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Abstract

By reaching near-atomic resolution for a wide range of specimens,
single-particle cryo-EM structure determination is transforming struc-
tural biology. However, the necessary calculations come at large com-
putational costs, which has introduced a bottleneck that is currently
limiting throughput and the development of new methods. Here, we
present an implementation of the RELION image processing software
that uses graphics processors (GPUs) to address the most computa-
tionally intensive steps of its cryo-EM structure determination work-
flow. Both image classification and high-resolution refinement have
been accelerated more than an order-of-magnitude, and template-
based particle selection has been accelerated well over two orders-
of-magnitude on desktop hardware. Memory requirements on GPUs
have been reduced to fit widely available hardware, and we show that
the use of single precision arithmetic does not adversely affect results.
This enables high-resolution cryo-EM structure determination in a
matter of days on a single workstation.



1 Introduction

With the advent of direct-electron detectors and advanced methods of image
processing, structural characterisation of macromolecular complexes to near-
atomic resolution is now feasible using single-particle electron cryo-micro-
scopy (cryo-EM) (Cheng, 2015; Fernandez-Leiro and Scheres, 2016b). Al-
though this has caused a rapid gain in its popularity, two technological fac-
tors still limit wide applicability of cryo-EM as a standard tool for structural
biology.

First, partly due to the steep increase in demand, access to high-end mi-
croscopes is limited. This is being addressed with acquisition of new equip-
ment in a large number of departments worldwide, as well as the establish-
ment of shared infrastructures (Saibil et al., 2015). Second, processing the
large amounts of data produced by these microscopes requires computational
hardware that is not directly accessible to many labs. Even at larger cen-
tres the computational requirements are so high that cryo-EM now suffers
from a computational bottleneck. The work presented here addresses this
second problem, to the end of drastically reducing the computational time
and investment necessary for cryo-EM structure determination.

A typical cryo-EM data set may constitute hundreds or thousands of im-
ages (called micrographs) of a thin layer of vitreous ice in which multiple
individual macromolecular complexes (called particles) are imaged. Because
radiation damage imposes strict limitations on the electron exposure, micro-
graphs are extremely noisy. Thus, to extract fine structural details, one needs
to average over multiple images of identical complexes to cancel noise suf-
ficiently. This is achieved by isolating two-dimensional particle-projections
in the micrographs, which can then be recombined into a three-dimensional
structure (Cheng et al., 2015). The latter requires the estimation of the
relative orientations of all particles, which can be done by a wide range of
different image processing programs, such as SPIDER (Frank et al., 1981,
1996), IMAGIC (van Heel et al., 1996), BSOFT (Heymann and Belnap, 2007),
EMAN2 (Tang et al., 2007), SPARX (Hohn et al., 2007), FREALIGN (Grigori-
eff, 2007), xMIPP (Scheres et al., 2008), RELION (Scheres, 2012a), or SIMPLE
(Elmlund and Elmlund, 2012).

These programs also need to tackle the problem that any one data set
typically comprises images of multiple different structures; purified protein
samples are e.g. rarely free from all contaminants. Multiple conformations,
non-stoichiometric complex formation, or sample degradation are all possi-
ble sources of additional data heterogeneity. The classification of heteroge-
neous data into homogeneous subsets has therefore proven critical for high-
resolution structure determination and provides a tool for structural analysis



of dynamic systems. However, identifying structurally homogeneous subsets
in the data by image classification algorithms adds computational complex-
ity, and often increases the computational load dramatically.

An increasingly popular choice for processing cryo-EM data is an em-
pirical Bayesian approach to single-particle analysis (Scheres, 2012b) imple-
mented in the computer program RELION (Scheres, 2012a). In the under-
lying regularised likelihood optimisation algorithm, optimal weights for the
contribution of different Fourier components to the determination of ori-
entations, as well as to the three-dimensional reconstruction(s), are learnt
from the data in an iterative manner, thereby reducing the need for user
input. In addition, RELION has proven highly effective in classifying a wide
range of structural variation, such as conformational dynamics within pro-
tein domains (Bai et al., 2016), or of very small sub-populations in large
data-sets (Ferndndez et al., 2013). Unfortunately, the regularised likelihood
optimisation algorithm that underlies these calculations is computationally
demanding. We estimate that a recent 3.7 A structure of a yeast spliceosomal
complex (Nguyen et al., 2016) required more than half a million CPU hours
of classification and high-resolution refinement. Computations of this magni-
tude require the use of high-performance computing clusters with dedicated
staff, and restrict the exploration of new image processing schemes.

The introduction of hardware accelerators, such as graphics processors
(GPUs), has recently transformed other scientific fields where computation
was a bottleneck. To exploit this type of hardware, substantial redesigns
of algorithms are required to make many independent tasks simultaneously
available for computation, which is known as exposing (low-level) parallelism.
However, the possible gain is equally substantial; together with commodity
hardware it has been a revolution e.g. for molecular dynamics simulations
(Salomon-Ferrer et al., 2013; Abraham et al., 2015), quantum chemistry
(Ufimtsev and Martinez, 2008), and machine learning (Jia et al., 2014).

GPU acceleration of computationally expensive algorithms has also been
performed in other cryo-EM software, with varying success and subsequent
impact in the field. Many attempts have achieved significant improvement in
performance through acceleration of only a few subroutines (Li et al., 2010;
Tagare et al., 2010; Li et al., 2013; Hoang et al., 2013), relieving major bot-
tlenecks. The overall software architecture and data structures were however
not modified to better suit the hardware. In contrast, other tools were de-
signed or fundamentally reformulated with a particular hardware in mind (Li
et al., 2015; Zhang, 2016); this tends to lead to more substantial long-term
performance benefits, and for some steps the accelerated implementations
have fully replaced CPU codes. Historically, RELION (like most alternatives)
has scaled to the large resources it needs by using higher-level parallelism,
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where computational tasks are divided into subsets of particle images in each
iterative refinement step. However, lower-level core computations on individ-
ual particle images in RELION have remained serialised since its introduction
more than four years ago.

Here, we describe a new implementation of the regularised likelihood op-
timisation algorithm in RELION that uses GPUs to address its computational
bottlenecks. We have chosen to implement our increased parallelism in CUDA,
a programming language provided by NVIDIA. The CUDA language currently
dominates the GPU computing market, and provides a stable programming
environment with a rich C++ interface. We also utilise a number of libraries
provided within the CUDA framework, such as currT for fast Fourier trans-
forms (FFTs), and CUB/thrust for sorting and other standard functions.
In addition to high-end professional cards there is wide availability of cheap
consumer hardware that supports CUDA, which provides outstanding value
for many research groups. However, the acceleration and parallelisation ap-
proaches are general and should be possible to port to other architectures in
the future.

The present acceleration of RELION addresses the most computationally
intensive steps in a typical image processing workflow. This includes clas-
sification of data into structurally homogeneous subsets (2D or 3D classifi-
cation) and high-resolution refinement of each homogeneous such set of par-
ticles (3D auto-refine). In addition, we describe an improved algorithm for
semi-automated selection of particles from micrographs (Scheres, 2015), this
too targeting GPUs. Memory requirements have been reduced to fit widely
available consumer graphics cards, and we show that the current adaptation
to use single precision floating-point arithmetic does not cause loss of resolv-
able detail in the final structures. These developments enable high-resolution
cryo-EM structure determination in a matter of days on individual worksta-
tions rather than relying on large clusters.

2 Methods

2.1 Regularised likelihood optimisation

The regularised likelihood optimisation in RELION uses an Expectation-Maxi-
mization algorithm (Dempster et al., 1977) to find the most likely 3D density
map for a large set of 2D particles images with unknown orientations, un-
der the prior expectation that the 3D map has limited power in the Fourier
domain. This iterative algorithm involves two fundamental steps at every
iteration. In the expectation, or E-step, one calculates probability distribu-



tions for the relative orientations of all particles based on the current estimate
of the 3D map. In the subsequent maximization, or M-step, one updates the
estimate for the 3D map. Intuitively, these two steps represent alignment of
the particles with respect to a common 3D reference, and reconstruction of
a new reference map, respectively. The algorithm is typically started from
an initial 3D reference map at low resolution, and is guaranteed to increase
the likelihood of the 3D map given the data and the prior at every iteration,
until converging onto the nearest local minimum. In the presence of struc-
tural variability in the data set, multiple 3D reference maps, or 3D classes,
can be refined simultaneously. In this case, the class assignments of the par-
ticles are not known either. RELION also allows the refinement of multiple
2D references, or 2D classes. In that case, only in-plane orientations are
sampled.

Within a single iteration, the E-step requires four major computational
stages (Fig. 1): (i) The current 3D reference map is projected along many
orientations; (1) the difference between these reference projections and every
particle image is calculated for each orientation and for each sampled trans-
lation; (#77) all these differences are converted to probability-weights; and (iv)
those weights are used to update a running sum of the back-projected particle
images in 3D Fourier space. In practice, to limit the number of operations,
stages (4) and (ii) are performed twice for every particle. A first pass ex-
amines all orientations using a relatively coarse orientational sampling, and
a second pass re-examines the regions of orientational space with significant
probabilities at an increased sampling density. Still, millions of orientations
and translations are typically compared for each particle at every iteration.
Converting the resulting differences to weights is a relatively cheap operation
as each image-orientation pair at this stage is represented by a single scalar
value. The back-projection in operation (iv) is more demanding since it is
again necessary to work with all pixels of each image in multiple orienta-
tions. After the E-step has been evaluated for all (typically tens to hundreds
of thousand) particles, in the M-step the running sum in 3D Fourier space is
transformed into an updated 3D reference map for the next iteration. The
corresponding reconstruction algorithm is expensive in terms of computer
memory, but it typically needs orders of magnitude less time than the E-step
because it is only performed once for every iteration. Therefore, operations
(), (i) and (iv) of the E-step have dominated execution time in previous
versions of RELION.
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Figure 1: (A) Operations and the real vs. Fourier spaces used during (B) image
reconstruction in RELION. Micrograph input and model setup use the CPU, while
most subsequent processing steps have been adapted for accelerator hardware. The
highlighted orientation-dependent difference calculation is by far the most demand-
ing task, and fully accelerated. Taking 2D slices out of (and setting them back into)
the reference transforms has also been accelerated at high gain. The inverse FFT
operation has not yet been accelerated, but uses the CPU.

2.2 Extracting parallelism for accelerators

Modern accelerator processors - such as GPUs - achieve very high floating-
point performance by incorporating a large set (thousands) of very simple and
streamlined functional units instead of the handful advanced general-purpose
cores in a normal (CPU) processor. In previous versions, RELION has scaled
over multiple CPU cores by using separate processes for independent particle
images. GPUs however require much broader low-level parallelism to increase
performance substantially. Our implementation of RELION therefore required
a reformulation to expose additional available parallelism. Since most of the
computation time is spent on the E-step for a typical application, we focussed
our acceleration efforts on this part. By treating multiple reference maps,
all relative image translations and orientations, and even individual image
pixels as parallel tasks (Fig. 2), we created sufficient low-level parallelism to
provide outstanding performance on accelerator hardware such as GPUs.
Formulating and enabling the available parallelism in RELION for GPUs
did present specific challenges. In operations (i) and (i) of the E-step,
it would for instance require very large amounts of fast memory to pre-
calculate projections of the 3D reference maps for all examined orientations.
Pre-calculation could potentially increase re-use of data on the GPU, but
it would impose severe limitations on the number of simultaneously exam-
ined references, input image sizes, and sampling granularity. Instead, like
the CPU code, our implementation stores a two-fold oversampled Fourier
transform of each reference in GPU memory, and 2D slices (along any orien-
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Figure 2: FExtensive task-level parallelism for accelerators. While previously RE-
LION only exploited parallelism over images (left), in the new implementation
classes and all orientations of each class are expressed as tasks that can be sched-
uled independently on the accelerator hardware (e.g. GPUs). Even individual pizels
for each orientation can be calculated in parallel, which makes the algorithm highly
suited for GPUs.

tation) are extracted only when needed. This alleviates limitations imposed
by hardware, and makes it possible to improve performance through the use
of so-called GPU teztures. Textures store data that require fast lookup, and
the corresponding texture units provide support for performing non-integer
pixel interpolation of texture data in a single instruction with only marginal
loss of precision. In graphics applications, textures are used to efficiently
rescale image data. In RELION, they turn out to be well-suited for the re-
sampling operations when taking slices from the 3D Fourier transform. The
on-the-fly extraction of 2D Fourier slices is combined with the very broad
parallelism of calculating squared differences between all pixels of all particle
images and the reference projections in all orientations and all translations.
For the technically interested reader, details of how we exploit this parallelism
in our implementation of the squared difference calculation are presented in
Appendix I. Technical details of how we also accelerated operation (7v) of the
E-step, the back-projection of 2D images into the oversampled 3D Fourier
transform, are presented in Appendix II. When combined, the E-step can
now be evaluated in a fraction of the runtime previously needed.

Finally, like most scientific software, the CPU version of RELION has
historically used double precision, and merely recompiling in single does not
improve performance. However, all GPUs provide higher performance for
single precision, and the dedicated texture units can typically only perform
reduced-precision operations. For these reasons we also reformulated our
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Figure 3: Semi-automated particle picking in RELION-2. The low-pass filter ap-
plied to micrographs is a novel feature in RELION, aimed at reducing the size and
execution time of the highlighted inverse FFTs, which accounts for most of the
computational work. In addition to the inverse FFTs, all template- and rotation-
dependent parallel steps have also been accelerated on GPUs.

implementation of the E-step to be less precision-sensitive, making it possible
to execute these calculations in single precision without adverse effects on the
final results. As we did not accelerate the M-step, this part of the algorithm
remains on the CPU and is still executed in double precision.

2.3 Semi-automated picking

RELION also implements a template-based particle selection procedure, which
calculates a probability measure (the R-value) for each pixel in the micro-
graph to signify the likelihood that it is the location of any of the provided
templates (Scheres, 2015). The R-value map of a micrograph considers all
possible rotations of each template, and is subsequently used in a peak-
search algorithm that locates particles within the original micrograph (Fig.
3). These calculations are performed in Fourier space, where they are highly
efficient (Roseman, 2003). In fact, they are so fast that their execution time
becomes negligible compared to the time spent performing FFTs to trans-
form image objects between real and Fourier spaces. Consequently, even
though reference templates are also treated as independent tasks to increase
parallelism in the GPU version, a much larger gain is found at the level of
template rotations, through parallel execution of FFTs. For example, when
using H-degree incremental template rotations, 72 such inverse FFTs are now



performed concurrently on the GPU through the cuFFT CUDA library. The
size of these FFTs is now also padded automatically, since substantial per-
formance penalties can occur if the transform size includes any large prime
factors.

3 Results

3.1 Acceleration of regularised likelihood optimisation
3.1.1 Performance

The performance of our implementation on a workstation equipped with
modern GPUs can exceed that of hundreds of CPU cores (Fig. 4). This is
most prominent for increasing numbers of pixels, orientations and classes,
due to the increased low-level parallelism RELION-2 has been designed to
use efficiently. Therefore, calculations where many classes and orientations
need to be sampled, e.g. 3D classifications over multiple classes and with
fine sampling of orientations, experience the greatest gain from the acceler-
ation (Fig. 4). Traditionally such large problems have required cluster-size
resources with high-performance interconnects for fast communication. As
seen in the performance benchmarks, RELION-2 makes it possible to run
many of these calculations even on workstations or low-cost desktop solu-
tions (Fig. 4). GPU hardware evolves rapidly, but appendix III contains a
few recommendations about the solutions we currently think are most cost-
efficient. For sufficiently large computational problems, RELION’s processing
time scales linearly with increased number of classes, but since the extra
calculations are much faster with the GPU-enabled version the relative ad-
vantage is larger the more classes are used (Fig. 4D). In practice we believe
this will make it more common to use very large numbers of classes in 3D clas-
sification. Further scrutiny reveals that the calculations still performed on
the CPU actually dominate both the execution and scaling even for the GPU
version (Fig. 4F), which indicates new bottlenecks are now limiting scaling -
we intend to focus on these parts of the code for future improvements.

3.1.2 Limited precision & accuracy

RELION has used double precision arithmetic since its first release in order
to be as accurate as possible, at the cost of increased memory requirements.
While there are professional GPUs with good double precision performance,
the consumer market is dominated by visualisation and gaming applications,
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Figure /: RELION-2 enables desktop classification and refinement using GPUs.
EMPIAR (Tudin et al., 2016) entry 10028 was used to assess performance, using
refinements of 105k ribosomal particles in 3602-pizel images. (A) A quad-GPU
workstation easily outperforms even a large cluster job in 3D classification. (B)
In 2D classification, the GPU desktop performs slightly better in the first few iter-
ation and then provides performance equivalent to the 280 CPU cores. (C) Total
time for 25 iterations of 3D classification for a few different hardware configura-
tions. (D) Additional classes are processed at reduced cost compared to CPU-only
execution, due to faster execution and increased capacity for latency hiding. (E)
With increasing number of classes, the time spent in non-accelerated vs accelerated
execution increases. (F) The workstation also beats the cluster for single-class re-
finement to high resolution, despite the generally lower degree of parallelism. This
is particularly striking for the finer exhaustive sampling at 3.8° due to the GPU’s
ability to parallelise the drastically increased number of tasks.
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and for this reason cheap hardware only provides good performance for sin-
gle precision. Even for professional hardware, the performance is better with
single precision, although the difference is smaller. This makes it highly de-
sirable to use single precision arithmetics wherever possible. In addition to
much better floating-point throughput, single precision calculations reduce
the memory requirements by a factor two, and make it possible to employ
textures for image rotation. The relative advantage of single precision can
thus be much higher on GPUs compared to CPUs. Because the required
precision depends on the algorithms used in the application, part of the de-
velopment of RELION-2 involved the evaluation of reconstructed quality when
using single precision. We evaluate this primarily by examining the agree-
ment of refinements results, characterising both the reconstructed volume
and the image orientation assignment statistics. As image orientations are
analogous to a location and rotation on the unit sphere, we compared re-
finement results of the EMPIAR 10028 dataset by the distribution of angular
differences for all images. Two double-precision CPU refinements (using dif-
ferent random seeds) produce distributions where 81% of images fall within
1° of the other. Given that this distribution is modulated by the sine of
the angle, this is a very close agreement. The single-precision GPU imple-
mentation finds 82% of images within the same 1° tolerance. (Figure 5 -
figure supplement 1). In other words, the differences due to random seeds
are at least as large as any systematic variation between the CPU and GPU
versions. While a small loss of precision was observed e.g. in the fast interpo-
lation (texture) intrinsics, the assignments of image orientations are similar
enough to not influence the final reconstruction quality (Fig. 5). In contrast,
single-precision execution of the iterative gridding algorithm that underlies
the reconstruction in the M-step (Scheres, 2012a) did exhibit a notable de-
viation from the double-precision version when first tested. Therefore, we
opted for a hybrid implementation of the algorithm: The computationally
demanding slice projections, probability calculations, and back-projections
in the E-step are performed in single precision on the GPU, while the recon-
struction in the M-step remains in double precision on the CPU. Because the
M-step is partially responsible for the new bottlenecks apparent in Fig. 4E
this is a candidate for additional future optimisation, but for now the hybrid
approach provides a good compromise.

3.1.3 Disk & memory considerations

RELION has traditionally required large amounts of memory. Fortunately its
peak use is however not during the accelerated, computationally most inten-
sive, parts of the algorithm. Rather, memory use peaks during the M-step,
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Figure 5: The GPU reconstruction is qualitatively identical to the CPU version.
(A) A high-resolution refinement of the Plasmodium falciparum 80S ribosome using
single precision GPU arithmetic achieves a gold-standard Fourier shell correlation
(FSC) indistinguishable from double precision CPU-only refinement (previously de-
posited as EMD-2660). The FSC of full reconstructions comparing the two methods
shows their agreement far exceeds the recoverable signal (grey), and as shown in
Figure 5 - figure supplement 1 the variation in angle assignments match the dif-
ferences between CPU runs with different random seeds. (B) Partial snapshots of
the final reconstruction following post-processing, superimposed on PDB ID 3J79
(Wong et al., 2014).

13



which is executed on the CPU using the gridding reconstruction algorithm
mentioned above. The amount of available GPU memory still remains a lim-
itation, as it determines the capacity for storage of the oversampled Fourier
transforms of one or more references. This is of particular concern for larger
and higher-resolution structures, which require more memory to be faithfully
represented. When resolving detail at the Nyquist frequency, due to a twofold
oversampling (associated with gridding during reconstruction), RELION re-
quires memory corresponding to twice the cube of the image dimension. For
example, when using 4002-pixel particle images, the required grid size is 8003,
which becomes ~2GB per class, since each value requires 4 bytes in single
precision. Moreover, as the reconstructed object also needs to be accommo-
dated, this number is effectively multiplied by 2.5. In practice, memory use
with image sizes up to 400? indicate that at most 6 GB of GPU memory is
needed to perform refinement to Nyquist (Fig. 6). Classification using 3D
references is usually performed at resolutions much lower than the Nyquist
limit, and for this reason its memory requirements are typically much lower.

To enable efficient evaluation and good scaling on GPUs, several new
methods to manually manage data efficiently have been implemented. Lower
levels of parallelism are coalesced into larger objects using customised tools,
which results in more efficient use of memory (see appendices I-I1 for details).
In addition, because of the much improved performance, multiple tasks have
become limited by how fast input data can be read from disk. Therefore, we
now find it highly beneficial to explicitly cache data on local solid state de-
vices (SSDs), as has also been observed for GPU-accelerated CTF estimation
(Zhang, 2016). To allow this in a straightforward way, RELION-2 features the
ability to automatically copy data sets to fast local disks prior to refinement,
which further increases performance during less computationally intensive
steps, such as 2D classification.

3.2 Acceleration of automatic particle picking
3.2.1 Low-pass filtering of micrographs

Even after parallelisation and acceleration on GPUs, the cross-correlation-
based particle selection in RELION is dominated by computing many large
inverse FFTs (Fig. 3), as has been observed previously for similar methods
(Castano-Diez et al., 2008). Reducing their size is thus the most straight-
forward way to further improve execution performance. Reference templates
are typically subject to low-pass filtering, and for this reason we investigated
the possibility to apply a similar filtering to all micrographs, which reduces
computations by discarding high-frequency information.

14
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We found little difference in the particles selected when discarding reso-
lution information in micrographs beyond that of search templates. While
intuitively straightforward, this conclusion drastically reduces the size of FF'T
grids and subsequent computations, which provides large acceleration at vir-
tually no quality loss. The low-pass filtering also significantly reduces the
amount of memory required for particle selection, which permits parallelism
to target hardware like desktop workstations more efficiently.

3.2.2 Autopicking performance

We tested both picking speed and quality of picked particles of RELION-2. In
an initial test, a single 4096%-pixel micrograph containing ribosomes at 1.62
A /pixel was processed against 8 templates with 5 degree angular sampling
and no low-pass filtering. This took 675s to evaluate on a CPU-only work-
station (i7-5960X, using 1 thread merely to provide a per-core performance).
When applying low-pass filtering to 20A, this time is reduced to 39s, i.e. by
a factor ~17. When using a single consumer-level GPU (GTX 1080) with
a single CPU thread, execution is further reduced to just 0.73s, or an addi-
tional factor ~54. Each GPU added to the workstation can therefore now
process ~940 micrographs in the same time previously required to process
just 8 micrographs (1 per available core) as shown in Fig. 7.

We further evaluated the quality of filtered selection according to the
p-galactosidase benchmark (EMPIAR entry 10017) used in the original im-
plementation in RELION-1.3 (Scheres, 2015). This data set consists of 84
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Figure 7: Low-pass filtering and acceleration of particle picking. (A) Ribosomal
particles were auto-picked from representative 40962-pizel micrographs collected at
1.624 /pizel using four template classes, showing near-identical picking with and
without low-pass filtering to 20A. The only differing particle is indicated in orange,
and likely does not depict a ribosomal particle. (B-C) Despite near-identical par-
ticle selection, performance is dramatically improved. (D) Filtering alone provides
almost 20-fold performance improvement on any hardware compared to previsos
versions of RELION, and when combined with GPU-accelerated particle picking the
resulting performance gain is more than two orders of magnitude using only a

single GPU (GTX 1080).
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Code Filter + picked Recall FDR Time Performance in

(A) particles (s/micrograph) CPU core units
CPU  none 54,301 0.88 0.34 1,227 1
GPU  none 54,325 0.88 0.34 10 122
GPU 5 55,629 0.90 0.34 5.8 211
GPU 10 55,886 0.90 0.34 2.1 o84
GPU 15 56,450 0.92 033 1.6 766
GPU 20 57,361 0.95 033 1.3 943

Table 1: Quality and speed of autopicking for the 5-galactosidase benchmark. Com-
paring the CPU version with the GPU version using increasing levels of low-pass
filtering yields progressively higher recalls at similar FDRs. The GPU wversion
yields identical results to that of the CPU wversion, but at a much reduced compu-
tational costs. Filtering does not depend on GPU-acceleration, and will perform
similarly using only CPUs.

micrographs of 40962 pixels (1.77 A /pixel), and comes with coordinates for
40,863 particles that were manually selected by Richard Henderson. The
latter were used for comparison with our autopicking results, with a center
cutoff distance of 35 pixels for particles to be considered identical (Tab. 1).
Filtered selection did not decrease the quality of the results, but provided
a just-so-slightly increased recall without increasing the false discovery rate
(FDR, see e.g. Langlois and Frank (2011) for definitions of recall and FDR).
When filtering and GPU-acceleration are combined, a single GPU provides
roughly 120 times the performance of an 8-core desktop, and the desktop can
easily be equipped with quad GPUs for about 500x performance gain. In fact,
similarly to the regularised likelihood optimisation, the semi-automated par-

ticle picking can become limited by disk access unless data is read from an
SSD.

3.3 A complete workflow for (S-galactosidase

To illustrate the impact of our GPU implementation and show how it can
alter practical work, we chose to re-analyse the EMPIAR-10061 dataset of (-
galactosidase (Bartesaghi et al., 2015) using RELION-2. This represents the
largest presently available dataset in the EMPIAR database, and provides a re-
alistic challenge. We performed an entire processing workflow, including ini-
tial beam-induced motion correction in UNBLUR (Grant and Grigorieff, 2015),
CTF estimation in Getf (Zhang, 2016), and finally RELION-2 was employed
for automated particle picking, 2D and 3D classification, movie-refinement,
particle polishing (Scheres, 2014) and high-resolution auto-refinement on a
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Figure 8: High-resolution structure determination on a single desktop. (A) The re-
sulting 2.2 A map (deposited as EMD-/116) shows excellent high-resolution density
throughout the complex. (B) The most time-consuming steps in the image process-
ing workflow. GPU-accelerated steps are indicated in orange. The total time of
image processing was less than that of downloading the data. (C) The resolution
estimate is based on the gold-standard FSC after correcting for the convolution
effects of a soft solvent mask (black). The FSC between the RELION map and the
atomic model in PDB ID 5A1A is shown in orange. The FSC between EMD-2984
and the same atomic model is shown for comparison (dashed gray).

single workstation with four GTX 1080 cards. Calculating a map to 2.2 A
resolution (Fig. 8A) took a few days - comparable to, if not faster than, the
time required acquire this amount of high-quality data. Figure 8B shows an
overview of the most computationally demanding steps during this process-
ing. The parts of the workflow that have been GPU-accelerated no longer
dominate execution, but this exposes other new bottlenecks. In particular,
steps that involve reading large movie files from disk become problematic.
We also note that due to the rigid nature of the [-galactosidase complex
used for this benchmark, only a single 3D classification was performed. This
is not representative for many other use cases: typically 3D classification is
repeated multiple times to identify, sort, and isolate structural heterogeneity.
In such a scenario, the impact of the GPU acceleration is even larger, as in-
creased or multiple 3D classifications would still not dominate the complete
workflow.

4 Discussion
We present a GPU-enabled implementation of RELION-2, as a first step to

address current and future needs for large and expedient computations in the
field of cryo-EM structure determination. The principal benefits drawn from
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the presented work are twofold. First, the nature of progress in scientific
applications is to continually re-evaluate and examine data in many different
ways. With ease of re-processing data, the threshold for trial, error and suc-
cessive improvement of existing methods is now markedly lowered. Second,
the order-of-magnitude speedups make it possible to get by with much less
hardware for cryo-EM processing, in most cases even desktops. This removes
a computational bottleneck for large labs, and enables any group to perform
their own reconstruction without access to supercomputers.

In the next few years, larger data sets and image sizes are expected, as
well as new methods that require expedient processing of large data sets. The
large reduction in computational costs opens up the possibility to perform
more ambitious computational analyses without increasing the investments.
For example, the favourable scaling of performance we observed for multi-
class refinements will make it feasible to use many more classes than was prac-
tical before, which will lead to better descriptions of conformational diversity
in flexible molecules. Additionally, with even faster algorithms and hardware
it might soon be possible to perform highly automated, on-the-fly, structure
determination while data acquisition is ongoing. In anticipation of these
developments, RELION-2 already implements a pipelined approach for auto-
mated execution of pre-determined image processing workflows (Fernandez-
Leiro and Scheres, 2016a).

While the new GPU implementation has removed many of the previous
computational bottlenecks in RELION, the large speedup has exposed several
new areas of the code that can now dominate execution time, such as data
input /output and the reconstruction step during iterative image refinement.
Although these parts of the algorithm were previously insignificant, in some
cases they now collectively account for roughly 50% of total execution time.
These parts of the code will see benefit from further modifications. Future
work will e.g. strive to further generalise parallelism such that performance is
less dependent on the type of refinement performed, as sufficient parallelism
is always available within the RELION core algorithm. Memory requirements
on the GPU are also expected to be reduced further, so that larger image
sizes and more classes can be handled to higher resolution.

With the current implementation, cryo-EM structures to near-atomic res-
olution can be calculated in a matter of days on a single workstation, or
hours on a GPU-cluster. Nevertheless, the aim of the current adaptations
is not to present a final solution to computational needs in RELION; while
the present version achieves excellent speedup on a wide range of low-cost
systems, we expect the acceleration to improve both in performance and
coverage. Generalising the low-level parallelism described here to vectorised
CPU calculations, and possibly an open GPU language like OpenCL, will
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constitute little more than translating this parallelism to new instructions.
This is something we intend to pursue in the future. As such, RELION-2
represents a new incarnation of an existing algorithm, which is intended to
be developed far further in the following years. Meanwhile, we hope that the
current implementation will have as much impact in the broader community
as it is already having in our labs.

5 Materials and Methods

5.1 Availability

RELION 2 is both open source and free software, distributed under the GPLv2
licence. It is publicly available for download through http://www2.mrc-
lmb.cam.ac.uk /relion.

5.2 Data sets & hardware specifications

The ribosome data used for the 3D classification and refinement in Figs. 4
and 5 correspond to EMPIAR entry 10028 (Wong et al., 2014). For autopick-
ing, EMPIAR entry 10017 was used (Scheres, 2015). The complete workflow
for B-galactosidase used EMPIAR entry 10061 (Bartesaghi et al., 2015), and
the reconstructed map was deposited in the EMDB (EMD-4116). In all
cases where different hardware and/or software implementations were com-
pared, identical refinement parameters were used, including the random seed
provided to RELION. In cases where identical hardware and software were
repeatedly used to examine variability, different seeds were used. The non-
deterministic scheduling and summations of GPU-enabled execution can in-
troduce some minor noise in results, but all runs achieve convergence and
variations in final results are well within estimated errors and resolution of
the raw data.

The acceleration in RELION-2 works with any NVIDIA GPU of compute-
capability 3.5 or higher, which covers all models launched the last three years.
Version 7.0 of the CUDA toolkit is also required, and was used for all presented
results. CPU performance was benchmarked with a cluster of 10 compute
nodes equipped with dual Xeon E5-2690v4 CPUs (2x14 physical cores, for
a total of 280 cores) running at 2.6GHz with 128GB memory. While we
refer to the physical core count when describing hardware, hyperthreading
was enabled and used for all benchmarks (i.e., starting 560 threads on the 10
nodes) since it improves performance on the CPU side slightly. Two different
workstations were used for GPU benchmarks. First a cost-efficient desktop
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with a single Core i7-6700K (four cores, 4GHz), dual GTX 1070 GPUs, and
a H00GB SSD disk. Second, a workstations equipped with a single Core i7-
5960X CPU (8 cores, 3GHz), four GTX 1080 GPUs, and either a single SSD
or two configured in RAIDO for higher bandwidth. Both workstations had
64GB of memory, and two CPU threads were used for each GPU to improve
utilisation. In all cases hyper-threading was utilised to the fullest extent
possible to improve CPU performance.

5.3 [-galactosidase image processing

Super-resolution 8k x 8k micrograph movies with 38 frames were submit-
ted to initial beam-induced motion correction using UNBLUR (Grant and
Grigorieff, 2015). The resulting average micrographs were used for CTF es-
timation in Getf (Zhang, 2016). Autopicking with six templates yielded an
initial data set of 130,375 particles, which were subjected to reference-free
2D classification using 200 classes. This initial classification was done using
4x downscaled particles (with a pixel size of 1.274 A and a box size of 192
pixels). Selection of the 75 best classes resulted in 120,514 particles. All
subsequent calculations were performed using 2x downscaling (resulting in a
pixel size of 0.637 A and a box size of 384 pixels). The selected particles were
subjected to an initial 3D auto-refinement that used PDB ID 3I3E (Dugdale
et al., 2010) as an initial model. Subsequent movie-refinement (with a run-
ning average of 7 movie frames and a standard deviation of 2 pixels on the
translations) was followed by particle polishing (using a standard deviation
of 1000 pixels on the inter-particle distance). The resulting shiny particles
were submitted to a single round of 3D classification with exhaustive 7.5-
degree angular searches and eight classes. Selection of the seven best classes
yielded a final data set of 109,963 particles, which were submitted to 3D auto-
refinement. The final resolution was estimated using phase-randomisation to
account, for the convolution effects of a solvent mask on the FSC between
the two independently refined half-maps (Chen et al., 2013). This mask
was generated by binarisation of a 15 A low-pass filtered version of the re-
constructed map, with addition of a five-pixel wide cosine-shaped soft edge.
FSC curves between the model and the solvent-masked map were calculated
with relion_image_handler. The same soft solvent mask was also used for
the calculation between EMDB-2984 and the atomic model.
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I Difference calculation

Exhaustive coarse sampling

To align each particle image against a reference model, RELION performs
an exhaustive grid search of a large number of reference model projections
against a number of image translations. In our implementation, this difference-
calculation kernel is by far the most significant computational load during
classification and refinement. The computations are performed in Fourier
space (Fig. 1), where projections are interpolated slices of the Fourier trans-
form of the reference model. The tri-linear interpolation of the Fourier com-
ponents performed during extraction of the Fourier-volume slice is both com-
putationally heavy, and has significant latency associated with reading data.
This is despite the use of texture objects, which use a dedicated cache and
specialised storage formats. To improve memory usage, it is important to
reuse the sliced data in the kernel. The maximum number of parallel tasks
within this kernel is P x T' x C, where P is the number of orientations, T’
the number translations, and C' the number of Fourier components (pixels).
However, reuse of sliced data from the reference model requires at least one
synchronisation and data communication within the P groups of processes
comparing translations with a common Fourier slice. To avoid performance
penalties, we make sure all such groups are executed in the same thread-block
to enable fast communication through shared memory.

The limitations in shared memory size are circumvented by splitting the
reference slice into chunks of components (pixels) that are loaded separately,
the management of which does however create further overhead. We fur-
ther improve performance by grouping reference orientations (in groups of
P, slices) to also enable reuse of translated image components. The number
of completely parallel tasks is then in fact reduced, which may limit perfor-
mance by potentially not saturating the hardware with a sufficient number
of independent tasks. However, this reduction in turn reduces the number of
reads of the Fourier transform of the particle image. This, and the reuse of
translated components, ultimately provided a significant performance boost.

The described protocol was implemented by dividing the kernel into two
stages, where reference data is prepared in the first stage and then reused
as much as possible in the second. Fig. 9 illustrates this setup in detail.
The two arbitrary parameters N and F, can be tuned to balance the shared
memory size with the reuse of the translation intermediates. To avoid overfit-
ting these parameters to benchmarking systems, we have selected values that
yield a suitable minimum required shared memory size for typical available

23



Initiate kernel with ceil(P/Ps) blocks and N threads
]

| | |
Thread-block for Thread-block for Thread-block for
ref. slice 1+ P, ref. slice P+1-2P, ref. slice P-P+1—+P

v
< 1
Thread 1 Thread 2 Thread N Iteration i
> ol PRSIOE |
I 1 f
| Comp. i XN+1, comp. iX N+2, comp. i XN+ N of ref. slice 1
! | | |
1 < Comp. i XN+1, comp. iX N+2, comp. i XN+ N of ref. slice 2
5 | | |
] oo
15 : + %
! i i i
: Comp. : XN+1, comp. z;><N+2, comp. % I><N+N of ref. slice Po Output
< 1  —SPS ] results &
Fetch, interpolate and write to shared memory .
exit kernel
——————————————————————————————— —_——
Stage B A
<«— Iteration pxn
Thread Apply translation 1 to Compute difference to ——=—
groupl [~ comp.n of input image pixel n in reference slice p ——=—

h d Atomic summation
provns [ A traton 2o e Capnte im0 - of diferences nto
group 2 b P g P 4 | shared memory
Thread g Apply translation T to Compute difference to %
group T comp. n of input image ———— pixel n in reference slice p

Figure 9: Computational flow in difference calculation kernel. The kernel is ini-
tiated with ceil(P/Py) thread-blocks and N threads, where P is the total number
of projections. The work flow of a thread-block in each iteration i is divided into
two stages. In stage A the N pixels of Py reference slices are fetched through
texture memory, interpolated, and stored in shared memory. This data is then
erhaustively reused in stage B, where groups of threads compute the differences to
the corresponding translated image components. Individual threads within a group
work with different image components, n, of each reference slice, p. Collectively
all threads iterate through the N components of each reference slice, for a total of
N x Py components for each iteration i. The final result is reduced back into shared
memory through atomic reduction operations. All image components are covered
as i goes from 1 to ceil(C'/N), where C is the total number of Fourier components.
A reduced sum of differences for each pair of orientation and translation is written
to global memory prior to the kernel exiting.
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hardware.

Sparse fine sampling

Following the exhaustive search of orientations described above, RELION per-
forms a second, fine-grained, search of the orientations which contributed
most to the total alignment weight. In the majority of cases this constitutes
a more sparse operation, as a few orientations and/or classifications are typ-
ically dominating. If one were to invoke the same kernel in this case, many
thread-blocks would contribute insignificantly or even perform null work. We
therefore chose to specialise this as a separate kernel, to reach better efficiency
and stay within hardware requirements under sparse but fine sampling. The
fine-grained search therefore proceeds through a preparatory stage wherein
the significantly contributing combinations of reference orientations and im-
age translations are divided into jobs (see Fig. 10). Lists of the relevant
orientations and translations are also created. A specialised kernel is then
provided with this list of jobs, and invoked in parallel to execute them in-
dependently. Jobs are also created to reuse unique information (a reference
slice), and minimise overhead associated with reading relevant translation
indices from high-latency global memory by using sequential translations
within each job. See fig. 10 for an in-depth description of this implementa-
tion.

II Back-projection

The calculated weights for different orientation of the particle image are used
to back-project the image data into a 3D volume (Fig. 11A). This subroutine
takes a comparably small amount of 2D data as input and outputs it to a
large container of 3D data, made up of voxels, elements much like pixels in
an image. Each image pixel contributes to eight voxels through a tri-linear
interpolation.

Two fundamentally different implementations were explored for this task,
using either gather or scatter memory access patterns (Fig. 11B). The issue
of parallel processes writing to the same memory position simultaneously is
avoided in the gather approach by restricting subsets of positions in the out-
put to individual processes. In the scatter approach, on the contrary, write
clashes are handled with atomic writes, where memory positions are reserved
just in time prior to the write operation. This extra set of operations have an
overhead and can become a considerable performance issue in regions with
many clashes, e.g. close to the origin. However, the scatter approach enables
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Figure 10: A dedicated kernel function performs the targeted fine-grained erami-
nation of the most significantly matching regions during image alignment against
a reference model. The oversampling of each of five fitting dimensions during
fine-grained search renders storage of all possible weights intractable, so input and
output data are stored with explicit mapping arrays. These are read by the kernel
function thread-block, rather than inferred based on block ID. This creates overhead
and possible latency of global memory access, which makes this kernel even further
separated from the exhaustive kernel represented in Fig. 9. Here, a pixel-chunk
of a single projection is reused for a number of sequential translations, arranged
contiguously if possible. Invoking separate thread blocks for non-contiguous trans-
lations allows some implicit indexing of them, which affords better access patterns
for SIMD instructions and reduced latency. Due to the sparseness, shared memory
can also be used for in-kernel summation of all pizels of each image, which despite
some some required explicit thread-level synchronisation increases throughput by
avoiding the higher latency of atomic write operations during image summation in
the coarse-search kernel.
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Figure 11: (A) Weighted back-projection of a 2D image into three different planes.
We explored two memory access approaches (B) for this task, namely gather and
scatter. In the gather approach a process (marked with orange) is assigned to
individual or groups of 8D wvoxels. The process read from the input image and
updates the data of the assigned vozel(s). In the scatter approach, processes are
instead assigned to individual or groups of pizels and can output to all of the vozels.

full reuse of the interpolation of pixels for all the affected voxels, since no
access restrictions exists for write operations.

In our benchmarks the scatter approach performed significantly better and
was thus selected as the standard. This is most likely due to the fact that
individual images on average contribute very sparsely to the 3D volume and
hence only affect a small subset of voxels. Since the number of processes
in the gather approach is proportional to the number of voxels, this renders
many initiated processes jobless. Both this issue and the reduced reuse of
intermediates can be addressed to some degree by enabling processes to man-
age groups of voxels. This method yielded some performance improvements,
but the scatter approach nevertheless provides superior performance.

III Hardware recommendations

Each new generation of GPU hardware has provided significant performance
gains and increasing amounts of memory, so the most important factor is to
use a new GPU — currently Pascal-class cards. Titan-X (Pascal) cards are
likely to provide the highest performance, but due to the substantial price
premium of these cards, we believe GTX 1080 cards offer better value. The
workstation with quad GTX 1080 GPUs described in the materials can cur-
rently be assembled from parts for around $5000 (See links from the RELION
home page), or purchased pre-assembled from a few vendors for about $6200.
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Since the heavy computational steps run on the GPU, there is no need for
dual CPU sockets. However, disk I/O bandwidth needs are high, and as seen
in Fig. 4C it helps to use two SSDs configured in RAIDO. This provides a
powerful cluster replacement for many users, but the quad GPU configura-
tion is sensitive to specific motherboard models and the fans can be a bit
loud for a normal office environment. In our labs, the currently most popular
option is rather a dual-GPU desktop that is both quiet and smaller. This
will work with virtually any motherboard with two GPU sockets. With the
cheap GTX 1070 cards the machine parts only cost $2000, and we expect it
can be obtained from vendors for roughly $2500. A single SSD is sufficient
in this case. All these prices are subject to fluctuations (and changes due
to new hardware), but it is nevertheless interesting to compare the perfor-
mance/price for the most computationally intensive 3D classification with
the x86 CPU cluster (~$8500/node, not including fast network). Based on
the run times in Fig. 4C, the performance/price ratio is a factor 27 higher
for the quad-GPU workstation (with RAIDO SSD) compared to x86 CPU
nodes, and a factor 45 higher for the low-cost dual GTX 1070 desktop (at
the cost of lower absolute performance). This is based on pre-assembled sys-
tem prices, and while some vendors might charge more there is always the
option to assemble systems from parts for even better value. When it comes
to rack-mounted alternatives, many such nodes only work with professional-
class (Tesla) cards, but there are larger 4U nodes that work with quad GTX
1080 cards, and even a few 1U models. However, this is highly dependent on
the hardware and the reader is advised to seek up-to-date recommendations
from vendors or the RELION web pages.
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Figure 5 — figure supplement 1: The CPU and GPU implementations provide
qualitatively identical distributions of image orientations. For two CPU runs with
different random seeds, 81% of images fall within 1°, and for a GPU vs. CPU
run 82%. Note that the probability of observing small angles vanishes since the
number of potentially available points is proportional to the sine of the angle, which
approaches zero for identical orientations. Both distributions were aligned against
the reference refinement by fitting reconstructed models.
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