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Abstract Translational repression and mRNA degradation are critical mechanisms of

posttranscriptional gene regulation that help cells respond to internal and external cues. In

response to certain stress conditions, many mRNA decay factors are enriched in processing bodies

(PBs), cellular structures involved in degradation and/or storage of mRNAs. Yet, how cells regulate

assembly and disassembly of PBs remains poorly understood. Here, we show that in budding yeast,

mutations in the DEAD-box ATPase Dhh1 that prevent ATP hydrolysis, or that affect the interaction

between Dhh1 and Not1, the central scaffold of the CCR4-NOT complex and an activator of the

Dhh1 ATPase, prevent PB disassembly in vivo. Intriguingly, this process can be recapitulated in

vitro, since recombinant Dhh1 and RNA, in the presence of ATP, phase-separate into liquid

droplets that rapidly dissolve upon addition of Not1. Our results identify the ATPase activity of

Dhh1 as a critical regulator of PB formation.

DOI: 10.7554/eLife.18746.001

Introduction
Rapid modulation of gene expression is critical for cells to respond to environmental challenges and

to initiate developmental programs. Eukaryotic cells have developed a variety of mechanisms to

achieve tight regulation of gene expression. This includes post-transcriptional control of messenger

RNA (mRNA) levels by the regulation of translation or by varying the rates of mRNA degradation.

Many of these post-transcriptional regulatory mechanisms, including the transition from mRNA trans-

lation to storage or decay, are not well characterized.

Cytoplasmic mRNAs are marked by a 7-methylguanosine cap at the 5’ end and by a polyA tail at

the 3’ end. These modifications enable interaction with translation factors, including the cap-binding

complex (eIF4F) and the polyA binding protein (Pab1) and protect the mRNA against degradation

(Coller and Parker, 2004). Given their impact on both translation and mRNA decay, the status of

the 5’ and 3’ ends of the mRNA, as well as the complement of proteins that bind the mRNA termini,

are tightly controlled. In budding yeast, a key event for the entry of mRNAs into the degradation

pathway is the removal of the polyA tail (Muhlrad and Parker, 1992), which is predominantly

accomplished by the CCR4-NOT complex (Wiederhold and Passmore, 2010). While deadenylated

mRNAs can also be degraded from the 3’ end by the 10-subunit exosome complex

(Chlebowski et al., 2013), mRNA decay in S. cerevisiae occurs predominantly via removal of the 5’

cap by the Dcp1-Dcp2 decapping enzyme, followed by degradation by the 5’-3’ exonuclease, Xrn1

(Garneau et al., 2007; Sun et al., 2013).

Under certain stress conditions, such as glucose starvation or osmotic shock, protein factors

involved in mRNA turnover can assemble into larger mRNP foci, known as processing bodies (PBs)

(Sheth and Parker, 2003; Teixeira et al., 2005). PBs are dynamic, membrane-less structures that

appear to form from multivalent interactions between proteins and RNA in a liquid-liquid phase

Mugler et al. eLife 2016;5:e18746. DOI: 10.7554/eLife.18746 1 of 27

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.18746.001
http://dx.doi.org/10.7554/eLife.18746
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


separation phenomenon (Decker et al., 2007; Fromm et al., 2012, 2014; Guo and Shorter, 2015).

Remarkably, PBs and several other related types of mRNP granules, including stress granules, germ

granules, and neuronal transport granules, form in a number of different species and cell types, and

in a variety of different biological contexts, suggesting these structures are important for cellular

function (Erickson and Lykke-Andersen, 2011; Kiebler and Bassell, 2006; Voronina, 2013). There

is increasing evidence that the ability to form PBs is critical for survival under various stress condi-

tions. For example, cells unable to form PBs show a severe loss in viability in stationary phase

(Ramachandran et al., 2011; Shah et al., 2013). Furthermore, ectopic expression of highly

expressed mRNAs in cells that cannot form PBs is toxic (Lavut and Raveh, 2012). Because of their

composition, PBs are postulated to be sites of mRNA storage and/or mRNA degradation

(Aizer et al., 2014; Anderson and Kedersha, 2009; Decker and Parker, 2012). Yet, how the cell

regulates PB assembly and disassembly, and how PBs modulate gene expression, has remained

elusive.

It is likely that PB formation requires factors that can either remodel the translating mRNP com-

plex or stimulate the formation of a decay-competent or repressed mRNP. The DEAD-box ATPase

Dhh1 stimulates mRNA decay and translation repression (Carroll et al., 2011; Coller and Parker,

2005; Fischer and Weis, 2002; Sweet et al., 2012) and is thought to function at an early step in PB

formation (Teixeira and Parker, 2007), making it a good candidate to facilitate mRNA inactivation.

Similar to other DEAD-box proteins, Dhh1 possesses N- and C-terminal RecA-like domains con-

nected by a short linker, and can bind RNA with high affinity in a sequence-independent manner

through the phosphate backbone (Cheng et al., 2005; Linder and Jankowsky, 2011; Russell et al.,

2013). In vitro, Dhh1 has a significantly lower ATPase activity than other well characterized DEAD-

eLife digest Most cells and organisms live in changeable environments. Adapting to

environmental changes means that organisms must quickly alter which of their genes they express.

Varying which genes are switched on or off is not enough; cells must also degrade existing

messenger RNAs (or mRNAs for short), which contain the genetic instructions of the previously

active genes. Therefore, cells must tightly regulate the machinery needed to degrade mRNAs.

When Baker’s yeast (also known as budding yeast) cells experience certain stressful conditions,

the proteins that break down mRNAs localize into specific structures inside the cell known as

‘processing bodies’. These structures are found in many other organisms across evolution, from

yeast to human. Processing bodies also form in a variety of biological contexts, such as in nerve cells

and developing embryos. Still, why cells form processing bodies, and how their assembly is

regulated, is not well understood.

One essential component of processing bodies is an enzyme called Dhh1. This enzyme has been

conserved throughout evolution and is known to promote the decay of mRNAs as well as to repress

their translation into proteins. Now, Mugler, Hondele et al. show that Dhh1’s must break down

molecules of the energy carrier ATP (referred to as its “ATPase activity”) in order to regulate the

dynamic nature of processing bodies. Mutant Dhh1 proteins that lack ATPase activity form

permanent processing bodies in non-stressed yeast cells. This shows that that the breakdown of ATP

by Dhh1 is required for the disassembly of processing bodies. Similar results were seen for mutant

Dhh1 proteins that cannot interact with Not1, a protein which enhances the ATPase activity of Dhh1.

Next Mugler, Hondele et al. mixed purified Dhh1 with ATP and RNA molecules and saw that the

mixture underwent a “liquid-liquid phase separation” and formed observable granules, similar to oil

droplets in water. These granules dissolved when Not1 was added to stimulate the Dhh1 enzyme to

turnover ATP. This showed that several important biochemical and biophysical aspects of processing

bodies seen within living cells could be recreated outside of a cell.

Armed with a greater understanding of the rules that govern the formation of processing bodies,

future work can now address how important processing bodies are for regulating gene expression.

Another challenge for the future will be to examine the specific roles that processing bodies play in

yeast and other cells, like human egg cells or nerve cells.

DOI: 10.7554/eLife.18746.002

Mugler et al. eLife 2016;5:e18746. DOI: 10.7554/eLife.18746 2 of 27

Research article Biochemistry Cell Biology

http://dx.doi.org/10.7554/eLife.18746.002
http://dx.doi.org/10.7554/eLife.18746


box proteins such as eIF4A or Ded1 (Cordin et al., 2006; Dutta et al., 2011; Pause and Sonenberg,

1992; Tritschler et al., 2009). This is likely due to intramolecular interactions between its N- and

C-terminal RecA lobes that hold Dhh1 in a conformation that is not competent for ATP hydrolysis

(Cheng et al., 2005; Sharif et al., 2013) suggesting the ATPase activity of Dhh1 is stimulated by fac-

tors that can alter the conformation of its two RecA domains.

Several recent studies have revealed that DEAD-box proteins can be stimulated or inhibited by

trans-acting factors. These interacting partners appear to share a common 3D architecture, namely,

the presence of a MIF4G fold – a highly alpha helical HEAT repeat-like structure found in a number

of different DEAD-box-interacting proteins, including eIF4G (with eIF4A), Gle1 (with Dbp5) and

CWC22 (with eIF4AIII in higher eukaryotes) (Buchwald et al., 2013; Montpetit et al., 2011;

Ozgur et al., 2015a; Schütz et al., 2008). Intriguingly, DDX6, the mammalian homolog of Dhh1,

binds directly to CNOT1 (Not1 in S.c.), the central scaffold subunit of the CCR4-NOT deadenylase

complex, through its MIF4G domain (Chen et al., 2014; Mathys et al., 2014) and CNOT1 binding

activates the ATPase of DDX6 (Mathys et al., 2014). The binding surface between these two pro-

teins is conserved between yeast and human (Rouya et al., 2014) suggesting that the interaction

between Not1 and Dhh1 is also important for modulating the activity of Dhh1 in budding yeast.

In this study, we examine the ATPase activity of Dhh1 in vitro and in vivo, and demonstrate that

the ATPase cycle of Dhh1 is a critical regulator of PB nucleation and disassembly. Cells expressing a

Dhh1 variant carrying a mutation in the DEAD motif (E195Q, or Dhh1DQAD) that disrupts ATP

hydrolysis form constitutive granules with both the behavior and composition of PBs induced during

glucose starvation. Using recombinant proteins, we show that Not1 stimulates the ATPase activity of

yeast Dhh1, similar to its function in mammals. Disruption of the interaction between Dhh1 and Not1

in vivo leads to the formation of PBs in the absence of stress, similar to the catalytically dead

Dhh1DQAD allele. Furthermore, we demonstrate that Dhh1, ATP, and RNA, are sufficient to form liq-

uid droplets in vitro with the dynamic behavior of PBs, and that these droplets can be dissolved by

addition of purified Not1. Overall, these results reveal that the ATPase activity of Dhh1 is a critical

regulator of PB dynamics.

Results

Disruption of the ATPase activity of Dhh1 triggers formation of bona
fide processing bodies
Previously, our lab demonstrated that abrogation of the ATPase activity of Dhh1 through mutation

of the conserved DEAD motif (Dhh1E195Q, henceforth Dhh1DQAD; see Supplementary file 2C for a

list of all Dhh1 mutants in this study) mislocalizes Dhh1 to large Dcp2-positive foci in the absence of

stress (Carroll et al., 2011). To differentiate whether loss of Dhh1 ATPase activity triggers formation

of genuine processing bodies or whether these Dhh1DQAD-induced foci are anomalous granules, we

monitored the localization of several PB components – namely Dcp1, Edc3, and Xrn1 – in both

DHH1 and dhh1DQAD mutant cells. Similar to the PB composition in glucose starvation conditions, all

three GFP-tagged proteins colocalized with Dcp2-mCherry in Dhh1DQAD-expressing cells in glucose-

rich conditions (Figure 1A). In contrast, the stress granule marker Pab1 did not assemble into foci in

dhh1DQAD cells (Figure 1—figure supplement 1A) demonstrating that Dhh1DQAD granules are com-

posed of proteins found in bona fide PBs.

Dhh1DQAD PBs form due to a loss of Dhh1 function, rather than a gain-
of-function
Despite their identification nearly 15 years ago, the precise functional role of PBs in S. cerevisiae

remains poorly understood. Therefore, it is unclear whether PB formation in cells expressing

dhh1DQAD is caused by a loss or gain of Dhh1 function. If Dhh1DQAD PB formation is caused by a loss

of Dhh1 function, then the presence of a wild-type copy of DHH1 should abolish constitutive granule

formation. To test this, we expressed wild-type Dhh1-GFP and Dhh1DQAD-GFP in either DHH1 or

dhh1D cells in glucose-rich conditions and observed the localization of Dhh1DQAD-GFP (Figure 1B).

While Dhh1DQAD-GFP – but not Dhh1-GFP – robustly formed PBs in dhh1D cells, PBs were no longer

present in cells expressing an additional DHH1 copy, indicating that Dhh1DQAD PB formation is a
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Figure 1. Loss of the ATPase activity of Dhh1 triggers bona fide processing body (PB) formation. (A) Known PB components localize to Dhh1DQAD foci.

Cells co-expressing the indicated PB component were grown to exponential growth phase, then shifted to glucose-rich or glucose starvation conditions

for 20 min and observed by confocal microscopy. Scale bar: 5 mm (B) Constitutive PB formation by Dhh1DQAD is rescued by the presence of wild-type

Dhh1. Dhh1-GFP or Dhh1DQAD-GFP was expressed from a CEN plasmid in DHH1 or dhh1D cells and were treated as in (A). Scale bar: 5 mm (C) Loss of

Figure 1 continued on next page
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recessive phenotype, and that the presence of enzymatically active Dhh1 is sufficient to prevent PB

formation.

Given that Dhh1DQAD PB formation appeared to be due to a loss-of-function rather than a gain-

of-function, one possible explanation for the constitutive formation of PBs could be a block in mRNA

decay in dhh1DQADcells, similar to dcp1D or xrn1D cells (Teixeira and Parker 2007; Sheth and

Parker 2003). In order to directly interrogate whether loss of the ATPase activity of Dhh1 disrupted

mRNA turnover, we tested the functionality of Dhh1DQAD in mRNA decay using a previously estab-

lished tether-based functional assay. We and others have observed that tethering Dhh1 to a reporter

mRNA using the bacteriophage PP7 or MS2 systems is sufficient to stimulate the decay of

a tethered mRNA (Carroll et al., 2011; Sweet et al., 2012). We expressed wild-type Dhh1,

Dhh1DQAD, or GFP as a PP7 coat protein (PP7CP) fusion protein in dhh1D cells containing a single

stem loop (PP7L) engineered into the 3’UTR of the FBA1 gene (Figure 1C) and assessed steady state

mRNA levels by qPCR. As expected, tethering Dhh1-PP7CP to FBA1 mRNA caused an 80% reduc-

tion of FBA1 mRNA levels compared with GFP-tethered mRNA (Carroll et al., 2011). In comparison,

tethering Dhh1DQAD showed a partial attenuation of mRNA decay, with FBA1 levels decreasing by

55%, (Figure 1C) (Carroll et al., 2011), indicating that Dhh1DQAD is capable of stimulating mRNA

decay.

While tethering Dhh1DQAD to an mRNA demonstrated that this variant can function in mRNA

decay, it does not address whether Dhh1DQAD PBs can degrade mRNAs. Therefore, we performed

single molecule mRNA fluorescence in situ hybridization (smFISH) to examine if Dhh1DQAD PBs show

hallmarks of mRNA decay. Log-phase DHH1, dhh1DQAD, and xrn1D cells were shifted into glucose

starvation media, and the mRNA localization of FBA1, an essential glycolytic gene, was analyzed

(Figure 1D). In xrn1D cells, 54% of FBA1 mRNAs colocalized with a Dcp2-GFP PB marker in cells

grown in glucose-rich conditions and this colocalization was further increased to 75% following glu-

cose starvation. In contrast, only 11% of FBA1 mRNAs colocalized with PB foci in glucose-starved

cells expressing wild-type DHH1, consistent with the notion that PBs are sites of mRNA decay, rather

than mRNA storage. In cells expressing dhh1DQAD, FBA1 mRNA showed a modest overlap with

Dcp2-GFP – around 20% in glucose-rich conditions, and 22% following glucose starvation. Similar

results were obtained in smFISH experiments with mRNAs coding for GFA1, which functions in chitin

biosynthesis (Lagorce et al., 2002) (Figure 1E), PAT1, which is involved in mRNA decapping

(Bonnerot et al., 2000) (Figure 1—figure supplement 1B), and the phosphoglycerate kinase PGK1

(Hitzeman et al., 1980) (Figure 1—figure supplement 1C) in DHH1, dhh1DQAD, and xrn1D cells.

Our tethering experiments, together with the difference in mRNA accumulation between Dhh1DQAD

PBs and PBs in xrn1D cells, suggest that Dhh1DQAD PB formation is likely not due to a complete fail-

ure to degrade mRNAs. However, some mRNAs show slower turnover in the presence of Dhh1DQAD

(Carroll et al., 2011). Therefore, reduced decay kinetics may cause mRNAs to persist for longer in

PBs, which may in part contribute to the formation of Dhh1DQAD PBs in the absence of stress.

Figure 1 continued

ATPase activity mildly disrupts degradation of a Dhh1-tethered mRNA. Dhh1 or Dhh1DQAD was co-expressed as a PP7CP fusion protein in dhh1D cells

expressing FBA1-PP7L. FBA1 mRNA levels were measured by qPCR and normalized to ACT1 mRNA. Graphs show mean mRNA levels from three

independent experiments of biological triplicate samples. Error bars represent SD. A student’s t-test comparing Dhh1 and Dhh1DQAD is shown.

Asterisks indicate p<0.005. (D) FBA1 mRNAs do not colocalize with PBs in Dhh1 or Dhh1DQAD-expressing cells, suggesting functional mRNA decay, but

enrich in PBs in xrn1D cells. The indicated strains were grown to exponential growth phase, shifted to either glucose-rich (2% glucose) or glucose

starvation conditions for 20 min, fixed with paraformaldehyde and processed for smFISH. Depicted is a maximum projection of the central 10 planes of

a 3D image. Insets show representative cells (1.67X magnification). The graph shows the quantification of a representative experiment (n = 2 biological

replicates). Scale bar: 5 mm. (E) GFA1 mRNAs do not colocalize with PBs in Dhh1 or Dhh1DQAD-expressing cells, suggesting functional mRNA decay, but

enrich in PBs in xrn1D cells. The indicated strains were grown to exponential growth phase, shifted to either glucose-rich (2% glucose) or glucose

starvation conditions for 20 min, fixed with paraformaldehyde and processed for smFISH as in (D). Insets show representative cells (1.67X magnification).

The graph shows the quantification of a representative experiment (n = 2 biological replicates). Scale bar: 5 mm.

DOI: 10.7554/eLife.18746.003

The following figure supplement is available for figure 1:

Figure supplement 1. Loss of ATPase activity of Dhh1 does not trigger stress granule formation.

DOI: 10.7554/eLife.18746.004
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An ATP-bound, RNA-bound conformation of Dhh1 is critical for PB
assembly
Our data so far indicate that loss of ATPase activity by Dhh1 triggers formation of bona fide PBs,

suggesting that Dhh1 is ATP bound in PBs. We therefore tested whether ATP binding is required for

PB localization of Dhh1. Wild-type Dhh1 or a previously characterized ATP-binding mutant of Dhh1

(Dhh1F66R, Q73A, henceforth Dhh1Q-motif) were co-expressed along with Dcp2-mCherry and localiza-

tion was monitored in glucose-rich or glucose starvation conditions. Dhh1Q-motif showed a strong

defect in PB formation (Figure 2A), consistent with prior observations (Dutta et al., 2011), and also

as evidenced by a reduction in PB localization of Dcp2, Xrn1, Dcp1, and Edc3 (Figure 2—figure sup-

plement 1A–C) demonstrating that ATP binding by Dhh1 is required for robust PB formation. We

also tested the functionality of Dhh1Q-motif using our tethering assay, and saw that Dhh1Q-motif did

not show any obvious defects in mRNA decay when tethered to FBA1 mRNA (Figure 2—figure sup-

plement 2A).

How does the catalytic activity of Dhh1 contribute to PB formation? Given that ATP-bound Dhh1

binds mRNA in a sequence-independent manner with nanomolar affinity (Dutta et al., 2011;

Ernoult-Lange et al., 2012), one plausible model is that Dhh1DQAD binds to mRNA, but is unable to

dissociate from it in the absence of ATP hydrolysis, ultimately leading to constitutive PB formation.

To test this possibility, we generated an RNA binding mutant of Dhh1, Dhh13X-RNA, with alanine sub-

stitutions at three residues in the C-terminal RecA domain that are important for RNA binding

(R322A, S340A, R370A) (Dutta et al., 2011). Wild-type Dhh1, Dhh1DQAD, Dhh13X-RNA, and a

Dhh1DQAD/3X-RNA-GFP double mutant were co-expressed with Dcp2-mCherry in glucose-rich condi-

tions and PB formation was monitored. While Dhh1DQAD cells formed PBs as expected (Figure 2B,

left panel), combining ATPase-dead and RNA-binding mutations in cis in the Dhh1DQAD/3X-RNA

mutant abolished constitutive PB formation. In addition, both Dhh13X-RNA and Dhh1DQAD/3X-RNA

mutants showed a strong reduction of PB formation in glucose starvation conditions (Figure 2B,

right panel). In addition, several other PB components showed strong defects in PB localization in

cells expressing dhh13X-RNA (Figure 2—figure supplement 1A–C). Notably, all Dhh1 mutant pro-

teins were expressed to similar levels in these experiments (Figure 2—figure supplement 2C).

Next, we examined whether disruptions in RNA binding by Dhh1 also affected Dhh1 function in

mRNA decay using our tethering assay (Figure 2—figure supplement 2B). Dhh13X-RNA caused only

a ~30% reduction in tethered FBA1 mRNA levels, demonstrating that disruption of the mRNA decay

activity of Dhh1 per se is not sufficient to trigger PB formation. Overall, we conclude that Dhh1 in its

ATP-bound state promotes PB formation and that PB assembly requires RNA binding by Dhh1.

The requirements of ATP and RNA binding by Dhh1 for robust PB formation would predict that

deletion of DHH1 should also cause a reduction in PB formation. However, previous reports sug-

gested that dhh1D cells did not show strong defects in PB assembly (Buchan et al., 2008;

Teixeira and Parker, 2007). To carefully assess the effects of the deletion of DHH1 on PB formation,

we utilized the Diatrack particle tracking software (Vallotton and Olivier, 2013) which allows for an

unbiased, automated, and accurate quantitation of foci formation (see Materials and methods). Anal-

ysis of greater than 1000 cells per experiment revealed a nearly 80% reduction of the Dcp2-mCherry

foci number per cell in dhh1D compared to wild-type cells during glucose starvation (Figure 2B).

Together, our results demonstrate that Dhh1 is required for robust PB formation.

Dynamics of other processing body components are not affected by
loss of Dhh1 ATPase activity
Given that loss of Dhh1 ATPase activity drives constitutive PB assembly and abolishes Dhh1 recycling

from PBs (Carroll et al., 2011), we asked if Dhh1DQAD also affects the dynamic localization of other

mRNA decay factors to PBs. To address this question, we performed fluorescence recovery after

photobleaching (FRAP) experiments (Figure 3A). Cells expressing either wild-type Dhh1 or

Dhh1DQAD were shifted to glucose-free media to allow PBs to form, and the recovery of GFP-tagged

mRNA decay factors within photobleached PBs was measured over time. Consistent with our previ-

ous work, Dhh1-GFP PB fluorescence recovered to roughly 80% within 1 min, while the Dhh1DQAD-

GFP signal did not, suggesting that Dhh1 ATP hydrolysis is required for Dhh1 to shuttle in and out

of PBs (Carroll et al., 2011). In contrast, the dynamics of several mRNA decay factors, namely Dcp1,

Dcp2, Edc3, and Xrn1, remained unchanged in cells expressing Dhh1DQAD compared with Dhh1. The
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Figure 2. ATP-bound, RNA-bound Dhh1 is required for robust PB formation. (A) Disruption of ATP-binding activity of Dhh1 interferes with PB

formation. Wild-type Dhh1 or Dhh1Q-motif was co-expressed from a plasmid as a GFP fusion protein in dhh1D cells along with Dcp2-mCherry as a PB

marker and grown to exponential growth phase, then shifted to either glucose-rich or glucose starvation conditions for 20 min and observed by

confocal microscopy. Images were also acquired using wide-field microscopy and PB formation was quantified using Diatrack 3.5 particle tracking

software (see Materials and methods). Graphs represent average Dhh1-GFP or Dcp2-mCherry foci number per cell (n=3 biological replicates, >800 cells

per experiment). Error bars represent SD. A student’s t-test comparing Dhh1 and Dhh1Q-motif is shown. Asterisks indicate p<0.005. Scale bar: 5 mm. (B)

Figure 2 continued on next page
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mRNA decay factors observed showed two distinct FRAP profiles: Xrn1-GFP showed dynamic PB

localization in DHH1 and dhh1DQAD cells, while Dcp1, Dcp2, and Edc3 showed a static PB localiza-

tion profile. The limited recovery seen for Dcp1 and Dcp2 is in agreement with previous FRAP meas-

urements in mammalian cells (Aizer et al., 2008, 2014), and indicates that these factors are likely

resident PB proteins. Thus, with the exception of Dhh1 itself, the dynamics of all tested PB compo-

nents were not significantly altered by the loss of Dhh1’s ATPase activity.

FRAP experiments allowed characterization of Dhh1DQAD and wild-type Dhh1 PB dynamics on a

sub-minute time scale. To examine the dynamicity of these granules over a longer period, we also

treated cells with cycloheximide, which disrupts PB formation, likely by trapping mRNAs on poly-

somes and preventing their entry into PBs (Kroschwald et al., 2015; Teixeira et al., 2005). Cells

expressing either Dhh1-GFP or Dhh1DQAD-GFP and Dcp2-mCherry were grown to mid-log phase

and shifted to glucose-free media for 30 min to allow PBs to form, and then treated with cyclohexi-

mide for up to 2 hr and PB disassembly was monitored over time (Figure 3B, Figure 3—figure sup-

plement 1A). While Dhh1-GFP showed roughly 60% disassembly of PBs after 20 min following

cycloheximide treatment versus no treatment or solvent-only (Figure 3B, Videos 1 and 2 ),

Dhh1DQAD PB disassembly occurred significantly slower, with 60% disassembly occurring around 80

min after cycloheximide treatment (Figure 3B, Videos 3 and 4). Notably, 2 hr cycloheximide treat-

ment did not adversely affect cell viability (Figure 3—figure supplement 1B). The disassembly of

Dhh1DQAD PBs following cycloheximide treatment suggests that these structures, like wild-type PBs,

are RNA-dependent structures. However, the slower disassembly kinetics of Dhh1DQAD PBs, coupled

with the dampened recycling of Dhh1DQAD, indicates that ATPase activity of Dhh1 is critical for nor-

mal PB disassembly, for instance, by facilitating release of Dhh1 from its mRNA client.

Dhh1 ATPase activity is stimulated in vitro and in vivo by Not1
So far, our data reveal that the ATPase cycle of Dhh1 is a critical regulator of PB dynamics, and that

Dhh1 in its ATP-bound state promotes PB formation. Interestingly, Dhh1 alone is a very poor ATPase

in vitro (Dutta et al., 2011; Tritschler et al., 2009). However, DDX6, the mammalian homolog of

Dhh1, can be stimulated by CNOT1, the central scaffold subunit of the CCR4-NOT complex

(Mathys et al., 2014). Based on our data, we would therefore predict that Not1 should promote the

disassembly of PBs by stimulating the ATPase cycle of Dhh1. To test this prediction, we first exam-

ined whether S. cerevisiae Not1, like its mammalian homolog, stimulated the ATPase activity of

Dhh1 in vitro. We recombinantly expressed and purified full-length Dhh1 and Dhh1DQAD and

performed in vitro ATPase assays to assess the enzymatic activity of Dhh1 in the presence or

absence of polyU RNA and recombinant Not1MIF4G (amino acids 754–1000). Similar to previous

observations, we could not detect an intrinsic ATPase activity for Dhh1 alone. Dhh1 was weakly stim-

ulated by polyU RNA (Figure 4—figure supplement 1A) (Dutta et al., 2011), whereas addition of

Not1MIF4G alone had little effect (Figure 4A). However, addition of polyU RNA and increasing con-

centrations of Not1MIF4G robustly stimulated the ATPase activity of Dhh1, but not Dhh1DQAD

(Figure 4A). In contrast, Gle1, another MIF4G-fold protein that stimulates the activity of Dbp5, a

related DEAD-box ATPase that functions in mRNA export (Montpetit et al., 2011; Snay-

Hodge et al., 1998), had no effect on Dhh1 (Figure 4—figure supplement 1B). Furthermore, Not1

was unable to stimulate the catalytic activity of Dbp5 (Figure 4—figure supplement 1B), demon-

strating that Not1 specifically activates the ATPase cycle of Dhh1 in vitro.

Figure 2 continued

Disruption of RNA binding activity of Dhh1 interferes with PB formation. Wild-type or mutant Dhh1 was co-expressed from a plasmid as a GFP fusion

protein in dhh1D cells along with Dcp2-mCherry as a PB marker and treated as in (A). Scale bar: 5 mm.

DOI: 10.7554/eLife.18746.005

The following figure supplements are available for figure 2:

Figure supplement 1. Loss of ATP binding and RNA binding by Dhh1 disrupts PB localization of other PB factors.

DOI: 10.7554/eLife.18746.006

Figure supplement 2. Disruption of RNA-binding, but not ATP-binding, affects the ability of tethered Dhh1 to promote mRNA decay.

DOI: 10.7554/eLife.18746.007
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Figure 3. Loss of the ATPase activity of Dhh1 disrupts PB dynamics. (A) Loss of the ATPase activity of Dhh1 does not alter the dynamics of known PB

components. Fluorescence recovery after photobleaching experiments (FRAP) were performed on cells expressing the indicated GFP-tagged PB

component. Cells were glucose starved for 20 min to allow PBs to form, then PBs were bleached and recovery of GFP fluorescence to the PB was

followed over time. Recovery of PB components is presented as an averaged data plot of FRAP recovery curves from three independent experiments (n

Figure 3 continued on next page
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If Not1 also stimulates Dhh1 ATPase activity in vivo then our model would predict that disruption

of the Dhh1-Not1 interaction should lead to constitutive PB formation. To interfere with the Dhh1-

Not1 interaction, we generated a mutant with amino acid substitutions in conserved residues on

three distinct surfaces of Dhh1 (Dhh1R55E, F62E, Q282E, N284E, R355E, henceforth Dhh15X-Not) that are

predicted to affect binding to Not1, based on previous structural data (Chen et al., 2014;

Mathys et al., 2014). Indeed, Dhh15X-Not showed a marked reduction in Not1 binding in immuno-

precipitation experiments compared with wild-type Dhh1 (Figure 4B), indicating that these amino

acid residues are important for the interaction between Dhh1 and Not1. Given that ATP binding by

Dhh1 is likely a prerequisite for PB formation, we also examined whether ATP binding by Dhh1 was

needed for the interaction with Not1. As shown in Figure 4—figure supplement 1C, Dhh1Q-motif

was defective in Not1 binding, suggesting that ATP-bound Dhh1 is needed for robust interaction

with Not1.

To examine the importance of the Dhh1-Not1 interaction in PB formation, we co-expressed GFP-

tagged Dhh1, Dhh1DQAD, or Dhh15X-Not along with Dcp2-mCherry, grew cells into mid-log phase

and examined Dhh1 localization. Dhh15X-Not triggered Dhh1 and Dcp2 colocalization in cytoplasmic

Figure 3 continued

> 8 PBs per experiment, typically ~12 PBs per experiment). Error bars represent SD. (B) The ATPase activity of Dhh1 is required for proper PB

disassembly. dhh1D cells expressing Dhh1-GFP or Dhh1DQAD-GFP were glucose starved for 30 min to allow PBs to form and then treated with either

50 mg/mL cycloheximide or solvent only (DMSO) for 2 hr and disappearance of Dhh1-GFP or Dhh1DQAD-GFP foci per cell was monitored for 2 hr. Each

time point image is a maximum-projection of 8 z-stacks at a distance of 0.4 mm. The graph shows foci number per cell measurements for Dhh1 and

Dhh1DQAD normalized to 1 to account for differences in PB formation between Dhh1 and Dhh1DQAD (n = 3 biological replicates, >100 cells). Error bars

represent SEM. Scale bar: 5 mm.

DOI: 10.7554/eLife.18746.008

The following figure supplement is available for figure 3:

Figure supplement 1. Loss of ATPase activity of Dhh1 disrupts the PB dynamics of other PB components.

DOI: 10.7554/eLife.18746.009

Video 1. Cycloheximide treatment causes wild-type PB

disassembly. dhh1D cells expressing Dhh1-GFP from a

plasmid were glucose starved for 30 min to allow PBs

to form, and were then treated with 50 mg/mL

cycloheximide and disappearance of Dhh1-GFP foci

was monitored (5 min intervals; movie played at 5 fps).

Each frame represents a maximum-projection of 8

z-stacks at a distance of 0.4 mm.

DOI: 10.7554/eLife.18746.010

Video 2. DMSO treatment does not trigger wild-type

PB disassembly. dhh1D cells expressing Dhh1-GFP

from a plasmid were glucose starved for 30 min to

allow PBs to form, and were then mock treated with

DMSO and disappearance of Dhh1-GFP foci was

monitored (5 min intervals; movie played at 5 fps). Each

frame represents a maximum-projection of 8 z-stacks at

a distance of 0.4 mm.

DOI: 10.7554/eLife.18746.011
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granules in glucose-rich conditions, similar to catalytically dead Dhh1DQAD(Figure 4C). All Dhh1

mutant proteins were expressed to similar levels in these experiments (Figure 4—figure supple-

ment 2B). Two lines of evidence suggest that these granules are indeed bona fide PBs. First,

Dhh15X-Not granules contained several other known PB proteins – including Xrn1, Dcp1, and Edc3 –

in both glucose-rich and glucose starvation conditions (Figure 4—figure supplement 1D–F). Sec-

ond, Dhh15X-Not granule assembly required robust RNA binding activity, as a Dhh15X-Not/3X-RNA

mutant showed a dramatic defect in PB formation in both glucose-rich and glucose starvation condi-

tions (Figure 4C). Of note, the Dhh15X-Not mutant did not show a defect in mRNA decay using our

tethering assay (Figure 4—figure supplement 2A), suggesting that PB formation in cells expressing

Dhh15X-Not is not due to a block in mRNA degradation.

Several other decay factors have been shown to interact with the C-terminal RecA domain of

Dhh1 (Sharif et al., 2013; Tritschler et al., 2009). Thus, it was conceivable that the Dhh15X-Not

mutant not only disrupted the interaction between Dhh1 and Not1, but also with additional factors,

which may contribute to PB formation. We therefore generated a NOT1 allele, not19X-Dhh1 – with

substitutions at conserved amino acid residues that were previously shown to mediate interaction

between CNOT1 and DDX6 (F791A, N795A, K804A, E832R, N834A, Y835A, K962A, F967A, and

E970A) (Chen et al., 2014; Mathys et al., 2014; Rouya et al., 2014). We co-expressed Not1 or

Not19X-Dhh1 along with Dhh1-GFP and Dcp2-mCherry and shifted cells into media with and without

glucose to evaluate PB formation. While cells expressing wild-type Not1 showed diffuse Dhh1 and

Dcp2 localization, the Not19X-Dhh1 mutant triggered colocalization of Dhh1 and Dcp2 into distinct

foci in both glucose-rich and glucose starvation conditions (Figure 5). While granule induction in

these cells was less pronounced than in Dhh1DQADor Dhh15X-Not cells (Figure 4C) in glucose-rich con-

ditions, these foci contained other known PB components (Figure 5—figure supplement 1A–C),

suggesting they are bona fide PBs. Additionally, Not19X-Dhh1 was expressed at wild-type Not1 levels

(Figure 5—figure supplement 1D). In summary, we conclude that the ATPase cycle of Dhh1 is a crit-

ical regulator of PB formation, and that Not1 regulates the ATPase activity of Dhh1 in vivo, prevent-

ing PB formation in glucose-rich conditions.

Video 3. Dhh1DQAD PBs disassemble more slowly than

wild-type PBs following cycloheximide treatment.

dhh1D cells expressing Dhh1DQAD-GFP from a plasmid

were glucose starved for 30 min to allow PBs to form,

and were then treated with 50 mg/mL cycloheximide

and disappearance of Dhh1DQAD-GFP foci was

monitored (5 min intervals; movie played at 5 fps). Each

frame represents a maximum projection of 8 z-stacks at

a distance of 0.4 mm.

DOI: 10.7554/eLife.18746.012

Video 4. DMSO treatment does not trigger

Dhh1DQAD PB disassembly. dhh1D cells expressing

Dhh1DQAD-GFP from a plasmid were glucose starved

for 30 min to allow PBs to form, and were then mock

treated with DMSO and disappearance of Dhh1DQAD-

GFP foci was monitored (5 min intervals; movie played

at 5 fps). Each frame represents a maximum projection

of 8 z-stacks at a distance of 0.4 mm.

DOI: 10.7554/eLife.18746.013
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Figure 4. The ATPase activity of Dhh1 is stimulated in vitro and in vivo by Not1. (A) ATPase activity of Dhh1 is stimulated by Not1. The ATPase activity

of full-length Dhh1 or Dhh1DQAD was measured with increasing concentrations of Not1MIF4G. Graphs represent average ATPase activity (n=3). Error bars

represent SD. (B) Disruption of Dhh1 interaction with the MIF4G region of Not1 by mutation of conserved residues in Dhh1. TAP-tagged Dhh1, Dhh15X-

Not, or untagged Dhh1 were purified from cells in exponential growth phase using IgG-coupled magnetic beads and co-purifying Not1-3HA was

Figure 4 continued on next page
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Dynamics of Dhh1 PB recycling can be recapitulated in vitro
To better understand how the ATPase cycle of Dhh1 regulates PB formation, we attempted to

reconstitute granule formation in vitro. Remarkably, recombinant Dhh1, in the presence of RNA and

ATP, readily formed droplets in solution (Figure 6A and B). These droplets showed hallmarks of liq-

uid-liquid phase separation, undergoing growth and fusion events and reversible deformation

(Video 5), consistent with the reported biophysical behavior of PBs (Kroschwald et al., 2015). Dhh1

droplet formation was RNA-dependent, as no droplets formed when RNA was omitted (Figure 6A),

and the number and size of droplets rapidly decreased upon addition of RNase A (Figure 6C,

Video 6), but not with buffer alone (Figure 6C, Video 7).

Next, we examined the role of ATP binding by Dhh1 in droplet formation. Despite numerous

attempts, we were unable to purify Dhh1Q-motif with sufficient quality for analysis. However, we suc-

cessfully purified a single Q-motif point mutant, Dhh1F66R (Dutta et al., 2011) for use in our in

vitro assay. While Dhh1F66R showed only a minor defect in PB localization following glucose starva-

tion (Figure 6—figure supplement 1A), this mutant showed a dramatic loss of droplet formation in

vitro (Figure 6—figure supplement 1B). Additionally, Dhh1 droplets did not form in the absence of

ATP (Figure 6B), demonstrating that Dhh1 in its ATP-bound form promotes liquid droplet

formation.

Given that Not1 promotes PB disassembly in vivo by stimulating the ATPase activity of Dhh1, we

next examined whether the presence of Not1 also antagonizes Dhh1 liquid droplet formation in

vitro. Consistent with our in vivo data, addition of Not1MIF4G triggered the dissolution of pre-formed

Dhh1 liquid droplets (Figure 6C, video 8). Furthermore, no assembly occurred when Not1MIF4G was

added before polyU during the assembly reaction (Figure 6D).

To determine whether catalytically active Dhh1 was required for droplet dissolution, we also

tested the functionality of the ATPase-dead Dhh1DQAD mutant in our in vitro assay. While Dhh1DQAD

formed droplets to a similar extent as wild-type Dhh1 (Figure 6E), these structures did not dissolve

in the presence of Not1MIF4G, supporting the specificity of the observed effect (Figure 6E). Interest-

ingly, the Dhh1DQAD droplets slightly increased in size and number upon Not1MIF4G addition. It is

likely that the MIF4G domain of Not1, like other MIF4G domains, stabilizes a conformation of the

two RecA domains which facilitates nucleotide and RNA loading (Montpetit et al., 2011;

Oberer et al., 2005), which consequently may enhance droplet formation in the absence of Dhh1’s

ATPase activity. Thus, while other mRNA decay factors contribute to PB formation in vivo, this dem-

onstrates that with a minimal number of constituents, namely Dhh1, RNA, and ATP, higher-order

dynamic liquid droplets can be formed in vitro. These droplets recapitulate several properties of PBs

formed in vivo such as the dependence on ATP and RNA binding by Dhh1 to form (Figure 2A and

B) as well as the requirement of both a functional Dhh1 ATPase and the MIF4G domain of Not1 for

dissolution (Figures 4C and 5).

Figure 4 continued

detected by Western blot. Quantification of Not1 to Dhh1 ratio is plotted with SEM (n=5 biological replicates). A representative Western blot is shown.

A student’s t-test comparing Dhh1 and Dhh15X-Not is shown. Asterisks indicate p<0.01. (C) Mutations in the Not1-binding surface of Dhh1 trigger

constitutive PB assembly. Wild-type or mutant Dhh1 was co-expressed from a plasmid as a GFP fusion protein in dhh1D cells along with Dcp2-mCherry

as a PB marker and grown to exponential growth phase, then shifted to either glucose-rich or glucose starvation conditions for 20 min and observed by

confocal microscopy. Images were also acquired using wide-field microscopy and PB formation was quantified using Diatrack 3.5 particle tracking

software. Graphs represent the average Dhh1-GFP foci or Dcp2-mCherry foci number per cell (n=3 biological replicates, >800 cells per experiment).

Error bars represent SD. Scale bar: 5 mm.

DOI: 10.7554/eLife.18746.014

The following figure supplements are available for figure 4:

Figure supplement 1. Not1 is a specific activator of the ATPase activity of Dhh1.

DOI: 10.7554/eLife.18746.015

Figure supplement 2. Tethered Dhh1 does not require ATPase activation by Not1 to promote mRNA decay.

DOI: 10.7554/eLife.18746.016
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Discussion

ATPase activity of Dhh1 regulates PB dynamics
The DEAD-box ATPase Dhh1 and its orthologs play a critical role in translational repression and deg-

radation of cytoplasmic mRNAs. However, how the catalytic activity of Dhh1 contributes to its func-

tion has not been well defined. Here, we show that the ATPase activity of Dhh1 regulates the

dynamics of PBs in an RNA-dependent manner. Point mutations in Dhh1 that prevent ATP hydrolysis

or disrupt the interaction surface with the ATPase activator Not1 were sufficient to trigger aberrant

PB formation in vivo in the absence of stress (Figure 4C, Figure 5). Furthermore, we can recapitulate

this process in vitro, as Dhh1 forms dynamic liquid droplets in the presence of RNA and ATP that are

dissolved upon addition of the purified MIF4G ATPase activation domain of Not1 (Figure 6).

Not1 stimulates the activity of Dhh1 in vitro and in vivo
The central scaffold of the CCR4-NOT complex, Not1, similar to its mammalian homolog CNOT1, is

shown here to be an activator of the catalytic cycle of Dhh1 in vitro. Like other known DEAD-box

cofactors, Not1 possesses a MIF4G domain (Chen et al., 2014; Mathys et al., 2014; Ozgur et al.,

2015b; Rouya et al., 2014) that is critical for stimulation of Dhh1. In the absence of Not1MIF4G and

RNA, we could not detect ATPase activity of Dhh1. Both Dhh1 and DDX6 alone adopt an unusual
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Figure 5. Mutations in Dhh1-binding surface of Not1 trigger constitutive PB assembly. Not1 or Not19X-Dhh1 was co-expressed with Dhh1-GFP and

Dcp2-mCherry and grown to exponential growth phase, then shifted to either glucose-rich or glucose starvation conditions for 20 min and observed by

confocal microscopy. Images were also acquired using wide-field microscopy and PB formation was quantified using Diatrack 3.5 particle tracking

software (see Materials and methods). Graphs represent average Dhh1-GFP foci or Dcp2-mCherry foci number per cell (n=3 biological replicates, >800

cells per experiment). Error bars represent SD. Scale bar: 5 mm.

DOI: 10.7554/eLife.18746.017

The following figure supplement is available for figure 5:

Figure supplement 1. Not19X-Dhh1 triggers PB assembly.

DOI: 10.7554/eLife.18746.018
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incubated at 4˚C for 1 hr. Formation of liquid droplets was observed by fluorescence microscopy. Scale bar: 10 mm. (B) Dhh1 liquid droplet formation

requires ATP. Dhh1 liquid droplets were formed as in (A), in the presence or absence of ATP and the creatine kinase ATP regeneration system. Scale

bar: 20 mm. (C) Addition of Not1MIF4G or RNase A, but not buffer alone, dissolves pre-formed Dhh1 liquid droplets. Dhh1 liquid droplets were pre-

formed for 20 min at 4˚C, followed by the addition of 5 mM Not1MIF4G or RNase A. Scale bar: 10 mm. (D, E) Pre-incubation with Not1MIF4Gprevents

formation of Dhh1, but not Dhh1DQAD liquid droplets. Reactions were imaged after 1h incubation at 4˚C. Scale bar: 10 mm.

DOI: 10.7554/eLife.18746.019

The following figure supplement is available for figure 6:

Figure supplement 1. Single point mutants in the ATP binding site of Dhh1 affect PB assembly and liquid droplet formation.

DOI: 10.7554/eLife.18746.020
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Video 5. Purified Dhh1, ATP, and RNA form liquid-like

droplets in vitro. Droplets were formed for 2 min with

6.25 mM Dhh1-mCherry and 0.075 mg/mL polyU in a

final volume of 20 mL and imaged live in a time course

(5 s intervals; movie played at 7 fps). Fusion events can

be observed that lead to rounding up of the new

droplet to assume a spherical shape.

DOI: 10.7554/eLife.18746.021

Video 6. RNase A treatment dissolves Dhh1 liquid

droplets. Droplets were formed for 20 min from 6.25

mM Dhh1-mCherry and 0.075 mg/mL polyU in a final

volume of 20 mL. The imaging time course started (10

s intervals; movie played at 3 fps). After few frames,

RNase A was added (1.5 mL of a 0.04 mg/mL stock

solution, which was prepared by dilution of a 10 mg/mL

stock solution in Not1MIF4G storage buffer) to the pre-

formed Dhh1 droplets.

DOI: 10.7554/eLife.18746.022

Video 7. Addition of Not1MIF4G storage buffer does

not affect Dhh1 liquid droplet formation. Droplets were

formed for 20 min from 6.25 mM Dhh1-mCherry and

0.075 mg/mL polyU in a final volume of 20 mL. The

imaging time course was started (10 s intervals; movie

played at 3 fps). After a few frames, 1.5 mL Not1MIF4G

storage buffer was added to the pre-formed Dhh1

droplets.

DOI: 10.7554/eLife.18746.023

Video 8. Addition of Not1MIF4G dissolves Dhh1 liquid

droplets. Droplets were formed for 20 min with 6.25

mM Dhh1-mCherry and 0.075 mg/mL polyU in a final

volume of 20 mL. The imaging time course was started

(10 s intervals; movie played at 3 fps). After a few

frames, Not1MIF4G (1.5 ml of a 150 mM stock solution)

was added to the pre-formed Dhh1 droplets.

DOI: 10.7554/eLife.18746.024
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closed conformation, characterized by extensive intramolecular contacts that are not present in

other members of the DEAD-box protein family (Chen et al., 2014; Cheng et al., 2005;

Mathys et al., 2014). Binding of CNOT1 causes a dramatic structural rearrangement, shifting DDX6

into an ATPase-competent state (Mathys et al., 2014). However, even the Not1-stimulated activity

of Dhh1 remains low (Figure 4A). Although the rate-limiting step in the catalytic cycle of DEAD-box

ATPases often appears to be the release of substrate RNA and ADP/Pi (Cao et al., 2011;

Henn et al., 2010; Hilbert et al., 2011; Wang et al., 2010), it is conceivable that the large confor-

mational change that Dhh1 must undergo in order to bind both Not1 and substrate significantly con-

tributes to the slow ATPase cycle of Dhh1.

While mutations in conserved residues that mediate the interaction between Dhh1 and Not1 trig-

gered constitutive PB formation, these mutants did not completely recapitulate the degree of PB

formation seen in cells expressing catalytically dead Dhh1DQAD. This may perhaps be due to only a

partial loss of stimulation of Dhh1 by Not1 in these mutants. Unfortunately, we were unable to purify

these variants as recombinant proteins, and therefore could not determine their effect on ATPase

stimulation in vitro. Alternatively, there may be additional cellular factors that modulate the catalytic

cycle of Dhh1.

Role of RNA and ATP binding activity of Dhh1 in PB formation
In addition to demonstrating a critical role for ATP hydrolysis by Dhh1 in the regulation of PB forma-

tion, we also show that both RNA and ATP binding by Dhh1 are critical for PB assembly, consistent

with prior observations (Dutta et al., 2011). Neither Dhh1Q-motif nor Dhh13X-RNA mutant cells

robustly form PBs following glucose starvation. In addition, mutations that disrupt RNA binding also

prevent constitutive PB formation of catalytically dead Dhh1 (Figure 2B). Remarkably, Dhh1 forms

liquid droplets in vitro that require both ATP and RNA (Figure 6), indicating that multimeric assem-

bly of Dhh1 in its ATP-bound state with RNA may drive PB formation. Since DDX6 can oligomerize in

both an RNA-dependent and RNA-independent manner (Ernoult-Lange et al., 2012), and given

that both Dhh1 and DDX6 exist in molar excess over cytoplasmic mRNA (Ghaemmaghami et al.,

2003; Nagaraj et al., 2011), it is conceivable that an ATP-bound conformation of Dhh1 multimerizes

on RNA in vivo, thereby delivering mRNAs to PBs and seeding PB assembly. Upon ATP hydrolysis,

Dhh1 could then return to the cytoplasmic pool to bind and deliver the next mRNA target. However,

when ATP hydrolysis is inhibited, such as in Dhh1DQAD or Dhh15X-Not-expressing cells, Dhh1 remains

associated with its mRNA client, triggering the formation of constitutive PBs.

Functional role of PBs
Despite an increasing understanding of PB composition, the precise functional role of PBs remains

unclear. Given the large number of mRNA decay factors present in PB assemblies, as well as the

accumulation of Xrn1-protected polyG-tract-containing mRNAs, PBs were initially proposed to be

sites of mRNA decay (Sheth and Parker, 2003; Teixeira and Parker, 2007). However, several stud-

ies have shown that mRNAs can also stably localize within PBs, raising the question of whether these

granules are sites of active mRNA decay or rather of mRNA storage (Hocine et al., 2013; Lavut and

Raveh, 2012; Lui et al., 2014; Zid and O’Shea, 2014). It should be noted, however, that in many

cases mRNAs were localized to PBs using either the MS2 or PP7 coat protein system, whereby multi-

ple stem loops are engineered into the 3’UTR of transcripts and then visualized using fluorescently

tagged coat-protein fusions that recognize these stem loops. Yet, recent data indicate that these

stem loop systems may inhibit mRNA decay in budding yeast, and that primarily these stem loop

structures – but not the body of transcripts – persist in PBs, and cannot be degraded by Xrn1

(Garcia and Parker, 2015, 2016; Haimovich et al., 2016; Heinrich and Weis, unpublished). Our

smFISH data are consistent with the hypothesis that active decay occurs within PBs, since none of

the four tested mRNAs were enriched in wild-type and Dhh1DQAD PBs in contrast to PBs in xrn1D

cells (Figure 1D–E, Figure 1—figure supplement 1B–C). Thus, selective delivery of mRNAs to PBs

could enhance their degradation because of the high local concentration of the mRNA decay

machinery in PBs. Alternatively, the sequestration of mRNA decay factors and selected mRNAs into

PBs could also allow for spatial separation of translation factors from mRNA, preventing translation

of messages that would be unproductive during periods of stress.
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Increasing relevance of liquid droplets in cell biology, and the role of
ATPases in granule formation
The formation of mRNPs – including PBs – into membrane-less organelles that behave like dynamic

liquid droplets has recently emerged as a common mechanism by which cells may further compart-

mentalize their biochemistry (Guo and Shorter, 2015; Kroschwald et al., 2015; Weber and Brang-

wynne, 2012). Furthermore, a variety of different ATP-driven protein machines have also emerged

as important regulators of mRNP granule assembly. For example, stress granule (SG) assembly and

dynamics are disrupted by loss-of-function alleles in the MCM and RVB helicase complexes, while

hypomorphic alleles in the chaperonin-containing T (CCT) complex form more SGs (Jain et al.,

2016). Additionally, the AAA+ ATPase Cdc48 was also previously shown to facilitate clearance of

SGs (Buchan et al., 2013). Our data demonstrate that the DEAD-box ATPase Dhh1 is a critical regu-

lator of PB disassembly in vivo and that liquid droplets containing Dhh1 multimers form in the pres-

ence of RNA and ATP, which can be dissolved upon induction of ATP hydrolysis in vitro. Two

biochemical functions are critical for the role of Dhh1 in PB formation both in vivo and in vitro: (1)

Dhh1’s affinity for RNA, which may facilitate delivery of mRNA substrates into PBs, and (2) ATP bind-

ing, and the tuning of Dhh1’s ATPase activity by factors such as Not1. These features of Dhh1 may

ultimately be the critical controllers of PB formation and PB turnover.

The processing body and Dhh1 ATPase cycles
PBs have been extensively studied, yet the molecular mechanisms driving PB formation and disas-

sembly are poorly understood. Our data show that the ATP- and RNA-bound form of Dhh1 pro-

motes PB formation, while Not1 promotes PB disassembly by stimulating the ATPase activity of

Dhh1 (for illustration, see model Figure 7). Still, there are several elements of the PB and Dhh1

ATPase cycle that remain unclear. For example, what leads to PB formation under specific cellular

stress conditions? Is this driven by a stress-induced attenuation of translation or increase in mRNA

turnover, which leads to an increased number of client mRNAs targeted to PBs? Alternatively, cellu-

lar stress may dampen the ATPase activity of Dhh1, for example by regulating the interaction

between Dhh1 and Not1, thereby shifting the equilibrium towards the ATP-bound, RNA-bound

Dhh1 state. This in turn would then slow down PB disassembly, causing a build up of PB structures.

In addition, the polyA status of Dhh1-bound mRNAs targeted to PBs is also unknown. While

deadenylation by CCR4-NOT was previously placed upstream of Dhh1 in the mRNA decay pathway

(Coller et al., 2001; Fischer and Weis, 2002), it is unclear whether deadenylation is a prerequisite

for targeting mRNAs to PBs. Finally, with respect to the hydrolysis step, does Not1 facilitate

Dhh1
ATP

Dhh1
apo

Dhh1
ATP

PB
Not1MIF4G

ADP + P
i

additional 
factors

mRNA

Figure 7. Model: The ATPase cycle of Dhh1 controls PB assembly and disassembly. An ATP- and RNA-bound conformation of Dhh1 nucleates PB

formation, while stimulation of Dhh1’s ATPase activity by Not1 promotes granule disassembly.

DOI: 10.7554/eLife.18746.025
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recycling of Dhh1 from the PB by promoting the release of Dhh1 from RNA, similar to the function

of other DEAD-box activators (Linder and Jankowsky, 2011; Montpetit et al., 2011) or does it reg-

ulate the interaction with other factors such as scaffold proteins of PBs? Intriguingly, the ATPase

cycle of Dhh1 does not seem to influence the recycling of other PB components (Figure 3A), consis-

tent with the idea that the regulated interaction between Dhh1 and mRNA shifts the balance

between PB formation or disassembly.

While Not1 has a well-known role as the central subunit of the major cytoplasmic deadenylase,

our work defines a novel function for Not1 in PB disassembly and Dhh1 recycling, which presumably

occurs at a late stage in mRNA turnover. Interestingly, there is increasing evidence that the CCR4-

NOT complex functions at several other steps during gene expression outside of mRNA decay,

including transcription (Gupta et al., 2016; Kruk et al., 2011; Villanyi and Collart, 2015) and trans-

lation (Panasenko, 2014; Preissler et al., 2015). Future work is needed to address how the activity

of this multifunctional protein complex is modulated in order to regulate and coordinate multiple

steps of gene expression.

Materials and methods

Construction of yeast strains and plasmids
The strains used in this study are derivatives of W303 and are described in Supplementary file 1.

Yeast deletion strains and C-terminal epitope tagging of ORFs was done by PCR-based homologous

recombination, as previously described (Longtine et al., 1998). Generation of bacteriophage PP7CP

and PP7-loop tagging plasmids was described previously (Carroll et al., 2011).

Plasmids for this study are described in Supplementary file 2A. Mutations in Dhh1 were gener-

ated using a QuikChange II site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA)

using Pfu Ultra or Pfu Turbo. Mutagenic oligonucleotides were designed using the Agilent Technolo-

gies primer design platform. Construction of NOT1-TAP and not19X-Dhh1-TAP integration vectors

were made using NOT1 and NOT1(F791A, N795A, K804A, E832R, N834A, Y835A, K962A, F967A, and E970A)gene

block fragments ordered from Integrated DNA Technologies (IDT, Coralville, IA) that were ligated

into the single-integration vector pNH605 by Gibson Assembly (New England Biolabs, Ipswich, MA).

Primer sequences for strain construction are listed in Supplementary file 2B.

Tethering assay
Sample preparation was performed as previously described (Carroll et al., 2011). Briefly, yeast cells

were inoculated overnight in synthetic media containing 2% glucose and grown to saturation. The

following morning, cultures were diluted and grown to exponential growth phase (OD600 = 0.4–0.8)

then collected by centrifugation and lysed in 1X phosphate-buffered saline (PBS) with 0.1% Tween-

20 and protease inhibitors. Lysis was performed using a Mini-Beadbeater-96 (BioSpec Products, Inc.,

Bartlesville, OK) with a 5-minute cycle. The extract was clarified by centrifugation, and RNA was iso-

lated using the RNeasy RNA isolation kit (Qiagen, Hilden, Germany). Resulting RNA samples were

stored at �80˚C.

RT-qPCR
RNA was isolated as described above and quantified using a NanoDrop spectrophotometer (Thermo

Fischer, Waltham, MA). cDNA was generated by reverse transcription of 1 mg of RNA using a ran-

dom hexamer oligonucleotide (Invitrogen, Carlsbad, CA) and Superscript II (Invitrogen). Quantitative

PCR was performed in real time using the StepOnePlus Real-Time PCR System (Applied Biosystems,

Foster City, CA) and a SYBR-Green ROX qPCR Master Mix (Thermo Fischer) supplemented with

gene-specific primers as reported in (Carroll et al., 2011).

Single molecule fluorescent in situ hybridization
The indicated strains were inoculated overnight in synthetic media containing 2% glucose and grown

to saturation. The following morning, cultures were diluted and grown in synthetic complete media

containing 2% glucose at 25˚C to exponential growth phase (OD600 = 0.6-0.8), then shifted to syn-

thetic complete media with or without glucose for 20 min and fixed for 15 min with 4% paraformal-

dehyde. Samples were processed for single molecule fluorescence in situ hybridization (smFISH) as

Mugler et al. eLife 2016;5:e18746. DOI: 10.7554/eLife.18746 19 of 27

Research article Biochemistry Cell Biology

http://dx.doi.org/10.7554/eLife.18746


described in (Heinrich et al., 2013), with the exception of spheroplasting yeast cells for 20 min using

1% 20T zymolyase. Mixtures of DNA probes coupled to CAL Fluor Red 590 (Stellaris, LGC Biosearch,

Novato, CA; probes were synthesized by BioCat, Heidelberg, Germany) were used for smFISH, tar-

geting the FBA1, GFA1, PAT1, or PGK1 open reading frame moiety (Supplementary Supplementary

file 3). Microscopy was performed with an inverted epi-fluorescence microscope (Nikon Ti) equipped

with a Spectra X LED light source and a Hamamatsu Flash 4.0 sCMOS camera using a PlanApo 100 x

NA 1.4 oil-immersion objective and the NIS Elements software. Images were processed using FIJI

software. Quantification of colocalization was performed on all planes of a 3D stack image using the

Colocalization Threshold tool in Fiji. In brief, images were background-subtracted and thresholded

with a defined minimum threshold set for each smFISH probe separately. Then, the Colocalization

Threshold tool was applied, which highlighted the colocalization between PB and mRNA. The coloc-

alization events and the total number of PBs were then counted manually. The percentage of coloc-

alization was calculated by forming the ratio between the number of PBs colocalizing with mRNA

and the total number of PBs.

Immunoprecipitation
Immunoprecipitation experiments were performed as in (Oeffinger et al., 2007). Yeast were inocu-

lated in synthetic media containing 2% glucose and grown overnight to saturation, then diluted the

following day in 1 L synthetic media and grown to exponential growth phase (OD600 = 0.4–1.0). Cells

were harvested by centrifugation at 3000 x g for 10 min, then resuspended in resuspension buffer

(final concentration: 20 mM HEPES-KOH, pH 7.4, 1.2% polyvinylpyrrolidone (molecular weight =

40,000), 1 mM DTT, 0.2 mM PMSF, 10 mg/mL Pepstatin A). Pellets were centrifuged at 2600 x g for

15 min at 4˚C to remove extra buffer, then centrifuged again at 2600 x g for 15 min at 4˚C and pel-

lets were frozen in liquid nitrogen and stored at �80˚C. Frozen yeast pellets were then lysed with a

Retsch Planetary Ball Mill MM 301 (Retsch, Newtown, PA) for six cycles at 30 Hz for 3 min with cool-

ing in liquid nitrogen between cycles. 0.5 g of lysate was then resuspended in 14 mL TBT buffer (final

concentration: 20 mM HEPES-KOH, pH 7.4, 110 mM KOAc, 2 mM MgCl2, 1 mM DTT, 0.5% Triton X-

100, 0.1% Tween-20, 0.2 mM PMSF, 10 mg/mL Pepstatin A, 1:5000 SuperRNasin (Ambion, Austin,

TX), 1:5000 Antifoam B (Sigma Aldrich, St. Louis, MO). Lysate was clarified through 2.7 mm and

1.6 mm GD/X Glass Microfiber syringe filters (Whatman, Maidstone, UK), and then incubated with

8 mg rabbit IgG (Sigma Aldrich)-coupled magnetic beads (Thermo Fischer, Waltham, MA) – corre-

sponding to 400 mL bead slurry at 20 mg/mL slurry – and rotated at 4˚C for 30 min. The beads were

collected using a magnetic rack, washed three times with 1 mL TBT buffer, and a final wash in 1 mL

of 100 mM NH4OAc, (pH = 7.4, 0.1 mM MgCl2, 0.2% Tween-20) for 5 min while rotating. Protein

complexes were eluted from the beads directly in SDS-PAGE sample buffer and boiled at 95˚C, and
processed further for Western blot.

Western blot analysis
For Western blot analysis, roughly 5 OD600 units of cells were harvested and treated with 5% tri-

chloroacetic acid (TCA) and incubated at 4˚C for 10 min. Acid was removed using an acetone wash,

and the resulting pellet was dried 2–3 hr. Cell pellets were resuspended in 200 mL breakage buffer

(final concentration: 50 mM Tris-HCl pH = 7.5, 1 mM EDTA, 2.75 mM DTT, and protease inhibitors)

and disrupted using glass beads and a Mini-Beadbeater-96 (BioSpec Products, Inc. Bartlesville, OK).

Samples were cooled on ice for 5 min and SDS sample buffer was added and homogenates were

boiled. Proteins were resolved by 4–12% Bolt Bis-Tris SDS PAGE (Thermo Fischer, Waltham, MA),

then transferred to nitrocellulose membrane (GE Life Sciences, Marlborough, MA). Membranes were

blocked in PBS with 4% non-fat milk, followed by incubation with primary antibody overnight. Mem-

branes were washed four times with PBS with 0.1% Tween-20 (PBS-T) and incubated with secondary

antibody for 45 min. Membranes were then analyzed and quantified using an infrared imaging sys-

tem (Odyssey; LI-COR Biosciences, Lincoln, NE). The following primary antibodies were used for

detection of tagged proteins at the indicated dilutions: rabbit-anti-Dhh1 (1:5000) as described in

(Fischer and Weis, 2002), (Weis Lab ETH Zurich Cat# Weis_001, RRID:AB_2629458), anti-FLAG-M2

(1:2500) (Sigma-Aldrich Cat# F1804, RRID:AB_262044, St. Louis, MO), mouse-anti-HA.11 (1:2000)

(Covance Research Products, Inc. Cat# MMS-101P-1000, RRID:AB_291259, Princeton, NJ) mouse-

anti-GFP (1:1000) (Roche Cat# 11814460001, RRID:AB_390913), and rabbit-anti-Hxk1 (1:3000) (US
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Biological Cat# H2035-01, RRID:AB_2629457, Salem, MA). IRdye 680RD goat-anti-rabbit (LI-COR

Biosciences Cat# 926–68071, RRID:AB_10956166) and IRdye 800 donkey-anti-mouse (LI-COR Bio-

sciences Cat# 926–32212, RRID:AB_621847) were used as secondary antibodies.

Wide-field fluorescence microscopy
Samples were grown overnight in synthetic media containing 2% glucose, diluted to OD600 = 0.05 or

0.1 the following day, and grown to mid-log phase (OD600= 0.3–0.8). Cells were harvested by centri-

fugation and washed in ¼ volume of fresh synthetic media +/� 2% glucose, then harvested again

and resuspended in 1 volume of fresh synthetic media +/� 2% glucose and grown 15 min at 30˚C.
Cells were then transferred onto Concanavalin A-treated MatTek dishes (MatTek Corp., Ashland,

MA) and visualized at room temperature using the DeltaVision Elite Imaging System with softWoRx

imaging software (GE Life Sciences, Marlborough, MA). The system was based on an Olympus 1X71

inverted microscope (Olympus, Japan), and cells were observed using a UPlanSApo 100 � 1.4 NA

oil immersion objective. Single plane images were acquired using a DV Elite CMOS camera. Image

processing for PB analysis was performed using Diatrack 3.5 particle tracking software as described

below.

Spinning disk confocal microscopy
Samples were grown as indicated in ’wide-field fluorescence microscopy’ methods section and

imaged using an Andor/Nikon Yokogawa spinning disk confocal microscope (Belfast, United King-

dom) with Metamorph Microscopy Automation & Image Analysis software (Molecular Devices, Sun-

nyvale, CA). The system was based on a NikonTE2000 with inverted microscope, and cells were

observed using a PlanApo100 � 1.4 NA oil immersion objective and single plane images were cap-

tured using a Clara Interline CCD camera (Andor).

Fluorescence recovery after photobleaching (FRAP)
Samples were grown overnight in synthetic media containing 2% glucose, diluted to OD600 = 0.05 or

0.1 the following day, and grown to mid-log phase (OD600= 0.3–0.8). Cells were harvested by centri-

fugation and washed in ¼ volume of fresh synthetic media +/� 2% glucose, then harvested again

and resuspended in 1 volume of fresh synthetic media +/� 2% glucose and grown 15 min at 30˚C.
Cells were then transferred onto Concanavalin A-treated MatTek dishes (MatTek Corp., Ashland,

MA) and visualized at room temperature. Dhh1-GFP and Dhh1DQAD-GFP photobleaching experi-

ments were performed on a Leica SP8 Laser Scanning Confocal Microscope (Leica, Wetzlar, Ger-

many) using Leica LAS AF SP8 software (version 3.3). The system was based on a LeicaDMI6000B

inverted microscope, and cells were observed using a PlanApo 63 � 1.4 NA oil immersion CS2

objective and a conventional photomultiplier tube (PMT) detector. Dcp1-GFP, Dcp2-GFP, Edc3-

GFP, and Xrn1-GFP photobleaching experiments were performed on a Andor/Nikon Yokogawa spin-

ning disk confocal microscope with acquisition parameters as described above.

Using the Leica SP8 Laser Scanning Confocal Microscope, selected PBs were subjected to 5–10

pulses of an argon laser at 488 nm. Images were collected from a single plane with a 2.92 nm pin-

hole at 500 ms intervals for 50 s post-bleach. Using the Andor/Nikon spinning disk confocal micro-

scope, selected PBs were pulsed once for 500 ms using a Mosaic 405 nm laser (Andor) and images

were collected from a single plane at 3 s intervals for 3 min post-bleach. For all experiments, PB fluo-

rescent intensity and total cellular fluorescence intensity were quantified in ImageJ/FIJI by manual

tracing. The background was determined by determining the intensity of an ROI with the same size

as either the PB or the total cell. PB intensity was normalized to the total fluorescent intensity of the

cell using the equation:

PBnormal ¼
IntensityPB � IntensityPB background

IntensityTotalCell � IntensityTotalCellBackground

Recovery curves were generated by normalization to the bleach point, and percent of fluorescent

recovery values were determined by curve fitting using the equation:

fðtÞ ¼Að1� e�rtÞ
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Automated image analysis for processing body quantification
To quantify PBs, we used Diatrack 3.5 particle tracking software (Vallotton and Olivier, 2013; www.

diatrack.org). A Matlab script transformed our foci images into a single long sequence that could be

fed to Diatrack. This allowed the same image analysis parameters to be applied across all images

and experiments. PBs display significant variations in appearance (size and brightness). They were

identified in Diatrack based on their intensity and contrast measure. Optimal parameters were

selected interactively such that false negative and false positive rates were below 3%. Occasionally,

yeast vacuoles pinch the cytoplasm against the cell wall. This tends to create narrow intensity ridges

in some of our fluorescence images and can trigger the default Diatrack particle detector. Thus, we

used an alternative contrast measure (‘blurred 360’). This only retained particles around which the

intensity decreases significantly in all directions (rather than decreasing on average only). A sample

movie showing detected PB for a variety of images is provided as supplementary information (mov-

ieDetection.avi). For each image, a list of intensities corresponding to each PB in each image was

exported from the software and further processed in Microsoft Excel (Microsoft Corporation, Red-

mond, WA). The sum of particle intensities represents a suitable measure of overall PB abundance.

Alternately, the number of PBs per image may also be used. This value was divided by the number

of cells in each image to deliver per-cell PB abundances. Automated counting of cells was performed

as described in (Hadjidemetriou et al., 2008).

Protein purification
Dhh1 (wild-type, Dhh1DQAD, Dhh1F66R) and Dbp5 were cloned into a pETMCN-based expression

vector with a N-terminal 6xHis and V5 tag plus a C-terminal mCherry tag. The MIF4G domain of

Not1 (residues 754–1000) was cloned into a pETMCN-based expression vector with a N-terminal

6xHis and V5 tag. Recombinant proteins were expressed in E. coli BL21 DE3 cells grown in rich

medium. Cells were grown at 37˚C to an OD600 of 0.6 and induced with 300 mM IPTG. Cells were

then grown overnight at 18˚C, harvested and resuspended in 30 mL lysis buffer (500 mM NaCl,

25 mM Tris-HCl pH 7.5, 10 mM imidazole, protease inhibitors) per cell pellet from 2 L of culture.

After cell lysis by sonication, the 6xHis tagged proteins were affinity extracted with Ni2+ sepharose

and further purified by size exclusion with a Superdex 200 column (Dhh1 and Dbp5, in the final stor-

age buffer 200 mM NaCl, 25 mM Tris-HCl pH 7.5, 2 mM DTT) or Superdex 75 column (Not1MIF4G, in

the final storage buffer 200 mM NaCl, 25 mM Tris-HCl pH 7.5, 2 mM DTT, 10% glycerol) (GE Life

Sciences, Marlborough, MA). Gel filtration fractions were analyzed by SDS-PAGE. Clean fractions

were pooled, concentrated to about 500 mM and snap frozen in small aliquots.

ATPase assay
ATPase assays were performed according to (Montpetit et al., 2011) with the following modifica-

tions: 2 mM Dhh1 or Dbp5 was mixed with 2 mL 10x ATPase buffer (300 mM HEPES-KOH pH 7.5,

1 M NaCl, 20 mM MgCl2), Not1 or Gle1 as indicated, 4 mL 10 mg/ml polyU (unless indicated other-

wise), RNase inhibitors, 13.3 mL 60% glycerol, 2.7 mL 10 mg/mL BSA, and Not1 storage buffer to

compensate for volume differences, in a final volume of 36 mL. Reactions were set up in triplicate in

a 96-well NUNC plate. The assay was initiated by the addition of 40 mL of a master mix containing

1x ATPase buffer, 2.5 mM ATP (from a 100 mM stock in 0.5 M HEPES-KOH pH 7.5), 1 mM DTT,

6 mM phosphoenolpyruvate, 1.2 mM NADH (from a 12 mM stock in 25 mM HEPES-KOH pH 7.5)

and 125–250 units / mL PK/LDH. NADH absorption was monitored with a CLARIOstar plate reader

at 340 nm in 30 s intervals for 400 cycles.

in vitro liquid droplet reconstitution assay
Dhh1-mCherry (wild-type, Dhh1DQAD, or Dhh1F66R) was diluted at least tenfold to 50 mM with 1x

ATPase buffer. From this solution, Dhh1 was added as indicated in Figure 6 to a 20 mL reaction (and

pre-incubated with Not1, if applicable) in a 384-well microscopy plate. Reactions were filled to 5 mL

with 1x ATPase buffer. A master mix was prepared with 2 mL 10x ATP reconstitution system (40 mM

ATP, 40 mM MgCl2, 200 mM creatine phosphate, 70 U/mL Creatine Kinase), 1 mL HEPES-KOH pH

6.6, 1 mL BSA (10 mg/mL), 1.5 mL 1 mg/mL polyU (unless indicated otherwise), 0.2 mL RNase inhibi-

tors and 10 mL buffer (150 mM KCl, 30 mM HEPES-KOH pH 7.4, 2 mM MgCl2) and added to the

protein solutions. For the reactions not containing the creatine kinase ATP regeneration system, ATP
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was supplemented to a final concentration of 5 mM together with 10 mM MgCl2. Reactions were

mixed, incubated at 4˚C for the indicated length, and microscopy was performed with an inverted

epi-fluorescence microscope (Nikon Ti) equipped with a Spectra X LED light source and a Hama-

matsu Flash 4.0 sCMOS camera using a PlanApo 60 � NA 1.4 oil-immersion objective and the NIS

Elements software.
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