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Abstract Non-clustered d-protocadherins are homophilic cell adhesion molecules essential for

the development of the vertebrate nervous system, as several are closely linked to

neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19) result in a female-limited,

infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in

patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular

domain. Neither the mechanism of homophilic adhesion by PCDH19, nor the biochemical effects of

missense mutations are understood. Here we present a crystallographic structure of the minimal

adhesive fragment of the zebrafish Pcdh19 extracellular domain. This structure reveals the adhesive

interface for Pcdh19, which is broadly relevant to both non-clustered d and clustered protocadherin

subfamilies. In addition, we show that several PCDH19-FE missense mutations localize to the

adhesive interface and abolish Pcdh19 adhesion in in vitro assays, thus revealing the biochemical

basis of their pathogenic effects during brain development.

DOI: 10.7554/eLife.18529.001

Introduction
Nervous system function is critically dependent on the underlying neural architecture, including pat-

terns of neuronal connectivity. Cell-cell recognition by cell surface receptors is central to establishing

these functional neural circuits during development (Kiecker and Lumsden, 2005; Steinberg, 2007;

Zipursky and Sanes, 2010). The cadherin superfamily is a large and diverse family of cell adhesion

molecules that are strongly expressed in the developing nervous system (Hirano and Takeichi,

2012; Suzuki, 1996; Frank and Kemler, 2002; Shapiro et al., 2007; Gumbiner, 2005;Chen and

Maniatis, 2013). The differential expression of classical cadherins and protocadherins, the largest

groups within the cadherin superfamily, suggests that they play important roles in the development

of neural circuitry (Weiner and Jontes, 2013; Hirano and Takeichi, 2012), an idea supported by

their involvement in a range of neurodevelopmental disorders (Redies et al., 2012; Hirabayashi and

Yagi, 2014). In particular, the non-clustered d-protocadherins have been linked to autism spectrum

disorders, intellectual disability, congenital microcephaly and epilepsy.

Protocadherin-19 (PCDH19) is a member of the non-clustered d2-protocadherin subfamily

(Wolverton and Lalande, 2001; Vanhalst et al., 2005; Gaitan and Bouchard, 2006; Emond et al.,

2009; Liu et al., 2010) that is located on the X-chromosome. Mutations in PCDH19 cause an

X-linked, female-limited form of infant-onset epilepsy (PCDH19 female epilepsy, PCDH19-FE; OMIM

300088) that is associated with intellectual disability, as well as compulsive or aggressive behavior

and autistic features (Dibbens et al., 2008; Scheffer et al., 2008; Depienne and LeGuern, 2012;

van Harssel et al., 2013; Leonardi et al., 2014; Thiffault et al., 2016; Terracciano et al., 2016;

Walters et al., 2014). To date, well over 100 distinct mutations in PCDH19 have been identified in

Cooper et al. eLife 2016;5:e18529. DOI: 10.7554/eLife.18529 1 of 22

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.18529.001
http://dx.doi.org/10.7554/eLife.18529
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


epilepsy patients, making it the second most clinically relevant gene in epilepsy. Approximately half

of these mutations are missense mutations distributed throughout the extracellular domain of the

PCDH19 protein. Despite the clear importance of PCDH19 and other non-clustered d-protocadher-

ins to neural development, their specific roles are only beginning to be revealed. For example,

Pcdh7, Pcdh17 and Pcdh18b are involved in axon outgrowth or arborization (Piper et al., 2008;

Hayashi et al., 2014; Biswas et al., 2014), while several d-protocadherins, including Pcdh19, regu-

late cell motility during early development (Yamamoto et al., 1998; Aamar and Dawid, 2008;

Biswas et al., 2010; Emond et al., 2009). In zebrafish, pcdh19, regulates the formation of neuronal

columns in the optic tectum, and loss of pcdh19 degrades visually-guided behaviors (Cooper et al.,

2015). However, it is not known how mutations in PCDH19 lead to PCDH19-FE.

Cadherins typically mediate adhesion using their extracellular domains, which are made of two or

more consecutive extracellular cadherin (EC) repeats (Takeichi, 1990; Brasch et al., 2012). The

adhesion mechanism used by classical cadherins is well known and involves a tip-to-tip interaction

that is stabilized by the reciprocal exchange of tryptophan residues at the N-terminal EC1 repeat

most distant from the membrane (Overduin et al., 1995; Shapiro et al., 1995; Nagar et al., 1996;

Boggon et al., 2002; Patel et al., 2006; Zhang et al., 2009; Sivasankar et al., 2009;

Harrison et al., 2010; Ciatto et al., 2010; Leckband and Sivasankar, 2012). However, PCDH19

along with the rest of the non-classical cadherins lack these critical tryptophan residues and must

mediate adhesion by an alternative mechanism (Emond et al., 2011; Sotomayor et al., 2014;

Biswas et al., 2010). In the case of the non-classical protocadherin-15 and cadherin-23 proteins, an

adhesive interface is formed by overlapping, antiparallel interactions of their EC1 and EC2 tips

(Elledge et al., 2010; Sotomayor et al., 2010; 2012; Geng et al., 2013). For clustered protocad-

herins, recent binding assays and structures suggest that adhesion is mediated by an antiparallel

interaction of fully overlapping EC1 to EC4 domains (Rubinstein et al., 2015; Nicoludis et al.,

2015; Goodman et al., 2016). Yet how non-clustered d-protocadherins and PCDH19 form adhesive

bonds and how these bonds are altered by disease-causing mutations is unknown.

eLife digest As the brain develops, its basic building blocks – cells called neurons – need to

form the correct connections with one another in order to give rise to neural circuits. A mistake that

leads to the formation of incorrect connections can result in a number of disorders or brain

abnormalities.

Proteins called cadherins that are present on the surface of neurons enable them to stick to their

correct partners like Velcro. One of these proteins is called Protocadherin-19. However, it was not

fully understood how this protein forms an adhesive bond with other Protocadherin-19 molecules, or

how some of the proteins within the cadherin family are able to distinguish between one another.

Cooper et al. used X-ray crystallography to visualize the molecular structure of Protocadherin-19

taken from zebrafish in order to better understand the adhesive bond that these proteins form with

each other. In addition, the new structure showed the sites of the mutations that cause a form of

epilepsy in infant females. From this, Cooper et al. could predict how the mutations would disrupt

Protocadherin-19’s shape and function.

The structures revealed that Protocadherin-19 molecules from adjacent cells engage in a

“forearm handshake” to form the bond that connects neurons. Some of the mutations that cause

epilepsy occur in the region responsible for this Protocadherin-19 forearm handshake. Laboratory

experiments confirmed that these mutations impair the formation of the adhesive bond, revealing

the molecular basis for some of the mutations that underlie Protocadherin-19-female-limited

epilepsy.

Other cadherin molecules may interact via a similar forearm handshake; this could be investigated

in future experiments. It also remains to be discovered how brain wiring depends on Protocadherin-

19 adhesion in animal development, and how altering these proteins can rewire developing brain

circuits.

DOI: 10.7554/eLife.18529.002
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Here we present crystals structures of the highly homologous zebrafish Protocadherin-19

(Pcdh19) encompassing repeats EC1-4 and EC3-4. The structures allow us to map >70% of the dis-

ease-causing missense mutations and provide a structural framework to interpret their functional

impact. In addition, the structures suggest two possible homophilic adhesive interfaces, and comple-

mentary binding assays validate one of them, which is affected by multiple PCDH19-FE mutations.

This interface involves fully overlapping EC1 to EC4 domains and likely represents a general interac-

tion mechanism for the non-clustered d-protocadherins.

Results
To understand the mechanism of Pcdh19 function and to determine the structural role of PCDH19-

FE mutations, the Danio rerio Pcdh19 EC1-4 and the EC3-4 fragments (70% identity, 83% similarity

to Homo sapiens EC1-4) were produced in E. coli, refolded from inclusion bodies, and used for crys-

tallization and structural determination (see Materials and methods). The solved structure for Pcdh19

EC3-4 (2.51 Å, Table 1, Figure 1—figure supplement 1A) includes four molecules in the asymmetric

unit, each starting from Pro 213 and continuing to Asp 422 (numbering corresponds to the proc-

essed Danio rerio protein, see Materials and methods). Root-mean-square-deviation (RMSD) among

these four molecules is <2.4 Å. One of the Pcdh19 EC3-4 molecules was used to solve the Pcdh19

EC1-4 structure (3.59 Å, Table 1, Figure 1—figure supplement 1B), which contains two molecules

in the asymmetric unit, each starting from Val one to Asp 422 (RMSD of 1.4 Å). The EC3-4 repeats

from both structures superpose well (RMSD 2.1 Å), and good quality electron density maps allowed

us to unambiguously position side chains for most residues (Materials and methods and Figure 1—

figure supplement 1). Given the similarities among our structures and chains, we will describe fea-

tures as seen in the more complete chain B of Pcdh19 EC1-4, unless otherwise explicitly stated.

The architecture of all Pcdh19 EC repeats matches that observed for other cadherins

(Shapiro et al., 1995; Overduin et al., 1995), with the typical Greek-key motif comprised of seven b

strands (A-G) forming a b sandwich fold (Figure 1A). The EC1 repeat has a disulfide bond at the E-F

loop, typical of clustered protocadherins, as well as one of two a-helices (at the B-C loop) also found

in structures of clustered protocadherins (Morishita et al., 2006; Nicoludis et al., 2015;

Rubinstein et al., 2015; Goodman et al., 2016) (Figure 1A,B). The three linker regions of Pcdh19

(EC1-2, EC2-3, EC3-4) have canonical cadherin calcium-binding sites (Nagar et al., 1996)

(Figure 1E–G). Overall, our structures show canonical features and provide a unique framework to

analyze >70% of the PCDH19-FE mutations.

PCDH19-FE mutations analyzed in the context of the Pcdh19 EC1-4
structure
There are 51 PCDH19-FE missense mutations (out of 70) that can be mapped to 43 locations in the

Pcdh19 EC1-4 structure (Figure 1B and Figure 1—figure supplement 2). These mutations can be

classified in three groups. The first group (18 mutations at 14 locations) corresponds to residues

whose side chains are pointing toward the hydrophobic core of an EC repeat (Figure 1B,C). The sec-

ond group involves residues whose side chains are at the surface of the protein (10 mutations at 10

sites; Figure 1B,D). The last group includes residues at calcium-binding motifs, with 19 locations

affected by 23 different mutations (Figure 1B,E–G). Mutations in each group are predicted to have

different effects on the protein’s structure (Figure 1—figure supplement 3).

PCDH19-FE mutations altering residues in the first group may often cause protein misfolding or

structural instability. For instance, mutations L81R and I115K (corresponding to L58 and I92 in the

crystal structure) would result in impossible conformations in which a positively charged residue side

chain is pointing toward the hydrophobic core of EC1 (Figure 1C). Thus, these mutants are unlikely

to fold properly. Mutation L25P (L4) will interfere with hydrogen bonding and secondary structure

formation, while V72G (V50) is subtler, as it replaces a rather large hydrophobic residue with a differ-

ent and smaller side chain that may only affect the packing of the EC1 hydrophobic core. The muta-

tion A153T (A130) in EC2, in which a small hydrophobic residue is replaced by a larger hydrophilic

threonine, may result in structural instability as well. A similar analysis can be done for all 18 muta-

tions in this group (Figure 1—figure supplement 3). Protein misfolding and structural instability

caused by these mutations are likely to inhibit PCDH19 adhesive function, either directly,

Cooper et al. eLife 2016;5:e18529. DOI: 10.7554/eLife.18529 3 of 22

Research article Biophysics and Structural Biology Neuroscience

http://dx.doi.org/10.7554/eLife.18529


allosterically, or by altering the strength of cell-cell adhesion due to a reduced number of functional

molecules on the cell surface.

The effect of ten PCDH19-FE mutations on residues with side chains at the protein surface (sec-

ond group) is less clear. Two of them (S276P and L433P) may affect packing and folding, as these

mutations to proline are predicted to prevent formation of hydrogen bonds important for b strand

Table 1. Statistics for Protocadherin-19 structures.

Data collection DrPCDH19 EC1-4 DrPCDH19 EC3-4

Space group P21 C2

Unit cell parameters

a, b, c (Å) 66.390, 59.776, 165.925 149.355, 86.631,132.583

a, b, g (˚) 90, 94.39, 90 90, 122.13, 90

Molecules per asymmetric unit 2 4

Beam source MicroMax-003 APS 24-ID-C

Date of data collection 12-DEC-14 31-OCT-14

Wavelength (Å) 1.54187 0.97920

Resolution (Å) 50.00–3.59 (3.66–3.59) 50.00–2.51 (2.55–2.51)

Unique reflections 15416 47847

Completeness (%) 94.8 (86.0) 98.0 (88.1)

Redundancy 2.7 (2.4) 4.4 (3.2)

I / s(I) 4.90 (2.10) 16.59 (2.21)

Rmerge 0.182 (0.386) 0.072 (0.591)

Rmeas 0.224 (0.480) 0.081 (0.690)

Rpim 0.129 (0.281) 0.037 (0.348)

CC1/2 0.833 (0.774) 0.964 (0.792)

CC* 0.966 (0.934) 0.991 (0.940)

Refinement

Resolution range (Å) 50.00–3.59 (3.68–3.59) 50.00–2.51 (2.58–2.51)

Rwork (%) 24.6 (41.3) 18.8 (38.3)

Rfree (%) 30.5 (45.2) 23.9 (41.6)

Protein Residues 839 827

Ligands/ions 20 16

Water molecules 15 49

Rms deviations

Bond lengths (Å) 0.0094 0.0112

Bond angles (˚) 1.4661 1.3915

B-factor average

Protein 90.75 77.93

Ligand/ion 57.01 55.32

Water 45.40 60.92

Ramachandran plot region (PROCHECK)

Most favored (%) 78.6 85.6

Additionally allowed (%) 20.4 13.5

Generously allowed (%) 1.1 1.0

Disallowed (%) 0.0 0.0

PDB ID code 5IU9 5CO1

DOI: 10.7554/eLife.18529.003
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Figure 1. Pcdh19 EC1-4 structure reveals the location of PCDH19-FE missense mutations. (A) Topology diagram of Pcdh19 EC1-4. A typical cadherin

fold is observed for each EC repeat with seven b strands labeled A to G. Calcium and sodium ions are shown as green and yellow circles, respectively.

(B) Molecular surface representation and ribbon diagram of Pcdh19 EC1-4 shown in two orientations. Forty-three sites mutated in PCDH19-FE are

highlighted in dark red on the protein surface (when applicable), shown in stick representation on the ribbon diagram, and listed. Mutations are

indicated in parenthesis using the human gene numbering, with three non-conserved sites listed in italic gray. Residues whose side chains point to the

protein core are underlined. Sites at inter-repeat, calcium-binding linker regions are listed on the right panel. The N317 site, involved in > 20 PCDH19-

FE cases (N340S), is in red. Cysteine amino-acids are in lime; none are exposed. Paired mutations in single PCDH19-FE patients are indicated with a

star (*). See also Figure 1—source data 1. (C) Detail of EC1 highlighting mutation sites (yellow sticks) in which residue side chains are pointing to the

protein core. Neighboring hydrophobic core residues are shown in cyan. (D) Detail of EC3 highlighting a mutation site in which the residue side chain is

exposed and pointing away from the protein surface. (E-G) Detail of calcium-binding inter-repeat linkers EC1-2 (E), EC2-3 (F), and EC3-4. (G) Calcium

ions are shown in green and calcium-coordinating side chains in stick representation. Mutation sites are labeled and shown in yellow. (H) Melting

temperature for the Pcdh19 EC3-4 wild type (WT) fragment, the N317S (equivalent to human N340S) and E290K (E313K) mutants determined using

differential scanning fluorimetry. A clear decrease in thermostability is observed for the N317S mutant fragment in 2 mM CaCl2, but not for the E290K

mutant. The curves represent the average for each construct with vertical bars representing standard error of the mean. See also Figure 1—figure

supplement 1–3.

DOI: 10.7554/eLife.18529.004

The following source data and figure supplements are available for figure 1:

Source data 1. PCDH19-FE mutations.

DOI: 10.7554/eLife.18529.005

Figure supplement 1. Electron density maps for the EC3-4 linker.

DOI: 10.7554/eLife.18529.006

Figure supplement 2. Sequence alignment of zebrafish, mouse, and human Pcdh19 EC repeats.

DOI: 10.7554/eLife.18529.007

Figure supplement 3. Predicted structural consequences of PCDH19-FE mutations.

DOI: 10.7554/eLife.18529.008
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formation and loop structure. Six of them are involved in putative homophilic interfaces, and their

effect on binding is discussed below. The V191L mutation site is not directly involved in homophilic

binding, but it is near residues that are, and may allosterically alter binding. Alternatively, this muta-

tion may alter interactions with N-cadherin (Emond et al., 2011) or other PCDH19 molecular part-

ners yet to be determined. The last mutation, D417H, is not involved in any known interface, but this

epilepsy patient has a pair of mutations in PCDH19 (D417H and D596Y). It is unclear whether both

mutations contribute to the epileptic syndrome (Figure 1—source data 1) (Higurashi et al., 2015;

Hoshina et al., 2015).

The third group of mutations involves residues that are at one of the canonical calcium-binding

motifs between EC repeats (XEXBASE and DRE from the first EC repeat, DXNDN from the linker, and

DXD and XDXTOP from the second repeat). Two of these PCDH19-FE mutations involve charge

reversal for a calcium-coordinating residue (E31K at XEX and E307K at DYE), and may result in

impaired folding and impaired calcium binding. Twelve PCDH19-FE mutations in this group replace

a charged, calcium-coordinating residue by a neutral residue (D90V at DRE, D121N at DXNDN,

D157N at DXD, E199Q at DRE, D230N at DXNDN, E249G at XEX, D264H at DXD, D341G at

DXNDN, D375Y at DXD, D377N and D377H at DXD, and E414Q at DRE). Some of these mutations

only affect charge, but not the size of the side chain (D to N and E to Q), and may decrease

the affinity for calcium. Others involve more drastic side-chain size changes (D to Y or G) and will not

only impair calcium binding, but might also induce protein instability. In addition, three mutations

alter the size, but not the charge of a coordinating residue (E249D at XEX, D341E at DXNDN, and

D377E DXD), indicating that even subtle perturbations at the calcium-binding linkers might result in

impaired function. Three more PCDH19-FE mutations involve substituting a coordinating asparagine

residue by a serine (N232S and N340S at DXNDN, and N234S at DXNDN), with one of these muta-

tions present in over twenty unrelated individuals (N340S). Similarly, the mutation NP342-343KT at

DXNDN involves a coordinating asparagine residue, but it is mutated to lysine and accompanied by

a proline to threonine mutation. In addition, one mutation involves the non-calcium binding residue

of the DRE motif (R198L), which may disrupt calcium binding. The last PCDH19-FE mutation in this

group involves duplication of three residues (SEA139-141dup at XEX), one of which is directly coor-

dinating calcium. This duplication might change the architecture of the loop and alter calcium bind-

ing as well. Overall, mutations at PCDH19 calcium-binding motifs are varied, with some predicted to

have drastic effects on protein folding and calcium binding, and others predicted to have a minor

effect yet still causing protein malfunction.

There are 19 PCDH19-FE missense mutations not found within EC1-4 (Figure 1—figure supple-

ment 2), 14 of which are at conserved calcium-binding motifs (N557K, D594H, D596G,H,V,Y) or at

other structurally conserved sites for cadherin repeats (P451L, G486R, G513R, L543P, P561R,

G601D, V642M, L652P). Two mutations involve insertion or deletion of residues (N449_H450insN

and S489del), and will likely disrupt b strand folding. However, the effect of the remaining three is

unclear (R550P in b strand G of EC5, P567L in b strand A of EC6, and D618N likely at the end of b

strand D); perhaps they are involved in cis interactions with PCDH19 or other cadherins.

To gain insights into the molecular mechanism of the most common PCDH19-FE mutation,

N340S (N317S, Figure 1—source data 1), we introduced this mutation into the Pcdh19 EC3-4 con-

struct and compared its thermal stability with the wild-type (WT) Pcdh19 fragment (Figure 1H). The

Pcdh19 EC3-4 N317S fragment refolded well as assessed by size exclusion chromatography (SEC),

but its melting temperature is considerably lower (40.7 ± 0.6˚C vs. 52.4 ± 0.3˚C), even in the pres-

ence of 2 mM CaCl2. Another PCDH19-FE mutation of a surface residue (E313K, equivalent to

E290K) did not show a dramatic shift in melting temperature (50.4 ± 0.1˚C). These SEC and thermal

stability results indicate that the EC3-4 fragment carrying the N317S mutation is folded, and may

bind calcium, yet it is not as stable as the wild-type fragment.

Antiparallel interfaces in crystal contacts of the Pcdh19 EC1-4 structure
Crystal structures have previously revealed the adhesive interfaces for classical cadherins, clustered

protocadherins, and the protocadherin-15 and cadherin-23 complex (Nagar et al., 1996;

Boggon et al., 2002; Patel et al., 2006; Ciatto et al., 2010; Sotomayor et al., 2012;

Nicoludis et al., 2015; Goodman et al., 2016). Although the Pcdh19 EC3-4 structure does not

reveal any relevant interface, the Pcdh19 EC1-4 structure does. The purified Pcdh19 EC1-4 fragment

elutes in two well-defined peaks in size exclusion chromatography experiments (SEC), with these
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peaks most likely representing monomeric and dimeric states in solution (Figure 2—figure supple-

ment 1). Pcdh19 EC1-4 crystals were grown from the putative dimer SEC peak elution, and two

plausible adhesive interfaces are observed in our Pcdh19 EC1-4 structure. The first one, which we

will refer to as Pcdh19-I1, arises from contacts between the two Pcdh19 EC1-4 molecules in the

asymmetric unit, and involves a fully-overlapped antiparallel dimer in which EC1 from one molecule

interacts with EC4 from the other (EC1:EC4), EC2 with EC3 (EC2:EC3), EC3 with EC2 (EC3:EC2), and

EC4 with EC1 (EC4:EC1; Figure 2A,B). Within the same protein crystal structure, the second antipar-

allel interface (Pcdh19-I2) involves the opposite side of Pcdh19 with observed EC2:EC4, EC3:EC3,

and EC4:EC2 interactions, as well as potential (not observed) EC1:EC5 and EC5:EC1 contacts (Fig-

ure 2—figure supplement 2A). Several lines of evidence favor the first interface Pcdh19-I1 as the

most likely to mediate biological function.

Analysis of the Pcdh19-I1 antiparallel interface with the Protein Interfaces, Surfaces and Assem-

blies (PISA) server (Krissinel and Henrick, 2007) and with the NOXclass classifier (Zhu et al., 2006)

revealed a large interface (~1650 Å2), that is unlikely to be a crystal packing artifact (89.21% biologi-

cal, 81% obligate). In contrast, the possible antiparallel Pcdh19-I2 interface is predicted by NOXclass

to be non physiological, as its smaller interface area (~930 Å2) and the nature of its contacts matches

those of crystal packing interactions (42.97% biological, 20.21% obligate). Yet, both interface areas

are larger than 856 Å2, an empirical cut-off that can distinguish biological interfaces from crystal con-

tacts with 85% accuracy (Ponstingl et al., 2000), and our analysis of the Pcdh19-I2 interface lacks

contributions from possible EC1-EC5 contacts, which might be significant. Moreover, shape correla-

tion (Lawrence and Colman, 1993) for Pcdh19-I1 is lower than for the Pcdh19-I2 interface (Sc-

I1 = 0.44 vs. Sc-I2 = 0.61), as there is a large gap between the main EC2-EC3:EC3-EC2 contacts and

the EC1-EC4:EC4-EC1 interactions zones (Figure 2A).

To further differentiate between the possible Pcdh19-I1 and Pcdh19-I2 interfaces, we evaluated

whether any of the six PCDH19-FE mutations altering surface residues at crystal contacts, but not

necessarily protein structure, could interfere with binding. Five of these mutations (S139L, T146R,

P149S, E313K, and T404I; all at conserved sites) change residues involved in the Pcdh19-I1 interface

(S116, T123, P126, E290, T381 respectively in Figure 2B–E), where we define residues at a given

interface as those with a buried surface area that is at least 20% of their accessible surface area

according to PISA. In all cases we predict altered EC1-4 homophilic binding, as the size and nature

of the residue is changed by each mutation (hydrophobic vs. hydrophilic; charged vs. non-charged).

The remaining mutation (H203P) involves a non-conserved residue at the Pcdh19-I2 interface, which

could impair its formation (R180 in Figure 2—figure supplement 2A). However, the patient with the

H203P mutation also carries another PCDH19-FE mutation (F206C) at a location mutated in other

epilepsy patients (Marini et al., 2012; Depienne et al., 2011); thus it is unclear if H203P is contribut-

ing to epilepsy. In contrast, all five PCDH19-FE mutations at the Pcdh19-I1 interface are likely causal,

which suggests that Pcdh19-I1 is relevant in vivo.

We also analyzed predicted glycosylation sites that might interfere with binding and thereby

reveal non-physiological interfaces, as observed for VE-cadherin (Brasch et al., 2011). There are 14

glycosylation sites within EC1-4, and none of them involve residues at the Pcdh19-I1 interface (Fig-

ure 2—figure supplement 3A). An O-linked glycosylation site is predicted to be at the Pcdh19-I2

interface (T232), and an additional O-linked glycosylation site is predicted for the human PCDH19

protein at S204 (the equivalent N202 in Pcdh19 is predicted to be non-glycosylated), also at the

Pcdh19-I2 interface (Figure 2—figure supplement 3B). Glycation sites, for which sugar molecules

might be added randomly and to long-lived proteins, are predicted at both interfaces (K156 and

K308 in Pcdh19-I1 and K204 in Pcdh19-I2), but may not interfere directly with either, since glycation

depends on environmental conditions and it has never been reported for cadherins

(Salahuddin et al., 2014; Simm et al., 2015). Thus the lack of glycosylation sites at the Pcdh19-I1

interface renders it as the most likely to be functional.

While not conclusive, all the analyses presented above favor the Pcdh19-I1 antiparallel dimer over

the Pcdh19-I2 interface in terms of physiological relevance. The larger surface area of the Pcdh19-I1

dimer, the nature of the residues involved, the number of PCDH19-FE mutations at this interface,

and the lack of predicted glycosylation sites, all suggest that the Pcdh19-I1 interface may occur and

be functional in vivo.
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Figure 2. A crystallographic Pcdh19 antiparallel interface involves fully overlapped EC1-4 repeats. (A) Molecular surface representation of two Pcdh19

EC1-4 molecules interacting in the crystallographic asymmetric unit. In this dimeric arrangement, an interaction interface is formed by fully overlapped

and antiparallel EC1-4 protomers (Pcdh19-I1). Red, dashed boxes indicate three interaction sites highlighted in panels (C–E). (B) Side views of the

Pcdh19 dimer and the interaction surface exposed with interfacing residues listed and shown in cyan. Sites mutated in PCDH19-FE located at the

interface are shown in dark red. Sites with residue side chains pointing to the protein core are labeled in gray text. Three inter-molecular salt bridges

are indicated (*: R40-E328; **: E81-R349; :̂ R158-E290). (C–E) Detail of antiparallel interface (red dashed boxes in A). Interfacing residues are in cyan and

yellow (PCDH-FE). Left panel is in the same orientation as A, middle and right panels are rotated around the dimer’s longest axis. Labels for one of the

protomers are in italics. See also Figure 2—figure supplement 1–3.

DOI: 10.7554/eLife.18529.009

The following figure supplements are available for figure 2:

Figure supplement 1. Two states for Pcdh19 EC1-4 in solution.

DOI: 10.7554/eLife.18529.010

Figure supplement 2. Alternate crystallographic antiparallel interface involves EC1 to EC5 repeats.

DOI: 10.7554/eLife.18529.011

Figure supplement 3. Pcdh19 dimer interfaces and predicted glycosylation and glycation sites.

DOI: 10.7554/eLife.18529.012
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Binding assays probing Pcdh19 interfaces
To conclusively test which binding interface mediates Pcdh19 adhesion, and whether PCDH19-FE

mutations at the protein surface can interfere with one of the two possible Pcdh19 interfaces

described above, we used modified bead aggregations assays, mutagenesis, and size exclusion

chromatography experiments. Previous cell-based assays showed weak homophilic adhesion for the

chicken Pcdh19 (Tai et al., 2010). In addition, previous assays in which the full-length Pcdh19 extra-

cellular cadherin domain fused to Fc (Pcdh19ECFc) was incubated with protein A beads showed cal-

cium-dependent aggregation only when it was co-purified with N-cadherin (Biswas et al., 2010;

Emond et al., 2011). To study Pcdh19 homophilic interactions, we modified the previous protocol

(Emond and Jontes, 2014) and added a final step in which beads were rocked (Sano et al., 1993)

in a controlled fashion for up to two minutes (see Materials and methods). The modified protocol

allowed us to identify clear bead aggregates mediated by Pcdh19ECFc alone (Figure 3—figure sup-

plement 1).

To identify the minimal adhesive unit of Pcdh19 we used our modified protocol with truncated

versions of Pcdh19 containing different numbers of EC repeats: Pcdh19ECFc (EC1-6), Pcdh19EC1-

5Fc, Pcdh19EC1-4Fc, Pcdh19EC1-3Fc, Pcdh19EC1-2Fc, and Pcdh19EC2-6Fc (Figure 3). Bead aggre-

gation was observed only when using Pcdh19ECFc, Pcdh19EC1-5Fc, and Pcdh19EC1-4Fc, thus sug-

gesting that Pcdh19EC1-4 is the minimal adhesive unit and highlighting the biological relevance of

the antiparallel Pcdh19-I1 interface, which involves EC1-4 only.

Next, we introduced two PCDH19-FE mutations (T146R and E313K located at the Pcdh19-I1

interface; T123R and E290K in Figure 2B) in the full-length Pcdh19 extracellular domain and tested

bead aggregation with these protein constructs (Figure 4). Bead aggregates were not detected
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Figure 3. Minimal adhesive Pcdh19 fragment includes repeats EC1-4. (A–F) Protein G beads coated with full-length (A) and truncated versions (B–F) of

the Pcdh19 extracellular domain imaged after incubation for 1 hr followed by rocking for 2 min in the presence of calcium. Bar – 100 mm. (G) Western

blot shows efficient production and secretion of full-length and truncated Pcdh19 extracellular domains. (H) Aggregate size for full-length and truncated

versions of the Pcdh19 extracellular domain after 1 hr of incubation followed by rocking for 1 min (R1) and for 2 min (R2). Error bars are standard error of

the mean (n = 3 for all aggregation assays and constructs). Inset: zoom-in showing pixel size from 15 to 85 (y axis). Bead aggregation was observed for

constructs including EC1-6Fc, EC1-5Fc, and EC1-4Fc. Data for EC1-6 is also plotted in Figure 2—figure supplement 2D (WT), Figure 3—figure

supplement 1C (Pcdh19ECFc (Ca2+)), and Figure 4H (WT (Ca2+)) for comparison to additional constructs. See also Figure 3—source data 1.

DOI: 10.7554/eLife.18529.013

The following source data and figure supplement are available for figure 3:

Source data 1. Quantification of aggregation assays.

DOI: 10.7554/eLife.18529.014

Figure supplement 1. Modified bead aggregation assays can detect calcium-dependent homophilic Pcdh19 interactions.

DOI: 10.7554/eLife.18529.015
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when the Pcdh19ECFc carried these mutations under the conditions tested (Figure 4B–C,E–H). In

contrast, the mutation R364E, predicted to impair the Pcdh19-I2 interface, did not eliminate bead

aggregation (Figure 2—figure supplement 2B–D). Moreover, the presence of a N-cadherin (Ncad)

fragment known to enhance Pcdh19-mediated adhesion (Emond et al., 2011) did not qualitatively

change the effect of the T146R and E313K mutations. Bead aggregates were greatly diminished for

T146R and abolished for E313K in the presence of NcadEC W2A/R14E His, a non-adhesive Ncad

mutant previously used to study Pcdh19-mediated homophilic adhesion (Harrison et al., 2010;

Emond et al., 2011) (Figure 4—figure supplement 1B–C,E–F). In addition, these mutations did not

abolish the interaction between Pcdh19ECFc and NcadEC W2A/R14E His (Figure 4—figure
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Figure 4. PCDH19-FE mutations at Pcdh19 I1 antiparallel interface impair Pcdh19-mediated bead aggregation. (A–F) Protein G beads coated with full-

length extracellular wild-type (WT) Pcdh19ECFc (A) and two PCDH19-FE mutants (B,C) imaged after incubation for 1 hr followed by rocking for 2 min in

the presence of calcium. Representative images for parallel experiments in the absence of calcium are shown in panels D to F (EDTA). All full-length

extracellular domains were produced in HEK293 cells. Bar – 100 mm. (G) Western blot shows efficient production and secretion of both WT and mutant

proteins used for bead aggregation assays. Parallel black lines indicate a two-lane gap between samples. (H) Aggregate size for WT and PCDH-FE

mutants in the presence (Ca2+) and absence (EDTA) of calcium after 1 hr of incubation followed by rocking for 1 min (R1) and for 2 min (R2). Error bars

are standard error of the mean (n = 3 for all aggregation assays and constructs, Figure 3—source data 1). Aggregation is only observed for Pcdh19

WT in the presence of calcium and after rocking (see also Figure 3H). (I) Analytical size exclusion chromatogram traces for WT (green) and mutant

(orange and red) Pcdh19 EC1-4 fragments produced in E. coli. A shift in peak elution volumes indicates impaired homophilic interaction for mutants. (J)

Schematics of proposed homophilic ’forearm handshake’ for the Pcdh19 adhesion complex validated through binding assays with protein carrying

PCDH19-FE mutations. See also Figure 4—figure supplement 1–2.

DOI: 10.7554/eLife.18529.016

The following figure supplements are available for figure 4:

Figure supplement 1. PCDH19-FE mutations at Pcdh19-I1 impair bead aggregation even in the presence of N-cadherin.

DOI: 10.7554/eLife.18529.017

Figure supplement 2. PCDH19-FE mutations at Pcdh19-I1 do not abolish the interaction between the extracellular domains of Pcdh19 and N-cadherin.

DOI: 10.7554/eLife.18529.018
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supplement 2). It is possible that the T146R and 313K mutations affect interactions with N-cadherin

in a subtle way (directly or allosterically), yet our experimental results suggest that these mutations

directly impair Pcdh19 homophilic adhesion.

We also introduced the T146R and E313K mutations at the Pcdh19-I1 interface into the bacterially

expressed Pcdh19 EC1-4 protein fragment, and used analytical size exclusion chromatography to

determine whether the mutant fragments were eluting as putative dimers or monomers in solution.

Both mutations resulted in a shift of the elution peak that indicated a smaller, monomeric state

(Figure 4I). Taken together, our crystallographic structural analyses and binding assays including

PCDH19-FE mutations strongly support a model in which fully overlapped EC1-4 domains (Pcdh19-

I1 interface) form the functional adhesive unit of Pcdh19 (Figure 4J).

Model for PCDH19 adhesive interaction and implications for other
protocadherins
The antiparallel Pcdh19-I1 dimer interface validated above reveals a homophilic ’forearm handshake’

binding mechanism for PCDH19, involving overlap of 4 ECs from each protomer wrapping around

each other. This is different from the mechanism used by classical cadherins, only involving EC1

(Brasch et al., 2012) or the heterophilic ’extended handshake’ used by protocadherin-15 and cad-

herin-23, involving overlap of only EC1-2 of each protein (Sotomayor et al., 2012). The forearm

handshake is similar to the binding mechanism recently reported for clustered protocadherins

(Goodman et al., 2016; Rubinstein et al., 2015; Nicoludis et al., 2015) and might be used by other

non-clustered protocadherins.

The Pcdh19-I1 interface involves extended and mostly symmetric, in-register contacts between

repeats EC2:EC3 that account for ~58% of the interfacial area, as well as smaller, separate EC1:EC4

contacts (~350 Å2
� 2) that are slightly off-register. The EC1:EC4 contacts arise as both repeats

bend to meet after the C-terminal end of EC3 and the N-terminal end of EC2 separate from each

other. In this arrangement, the EC2-3 linkers from each protomer are right next to each other, while

the EC3-EC4 linker in one protomer is separated from the EC1-2 linker of the binding partner by a

large opening. The interface is generally amphiphilic, with ~49% of the interfacial area involving

hydrophobic residues, ~28% hydrophilic, and ~23% charged residues (Figure 5—figure supplement

1). Interestingly, the contact formed by EC1:EC4 is more hydrophobic (58%; 22%; 20%) than the one

formed by EC2:EC3 (41%; 33%; 26%), yet salt-bridge pairs across protomers are present in both:

R40-E328 and E81-R39 enhance the EC1 to EC4 contacts (Figure 2C) and R158-E290 links EC2 to

EC3 (Figure 2D). While the R40-E328 pair seems to be zebrafish specific, the other two salt-bridges

are highly conserved across sequenced species, along with most of the residues involved in the

Pcdh19 EC1-4 interface (Figure 5A and Figure 5—figure supplement 2). The same set of residues

is highly variable across different members of the d1, d2, and the clustered protocadherins

(Figure 5B and Figure 5—figure supplement 3), suggesting that binding mechanisms might differ

across subfamilies or that residue variability might confer specificity within a common binding

mechanism.

A comparison of our Pcdh19-I1 interface to recently reported models and structures of clustered

protocadherin interfaces (Nicoludis et al., 2015; Goodman et al., 2016) reveals multiple similarities

among them. The most complete models of a and b-protocadherins show similar, fully overlapped

antiparallel EC1-4 dimers (Figure 5—figure supplement 4A–D), with the same extended EC2:EC3

antiparallel connection accompanied with smaller EC1:EC4 contacts and salt-bridges across proto-

mers. Structural alignments show that the relative arrangements of protomers within the antiparallel

dimers for Pcdh19, Mm Pcdha4 (5DZW), and Mm Pcdha7 (5DZV) are the most similar to each other

with slight shifting in some EC repeats (Figure 5—figure supplement 4A,B). The Mm Pcdhb6

(5DZX) and Mm Pcdhb8 (5DZY) structures show similar dimeric interfaces, but the relative arrange-

ment of protomers within the dimer is slightly shifted for all EC repeats (Figure 5—figure supple-

ment 4C,D). Similarly, the Mm PcdhgA1 EC1-3 interface (4ZI9) matches and aligns well with the

Pcdh19 EC1-4 dimer (Figure 5—figure supplement 4E). Mapping of all interaction sites to the

Pcdh19 EC1-4 topology diagram (Figure 5C) reveals a pattern for common interacting domains in

odd and even EC repeats across these structures, which include the F-G b hairpin and b strand A for

repeats EC1 and EC3, as well as the A-B and D-E b hairpins for EC2 and EC4. While there are differ-

ences in some of the interacting domains, dimeric arrangements, and contact details, including

Cooper et al. eLife 2016;5:e18529. DOI: 10.7554/eLife.18529 11 of 22

Research article Biophysics and Structural Biology Neuroscience

http://dx.doi.org/10.7554/eLife.18529


EC4

EC3

EC2

EC1

EC1

EC2

EC3

EC4

S86

R40*

M83

I42

S43

E88

I89

V1

V91

**E81

D160

^R158

I164

K156

E166

R124

T123

A119

E128

L127

P126

F125

S116

D207

P300

N301
S208

N209

I303

P304

H306

P218

K308

D292

^E290

I288

S302

I255

N256

F257

S378

F379

F376

T381

V344

Y343

R349**

L326

L347

A346

I345

Y343
I345
V344
T381
L347
F376
F379
R349**

A346
*E328
S327
L326

I288
E290^
K308
V219
P218
H306
P304
I303
N209
S208
N118
T123
R124
E166
K156
I164

D292
N256
I255

S302
N301
P300
D207
S116
A119
F125
P126
E128
L127

^R158
D160

**E81
S43
I42

M83
S86

V91
F2
I89
M87

EC1

EC4 EC1

EC4

90º 90º

S86

R40*

M83

I42

S43

E88

I89

V1

V91

**E81

D160

^R158

I164

K156

E166

R124

T123

A119

E128

L127

P126

F125

S116

D207

P300

N301
S208

N209

I303

P304

H306

P218

K308

D292

^E290

I288

S302

I255

N256

F257

S378

F379

F376

T381

V344

Y343

R349**

L326

L347

A346

I345

Y343
I345
V344
T381
L347
F376
F379
R349**

A346
*E328
S327
L326

I288
E290^
K308
V219
P218
H306
P304
I303
N209
S208
N118
T123
R124
E166
K156
I164

D292
N256
I255

S302
N301
P300
D207
S116
A119
F125
P126
E128
L127

^R158
D160

**E81
S43
I42

M83
S86

V91
F2
I89
M87

EC1

EC4 EC1

EC4

90º 90º

EC4

EC3

EC2

EC1

EC1

EC2

EC3

EC4

Variable Average Conserved

1 2

3

B

A
C

D E

G F

AB

B A

C

D E G F

N
EC1

EC2

S

1 2

3

AB

BD E

G F

EC3

A

C

S

310

310

1 2

3

A

B

D E
G F

EC4

A

C

310

11

Pcdh19

γC3

α

γA1

β

T146R

E313K

T404I

A C

B S139L

Figure 5. A common binding mechanism with sequence-diverse interfaces for d and clustered protocadherins. (A) Molecular surface representation of

the closed (left) and exposed (right) Pcdh19-I1 antiparallel dimer. Interfacing residues are colored according to sequence conservation among 102

species (Figure 5—figure supplement 2 and Figure 5—source data 1). Most of them are highly conserved. Labels as in Figure 2B. (B) Antiparallel

Pcdh19 EC1-4 dimer shown as in (A), with interfacing residues colored by sequence conservation among selected members of the non-clustered d1-

and d2-protocadherins, as well as selected a, b, and g clustered protocadherins (Figure 5—figure supplement 3 and Figure 5—source data 2). (C)

Location of interfacing residues for Pcdh19, Mm pcdhgC3, Mm pcdha4 and a7, Mm pcdhgA1, and Mm pcdhb6 and b8, mapped onto the Pcdh19

topology diagram. Shared structural motifs involved in binding include: The F-G loop along with the beginning of b strands A, G and C in EC1; the A-B

loop, most of b strand B, the D-E loop, and the beginning of b strand E in EC2; the EC2-3 linker; the C-D loop, parts of b strands F and G and the F-G

Figure 5 continued on next page
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diversity of interfacial residues, clustered protocadherins seem to use the same binding mechanism

that Pcdh19 uses to mediate adhesion.

A conserved RGD sequence motif within Pcdh19 EC2 (residues 158 to 160) at its D-E loop is simi-

lar to an integrin-binding RGD site within EC1 (C-D loop) in the a-protocadherins (Ruoslahti, 1996;

Mutoh et al., 2004). The EC1 RGD motif is exposed in the Mm Pcdha4 and Mm Pcdha7 homo-

dimers while the EC2 RGD motif of Pcdh19 (also present in Pcdh17 [Kim et al., 2011]) is buried at

the EC2:EC3 contacts in the Pcdh19-I1 interface. This suggests that homophilic binding could regu-

late the availability of this potential, untested, integrin-binding site.

Pcdh19 belongs to the d2-protocadherin subfamily, and given the sequence similarity among sub-

family members, it is likely that all use the same dimer interface to mediate adhesion. This is less

obvious for the d1 subfamily, with members that have seven EC repeats and that display some criti-

cal differences at interaction sites, such as the presence of a positively charged residue (R or K) at

position 290, where most d2 members have a negatively charged glutamate that interacts with an

arginine at position 158 (Figure 2D, Figure 5—figure supplements 3 and 5). The PCDH19-FE

E313K mutation at this site (E290) prevents binding (Figure 4C,H–I and Figure 4—figure supple-

ment 1), suggesting that d1-protocadherins, which effectively carry the same mutation, should use a

different interface to mediate adhesion. Yet, residues at position 157 and 158 in d1-protocadherins

are also charge swapped, with aspartates and glutamates that would restore this critical salt-bridge

interaction at the EC2:EC3 interface, and at the same time prevent heterophilic interactions with d2-

protocadherins (Figure 5—figure supplements 3 and 5). Thus, it is likely that all non-clustered d-

protocadherins use fully overlapped EC1-4 antiparallel interfaces, like the one observed for Pcdh19,

to mediate adhesion.

Discussion and conclusions
The non-clustered d-protocadherins are increasingly linked to human neurodevelopmental disorders,

emphasizing both their importance to brain development and their relevance to human health

(Redies et al., 2005; Redies et al., 2012; Hirabayashi and Yagi, 2014). In particular, mutations in

PCDH19 cause a female-limited form of infant-onset epilepsy (Dibbens et al., 2008; Scheffer et al.,

2008; Depienne and LeGuern, 2012; van Harssel et al., 2013; Leonardi et al., 2014;

Thiffault et al., 2016; Terracciano et al., 2016). Therefore, it is imperative to understand the devel-

opmental roles of PCDH19 and other non-clustered d-protocadherins, the structural basis of homo-

philic adhesion by these molecules, and the functional impact of pathogenic missense mutations.

The structural and biochemical data presented here provide a first view on the molecular mechanism

of Pcdh19 adhesion, which is likely used by all non-clustered d and clustered protocadherins.

Figure 5 continued

loop in EC3; the loop within b strand A, b strand B, and the D-E loop in EC4. Red/orange circles indicate sites mutated in PCDH19-FE. Common

contact zones in EC1 and EC3, as well as EC2 and EC4, are highlighted with a brown background. See also Figure 5—figure supplement 1–5.

DOI: 10.7554/eLife.18529.019

The following source data and figure supplements are available for figure 5:

Source data 1. Protocadherin-19 sequences.

DOI: 10.7554/eLife.18529.020

Source data 2. Sequences for selected clustered and d-protocadherins.

DOI: 10.7554/eLife.18529.021

Figure supplement 1. Pcdh19-I1 antiparallel EC1-4 dimer interface involves charged, hydrophilic, and hydrophobic residues.

DOI: 10.7554/eLife.18529.022

Figure supplement 2. Sequence alignment of Pcdh19 EC1-4.

DOI: 10.7554/eLife.18529.023

Figure supplement 3. Sequence alignment of selected protocadherins.

DOI: 10.7554/eLife.18529.024

Figure supplement 4. Structural comparison of Pcdh19-I1 EC1-4 dimer to clustered-protocadherin dimers.

DOI: 10.7554/eLife.18529.025

Figure supplement 5. Structural comparison of protocadherin d1 and d2 EC3 repeats.

DOI: 10.7554/eLife.18529.026
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Moreover, our Pcdh19 EC1-4 structural model shows > 70% of the missense mutations identified in

PCDH19-FE patients, and reveals the biochemical basis for the deleterious effects for many of these

mutations.

The Pcdh19 EC1-4 structure reveals an antiparallel dimer that is consistent with a trans adhesive

interface, a conclusion supported by multiple lines of evidence. Notably, several missense mutations

identified in PCDH19-FE patients localize to this interface. Two of these missense mutations (T146R

and E313K) impair dimerization, as assessed by analytical gel filtration, and adhesion as assessed in

bead aggregation assays, with and without N-cadherin. Sequence analysis suggests that the antipar-

allel adhesive mechanism presented here is broadly relevant to other, related d-protocadherins.

Recent work with clustered protocadherins, implicated in self-avoidance and self/non-self recogni-

tion (Lefebvre et al., 2012; Kostadinov and Sanes, 2015; Yagi, 2012), have revealed a similar anti-

parallel adhesive interface for these clustered protocadherins (Rubinstein et al., 2015;

Nicoludis et al., 2015; Goodman et al., 2016). Thus, the Pcdh19-I1 adhesive interface observed in

our Pcdh19 EC1-4 structure likely represents the mechanism used by both non-clustered d-protocad-

herins and clustered protocadherins, which, together, represent the largest group within the cad-

herin superfamily.

Our structural data for Pcdh19, as well as recent work with the clustered protocadherins raises an

interesting conundrum. The adhesive interface for protocadherins is extensive and involves interac-

tions extending throughout EC1-4. This contrasts sharply with the adhesive interface of classical cad-

herins, which is restricted to EC1 and involves the reciprocal swap of Ab-strands that is stabilized by

burying Trp2 in a hydrophobic pocket (Brasch et al., 2012). However, the KD for dimerization of a-

and b-protocadherins is in the micromolar range (similar to classical cadherins), bead aggregation

and cell-based assays have consistently shown weak adhesion by both non-clustered and clustered

protocadherins, and protocadherins are widely recognized as being only weakly adhesive

(Schreiner and Weiner, 2010; Thu et al., 2014; Sano et al., 1993; Rubinstein et al., 2015). This dis-

parity suggests that other mechanisms could modulate protocadherin adhesion in vivo. For instance,

cis-oligomerization could compete with trans adhesive interactions, or interactions with other pro-

teins, including N-cadherin, could sequester protocadherins or mask their adhesive interface. Further

studies will be required to better understand protocadherin adhesion, how it may be altered in the

presence of N-cadherin, and how it is regulated in vivo.

In addition to mutations that disrupt adhesion, our data reveal the potential effects of two other

classes of mutations. In the first class, many mutations are predicted to directly impair folding and

stability, which could lead to reduced levels of protein on the surface, due to impaired trafficking or

enhanced protein degradation. In the second, PCDH19-FE mutations affecting calcium-binding sites

are likely to cause shifts in calcium affinity as well as protein instability. Similar mutations in cadherin-

23 and protocadherin-15 have been shown to decrease protein affinity for calcium, with KD shifts

that are relevant in the context of the low calcium concentration to which these proteins are exposed

(Sotomayor et al., 2010). Yet PCDH19 is expected to be in interstitial space with high calcium con-

centration, so it is more likely that the relevant effect of PCDH19-FE mutations at calcium-binding

sites is compromised stability (even at saturating calcium concentrations), as shown here for the

N340S mutation. Finally, analysis of one PCDH19-FE mutation within EC1-4, and three within EC5-6,

reveal no obvious predicted consequences at the structural level, as they are exposed residues that

should not affect calcium-binding, protein stability or adhesion. These mutations may impact a vari-

ety of protein-protein interactions. Although the physiological relevance is unclear, both non-clus-

tered and clustered protocadherins can form cis-homo- or cis-hetero-oligomers (Chen et al., 2007;

Schreiner and Weiner, 2010), and mutations affecting the formation of cis-oligomers could

adversely impact protocadherin function. Similarly, protocadherins participate in a variety of protein

complexes beyond homophilic trans adhesion: Pcdh19 has been shown to associate in cis with

N-cadherin (Emond et al., 2011); protocadherins associate with the Wnt co-receptor, RYK

(Berndt et al., 2011); PAPC interacts with Frizzled-7 and FLRT3 (Chen et al., 2009; Kraft et al.,

2012); and Pcdh17 and Pcdh19 have highly conserved RGD sequences, suggesting that they may

interact with integrins (Ruoslahti, 1996; Mutoh et al., 2004; Kim et al., 2011). Thus, further experi-

mental characterization of key mutants in vitro and in vivo will continue to reveal correlations

between structural defects, cellular-level defects, and different aspects of PCDH19-FE.

The non-clustered protocadherins are increasingly recognized as a family of molecules that play

important roles during neural development. In addition to the role of PCDH19 in epilepsy, mutation
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of PCDH12 was found to underlie a syndrome of microcephaly that is associated with epilepsy and

developmental disability (Aran et al., 2016). Moreover, both PCDH9 and PCDH10 have been associ-

ated with autism spectrum disorders (Marshall et al., 2008; Morrow et al., 2008). Ongoing work

will likely uncover further links between members of this family and neurodevelopmental disorders.

Our Pcdh19 EC1-4 model is the first to show the structural basis of adhesion by the non-clustered d-

protocadherins, and reveals that some of the missense mutations identified in PCDH19-FE occur at

the adhesive interface and act by abolishing adhesion. This represents an initial stage in understand-

ing the mechanisms of non-clustered d-protocadherin homophilic adhesion and provides insight into

the biochemical basis of protocadherin-based neurodevelopmental disease.

Materials and methods

Cloning and mutagenesis
Zebrafish Pcdh19 repeats EC1-4 and EC3-4 were subcloned into NdeI and XhoI sites of the pET21a

vector for bacterial expression. Constructs for mammalian expression were created from previously

reported constructs (Pcdh19, Pcdh19EC, Ncad, and NcadECW2A/R14E) and cloned into CMV:N1-Fc

and CMV:N1-His backbones, respectively (Biswas et al., 2010; Emond et al., 2011). Truncated ver-

sions of Pcdh19 (Pcdh19EC1-5, Pcdh19EC1-4, Pcdh19EC1-3, Pcdh19EC1-2, Pcdh19EC2-6) were cre-

ated by PCR subcloning of a Kozak sequence (GCCACC), the signal peptide, and appropriate EC

domains into CMV:N1-Fc. Mutations were created in both the bacterial and mammalian expression

constructs by site-directed mutagenesis. All constructs were sequence verified.

Expression and purification of Pcdh19 fragments for structural
determination
Each construct was expressed in BL21CodonPlus(DE3)-RIPL cells (Stratagene), cultured in TB (EC1-4)

or LB (EC3-4), induced at OD600 = 0.6 with 100 mM (EC1-4) or 200 mM (EC3-4) IPTG and grown at

30˚C (EC1-4) or 25˚C (EC3-4) for ~16 hr. Cells were lysed by sonication in denaturing buffer (20 mM

TrisHCl [pH7.5], 6 M guanidine hydrochloride, 10 mM CaCl2 and 20 mM imidazole). The cleared

lysates were loaded onto Ni-Sepharose (GE Healthcare, Sweden), and eluted with denaturing buffer

supplemented with 500 mM imidazole. Pcdh19 EC3-4 was refolded by overnight dialysis against 20

mM TrisHCl [pH 7.5], 150 mM NaCl, 400 mM arginine, 2 mM CaCl2, 2 mM DTT using MWCO 2000

membranes. Pcdh19 EC1-4 was refolded by iterative dilution of the denaturing buffer with refolding

buffer (100 mM TrisHCl [pH 8.5], 10 mM CaCl2) (Dechavanne et al., 2011). Refolded protein was fur-

ther purified on a Superdex200 column (GE Healthcare) in 20 mM TrisHCl [pH 8.0], 150 mM NaCl, 2

mM CaCl2 and 1 mM DTT.

Crystallization, data collection and structure determination
Crystals were grown by vapor diffusion at 4˚C by mixing equal volumes of protein (Pcdh19 EC3-

4 = 14.4 mg/ml and Pcdh19 EC1-4 = 7.7 mg/ml) and reservoir solution (Pcdh19 EC3-4 contained

100 mM calcium acetate, 100 mM sodium cacodylate [pH 6.1], 25% MPD; Pcdh19 EC1-4 contained

200 mM sodium chloride, 100 mM TrisHCl [pH 8.1], 8% PEG 20,000). Crystals were cryoprotected in

reservoir solution (Pcdh19 EC3-4) or with 25% glycerol added (Pcdh19 EC1-4), and then cryo-cooled

in liquid N2. X-ray diffraction data were collected as indicated in Table 1 and processed with

HKL2000 or HKL3000 (Minor et al., 2006). The Pcdh19 EC3-4 structure was determined by molecu-

lar replacement using separate homology models for each repeat (4AQE_A for EC3 and 1L3W for

EC4) as an initial search model using MrBUMP (Keegan and Winn, 2007) and PHASER

(McCoy et al., 2007). Model building was done with COOT (Emsley et al., 2010) and restrained

TLS refinement was performed with REFMAC5 (Murshudov et al., 2011). Likewise, the Pcdh19 EC1-

4 structure was determined through molecular replacement using Pcdh19 EC3-4 as the initial search

model in PHASER. Data collection and refinement statistics are provided in Table 1. The final model

for Pcdh19 EC3-4 is missing residues 243–246 in chain A, and residues 244–248 in chain B (chains C

and D are complete). The Pcdh19 EC1-4 model is missing residues 32–36 in chain A, residue V1 in

chain B, and side chains for residues K17, K75, K419 in chain A and for residues K5, R71, and E95 in

chain B. All molecular images were generated with VMD (Humphrey et al., 1996).
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Differential scanning fluorimetry
The wild-type (WT) and mutant Pcdh19 EC3-4 fragments were purified as described above and used

for differential scanning fluorimetry (DSF) (Niesen et al., 2007; Lavinder et al., 2009).

The experiments were repeated three to nine times using protein at 0.3 mg/ml for WT (n = 9),

N317S (n = 9), and E290K (n = 3) in buffer (20 mM TrisHCl [pH 8.0], 150 mM NaCl, 2 mM CaCl2 and

1 mM DTT) mixed with SYPRO Orange dye (final concentration 5x; Invitrogen). Fluorescent measure-

ments were performed in a BioRad CFX96 RT-PCR instrument while samples were heated from 10˚C
to 95˚C in 0.2˚C steps. Melting temperatures were estimated when the normalized fluorescence

reached 0.5.

Analytical size exclusion chromatography
Refolded proteins (Pcdh19 EC1-4 WT, E313K, and T146R) were separated from unfolded aggregate

protein on a Superdex200 16/60 column (GE Healthcare) with 20 mM TrisHCl [pH 8.0], 150 mM

NaCl, 2 mM CaCl2 and 1 mM DTT at 4˚C. The fraction corresponding to greatest absorbance was

run subsequently on a Superdex200 PC3.2/3.0 column with the same buffer at 4˚C. An AKTAmicro

system provided a controlled flow rate of 50 ml/min with the sample being injected from a 100 ml

loop.

Bead aggregation assays
Bead aggregation assays were modified from those described previously (Emond and Jontes,

2014; Emond et al., 2011; Sivasankar et al., 2009) to detect the weak homophilic adhesion of

Pcdh19EC. The Pcdh19ECFc fusion constructs were transfected alone or with NcadEC W2A/R14E

His into HEK293 cells using calcium-phosphate transfection (Kwon and Firestein, 2013; Barry et al.,

2014; Jiang and Chen, 2006). Briefly, solution A (10 mg of plasmid DNA and 250 mM CaCl2) was

added drop-wise to solution B (2x HBS) while mildly vortexing, and the final transfection solution

was added drop-wise to two 100 mm dishes of cultured HEK293 cells. The next day, cells were

rinsed twice with 1xPBS and serum-free media. Cells were allowed to grow in the serum-free media

for 2–3 days before collecting the media containing the secreted Fc fusions. The media was concen-

trated using ultracel (Millipore) and incubated with 1.5 ml of protein G Dynabeads (Invitrogen) while

rotating at 4˚C for 1–3 hr. The beads were washed in binding buffer (50 mM TrisHCl [pH 7.5], 100

mM NaCl, 10 mM KCl, and 0.2% BSA) and split into two tubes with either 2 mM EDTA or 2 mM

CaCl2. Beads were allowed to aggregate in a glass depression slide in a humidified chamber for 60

min without motion, followed by two 1 min intervals of rocking (five oscillations/min, ±7˚ from hori-

zontal). Images were collected upon adding EDTA or CaCl2, after 60 min incubation, and after each

rocking interval using a microscope (AxioStar; Carl Zeiss) with a 10x objective. Bead aggregates

were quantified using ImageJ software as described previously (Emond et al., 2011; Emond and

Jontes, 2014). Briefly, the images were thresholded, the area of the detected aggregate particles

was measured in units of pixels, and the average size was calculated. Assays were repeated three

times from separate protein preps and their mean aggregate size (± SEM) at each time point was

plotted. Assays were excluded from analysis only if western blots failed to show protein expression.

Western blots were performed on a portion of media containing the Fc fusion proteins before

incubation with the beads to confirm expression and secretion of the protein. The media was mixed

with sample loading dye, boiled for 5 min and loaded onto 10% Bis-Tris NuPAGE gels (Invitrogen)

for electrophoresis. Proteins were transferred to PVDF membrane (GE healthcare) and blocked with

5% nonfat milk in TBS with 0.1% tween before incubating overnight with anti-human IgG or anti-His

(1:200 Jackson ImmunoResearch Laboratories, Inc.; 1:1000 NeuroMab). After several washes, the

blot was incubated with anti-goat or anti-mouse HRP-conjugated secondary (1:5000, Santa Cruz Bio-

technology; 1:5000 Jackson ImmunoResearch Laboratories Inc.) for chemiluminescent detection with

Western Lightning substrate (Perkin Elmer).

Pull-down assays
HEK293 cells were transfected with Pcdh19ECFc (wild-type or mutant) and NcadEC W2A/R14E His

constructs using calcium-phosphate transfection as described above. Briefly, solution A (8 mg of plas-

mid DNA, and 250 mM CaCl2) was added drop-wise to solution B (2x HBS) while mildly vortexing,

and the final transfection solution was added drop-wise to 60 mm dishes of cultured HEK293 cells.
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24 hr after transfection, cells were washed twice with 1x PBS and once with serum free media, then

cells were allowed to grow in the serum free media for 2–3 days. Media containing the secreted pro-

tein was collected and incubated overnight with 10 ml of protein G dynabeads (Invitrogen) at 4˚C.
Beads were washed once in wash buffer (20 mM TrisHcl [pH7.5], 150 mM NaCl, 0.5% triton X-100),

then re-suspended in loading buffer. In addition, loading buffer was added to a small amount of

reserved input media for each sample. The samples were loaded onto 10% Bis-Tris NuPAGE gels

(Invitrogen) for electrophoreses. Proteins were transferred to PVDF membrane (GE healthcare) and

blocked with 5% nonfat milk in TBS with 0.1% tween before incubating overnight with anti-human

IgG or anti-his (1:200 Jackson ImmunoResearch Laboratories, Inc.; 1:1000 NeuroMab). After several

washes in TBS with 0.1% tween, the blot was incubated with anti-goat or anti-mouse HRP-conju-

gated secondary (1:5000, Santa Cruz Biotechnology; 1:5000 Jackson ImmunoResearch Laboratories

Inc.), washed, and developed with chemiluminescent detection with Western Lightning substrate

(Perkin Elmer).

Sequence analysis and residue numbering
For analysis of Pcdh19 residue conservation across species, 102 sequences were obtained from the

NCBI protein database and processed manually to include only the extracellular domain through the

end of EC4, using the canonical calcium-binding motifs and SignalP4.1 (Petersen et al., 2011) as

guides. These Pcdh19 sequences (Figure 5—source data 1) were then aligned using Clustal Omega

(Sievers and Higgins, 2014) and the alignment file was put into ConSurf (Ashkenazy et al., 2016)

to calculate relative conservation of each residue and categorize the degree of conservation into

nine color bins. Similarly, conservation between selected d and clustered protocadherins was calcu-

lated in ConSurf. All human d-protocadherin sequences and sequences for deposited structures of

clustered protocadherins were selected and aligned to the sequences from our structure (5IU9) for

input into Consurf (Figure 5—source data 2). Residue numbering throughout the text and in the

structure corresponds to the processed protein, except when referencing human disease mutations

for which the number follows standard numbering for the human protein, including the signal pep-

tide (see also Figure 1—source data 1).

PCDH19-FE mutation list
The PCDH19 Female Epilepsy (PCDH19-FE) disease has been cataloged in the Online Mendelian

Inheritance in Man (OMIM 300088) and has previously been referred to by several different names

including: Juberg-Hellman syndrome, epilepsy and mental retardation limited to females (EFMR),

and Early Infantile Epileptic Encephalopathy-9 (EIEE9). A thorough list of the currently known

PCDH19-FE mutations is presented in Figure 1—source data 1.

Prediction of glycosylation and glycation sites
Potential Pcdh19 glycosylation sites were predicted for both the human (NP_001171809.1) and

zebrafish (ACQ72596.1) sequences using the following servers: NetNGlyc 1.0 (N-glycosylation,

GlcNAc-b-Asn), NetOGlyc 4.0 (O-glycosylation, GalNAC-a-Ser/Thr) (Hansen et al., 1998;

Steentoft et al., 2013), and NetCGylc 1.0 (C-glycosylation, Man-a-Trp) (Julenius, 2007). In addition,

we mapped conserved O-mannosylation sites found in the related d-protocadherins (Vester-

Christensen et al., 2013), and mapped the glycosylation sites found in published clustered proto-

cadherin structures from mammalian cells (Rubinstein et al., 2015). Potential Protocadherin-19 gly-

cation sites were predicted using the NetGlycate 1.0 server for both the human and zebrafish

sequences (Johansen et al., 2006).

Accession numbers
Coordinates for Pcdh19 EC1-4 and EC3-4 have been deposited in the Protein Data Bank with entry

codes 5IU9 and 5CO1, respectively.
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