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Abstract Brain-computer interfaces (BCIs) have the potential to restore communication for

people with tetraplegia and anarthria by translating neural activity into control signals for assistive

communication devices. While previous pre-clinical and clinical studies have demonstrated

promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015;

Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al.,

1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk

et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016;

Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004;

Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O’Doherty et al., 2011; Gilja

et al., 2012), the performance of human clinical BCI systems is not yet high enough to support

widespread adoption by people with physical limitations of speech. Here we report a high-

performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial

participants with paralysis. The system leveraged advances in decoder design developed in prior

pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three

participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as

measured by typing rate (by a factor of 1.4–4.2) and information throughput (by a factor of 2.2–
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4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive

communication devices for people with limited motor function.

Clinical Trial No: NCT00912041

DOI: 10.7554/eLife.18554.001

Introduction
Communication is an important aspect of everyday life, achieved through diverse methods such as

conversing, writing, and using computer interfaces that increasingly provide an important means to

interact with others through channels such as e-mail and text messaging. However, the ability to

communicate is often limited by conditions such as stroke, amyotrophic lateral sclerosis (ALS), or

other injuries or neurologic disorders which can cause paralysis by damaging the neural pathways

that connect the brain to the rest of the body. BCIs offer a potential solution to restore communica-

tion by harnessing intact neural signals. Many candidate BCIs have been developed for this purpose,

including those based on electroencephalography (Wolpaw et al., 1998; Hwang et al., 2012;

Spüler et al., 2012), electrocorticography (Leuthardt et al., 2004; Schalk et al., 2008;

Moran, 2010; Brunner et al., 2011; Wang et al., 2013), and intracortical electrical signals

(Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Musallam et al., 2004;

Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O’Doherty et al., 2011;

Gilja et al., 2012; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al.,

2015; Gilja et al., 2015; Jarosiewicz et al., 2015). Intracortical BCIs (iBCIs), for the purposes of

communication in particular, have shown promise in pilot clinical studies (Bacher et al., 2015;

Jarosiewicz et al., 2015). However, iBCIs have not yet reached a level of performance that would

support widespread adoption by people with motor impairments that interfere with communication.

Further, it is unclear whether current BCI approaches can support high performance during cogni-

tively demanding tasks, such as communicating text.

We recently developed a high-performance iBCI for communication. The BCI provided point-and-

click control of a computer cursor (illustrated in Figure 1a). Briefly, neural signals (action potentials

and high-frequency local field potentials [Gilja et al., 2012, 2015]) were recorded from motor cortex

using intracortical microelectrode arrays. These signals were then translated into point-and-click

commands using two algorithms developed through prior pre-clinical and clinical research: the ReFIT

Kalman Filter for continuous two-dimensional cursor control (Gilja et al., 2012, 2015), and a Hidden

Markov Model (HMM)-based state classifier for discrete selection (‘click’) (Kao et al., 2016). To eval-

uate this interface, we used two approaches: one that represents day-to-day communication use,

and one that more rigorously quantifies performance.

Results
An important real-world application for a communication interface is typing messages in a conversa-

tion. We tested whether the BCI could support such an application with T6, a participant in the

BrainGate2 pilot clinical trial (http://www.clinicaltrials.gov/ct2/show/NCT00912041). T6 is a 51 year-

old woman who was diagnosed with ALS (see Materials and methods: Participants). In these ‘free

typing’ sessions, to simulate use of the BCI in a typical conversation, T6 was prompted with ques-

tions and asked to formulate responses at her own pace. Once presented with a question, she was

able to think about her answer, move the cursor and click on a button at the bottom right corner of

the screen to enable the keyboard, and then type her response (detailed in Materials and methods:

Free typing task). T6 typed her responses using an optimized keyboard layout (OPTI-II) (Rick, 2010),

in which characters are arranged to minimize the travel distance of the cursor while typing English

text. T6’s mean free typing rate over three days of testing was 24.4 ± 3.3 correct characters per min-

ute (ccpm), which spanned 96 min of typing. (Figure 1b; an example free typing video is included as

Video 1; Figure 1—figure supplements 1 and 2 list the questions and typed answers from all free

typing blocks, and Figure 1—figure supplement 3 details the filter calibration and assessment

stages that preceded the free typing blocks.)

These free typing sessions demonstrated, in a realistic use case, what to our knowledge is the

highest typing rate to date by a person with a physical disability using a BCI. However, in the
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human-computer interface literature, typing speeds are measured conventionally not in a free typing

task, but rather using a ‘copy typing’ assessment, in which a subject is asked to type pre-determined

phrases (reviewed in MacKenzie and Soukoreff, 2002). We performed such copy typing assess-

ments with three participants, T6, T5 (a man, 63 years old, with tetraplegia due to spinal cord injury),

and T7 (a man, 54 years old, also diagnosed with ALS). Each research session followed a rigorous

protocol that aimed to measure peak performance rather than robustness (detailed in

Materials and methods: Quantitative performance evaluation and Figure 2—figure supplements 1

and 2). Participants were asked to type one of seven sentences (Figure 2—figure supplement 3),

which were prompted on the screen. Performance was quantified by the number of correct charac-

ters typed within each two-minute evaluation block. T6 and T5’s performance were assessed using

the OPTI-II layout described above as well as a conventional QWERTY layout (Figure 2a,b). For par-

ticipant T7, who had minimal previous typing experience, the QWERTY keyboard was replaced by

an alternative layout (ABCDEF; Figure 2c), which had the same geometry but with letters arranged

in alphabetical order. Figure 2d shows examples of prompted and typed text for each participant.

We performed five days of testing with T6 (Figure 2e; 21 typing evaluation blocks for each key-

board), two days of testing with T5 (Figure 2f; 14 typing evaluation blocks for each keyboard), and

two days of testing with T7 (Figure 2g; 5–6 typing blocks for each keyboard). Example videos that

demonstrate cued typing for all participants are included as Videos 2–7. T6’s average performance

using the QWERTY keyboard was 23.9 ± 6.5 correct characters per minute (ccpm; mean ± s.d.). T6’s

average performance using the OPTI-II keyboard was 31.6 ± 8.7 ccpm, 1.3 times faster than her per-

formance with the QWERTY layout. Participant T5 averaged 36.1 ± 0.9 and 39.2 ± 1.2 ccpm for the

QWERTY and OPTI-II keyboards, respectively. Participant T7 averaged 13.5 ± 1.9 and 12.3 ± 4.9

ccpm for the ABCDEF and OPTI-II keyboards, respectively. These results represent a 3.4x (T6, OPTI-

II), 4.2x (T5, OPTI-II), and 1.4x (T7, ABCDEF) increase over the previous highest performing BCI

report that did not include word completion (9.4 ccpm [Bacher et al., 2015]; p<0.01 for all three

eLife digest People with various forms paralysis not only have difficulties getting around, but

also are less able to use many communication technologies including computers. In particular,

strokes, neurological injuries, or diseases such as ALS can lead to severe paralysis and make it very

difficult to communicate. In rare instances, these disorders can result in a condition called locked-in

syndrome, in which the affected person is aware but completely unable to move or speak.

Several researchers are looking to help people with severe paralysis to communicate again, via a

system called a brain-computer interface. These devices record activity in the brain either from the

surface of the scalp or directly using a sensor that is surgically implanted. Computers then interpret

this activity via algorithms to generate signals that can control various tools, including robotic limbs,

powered wheelchairs or computer cursors. Such tools would be invaluable for many people with

paralysis.

Pandarinath, Nuyujukian et al. set out to study the performance of an implanted brain-computer

interface in three people with varying forms of paralysis and focused specifically on a typing task.

Each participant used a brain-computer interface known as “BrainGate” to move a cursor on a

computer screen displaying the letters of the alphabet. The participants were asked to “point and

click” on letters – similar to using a normal computer mouse – to type specific sentences, and their

typing rate in words per minute was measured. With recently developed computer algorithms, the

participants typed faster using the brain-computer interface than anyone with paralysis has ever

managed before. Indeed, the highest performing participant could, on average, type nearly 8 words

per minute.

The next steps are to adapt the system so that brain-computer interfaces can control commercial

computers, phones and tablets. These devices are widely available, and would allow paralyzed users

to take advantage of a range of applications that can be easily downloaded and customized. This

development might enable brain-computer interfaces to not only allow people with neurological

disorders to communicate, but also assist other people with paralysis in a number of ways.

DOI: 10.7554/eLife.18554.002
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participants, single-sided Mann-Whitney U tests). Further additions of word completion or prediction

should only increase the effective typing rates.

A limitation of the ‘copy typing’ task is that the performance measurement is affected by the

degree of difficulty of each phrase given the specific keyboard being used, as well as the partici-

pant’s familiarity with the keyboard layouts (e.g., both T5 and T7 had much less familiarity with the

keyboard layouts than T6). To explicitly quantify the information throughput of the BCI itself (inde-

pendent of a phrase or keyboard layout), performance was also measured using a cued-target

acquisition task (‘grid task’ [Hochberg et al., 2006; Nuyujukian et al., 2015]), in which square tar-

gets were arranged in a 6 � 6 grid, and a randomly selected target was cued on each trial. Perfor-

mance was quantified using ‘achieved bitrate’ (detailed in Nuyujukian et al. (2015) and

Materials and methods: Achieved bitrate), which is a conservative measure used to quantify the total

amount of information conveyed by the BCI. Briefly, the number of bits transmitted is the net num-

ber of correct ‘symbols’ multiplied by log2(N - 1), where N is the total number of targets. The net

Figure 1. Experimental setup and typing rates during free-paced question and answer sessions. (a) Electrical

activity was recorded using 96-channel silicon microelectrode arrays implanted in the hand area of motor cortex.

Signals were filtered to extract multiunit spiking activity and high frequency field potentials, which were decoded

to provide ‘point-and-click’ control of a computer cursor. (b) Performance achieved by participant T6 over the

three days that question and answer sessions were conducted. The width of each black bar represents the

duration of that particular block. The black bands along the gray bar just below the black blocks denote filter

calibration times. The average typing rate across all blocks was 24.4 ± 3.3 correct characters per minute (mean ± s.

d.). Video 1 shows an example of T6’s free typing. The filter calibration and assessment stages that preceded

these typing blocks are detailed in Figure 1—figure supplement 3.

DOI: 10.7554/eLife.18554.003

The following figure supplements are available for figure 1:

Figure supplement 1. Participant T6’s typed responses during the question and answer sessions.

DOI: 10.7554/eLife.18554.004

Figure supplement 2. Participant T6’s character selection during the question and answer sessions.

DOI: 10.7554/eLife.18554.005

Figure supplement 3. Filter calibration, assessment, and typing blocks for the ‘free typing’ sessions performed

with participant T6.

DOI: 10.7554/eLife.18554.006
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number of correct symbols is taken as the total

number of correct selections minus the total

number of incorrect selections, i.e., each incor-

rect selection requires an additional correct

selection to compensate (analogous to having to

select a keyboard’s backspace key). For example,

on an eight-target task, if the net rate of correct

target selections (after compensating for incor-

rect selections) were one target / s, the achieved

bitrate would be 2.8 bits / s.

Over 5 days of testing with T6 (Figure 3a; 21

grid evaluation blocks), 4 days of testing with T5

(Figure 3b; 29 grid evaluation blocks) and 2 days

of testing with T7 (Figure 3c; six grid evaluation

blocks), average performance was 2.2 ± 0.4 bits

per second (bps; mean ± s.d.), 3.7 ± 0.4 bps, and

1.4 ± 0.1 bps, respectively. This is a substantial

increase over the previous highest achieved

bitrates for people with motor impairment using

a BCI (Table 1), which were achieved by two of

the same participants in an earlier BrainGate

study (T6: 0.93 bits / s, T7: 0.64 bits / s, from

Jarosiewicz et al. (2015); p<0.01 for both partic-

ipants, single-sided Mann-Whitney U tests). For

T6 and T7, who participated in the previous

study, performance of the current methods rep-

resents a factor of 2.4 (T6) and 2.2 (T7) increase.

For T5, the current performance represents a fac-

tor of 4.0 increase over the highest performing

participant in the previous study. (The previous

study measured performance using a free typing

task, which includes the cognitive load of word

formation [Jarosiewicz et al., 2015]. However,

the effects of cognitive load in the current study

(i.e., comparing T6’s free typing vs. copy typing)

only accounted for a ~30% performance differ-

ence, rather than the 2–4x performance differ-

ence between studies. Thus, cognitive load is

unlikely to account for the differences in perfor-

mance.) The performance increase over previous

work is unlikely to be due to experience with BCI,

as participants in the current study had a similar

range of experience using the BCI as those in

comparable studies (Table 2). Example videos

that demonstrate the grid task for all participants

are included as Videos 8–11. In addition, com-

parisons of the HMM’s performance against the

previous highest-performing approach for dis-

crete selection are presented in Figure 3—figure

supplement 1. We performed additional grid

measurements with T5 in which targets were

arranged in a denser grid (9 � 9). This task allows

Video 1. Example of participant T6’s free-paced, free

choice typing using the OPTI-II keyboard. T6 was

prompted with questions and asked to formulate an

answer de novo. Once presented with a question, she

was able to think about her answer, move the cursor

and click on the play button to enable the keyboard

(bottom right corner), and then type her response. In

this example, the participant typed 255 characters in ~9

min, at just over 27 correct characters per minute. One

of two audible ‘beeps’ followed a target selection,

corresponding to the two possible selection methods:

T6 could select targets using either the Hidden Markov

Model-based ‘click’ selection (high-pitched noises) or

by ‘dwelling’ in the target region for 1 s (low-pitched

noises). The plot at the bottom of the video tracks the

typing performance (correct characters per minute) with

respect to time in the block. Performance was

smoothed using a 30 s symmetric Hamming window.

The scrolling yellow bar indicates the current time of

that frame. During the free typing task, T6 was asked to

suppress her hand movements as best as possible.

(During the quantitative performance evaluations, T6

was free to make movements as she wished.) This

video is from participant T6, Day 621, Block 17.

Additional ‘free typing’ examples for T6 are detailed in

Figure 1—figure supplements 1 and 2.

DOI: 10.7554/eLife.18554.007

Video 2. Example of participant T6’s ‘copy typing’

using the OPTI-II keyboard. In the copy typing task,

participants were presented with a phrase and asked to

type as many characters as possible within a two-

minute block. T6 preferred that the cursor remain

under her control throughout the task – i.e., no re-

centering of the cursor occurred after a selection. This

video is from participant T6, Day 588, Blockset 2.

Performance in this block was 40.4 ccpm.

DOI: 10.7554/eLife.18554.012
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Figure 2. Performance in copy typing tasks. (a) Layout for the OPTI-II keyboard (b) Layout for the QWERTY keyboard. (c) Layout for the ABDEF

keyboard. (d) Examples of text typed during three copy typing evaluations with participants T6, T5, and T7. Each example shows the prompted text,

followed by the characters typed within the first minute of the two-minute evaluation block. Box width surrounding each character denotes the time it

took to select the character. ‘<’ character denotes selection of a backspace key. Colored symbols on the left correspond to blocks denoted in lower

plots. (e) Performance in the copy typing task with the QWERTY (blue) and OPTI-II (black) keyboards across 5 days for participant T6. QWERTY

performance was 23.9 ± 6.5 correct characters per minute (ccpm; mean ± s.d.), while OPTI-II performance was 31.6 ± 8.7 ccpm. X-axis denotes number

of days since array was implanted. (f) Performance in the copy typing task with the QWERTY (blue) and OPTI-II (black) keyboards across 2 days for

participant T5. Average performance was 36.1 ± 0.9 and 39.2 ± 1.2 ccpm for the QWERTY and OPTI-II keyboards, respectively. (g) Performance in the

copy typing task with the ABCDEF (blue) and OPTI-II (black) keyboards across two days for participant T7. Average performance was 13.5 ± 1.9 and

12.3 ± 4.9 ccpm for the ABCDEF and OPTI-II keyboards, respectively. *Participant T7 did not use an HMM for selection.

DOI: 10.7554/eLife.18554.008

The following figure supplements are available for figure 2:

Figure supplement 1. Data collection protocol for quantitative performance evaluation sessions.

DOI: 10.7554/eLife.18554.009

Figure supplement 2. Example of the blockset structure for quantitative performance evaluation sessions.

DOI: 10.7554/eLife.18554.010

Figure supplement 3. Sentences used to evaluate performance in copy typing tasks.

DOI: 10.7554/eLife.18554.011

Pandarinath et al. eLife 2017;6:e18554. DOI: 10.7554/eLife.18554 6 of 27

Research article Human Biology and Medicine Neuroscience

http://dx.doi.org/10.7554/eLife.18554.008
http://dx.doi.org/10.7554/eLife.18554.009
http://dx.doi.org/10.7554/eLife.18554.010
http://dx.doi.org/10.7554/eLife.18554.011
http://dx.doi.org/10.7554/eLife.18554


Table 1. Survey of BCI studies that measure typing rates (correct characters per minute; ccpm), bitrates, or information transfer rates

for people with motor impairment. Number ranges represent performance measurements across all participants for a given study.

Communication rates could be further increased by external algorithms such as word prediction or completion. As there are many

such algorithms, the current work excluded word prediction or completion to focus on measuring the performance of the underlying

system. The most appropriate points of comparison, when available, are bitrates, which are independent of word prediction or com-

pletion algorithms. Similarly, information transfer rates are also a meaningful point of comparison, though they are less reflective of

practical communication rates than bitrate (which takes into account the need to correct errors; detailed in Nuyujukian et al. (2015);

Townsend et al. (2010)). For the current work, and for Jarosiewicz et al. 2015, we also break down performance by individual partici-

pant to facilitate direct comparisons (denoted by italics). As shown, performance in the current study outperforms all previous BCIs

tested with people with motor impairment. *These numbers represent performance when measured using a denser grid (9 � 9; Fig-

ure 3—figure supplement 2 and Video 10). **For this study, reported typing rates included word prediction / completion algorithms.

***Number range represents the range of performance reported for the single study participant. ****Other reported numbers

included word prediction / completion algorithms. †Acronyms used: ReFIT-KF: Recalibrated Feedback Intention-trained Kalman Filter.

HMM: Hidden Markov Model. CLC: Closed-loop Calibration. LDA: Linear Discriminant Analysis. RTI: Retrospective Target Inference.

DS: Dynamic Stopping.

Study
Participant
(s)

Recording
modality

Control
modality

Etiology of
motor impairment

Average typing rate
(ccpm)

Average bitrate
(bps)

Average ITR
(bps)

This study average
(N = 3)

intracortical ReFIT-KF
+HMM†

ALS (2), SCI (1) 28.1 2.4 2.4

‘‘ T6 ALS 31.6 2.2 2.2

‘‘ T5 SCI 39.2 3.7 3.7

‘‘ ‘‘ ‘‘ - 4.2* 4.2*

‘‘ T7 (No HMM) ALS 13.5 1.4 1.4

Bacher et al., 2015 S3 intracortical CLC+LDA† brainstem stroke 9.4 - -

Jarosiewicz et al.,
2015

average (N
= 4)

intracortical RTI+LDA† ALS (2),
brainstem stroke (2)

n/a** 0.59 -

‘‘ T6 ALS ‘‘ 0.93 -

‘‘ T7 ALS ‘‘ 0.64 -

‘‘ S3 brainstem stroke ‘‘ 0.58 -

‘‘ T2 brainstem stroke ‘‘ 0.19 -

Nijboer et al., 2008 N = 4 EEG P300 ALS 1.5–4.1 - 0.08–0.32

Townsend et al.,
2010

N = 3 EEG P300 ALS - 0.05–0.22 -

Münßinger et al.,
2010

N = 3 EEG P300 ALS - - 0.02–0.12

Mugler, et al. 2010 N = 3 EEG P300 ALS - - 0.07–0.08

Pires et al., 2011 N = 4 EEG P300 ALS (2), cerebral palsy (2) - - 0.24–0.32

Pires et al., 2012 N = 14 EEG P300 ALS (7), cerebral palsy (5),

Duchenne muscular

dystrophy (1), spinal cord
injury (1)

- - 0.05–0.43

Sellers et al., 2014 N = 1 EEG P300 brainstem stroke 0.31–0.93*** - -

McCane et al.,
2015

N = 14 EEG P300 ALS - - 0.19

Mainsah et al.,
2015

N = 10 EEG P300-DS† ALS - - 0.01–0.60

Vansteensel et al.,
2016

N = 1 subdural ECoG Linear
Classifier

ALS 1.15**** - 0.21

DOI: 10.7554/eLife.18554.021
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the possibility for higher bitrates than the 6 � 6 grid used above, with the tradeoff that selecting

these smaller targets requires higher control fidelity. Across two days of testing with T5 (Figure 3—

figure supplement 2 and Video 10; 8 evaluation blocks), average performance was 4.16 ± 0.39 bps,

which was significantly greater than the 6 � 6 performance (p<0.01, Student’s t test) and represents,

to our knowledge, the highest documented BCI communication rate for a person with motor

impairment.

We note that in both sets of quantitative performance evaluations (copy typing and grid tasks),

participant T6, who retained significant finger movement abilities, continued to move her hand while

controlling the BCI. Further research sessions, in which T6 was asked to suppress her natural move-

ments to the best of her abilities, showed similar performance in both copy typing and grid tasks

(detailed in Figure 4 and supplements, which quantify her performance and the degree to which she

was able to suppress movements). As might be expected, T6 found that suppressing her natural

movement was a challenging, cognitively demanding task. Though she did this to the best of her

abilities, the act of imagining finger movement still elicited minute movements, both during ‘open-

loop’ decoder calibration where she was imagining movements, and during closed-loop control of

the BCI. While we were unable to record EMG activity (as permission to do so had not previously

been sought), we were able to record the movements of her fingers using a commercially-available

‘dataglove’ sensor system. This was also used for research sessions in which decoder calibration was

based on her physical movements. Overall, when T6 actively attempted to suppress movements, her

movement was reduced by a factor of 7.2–12.6 (Figure 4—figure supplement 1). Despite this factor

of 7.2–12.6 in movement suppression, perfor-

mance was quite similar to performance when T6

moved freely - across all three quantitative evalu-

ation types (Grid, OPTI-II, QWERTY), the perfor-

mance differences were within 0–20% and not

significant (p>0.2 in all cases, Student’s t test).

Discussion
The high-performance BCI demonstrated here

has potential utility as an assistive communication

system. The average copy typing rates demon-

strated in this study were 31.6 ccpm (6.3 words

per minute; wpm), 39.2 ccpm (7.8 wpm), and

13.5 ccpm (2.7 wpm) for T6, T5, and T7, respec-

tively. In surveying people with ALS,

(Huggins et al., 2011) found that 59% of

respondents would be satisfied with a

Video 3. Example of participant T6’s ‘copy typing’

using the QWERTY keyboard. Same as Video 2, but

using the QWERTY keyboard layout. This video is from

participant T6, Day 588, Blockset 4. Performance in this

block was 30.6 ccpm.

DOI: 10.7554/eLife.18554.013

Video 4. Example of participant T5’s ‘copy typing’

using the OPTI-II keyboard. Same as Video 2, but for

participant T5. This video is from participant T5, Day

68, Blockset 4. Performance in this block was 40.5

ccpm.

DOI: 10.7554/eLife.18554.014

Video 5. Example of participant T5’s ‘copy typing’

using the QWERTY keyboard. Same as Video 4, but

using the QWERTY keyboard layout. This video is from

participant T5, Day 68, Blockset 2. Performance in this

block was 38.6 ccpm.

DOI: 10.7554/eLife.18554.015
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communication BCI that achieved 10–14 ccpm (2–2.8 wpm), while 72% would be satisfied with 15–

19 ccpm (3–3.8 wpm). Thus, the current performance would likely be viewed positively by many peo-

ple with ALS. Current performance still falls short of typical communication rates for able-bodied

subjects using smartphones (12–19 wpm [Hoggan et al., 2008; Lopez et al., 2009]), touch typing

(40–60 wpm [MacKenzie and Soukoreff, 2002]), and speaking (90–170 spoken wpm [Venkata-

giri, 1999]); continued research is directed toward restoring communication toward rates that match

able-bodied subjects.

Previous clinical studies of intracortical BCIs have either used generalized (task-independent)

measures of performance (Simeral et al., 2011; Gilja et al., 2015) or application-focused (task-

dependent) measures (Bacher et al., 2015; Jarosiewicz et al., 2015; Hochberg et al., 2012;

Collinger et al., 2013a). While application-focused measurements are crucial in demonstrating clini-

cal utility, performance might be heavily dependent on the specific tasks used for assessment. By rig-

orously quantifying both generalized performance (grid task) and application-specific performance

(copy typing task) with all three participants, we aim to provide helpful benchmarks for continued

improvement in neural decoding and BCI communication interface comparisons.

Another critical factor for demonstrating clinical utility is characterizing the day-to-day variability

often seen in BCI performance. To do so we approached the quantitative performance evaluation

sessions (grid and copy typing) with a strict measurement protocol (similar to Simeral et al., 2011),

and did not deviate from this protocol once the session had begun. Inclusion of detailed measure-

ment protocols will help in demonstrating the repeatability (or variability) of various BCI approaches

and establish further confidence as BCIs move closer to becoming more broadly available for people

who would benefit from assistive communication technologies. The grid task and bit rate assessment

described previously and in this manuscript may serve as a valuable task and metric to document fur-

ther progress in BCI decoding.

As mentioned earlier, our quantitative performance evaluation protocol was designed to measure

peak performance in a repeatable manner rather than measuring the system’s stability. To standard-

ize the performance measurements, explicit decoder recalibration or bias re-estimation blocks were

performed prior to each measurement set (as detailed in Materials and methods: Quantitative per-

formance evaluation and Figure 2—figure supplements 1 and 2). A key additional challenge for

clinically useful BCIs is maintaining system stability, and future work will combine our performance-

driven approach with complementary approaches that focus on achieving long-term stability without

explicit recalibration tasks (Jarosiewicz et al., 2015).

Video 6. Example of participant T7’s ‘copy typing’

using the OPTI-II keyboard. Same as Video 2, but for

participant T7. T7 selected letters by dwelling on

targets only. In addition, T7 preferred that the cursor

re-center after every selection (i.e., following a correct

or an incorrect selection). These across-participant

differences are detailed in Materials and methods:

Quantitative performance evaluations (under ‘Target

selection and cursor re-centering’). This video is from

participant T7, Day 539, Blockset 3. Performance in this

block was 10.6 ccpm.

DOI: 10.7554/eLife.18554.016

Video 7. Example of participant T7’s ‘copy typing’

using the ABCDEF keyboard. Same as Video 6, but

using the ABCDEF keyboard layout. This video is from

participant T7, Day 539, Blockset 1. Performance in this

block was 16.5 ccpm.

DOI: 10.7554/eLife.18554.017
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The typing rates achieved in this study were performed without any word completion or predic-

tion algorithms. While such algorithms are commonly used in input systems for mobile devices and

assistive technology, our aim in this report was to explicitly characterize the performance of the

intracortical BCI, without confounding the measurement by the choice of a specific word completion

algorithm (of which there are many). Important next steps would be to apply the BCI developed

here to a generalized computing interface that includes word completion and prediction algorithms

to further boost the effective communication rates of the overall system. Regardless of the assistive

platform chosen, all systems would benefit from higher performing BCI algorithms. We also note

that the data for participants T6 and T7 was collected 1.5 years after neurosurgical placement of the

intracortical recording arrays. This, along with other recent reports (Gilja et al., 2012; Simeral et al.,

2011; Nuyujukian et al., 2015; Gilja et al., 2015; Hochberg et al., 2012; Chestek et al., 2011;

Bishop et al., 2014; Flint et al., 2013; Nuyujukian et al., 2014), demonstrates that intracortical

BCIs may be useful for years post-implantation.

Central to the results demonstrated with participants T6 and T5 was the identification of indepen-

dent control modalities to simultaneously support high performance continuous control and discrete

Figure 3. Information throughput in the grid task. (a) Performance in the grid task across 5 days for participant T6. T6 averaged 2.2 ± 0.4 bits per

second (mean ± s.d.). (b) Performance in the grid task across 2 days for participant T5. T5 averaged 3.7 ± 0.4 bits per second. (c) Performance in the grid

task across 2 days for participant T7. T7 averaged 1.4 ± 0.1 bits per second. X-axis denotes number of days since array was implanted. *Participant T7

did not use an HMM for selection.

DOI: 10.7554/eLife.18554.018

The following figure supplements are available for figure 3:

Figure supplement 1. Performance of the HMM-based classifier during grid tasks with participants T6 and T5.

DOI: 10.7554/eLife.18554.019

Figure supplement 2. Information throughput for participant T5 when using a dense grid.

DOI: 10.7554/eLife.18554.020

Video 8. Example of participant T6’s performance in

the grid task. This video is from participant T6, Day

588, Blockset 3. Performance in this block was 2.65 bps.

DOI: 10.7554/eLife.18554.022

Video 9. Example of participant T5’s performance in

the grid task. This video is from participant T5, Day 56,

Blockset 4 (Block 28). Performance in this block was

4.01 bps.

DOI: 10.7554/eLife.18554.023
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selection. Specifically, we found that activity on T6’s array had the highest neural modulation when

attempting or imagining movements of her contralateral thumb and index finger, and further, that

these two independent effectors could be merged to provide closed-loop control of a single effector

(cursor). We also found that this thumb and index finger-based control modality increased system

robustness and yielded decoders that were more resilient to nonstationarities. Finally, we found that

a separate behavioral approach, ipsilateral hand squeeze, provided an independent, readily-

Table 2. Participants’ prior BCI experience and training for studies considered in Table 1. The experience column details the number

of participants in the respective study that had prior experience with BCIs at the time of the study and, if reported, the duration of that

prior experience and/or training.

Study Participant(s) BCI experience/training

This study average
(N = 3)

1 year

‘‘ T6 1.5 years

‘‘ T5 9 prior sessions ( » 1 month)

‘‘ T7 1.5 years

Bacher et al., 2015 S3 4.3 years

Jarosiewicz et al., 2015 average
(N=4)

2 years

‘‘ T6 10 months to 2.3 years

‘‘ T7 5.5 months to 1.2 years

‘‘ S3 5.2 years

‘‘ T2 4.6 months

Nijboer et al., 2008 N = 4 At least 4–10 months

Townsend et al., 2010 N = 3 All had prior P300 BCIs at home, two had at least 2.5 years with BCIs

Münßinger et al., 2010 N = 3 Two of three had prior experience, training not reported

Mugler, et al. 2010 N = 3 Average experience of 3.33 years

Pires et al., 2011 N = 4 No prior experience, training not reported

Pires et al., 2012 N = 14 Not reported

Sellers et al., 2014 N = 1 Prior experience not reported, thirteen months of continuous evaluation

McCane et al., 2015 N = 14 Not reported

Mainsah et al., 2015 N = 10 Prior experience not reported, two weeks to two months of evaluation

Vansteensel et al., 2016 N = 1 7 to 9 months

DOI: 10.7554/eLife.18554.024

Video 10. Example of participant T5’s performance in

the dense grid task (9 � 9). This video is from

participant T5, Day 56, Blockset 4 (Block 30).

Performance in this block was 4.36 bps.

DOI: 10.7554/eLife.18554.025

Video 11. Example of participant T7’s performance in

the grid task. This video is from participant T7, Day

539, Blockset 2. Performance in this block was 1.57 bps.

DOI: 10.7554/eLife.18554.026
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combined control dimension to support discrete

selection. We performed a similar protocol for

evaluating behavioral imagery strategies with

participant T5 and found his highest neural mod-

ulation was elicited when imagining movements

of the whole arm. We combined this imagery

strategy with ipsilateral hand squeeze (mirroring

findings from participant T6) to yield simulta-

neous high performance continuous control and

discrete selection.

The BCI approach demonstrated here was first

developed with participant T6 and then adapted

for participant T7. However, initially, we often

found that instabilities would appear in T7’s con-

trol on shorter timescales (i.e., across tens of

minutes). In these instances, biases in the cursor’s

velocity would develop that impeded high perfor-

mance control. To counteract these effects, we

introduced a variant of the bias correction

method used in Jarosiewicz et al. (2015);

Hochberg et al. (2012) with T7 (detailed in

Materials and methods), which continuously esti-

mated and corrected biases during closed-loop

BCI use and resulted in more stable control. Fur-

ther, instead of calibrating a new decoder

between measurement sets (as was done for T6),

we found it was sufficient to keep the decoder

constant and simply perform a short target acqui-

sition task to estimate and update the underlying

bias estimate. We therefore incorporated this

revised protocol (holding decoders constant, and

simply updating the underlying bias estimate) for

sessions with T5.

The performance achieved by all participants

in this study outperformed all previous BCIs for

communication tested with people with motor

impairment. However, we note that T6 and T5’s

communication rates were substantially better

than those of T7. Many factors could have con-

tributed to this difference in performance. Cer-

tainly, with any skilled motor task, one expects to

see variation in performance across participants,

even in able-bodied subjects (e.g. playing sports

or musical instruments). As ALS is a disease with

a large degree of variance in its effects, partici-

pant-specific differences in disease effects or pro-

gression may play a role in the differences in

performance between T6 and T7. Interestingly,

we note that in the center-out-and-back task

(where reaction times can be most easily mea-

sured), T7 demonstrated increased response

latency relative to T6. Specifically, the time

between the appearance of a cued target and

neural modulation corresponding to a movement

attempt was more than 100 ms later for T7 rela-

tive to T6. It is unclear whether this additional

Figure 4. Performance of the BCI with movements

suppressed. A potential concern is that the

demonstrated performance improvement for

participant T6 relative to previous studies is due to her

retained movement ability. Participant T6 was capable

of dexterous finger movements (as opposed to

participants T5 and T7, who retained no functional

movements of their limbs). To control for the possibility

that physical movements underlie the demonstrated

improvement in neural control, we measured T6’s BCI

performance during the same quantitative performance

evaluation tasks, but asked her to suppress her

movements as best as she could. In these sessions,

decoders were calibrated based on imagined (rather

than attempted) finger movements. (a) During copy

typing evaluations with movements suppressed, T6’s

average performance using the OPTI-II keyboard was

28.6 ± 2.0 ccpm (mean ± s.d.), and her average

performance using the QWERTY keyboard was

19.9 ± 4.3 ccpm (as discussed in the main text, her

performance while moving freely was 31.6 ± 8.7 ccpm

and 23.9 ± 6.5 ccpm for the OPTI-II and QWERTY

keyboards, respectively). (b) During grid evaluations

with movements suppressed, T6’s achieved bitrate was

2.2 ± 0.17 bps (compared to 2.2 ± 0.4 bps while moving

freely). We note that using the BCI while suppressing

movements is a more difficult and cognitively

demanding task - since the participant’s natural,

intuitive attempts to move actually generate physical

movements, she needed instead to imagine

movements, and restrict her motor cortical activity to

patterns that do not generate movement. (This is

supported by the participants own comment regarding

the difficulty in controlling the BCI while imagining

movement without actually moving: ‘It is a learning

curve for me to not move while imagining.’) Despite

this additional cognitive demand, performance with

movements suppressed was quite similar to

performance when the participant moved freely (within

0–20%) - in all three cases, the differences in

performance were not significant (p>0.2 in all cases,

Student’s t test). Data are from T6’s trial days 595 and

598.

DOI: 10.7554/eLife.18554.027

The following figure supplement is available for

figure 4:

Figure 4 continued on next page
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latency was due to variability in the effects of

ALS across participants. Differences in the par-

ticipants’ prior experiences may have also

played a role: T6 was much more familiar with

computing devices, while T7 rarely used them.

This difference in familiarity / comfort with text

entry may have contributed to the difference in

typing rates.

At the time of this study, participant T6 still retained the ability to make dexterous movements of

her hands and fingers, which may raise the question of whether her high level of performance was

related to the generation of movement. As described in the Results section, to test the effects of

movement generation on BCI control, we performed separate sessions in which T6 suppressed her

movement to the best of her ability, and found no measurable effect on BCI performance. This result

is consistent with previous studies that have evaluated the effects of movement on BCI control. For

example, Gilja*, Nuyujukian* et al. (Gilja et al., 2012) compared BCI performance in non-human pri-

mates while their arms were either restrained or able to move freely, and found little difference in

performance. Additionally, Ethier et al (Ethier et al., 2012). showed that monkeys whose grasping

movements were prevented using a paralytic agent were still able to reliably generate grasping-

related cortical activity, which could then be decoded to activate a functional electrical stimulation

system that restored grasping ability. Multiple participants with no movement of their limbs have

also successfully controlled a computer cursor or other external device through this intracortical BCI

(e.g., ref. [Hochberg et al., 2006], participants S1 and S2, and ref. [Hochberg et al., 2012], partici-

pant T2). Finally, we recently investigated the effects of movement on cursor control quality in detail

with clinical trial participants and found no decrease in performance when movements were sup-

pressed (Gilja et al., 2015).

In this study we have controlled for the potential issue of movement generation as closely as is

possible given the proper boundaries of clinical research. We have presented data from three partic-

ipants, two of whom had no ability to make functional arm or hand movements, and one who sup-

pressed her movements to the best of her abilities, below a range in which the movements could be

functionally useful. All three cases are representative examples of arm and hand movement capabili-

ties of the severely motor impaired population, and, in all three cases, the participants communi-

cated with the BCI at rates that exceeded any previous study of people with motor impairment.

Further, there was little if any correspondence between the participants’ movement abilities and BCI

performance.

Both participants T6 and T5 used the HMM decoder for discrete selection. Our goal was to also

use the HMM with participant T7. However, he passed away (from causes unrelated to the trial)

before we were able to perform those research sessions. As mentioned above, we initially found

that neural features with participant T7 exhibited drifts in baseline firing rates over time, which

necessitated the integration of strategies to mitigate the effects of these baseline drifts on continu-

ous cursor control. Thus, our plan for data collection was to first develop these strategies and care-

fully document performance with T7 using continuous cursor control only, and subsequently add the

HMM for discrete selection. The first part was successful – as shown, T7 achieved high quality contin-

uous control, and the resultant communication performance was double that of the previous high-

est-performing approach. Unfortunately, however, T7 passed away before the HMM sessions could

be conducted.

Previous work with non-human primates from our lab and others (Musallam et al., 2004;

Santhanam et al., 2006; Shenoy et al., 2003) demonstrated that BCI strategies which leverage dis-

crete classification can achieve high communication rates. The ‘point-and-click’ approach demon-

strated in the current paper (i.e., continuous control over a cursor’s movement, plus a decoder for

discrete selection [Simeral et al., 2011; Bacher et al., 2015; Jarosiewicz et al., 2015]) was investi-

gated instead because it has certain practical advantages over the classification approach. In particu-

lar, developing a robust point-and-click controller provides a flexible interface that can be applied to

a wide variety of computing devices. A point-and-click controller could be integrated with mobile

computing interfaces (i.e., smartphones or tablets) that would dramatically increase what is achiev-

able with the BCI, without the need for the development of custom software for each function (as

would be needed for a discrete interface). Finally, and perhaps most fundamentally, as this approach

Figure 4 continued

Figure supplement 1. Participant T6’s movements are

greatly reduced when movements are actively

suppressed.

DOI: 10.7554/eLife.18554.028
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Figure 5. Signal quality on the participants’ electrode arrays. Each panel shows the recorded threshold crossing

waveforms for all 96 channels of a given array for a 60 s period during the participant’s first quantitative

performance evaluation block. T6 had a single implanted array, while T5 and T7 had two implanted arrays. Scale

bars (lower left corner of each panel) represent 150 mV (vertical) and 0.5 milliseconds (horizontal). Voltages were

analog band-pass filtered between 0.3 Hz and 7.5 kHz, then sampled by the NeuroPort system at 30 kHz. The

resulting signals were then digitally high-pass filtered (500 Hz cutoff frequency) and re-referenced using common

average referencing. Thresholds were set at �4.5 times the root-mean-squared (r.m.s.) voltage value for each

channel. Channels without a corresponding trace did not have any threshold crossing events during this time

period. Data are from sessions 570, 56, and 539 days post-implant for T6, T5, and T7, respectively.

DOI: 10.7554/eLife.18554.029

The following figure supplements are available for figure 5:

Figure supplement 1. HF-LFP signals have similar time course and condition dependence to spiking activity.

DOI: 10.7554/eLife.18554.030

Figure 5 continued on next page
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enables both continuous movements and selections, it is more general as long as performance is

high (as reported here). Thus, point-and-click interfaces are a key step to creating BCIs that allow

flexible, general-purpose computing use.

The discrete classification approach provides a promising alternative strategy for communication

BCIs. However, there are multiple technical challenges to the previously demonstrated approaches,

and multiple unknowns when translating these approaches to people. From a technical standpoint,

one of the primary challenges is that a multi-class discrete classifier may need a specified time win-

dow over which to classify neural features into a discrete selection. In the earlier high-performance

study with non-human primates (Santhanam et al., 2006), this necessitated a ‘fixed pace’ design in

which the monkeys were prompted to make a sequence of selections at a fixed timing interval. Such

an approach may prove more difficult with people typing messages, which requires the flexibility to

actively think about what to type and to type at a free pace. A potential approach to enable a ‘free-

paced’ BCI was demonstrated in follow-on studies (Achtman et al., 2007; Kemere et al., 2008),

which showed in offline analyses that state transitions could be inferred automatically from neural

activity, thus automatically detecting the necessary time window for classification. But this has not

been demonstrated in closed-loop experiments by our group or, to our knowledge, by other groups.

Thus there are multiple technical and scientific challenges to address, and developing these

approaches for clinical trial participants is an active area of research.

The collaborative approach reported here involved carrying out the same investigative protocol

by independent teams at sites across the country. This approach supports replication with multiple

participants to go beyond initial proof of principle, but presented its own challenges, particularly in

designing and implementing closed-loop BCI approaches remotely. Specifically, iterating on

decoder designs and troubleshooting performance issues greatly benefits from real-time access to

system performance and data. To this end, the development of a framework for remote, real-time

performance monitoring (detailed in Materials and methods: System design) was critical to under-

standing and iteratively addressing performance issues during research sessions with remote

participants.

The participants’ comments provided insight on the subjective experience of using the BCI. All

three participants commented on the ease-of-use of the system. Participant T6 compared the BCI

system to other assistive communication devices, remarking: ‘The one I like is this one as opposed

to an eye gaze system... It is quite intuitive.’ Similarly, participant T7 noted: ‘When things go well, it

feels good.’ – this statement was a comment on the improvement in control after weeks of develop-

ment and testing (using the approach outlined above). Additionally, participant T5 compared his

Figure 5 continued

Figure supplement 2. HF-LFP signals show a similar time course and condition dependence to spiking activity

during auditory-cued tasks in which the participant had her eyes closed.

DOI: 10.7554/eLife.18554.031

Table 3. Summary of the decoding and calibration approaches used with each participant.

T6 T7 T5

Continuous decoding algorithm ReFIT Kalman Filter (threshold crossings and
HF-LFP)

ReFIT Kalman Filter
(threshold crossings)

ReFIT Kalman Filter
(threshold crossings)

Discrete decoding algorithm Hidden Markov Model (HF-LFP) n/a Hidden Markov Model (threshold
crossings)

Dwell time 1 s (reset on target exit) 1.5 s (cumulative) 1 s (reset on target exit)

Bias estimation no yes yes

Cursor recentering no yes no

Recalibration blocks Recalibrated continuous and discrete decoders Only updated bias
estimates

Only updated bias estimates

Error attenuation in recalibration
block

yes yes no

DOI: 10.7554/eLife.18554.032
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typing performance to his standard typing interface (a head mouse-based tracking system), noting

‘After I typed using BrainGate for 2 days, the weekend came and I went back to my existing typing

system and it was ponderously slow.’ Interestingly, participant T6 also noted that the motor imagery

used for filter calibration did not match the imagery she found most effective during closed-loop

BCI control. Specifically, while T6’s continuous control was calibrated based on index finger and

thumb movement imagery, T6 commented that during closed-loop BCI control, ‘It feels like my right

hand has become a joystick.’

The question of the suitability of implanted versus external BCI systems (or any other external

AAC system) for restoring function is an important one. Any technology (or any medical procedure)

that requires surgery will be accompanied by some risk; among the most immediate risks that should

be considered with any neurosurgery involving a craniotomy include bleeding, infection, seizure, and

headache. That risk is not viewed in isolation, but is compared – by the individual contemplating the

procedure – to the potential benefit (Hochberg and Cochrane, 2013; Hochberg and Anderson,

2012). There are several important factors one might take into consideration, for example ease-of-

use, cosmesis, and performance. Any externally applied BCI system (EEG for example) will require

donning and doffing, meaning that it could not be used continuously 24 hr a day. A future self-cali-

brating, fully implanted wireless system could in principle be used without caregiver assistance,

would have no cosmetic impact, and could be used around the clock. Such a system may be achiev-

able by combining the advances in this report with previous advances in self-calibration and in fully-

implantable wireless interfaces (Jarosiewicz et al., 2015; Borton et al., 2013). Additional discussion

of these topics are found in refs. (Ryu and Shenoy, 2009; Gilja et al., 2011).

In a recent survey of people with spinal cord injury (Blabe et al., 2015), respondents with high

cervical spinal cord injury would be more likely to adopt a hypothetical wireless intracortical system

compared to an EEG cap with wires, by a margin of 52% to 39%. In another survey, over 50% of

people with spinal cord injury would ‘definitely’ or ‘very likely’ undergo an implant surgery for a BCI

(Collinger et al., 2013b). Thus, there is a clear willingness among people with paralysis to undergo

a surgical procedure if it could provide significant improvements in their daily functioning.

In summary, we demonstrated a BCI that achieved high performance communication in both free

typing and copy typing, leveraging system design and algorithmic innovations demonstrated in prior

pre-clinical and clinical studies (Gilja et al., 2012, 2015; Kao et al., 2016). Using this interface, all

three participants achieved the highest BCI communication rates for people with movement

impairment reported to date. These results suggest that intracortical BCIs offer a promising

approach to assistive communication systems for people with paralysis.

Materials and methods
Permission for these studies was granted by the US Food and Drug Administration (Investigational

Device Exemption) and Institutional Review Boards of Stanford University (protocol # 20804), Part-

ners Healthcare/Massachusetts General Hospital (2011P001036), Providence VA Medical Center

(2011–009), and Brown University (0809992560). The three participants in this study, T6, T7, and T5,

were enrolled in a pilot clinical trial of the BrainGate Neural Interface System (http://www.clinical-

trials.gov/ct2/show/NCT00912041). Informed consent, including consent to publish, was obtained

from the participants prior to their enrollment in the study. Additional permission was obtained to

publish participant photos and reproduce text typed by the participants.

Participants
Participant T6 is a right-handed woman, 51 years old at the start of this work, who was diagnosed

with Amyotrophic Lateral Sclerosis (ALS) and had resultant motor impairment (functional rating scale

(ALSFRS-R) measurement of 16). In Dec. 2012, a 96-channel intracortical silicon microelectrode array

(1.0 mm electrode length, Blackrock Microsystems, Salt Lake City, UT) was implanted in the hand

area of dominant motor cortex as previously described (Simeral et al., 2011; Hochberg et al.,

2012). T6 retained dexterous movements of the fingers and wrist. Data reported in this study are

from T6’s post-implant days 570, 572, 577, 588, 591, 602, 605, and 621.

A second study participant, T7, was a right-handed man, 54 years old at the time of this work,

who was diagnosed with ALS and had resultant motor impairment (ALSFRS-R of 17). In July 2013,

participant T7 had two 96-channel intracortical silicon microelectrode arrays (1.5 mm electrode
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length, Blackrock Microsystems, Salt Lake City, UT) implanted in the hand area of dominant motor

cortex. T7 retained very limited and inconsistent finger movements. Data reported are from T7’s

post-implant days 539 and 548. Unfortunately, prior to performing additional research sessions, T7

passed away due to non-research related reasons.

A third study participant, T5, is a right-handed man, 63 years old at the time of this work, with a

C4 ASIA C spinal cord injury that occurred approximately 9 years prior to study enrollment. He

retains the ability to weakly flex his left (non-dominant) elbow and fingers; these are his only repro-

ducible movements of his extremities. He also retains some slight residual movement which is incon-

sistently present in both the upper and lower extremities, mainly seen at ankle dorsiflexion and

plantarflexion, wrist, fingers and elbow, more consistently present on the left than on the right.

Occasionally, the initial slight voluntary movement triggers involuntary spastic flexion of the limb. In

Aug. 2016, participant T5 had two 96-channel intracortical silicon microelectrode arrays (1.5 mm

electrode length, Blackrock Microsystems, Salt Lake City, UT) implanted in the upper extremity area

of dominant motor cortex. During BCI control, the only observed movement of the extremities

(besides involuntary spastic flexion) is finger flexion on the non-dominant hand during discrete selec-

tion attempts. Data reported are from T5’s post-implant days 56, 57, 68, and 70.

System design
Data were collected using the BrainGate2 Neural Interface System. This modular platform, standard-

ized across clinical trial sites, supports multiple operating systems and custom real-time software,

and allows multiple studies to be performed by different researchers without hardware modification.

The framework enables a rapid-prototyping environment and facilitates ease of replication of real-

time closed loop studies with multiple trial participants. For the present study, neural control and

task cuing closely followed ref. (Gilja et al., 2015) and were controlled by custom software running

on the Simulink/xPC real-time platform (The Mathworks, Natick, MA), enabling millisecond-timing

precision for all computations. Neural data were collected by the NeuroPort System (Blackrock

Microsystems, Salt Lake City, UT) and available to the real-time system with 5 ms latency. Visual pre-

sentation was provided by a computer via a custom low latency network software interface to Psy-

chophysics Toolbox for Matlab and an LCD monitor with a refresh rate of 120 Hz. Frame updates

from the real-time system occurred on screen with a latency of approximately 13 ± 5 ms.

During design and development research sessions leading up to the quantitative performance

evaluations, a framework for remote, real-time performance monitoring and debugging was critical

to iteratively improving system performance remotely. This was performed using lightweight, custom

MATLAB software that monitored performance via network packets from the real-time system and

provided insight to researchers located in the laboratory (i.e., away from the participants’ homes,

where data were collected). Researchers accessed the remote monitoring and troubleshooting sys-

tem in real-time using TeamViewer (Tampa, FL). In addition, at the end of each evaluation block,

summary data was immediately transferred from the participants’ homes to researchers to facilitate

rapid analysis, debugging, and iteration.

Neural feature extraction
The neural signal processing framework closely followed ref. (Gilja et al., 2015). The NeuroPort Sys-

tem applies an analog 0.3 Hz to 7.5 kHz band-pass filter to each neural channel and samples each

channel at 30 kSamples per second. These broadband samples were processed via software on the

Simulink/xPC real-time platform. The first step in this processing pipeline was to subtract a common

average reference (CAR) from each channel (intended to remove noise common to all recorded neu-

ral channels). For each time point, the CAR was calculated simply by taking the mean across all neu-

ral channels.

Band-pass filters split the signal into spike and high frequency local field potential (HF-LFP) bands.

To extract neural spiking activity, a cascaded infinite impulse response (IIR) and finite impulse

response (FIR) high-pass filter were applied. A threshold detector was then applied every millisecond

to detect the presence of a putative neural spike. Choice of threshold was specific to each array (T6:

�50 mV, T5, –95 mV, Medial and Lateral arrays; T7, Lateral array: �70 mV, Medial array: �90 mV). HF-

LFP power features refer to the power within the 150–450 Hz band-pass filtered signal. For continu-

ous control, T6 sessions used both spike and HF-LFP features (hybrid decoding), while T5 and T7

Pandarinath et al. eLife 2017;6:e18554. DOI: 10.7554/eLife.18554 17 of 27

Research article Human Biology and Medicine Neuroscience

http://dx.doi.org/10.7554/eLife.18554


sessions used only spike-based features. Figure 5 demonstrates the signal quality for both

participants.

A potential concern with decoding a power signal such as these high frequency LFP (HF-LFP) sig-

nals (which were used for participant T6) is that they may pick up artifacts related to EMG from eye

movements. In intracranial studies, such artifacts have been previously shown in electrocortographic

(ECoG) recordings (e.g., Kovach et al [Kovach et al., 2011].). However, as demonstrated in Kovach

et al., the magnitude of this phenomenon falls sharply with the distance from the ventral temporal

cortical surface. Further, the same study demonstrated that these artifacts are highly correlated

across scales less than 1 cm, and that rereferencing on these local scales eliminates the artifacts out-

side of the immediate ventral temporal cortical surface (Kovach et al., Fig. 9). In our study, data are

collected in motor cortical areas which are fairly medial in the precentral gyrus (frontal lobe), and are

rereferenced using the common average across the intracortical array (4 mm x 4 mm). Given the

large distance between the recording site and the ventral temporal cortical surface, and the common

average rereferencing, any minor eye movement-related EMG artifacts are expected to be essen-

tially eliminated.

In order to be certain that these artifacts do not play a role, we provide additional lines of evi-

dence that rule out EMG due to eye movements as being the driver of the observed high perfor-

mance. First, we include data from an additional participant (T5) in which HF-LFP signals were not

used for control (Figures 2 and 3). We found T5’s performance was greater than T6’s – this demon-

strates that high performance iBCI control is achievable using spiking activity alone. Second, we ana-

lyzed T6’s HF-LFP signals during decoder calibration blocks and show that they have a similar time

course and condition dependence as recorded spiking activity (Figure 5—figure supplement 1).

Third, we include additional data recorded as T6 performed an auditory-cued task with her eyes

closed as she attempted movements of her fingers, wrist, and elbow (Figure 5—figure supplement

2). Because there are no visual cues and the participant has her eyes closed, it is unlikely that the

participant is making condition-dependent eye movements. However, even in the absence of visual

cues, the HF-LFP signals are quite similar to recorded spiking activity in their time course and condi-

tion dependence. These lines of evidence make the possibility that HF-LFP signals are eye move-

ment-related highly unlikely.

During sessions with participant T7, neural features exhibited drifts in baseline firing rates over

time. To account for these nonstationarities, baseline rates were computed de novo prior to each

block, during a 30 s period in which the participant was asked simply to relax.

Neural control algorithms
Two-dimensional continuous control of the cursor used the ReFIT Kalman Filter (detailed in refs.

[Gilja et al., 2012, 2015]). For participants T6 and T5, discrete selection (‘click’) was achieved using

a Hidden Markov Model (HMM)-based state classifier, which was previously developed with non-

human primates (Kao et al., 2016) and adapted for the current work. At each timestep, the HMM

calculated the probability that the participant’s intended state was either movement or click. For T6,

only HF-LFP features were used in the HMM, while only spike features were used for T5. Features

were pre-processed with a dimensionality reduction step using Principal Components Analysis

(PCA). The HMM classified the probability of state sk as:

p sk;t
� �

¼ p skjztð Þ
X

i
p sk;tjsi;t�1

� �

p si;t�1

� �

;

where pðskjztÞ is the probability of being in state sk given the current (dimensionality-reduced) neural

features at time t, zt, and where pðsk;tjsi;t�1Þ denotes the probability of transitioning from state si to

state sk:pðskjztÞ was modeled as a multivariate Gaussian distribution with separate mean and covari-

ance for each state. The current state was classified as ‘click’ when pðsk; tÞ exceeded a pre-deter-

mined threshold that was calculated in an unsupervised fashion (threshold choice is outlined in the

task descriptions).

In this framework, there is a key tradeoff between including more PCs (and potentially more rele-

vant information) and overfitting / mis-estimating the mean and covariance of the Gaussian distribu-

tion for each state as more dimensions (PCs) are added. Overfitting these parameters results in poor

decoding on ‘out-of-sample’ data. Empirically, we found that 3–4 PCs resulted in an HMM that
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accurately classified states without overfitting on the limited training data. Therefore, the top four

eigenvalue-ranked PCs were kept and used as inputs to the HMM.

Algorithm parameters were calibrated using training data collected during the same research ses-

sion as evaluation of neural control performance. All calibration data were collected with a center-

out-and-back target configuration. For the quantitative evaluations, initial filters were calibrated

based on data collected during a center-out-and-back task performed under motor control (T6) or

automated open-loop control (all T5 and T7). During motor control tasks, T6 controlled the cursor’s

x and y velocities using index finger and thumb movements, respectively, and acquired targets by

holding the cursor still over the target (dwell tasks) or squeezing her left hand (ipsilateral to the

implanted array) when the cursor was over the target (click tasks). T6’s physical movements were

recorded using left- and right-handed datagloves (5DT, Irvine, CA). This was not performed for par-

ticipants T7 and T5 because they did not have functional use of their arms or hands. During auto-

mated open-loop calibration (T5 and T7), the cursor’s movements followed pre-programmed

trajectories, and the participants attempted movements to follow the cursor’s movement. In addi-

tion, during open-loop calibration, T5 attempted to squeeze his left hand to acquire targets. After

initial filter calibration, both continuous control and discrete filters were then recalibrated using

closed-loop neural control data. This closed-loop recalibration block closely followed (Gilja et al.,

2015), with the addition of a discrete selection for T6 and T5. Because the quality of the initial VKF

filter varied from day to day, the recalibration blocks for T6 and T7 also used error attenuation

(Hochberg et al., 2012; Velliste et al., 2008) to ensure that the participant could reach all targets.

For participant T6, to control for the possibility that her ability to generate movements led to her

high performance, we performed additional sessions in which she was asked to suppress her move-

ments as best as she could (outlined in Figure 4 and supplements). For these sessions, to calibrate

the initial continuous and discrete filters, T6 performed an automated open-loop filter calibration

protocol as described above. This protocol was also followed for the free typing evaluations (out-

lined in Figure 1 and supplements).

Neural features used in each filter were selected during the filter calibration process. For the

ReFIT-KF, features were first ranked by tuning significance (i.e., p-value of the linear regression

between binned neural data and cursor velocity). Features were then added one by one in order of

tuning significance to the neural control algorithm, and an offline assessment of directional control

was used to predict online control quality. The set of features chosen was the one that minimized

the number of features used while maximizing cross-validated decoding accuracy. The discrete

decoder (HMM) used all available HF-LFP features.

For both the continuous cursor-positioning ReFIT-KF decoder and the discrete click-state HMM

decoder, neural data were binned every 15 ms and sent through the decoders. Thus, for the ReFIT-

KF decoder, updated cursor velocity estimates were provided every 15 ms for use in the rest of the

BMI system. This velocity was integrated to update the cursor position estimate every 1 ms, and

therefore the most recent cursor position was sent to the display every 1 ms. The computer monitor

was updated every 8.3 ms (i.e., at the 120 Hz frame rate of the monitor) with the most recent esti-

mate of the desired cursor position. The high update rate is important so as to not inadvertently and

deleteriously add latency into the BMI which is a closed-loop feedback control system

(Cunningham et al., 2011) and which was possible by using a commercially available high-speed

monitor. This system design and these timings are consistent with our previous work (Gilja*, Nuyuju-

kian* et al. Nat Neurosci 2012 [Gilja et al., 2012] binned neural data and used the ReFIT-KF to

decode every 50 ms; Gilja*, Pandarinath*, et al. Nat Med 2015 [Gilja et al., 2015] binned neural

data and used the ReFIT-KF to decode every 10–50 ms depending on the experiment; a 120 frame/s

monitor was also employed). This operates faster and more accurately than a recent report claims is

possible with a Kalman filter (Shanechi et al., 2017), and at a higher level of performance than

recently reported (Shanechi et al., 2017).

As the HMM click decoder facilitates a discrete decision, a threshold criteria for selection was

needed. This threshold value was set after each retraining block at the 93rd quantile of state esti-

mates for the respective retraining block. When running in closed loop, after two consecutive 15 ms

bins where the HMM click state probability was above this threshold value, the system generated a

click and selected the target under the cursor.

As mentioned above, during sessions with participant T7, neural features exhibited drifts in base-

line firing rates over time. On short timescales, these drifts manifested as biases in decoded
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velocities. Biases were reduced using a variant of the bias correction method used in

Jarosiewicz et al. (2015); Hochberg et al. (2012), with the addition of a magnitude term that cor-

rects for the frequency of observed speeds (i.e., low speeds are generally observed for longer time

periods than high speeds). Specifically, e.g. for the x direction, velocity bias was estimated as:

Bx tð Þ ¼ Bx t � 1ð Þ þ Vx tð Þ � Bx t � 1ð Þð Þ � jVx tð Þ � Bx t � 1ð Þj � Dt= t,

where Bx tð Þ represents the bias estimate for the x direction at time t, Vx tð Þ represents the velocity

estimate for the x direction at time t, Dt is the time step of adaptation (0.001 s), and t controls the

adaptation rate (we set t to 30 s). A larger t makes the system slower to respond to changes in bias,

but reduces the size of transient fluctuations in the bias estimate when no actual bias is present. The

current bias estimate was only updated when speed exceeded a threshold (threshold was set to be

roughly the 10–20% quantile for the speeds typically observed for T7).

Data from participant T5 was collected after data collection from participants T6 and T7, and the

scientific protocol used with participant T5 reflected the advances made with the prior two partici-

pants. Table 3 highlights these changes. As participant T5 and T7’s arrays had a large number of

highly modulated spiking channels, no HFLP was necessary to build their decoders. After participant

T6’s data collection was completed, it was discovered that both cursor movement and click

decoders can be calibrated during the initial open loop block, and this approach was used with par-

ticipant T5. Similarly, the bias correction algorithm was implemented for participant T7 after data

collection for participant T6 was completed and it was discovered that the cursor movement

decoder did not need to be retrained after every blockset (a bias correction update block would suf-

fice). This time-saving approach was also used with participant T5.

Free typing task
The aim of this task was to create a natural, familiar, and conversational environment to demonstrate

the potential for iBCIs to be used as communication devices. In this task, conducted only with partic-

ipant T6, questions were presented at the top of the monitor. These questions were tailored to

topics that T6 enjoys discussing. At the start of a block, one of these questions would be chosen

from a pool of questions that had not been used before. After reading the question considering her

response, T6 started the block counter and enabled the keyboard inputs by selecting the play but-

ton in the bottom right corner of the screen. She then used the BCI to type her response to the

question by selecting one letter at a time.

During the free typing task, T6 was asked to suppress her hand movements as best as possible.

During the quantitative performance evaluations, T6 was free to make movements as she wished.

Quantitative performance evaluations
The quantitative measurement experiments were performed with all three participants. These exper-

imental days were explicitly structured and carefully timed so that each piece of data could be com-

pared and measured independently. The experimental flow diagram for participant T6 is shown in

Figure 2—figure supplement 1. With participants T6 and T5, the calibration protocol resulted in

two BCI decoders: one for cursor movement and one for click. With participant T7, only a cursor

movement decoder was calibrated. After decoders were calibrated and confirmed to be working

successfully in a brief (less than 30 s evaluation), the experimental data were then collected. Once

the data portion of the experiment was started, the blockset structure was repeated until the partici-

pant ended the research session. Starting over with the calibration portion of the protocol was not

permitted once the blockset data collection portion of the research day began.

Blocksets
Each blockset was collected in a strict, timed, randomized fashion. Each blockset was considered a

complete and independent unit, equally weighted, and statistically identical to all other blocksets.

Blockset timing structure is defined in Figure 2—figure supplement 2. Each blockset began with a

recalibration block, which resulted in new cursor movement and click decoders for participant T6.

For participants T5 and T7, the movement decoder was held constant and the recalibration block

was simply used to create an updated estimate of the underlying velocity bias. This recalibration pro-

tocol was used to maximize the performance of the data collected in the time-locked blocks that fol-

lowed. Three data blocks were then collected in a randomized fashion, constituting a blockset. Each
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blockset consisted of one block each of three tasks. The three tasks with participant T6 and T5 were

the grid task, the QWERTY task, and the OPTI-II task. With participant T7, the QWERTY task was

substituted with the ABCDEF task, since he had minimal experience with the conventional (QWERTY)

keyboard layout. The task order in each blockset was randomized subject to the constraint that the

two copy typing tasks were always adjacent. This constraint minimized the amount of elapsed time

between the copy typing blocks, in order to minimize any confounding effects on measured typing

rate. The prompted sentence to copy in both keyboard tasks for a given blockset was identical. Fol-

lowing the completion of a blockset, participants were given as long a break (to request a drink

from a caregiver, etc.) as desired before starting the subsequent blockset. Breaks within a blockset

were minimized as best as possible.

Target selection and cursor re-centering
For both participants, selections could be made by holding the cursor over the target for a fixed

period of time (1 s for T6 and T5, 1.5 s for T7). For T6 and T5, leaving a given target area would

reset the hold time counter to 0 – thus they were required to remain over the same target for a full

second to select via holding. For T7, who could only select targets by dwelling on them, selection

used a strategy called ‘cumulative dwell time’ – each target had a separate hold time counter, and

the cumulative time spent over a target counted towards the 1.5 s requirement (i.e., it was not

required that the 1.5 s be contiguous). All hold time counters were reset to 0 after any target selec-

tion. Additionally, T6 and T5 could also select targets using the HMM-based click decoder, which

was typically a faster method of selecting targets. Thus, T6 and T5 had two methods for target

selection.

Participant T7 preferred that the cursor re-center to the middle of the screen after each selection,

which allowed him to better focus on one trajectory at a time. (In contrast, participants T6 and T5

preferred continuous cursor control instead of re-centering, as it allowed them to plan out a series

of keystrokes and achieve faster typing rates.)

For T7, after each selection, the cursor was centered relative to the targets and held in place for

500 ms – during this time, target selection was disabled. This approach minimized the ‘worst case’

path lengths (i.e., eliminated the potential of having to move from one corner of the keyboard to

another while typing a phrase); this is beneficial in the case where instability causes control biases,

which make long trajectories that oppose the bias more difficult. We note that, as re-centering was

completely unsupervised (i.e., it occurred regardless of whether the selection made was correct), it

did not compromise the typing or achieved bitrate measurements in any way.

Grid task
The purpose of this task was to measure performance using information theoretic metrics. In this

grid task (Hochberg et al., 2006; Nuyujukian et al., 2015), the workspace was divided into a 6 � 6

grid of equal gray squares. Each square was selectable, and one would randomly be prompted as

the target when illuminated in green. After a selection was made, a new target was immediately

prompted. This task ran for two minutes (fixed duration).

QWERTY task
The purpose of this task was to measure typing rates using a conventional keyboard layout. In this

task, a sentence was prompted at the top of the screen, and participants were instructed to copy

this sentence as quickly and accurately as possible. Selection methods were identical to that

described in the grid task. This task ended when the participants typed the last letter of the

prompted sentence or two minutes had elapsed, whichever occurred first.

ABCDEF task
The purpose of this task was identical to the QWERTY task, except it was specific to participant T7.

Since he was not very familiar with the QWERTY layout, the letters were rearranged alphabetically

from left to right, top to bottom. This alphabetical ordering allowed T7 to more easily determine

where a given letter was located. The keyboard geometry of the ABCDEF task was identical to that

of the QWERTY task, and the same task timing and prompting was employed as described in the

QWERTY task.
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OPTI-II task
The purpose of this task was to provide a potentially more efficient keyboard layout than the

QWERTY or ABCDEF layouts for a continuous cursor communication interface. The conventional

QWERTY layout is not ideal for selecting letters via continuous cursor navigation. Thus, a more effi-

cient keyboard layout that minimizes the average distance travelled between letters should increase

the typing rate. We used the OPTI-II keyboard layout described in the HCI literature (Rick, 2010) as

an optimized layout for text entry with a continuous cursor. This was used with both participants,

with timings and promptings identical to the QWERTY and ABCDEF tasks. For participant T6, a pro-

gramming error caused the accessible workspace for the OPTI-II task (copy typing) to stop in the

middle of the bottom row of keys (contrary to other tasks, where the accessible workspace extended

past the keyboards).

Metrics
The performance of each task was measured using one of two metrics, depending on the task. Per-

formance on the grid task was measured via achieved bitrate, measured in bits per second, and per-

formance on the typing tasks (QWERTY, ABCDEF, OPTI-II) was measured via correct characters per

minute.

Achieved bitrate
The grid task, representing a stable, memoryless, discrete communication channel with random, uni-

formly-distributed prompted targets, satisfies information theoretic criteria for measuring achieved

bitrate (Nuyujukian et al., 2015). Achieved bitrate is a conservative measure of the actualized

throughput of a communication channel. The achieved bitrate, B, is calculated via the following

equation:

B¼
log2 N� 1ð Þmax S� 2E;0ð Þ

t

where N is the number of targets on the screen, S is the number of selections, E is the number of

errors, and t is the time elapsed. The floor of this value is 0, since bitrate cannot be less than zero.

Note that trials in which the participant timed out and made no selection are not counted in S or E,

but are included in the value for time elapsed. This metric, in bits per second, represents the mini-

mum expected throughput achievable from the system.

Correct characters per minute
Typing rates were measured by calculating the number of correct characters transmitted over time

(correct characters per minute [Bacher et al., 2015]). Correct characters were defined as those that

were not subsequently deleted by the participant using the delete key. This measure, C, is defined

by the following equation:

C¼
max S� 2D; 0ð Þ

t

where S is the number of selections, D is the number of delete key selections, and t is the elapsed

time.

We note that this metric labels typographical errors or spelling errors as correct characters. How-

ever, as it is not clear whether the participant was aware of a given spelling error, we only consid-

ered errors those that were actually deleted. This metric also parallels achieved bitrate, in that it

only measures the net characters transmitted over time.

Quantifying movement suppression
For sessions in which participant T6 was asked to suppress her movements to the best of her abilities

(Figure 4), we first quantified the degree to which movements were suppressed during decoder cali-

bration (Figure 4—figure supplement 1). As mentioned earlier, finger movements were measured

using a dataglove (5DT, Irvine, CA). For each condition (i.e., freely moving vs. suppressed move-

ment), we measured the finger position as a function of time (relative to the starting position for

each trial), and averaged these positions across all trials for a given target direction. To robustly

Pandarinath et al. eLife 2017;6:e18554. DOI: 10.7554/eLife.18554 22 of 27

Research article Human Biology and Medicine Neuroscience

http://dx.doi.org/10.7554/eLife.18554


evaluate the degree of suppression between freely moving and suppressed movement, we com-

pared the time epochs spanning 600–1200 ms after target onset, which was well after movement

was detectable but before movements became more variable across trials (i.e., to perform corrective

movements as T6 approached the target). Movement suppression was only estimated for target

directions in which movement on a given finger was to be expected to avoid singular values (e.g., as

index finger movements were related to control of the horizontal dimension, index finger move-

ments were not compared for the vertical targets where they would be expected to be 0). Data com-

pared are from T6’s trial days 570 (freely moving) and 595 (movements suppressed). We next

quantified the degree to which movements were suppressed during closed-loop BCI control (Grid

task). Individual trials were grouped by the target direction (i.e., the angle between the previous tar-

get and the prompted target for the current trial; eight possible directions) and finger positions

were averaged across all trials of a given direction. Trials that lasted less than 1200 ms were

excluded from the analysis. To ensure that any minute movements were captured, movements were

quantified using the absolute value (rather than the signed value) of the finger position at each time

point relative to the starting position for each trial. Analysis includes all Grid task data from T6’s trial

days 595 and 598 (movements suppressed). Unfortunately, for freely moving sessions, finger posi-

tions were not recorded during closed-loop BCI control, so data are unavailable for the specific com-

parison of finger movements during closed-loop BCI control for freely moving vs. movement

suppressed sessions.

Code availability
Code, which is platform specific and implemented in xPC, may be made available upon request to

corresponding author.
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