies with greater statistical 1244 
power due to larger sample sizes, and offer the advantage of transgenic animals. 1245 
However, not all human influenza viruses replicate well in mice without prior adaptation 1246 
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due to a predominance of avian-like receptors in the murine respiratory tract; also mice 1247 
do not display clinical signs and symptoms of influenza that mimic humans, and are not 1248 
a reliable model for virus transmission studies. The guinea pig is another model, and 1249 
offers several comparable advantages to ferrets, including generally similar lung 1250 
physiology to humans and potential for transmission studies. Experiments in guinea pigs 1251 
are often less expensive than in ferrets, because of lower husbandry costs and reduced 1252 
drug costs when dosing is based on body weight (231). However, guinea pigs do not 1253 
exhibit clinical signs and symptoms of infection similar to humans, and do not exhibit 1254 
severe disease following infection with HPAI or pandemic influenza viruses, limiting their 1255 
utility for viral pathogenesis studies. 1256 
 1257 

 1258 
Figure for Box 3: Ferret respiratory droplet transmission experiments predict the 1259 
potential for sustained human-to-human transmission of influenza viruses.  The solid 1260 
line shows the weighted logistic regression relationship predicting the probability that a 1261 
given strain is supercritical (i.e. capable of sustained spread among humans), and the 1262 
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dashed lines show the 95% confidence interval for the prediction.  Filled circles show the 1263 
measured secondary attack rates (SAR) in ferrets for influenza subtypes that are known 1264 
to be subcritical (blue) or supercritical (red) in humans.  The filled pink area shows the 1265 
range of SAR for which the virus is significantly likely to be supercritical. Reprinted from 1266 
(25). 1267 
  1268 
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 1269 
BOX 5: Role of seroepidemiology in pandemic risk assessment  1270 
Pandemic threat assessment can also be enhanced by immunological surveys of human 1271 
populations in geographical area where strains of concern are known to be circulating 1272 
(232). Serological surveys can help to estimate the frequency of spillover infections from 1273 
non-human to human hosts and also to assess the degree of cross reactivity arising from 1274 
endemic human strains that share recent genomic ancestors with non-human strains of 1275 
concern (Figure for Box 4). 1276 
Attempts have been made to use serological surveys to estimate the rate of spillover 1277 
infections to humans for recent strains of concern (233, 234). Sometimes blood samples 1278 
are obtained from the general population (235) and other times only high risk 1279 
individuals are tested. Inherent measurement error and cross-reactivity between human 1280 
and non-human strains make the measurement of low rates of incidence problematic 1281 
(234). Confidence that serologic responses truly reflect zoonotic transmission, rather 1282 
than cross-reactivity with antibodies generated in response to human influenza 1283 
infection, may be enhanced by comparison of high-risk persons to those without known 1284 
exposure to zoonotic sources (236, 237). Although there is evidence of exposure of 1285 
poultry workers to H5N1 influenza viruses in China, rates are much lower than for other 1286 
endemic non-human influenza viruses(238), such as H9N2 (239). More recent studies of 1287 
exposure of high risk workers to the H7N9 lineage suggest even higher rates of exposure 1288 
to this new strain than has been observed in similar studies of H5N1 or H9N2(240).  1289 
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Even when rates of spillover can be estimated accurately, the use of such information in 1290 
pandemic threat assessment is not obvious. Clearly, the first detected presence of 1291 
human infections for a given strain is of concern because the degree of transmissibility 1292 
among humans is unknown. Should the emergent strain fail to achieve sustained 1293 
transmission, it is not immediately clear how best to use further information on the 1294 
frequency of human spillover infections. For example, should we interpret high 1295 
sustained levels of human spillover as evidence of increased risk because of the number 1296 
of human infections, or as evidence of decreasing risk because of the number of times 1297 
the strain has failed to achieve sustained transmission?  1298 
Cross reactivity between non-human and human influenza strains has implications 1299 
beyond the measurement of spillover infections. Often levels of cross reactivity in 1300 
humans may indicate some degree of reduced population susceptibility (23). All else 1301 
equal, such evidence of lower population susceptibility should reduce our level of 1302 
concern about a pandemic threat from a particular virus, because even if it gains 1303 
efficient human-to-human transmissibility, its effective reproductive number and the 1304 
proportion of the population at risk will be less than for a virus to which there is no 1305 
cross-reaction in the population. For example, older individuals are thought to have 1306 
been far less susceptible to pandemic H1N1 than were younger individuals, because 1307 
they had previously been exposed to similar strains early in life (241). The low average 1308 
age of infection with a swine variant form of H3N2 (H3N2v) in North America (8) is likely 1309 
driven by reduced susceptibility in adults because of early exposure to similar strains. 1310 
Such immunological overlaps are likely to be a general feature of influenza emergence 1311 
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because human strains frequently emerge into swine populations (200). 1312 
Data on reduced human susceptibility due to cross-reactivity must be synthesized with 1313 
other data used for threat assessment. In some cases, the aging of the part of the 1314 
population with prior exposure to a closely related strain could be the most important 1315 
known factor increasing the risk of an emergence event. Mechanistic models could be 1316 
used to estimate the degree of increased risk of emergence due to the aging of partially 1317 
immune cohorts. 1318 
  1319 
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 1320 

 1321 
Figure for Box 5. Transmission genomics of non-human transmission (top), spillover 1322 
transmission (middle) and sustained human transmission (bottom). Haemagglutinin and 1323 
neuraminidase gene segments have been color-coded to show an example shared 1324 
infection history in humans who are current spillover hosts for H7N9 and H9N2. These 1325 
shared evolutionary histories make it challenging to interpret serological studies of 1326 
human spillover infections. Humans infected by H2N2 or H3N2  will likely have cross-1327 
reactive antibodies to H9N2, because of the similarity between the neuraminidase in 1328 
those viruses. Because incidence of spill-over infection is likely to be low, even low-1329 
levels of cross-reactivity can make the interpretation of serological studies of the 1330 
general population challenging. 1331 
  1332 
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