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Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract When spinal circuits generate rhythmic movements it is important that the neuronal

activity remains within stable bounds to avoid saturation and to preserve responsiveness. Here, we

simultaneously record from hundreds of neurons in lumbar spinal circuits of turtles and establish

the neuronal fraction that operates within either a ‘mean-driven’ or a ‘fluctuation–driven’ regime.

Fluctuation-driven neurons have a ‘supralinear’ input-output curve, which enhances sensitivity,

whereas the mean-driven regime reduces sensitivity. We find a rich diversity of firing rates across

the neuronal population as reflected in a lognormal distribution and demonstrate that half of the

neurons spend at least 50 % of the time in the ‘fluctuation–driven’ regime regardless of behavior.

Because of the disparity in input–output properties for these two regimes, this fraction may reflect

a fine trade–off between stability and sensitivity in order to maintain flexibility across behaviors.

DOI: 10.7554/eLife.18805.001

Introduction
Rhythmic movements, such as walking, scratching, chewing and breathing, consist of a recurrent

sequence of activity, which is generated by neuronal networks primarily in the spinal cord and

medulla. Although, this sequential activity is formed by collective communication among the neu-

rons, it is unknown how the participation is shared versus divided within the population. Distinct

motor tasks have been reported to be divided among dedicated microcircuits in zebrafish

(Ampatzis et al., 2014; Bagnall and McLean, 2014; Fetcho and McLean, 2010). Nevertheless, do

all neurons, which are dedicated to a particular motor activity, spike at approximately the same

rate? Or do only some neurons spike at high rate, while most others spike at lower rates? An

arrangement with a spectrum of different firing rates could be beneficial by adding the possibility of

increasing the overall activity, for instance during uphill walking where a stronger force is needed. In

this way the spinal circuit could enhance flexibility by adopting a diversity of firing rates across the

population. Other networks in the central nervous system face a similar challenge of how to distrib-

ute the activity across the population in order to collectively increase the dynamic range

(Wohrer et al., 2013). In sensory processing, neural circuits must be able to retain sensitivity both to

weak and strong input. Weak stimuli are amplified whereas strong stimuli are attenuated in order to

reduce saturation. If there is too much activity, the circuit reaches saturation and therefore loses the

ability to resolve differences in sensory input. Furthermore, amplification of weak signals by recurrent

excitation pose the risk of unstable activity, which can spin out of control (Vogels et al., 2005). This

computational challenge of how networks maintain both stability and sensitivity is an open question

especially for spinal networks.

Stability has primarily been investigated in cortical networks and much evidence suggest that

local excitation is carefully balanced by inhibition to assure stability and to widen the range of opera-

tion (Galarreta and Hestrin, 1998; Shu et al., 2003). It is well–established that unstable states such
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as epileptiform activity can easily be achieved by shifting the balance in favor of excitation, e.g. by

blocking inhibition (Dichter and Ayala, 1987; Bazhenov et al., 2008). The concept of balanced exci-

tation (E) and inhibition (I) (balanced networks in short) was introduced two decades ago

(Shadlen and Newsome, 1994; van Vreeswijk and Sompolinsky, 1996) and has sparked numerous

studies both theoretical (Amit and Brunel, 1997; Ozeki et al., 2009; van Vreeswijk and Sompolin-

sky, 1998; Kumar et al., 2008) as well as experimental (Berg et al., 2007; Okun and Lampl, 2008;

Higley and Contreras, 2006; Wehr and Zador, 2003; Kishore et al., 2014). The primary purpose

of theoretical models of balanced networks was initially to understand irregular spiking, which was

widely observed in experiments (Bell et al., 1995; Shadlen and Newsome, 1994). Irregular spiking

was puzzling because it could not be explained by random arrival of excitatory input alone, since

this randomness was effectively regularized by temporal integration (Denève and Machens, 2016;

Softky and Koch, 1993). Models of balanced networks not only were able to explain irregular spik-

ing, but also revealed other interesting phenomena, such as emergent linearity (van Vreeswijk and

Sompolinsky, 1996), multifunctionalism (Sussillo and Abbott, 2009; Hennequin et al., 2014) and

self–sustained stable network activity (Amit and Brunel, 1997; Hansel and Mato, 2001;

Ikegaya et al., 2013).

The consensus view thus became that irregular spiking results from a mean membrane potential,

which is lurking just below threshold, where it is restrained by inhibition concurrent with excitation

(Shadlen and Newsome, 1998; Bell et al., 1995; Salinas and Sejnowski, 2000), although synchrony

of random excitation is sometimes needed when individual synaptic potentials are small

(Stevens and Zador, 1998). This view was essentially predicted much earlier in random walk models

(Gerstein and Mandelbrot, 1964). The concept of balanced E/I is now an integrated part of under-

standing network processing in cortex and elsewhere, but for some reason it has been forgotten in

understanding spinal motor networks, with the exception of a few isolated studies (Berg et al.,

2007; Petersen et al., 2014).

The balanced E/I allow a subthreshold fluctuating membrane potential, where the spikes are

evoked by synaptic transients and therefore belong to the fluctuation–driven regime (Kuhn et al.,

2004; Tiesinga et al., 2000). This is in contrast to the more traditional mean–driven spiking (Fig-

ure 1), where the mean membrane potential (Vm) is well above threshold and spike timing is con-

trolled by after–hyperpolarization (Gerstner et al., 2014; Renart et al., 2007). These two regimes

have contrasting manifestations (Table 1): The fluctuation–driven regime has a skewed/lognormal fir-

ing rate distribution whereas the mean–driven regime has regular spiking and a symmetric

eLife digest Where and how are rhythmic movements, such as walking, produced? Many

neurons, primarily in the spinal cord, are responsible for the movements, but it is not known how the

activity is distributed across this group of cells and what type of activity the neurons use. Some

neurons produce regular patterns of “spiking” activity, while others produce spikes at more irregular

intervals. These two types of activity have different origins and represent different states of the

neural network. It is not clear whether they participate equally in a movement, or if there is a

hierarchy among the neurons, such that some neurons have more influence than others.

Petersen and Berg studied neurons in the lower spines of turtles during rhythmic movements.

The experiments show that during rhythmic scratching some neurons are very active while most

aren’t particularly active at all. This is known as a lognormal distribution and is seen in many other

situations, such as the levels of income of people in a society.

Petersen and Berg also found that neurons can move between two regimes of activity, called the

mean-driven and fluctuation-driven spiking regimes. During rhythmic scratching, the neurons are

almost equally divided between the two regimes, and this division is also found in other types of

rhythmic movement. This even division between the two regimes is likely to be important for

maintaining a balance between the sensitivity and stability of the neural network. The next steps

following on from this work are to reveal the mechanisms behind the two regimes and to find out

what causes these differences in activity.

DOI: 10.7554/eLife.18805.002
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distribution. A simple mechanism has been proposed to explain the lognormal firing in the fluctua-

tion–driven regime by Roxin et al. (2011): The skewness in distribution arises out of a supralinear

transformation of the synaptic input, which is Gaussian by virtue of the central limit theorem

(Figure 1A). A response to multiple input, which is larger than the sum of their individual responses

(i.e. supralinear), will enhance sensitivity (Rubin et al., 2015) and therefore this mechanism may con-

stitute an important physiological purpose.
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Figure 1. Skewness of the rate distribution reveals two regimes of neuronal spiking. (A) In the fluctuation–driven

regime the mean input is below the spiking threshold and the IO-curve has a nonlinear shape. A normally

distributed input current (shown below x–axis) is transformed into a skewed firing rate distribution (y-axis). (B) In

contrast, if the mean input is above threshold, the transformation is linear and the firing rate distribution is

symmetric. (C) IO–function for both regimes: Linear for suprathreshold region and nonlinear for subthreshold

region. The noise level affects the curvature of the nonlinearity (3 curves illustrate different levels of noise). (D)

Sample recordings during motor activity from two spinal neurons in the subthreshold region, where the spiking is

irregular and driven by fluctuations, and the supra–threshold region (E), where the mean input is above threshold

and spiking is regular. Highlighted area shown at bottom. Spikes in bottom panel are clipped. Tick marks: �50

mV, scale bars: 5 mV. (A–B) adapted from (Roxin et al., 2011).

DOI: 10.7554/eLife.18805.003
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This is in contrast to the mean–driven regime where the summation is linear or even sublinear,

which will transform a normally distributed input to a normally (as opposed to lognormally) distrib-

uted firing rate (Figure 1B). Such linear (or sublinear) transformation will reduce rather than enhance

sensitivity and therefore the mean–driven regime will curb network activity (Ahmadian et al., 2013).

These two transformations work together into an S-shaped IO-curve, where weak input are amplified

yet the network is kept stable for strong activity (Figure 1C). Sample neurons in the two regimes are

shown (Figure 1D–E). If this mechanism is true, then the shape of the firing rate distribution will

reveal the spiking regime of a given neuron. The degree to which neurons operate in one versus the

other regime may hold the key to understanding stability, dynamic range and other important prop-

erties of network operations. Yet this still remains to be investigated, especially in spinal networks.

Here, we investigate the regimes of operation of spinal neurons during different rhythmic motor

behaviors, which are generated in the lumbar spinal circuits of turtles. We test the theoretical

scheme put forward by Roxin et al. (2011), by assessing the synaptic input, the spike response func-

tion in subthreshold domain, and determine the shape of the firing rate distribution. The mechanical

stability of the turtle preparation allows electrophysiological recordings of unprecedented quality,

such that we can combine intracellular recording with multi–electrode arrays, and thus determine

the fraction of the population in the two regimes at all times. The high resistance to anoxia of turtles

allows using adult animals with fully developed spinal circuitry, which have healthy network activity

and which can perform multiple complex motor behaviors (Stein, 2005). Thus, we can investigate

the population activity during, not just one behavior, but multiple motor behaviors. Custom

designed high–density silicon electrodes recorded the population activity from hundreds of cells in

the dorsoventral and rostrocaudal axes along with the intracellular Vm of single neurons and multiple

relevant motor nerves (Figure 2). This is a unique experimental investigation, because it explores the

link between neuronal ensemble data, which in itself is rare in spinal motor research, and the fore-

front of theoretical neuroscience.

Results
The parallel spiking activity of 200–300 single units were recorded in the medial to ventral horns of

lumbar spinal segments involved in motor rhythm generation (Figure 2A). The location of the elec-

trode arrays in the ventral area of the lumbar enlargement was verified by histology (Figure 2B–

C and Figure 2—figure supplement 1). The array recordings were performed simultaneously with

recording of the intracellular activity of a single neuron in parallel with electroneurograms (ENGs)

from relevant motor nerves (Figure 2D). Site–specific rhythmic hindlimb scratching was induced by

tactile touch of the carapace (Berkowitz et al., 2010; Stein, 2005) and could be reproduced reliably

over multiple trials (Petersen et al., 2014; Vestergaard and Berg, 2015). The extracellular multi-

electrode arrays, which were used, were custom–designed for the spinal cord (Berg64-probe, Neuro-

nexus inc.) to enable efficient polytrode spike sorting (Figure 2E and Figure 2—figure supplement

2). The distribution of spike count firing rates across the population was skewned (Figure 2F), but

resembled a normal distribution on logarithmic x-axis (inset), i.e. a lognormal distribution. This

Table 1. Two regimes of neuronal spiking and their definition, properties and causes.

Fluctuation–driven Mean–driven Key references

Definition RmItotal < Vthres RmItotal > Vthres (Gerstner et al., 2014; Brunel, 2000)

Properties Lower firing rates Higher firing rates

Irregular spiking Regular spiking (Amit and Brunel, 1997; Shadlen and Newsome, 1998; van Vreeswijk and
Sompolinsky, 1998)

Lognormal/Skewed
distribution

Symmetric distribution (Buzsáki and Mizuseki, 2014)

(Roxin et al., 2011; Mizuseki and Buzsáki, 2013)

Cause Balanced E/I Intrinsic currents,
unbalanced E/I

(Bell et al., 1995; Shadlen and Newsome, 1994; Softky and Koch, 1993)

Synchronized excitation (Stevens and Zador, 1998)

DOI: 10.7554/eLife.18805.004
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lognormal distribution indicates a wide degree of participation in the motor activity across the popu-

lation. In the following, we will investigate the participation of neurons within the mean– and fluctua-

tion–driven regimes and how this is linked to the lognormal firing rate distribution, both across the

population and within individual cells. We start by addressing the mechanism behind the lognormal

firing rate distribution in intracellular recorded data, before addressing the concurrent population

activity.
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Figure 2. Parallel neuronal activity in the lumbar enlargement during rhythmic motor activity. (A) Illustration of experiment with three silicon probes

inserted into the lumbar spinal cord of a turtle. Histological verification: transverse (B) and sagittal (C) slices, 200 mm thick, showing the location of the

silicon probes in the spinal cord (red traces and location illustrated on right, electrodes stained with DiD). ChAT staining in green and Nissl stain in

blue. Scale bars: 500 mm (D) Vm of a single neuron (top) concurrently recorded with five motor nerves (traces below) during scratching behavior induced

by a somatic touch (onset indicated, 10 s duration). (E) Rastergram showing the parallel-recorded single units ( ~ 200 neurons) sorted according to hip

flexor phase. (F) Firing rate distribution is positively skewed and normally distributed on a log–scale, i.e. lognormal (inset). Vm resting level in (D) is �60

mV. For details, see Figure 2—figure supplement 1 and 2.

DOI: 10.7554/eLife.18805.005

The following figure supplements are available for figure 2:

Figure supplement 1. Experimental setup.

DOI: 10.7554/eLife.18805.006

Figure supplement 2. Sorted sample units, quality measures, and probe layout.

DOI: 10.7554/eLife.18805.007
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Mechanisms behind lognormal distribution and the fluctuation–regime
Two mechanisms have previously been proposed to explain the skewned lognormal firing rate distri-

bution, which is also observed in other parts of the nervous system (Buzsáki and Mizuseki, 2014).

Lognormal distributions could either arise from a nonlinear transformation of normally distributed

inputs (Roxin et al., 2011) (Figure 1A) or from a linear transformation of a lognormally distributed

synaptic input (Wohrer et al., 2013). The latter mechanism was considered in connection with the

sparse spiking activity in auditory cortex (Koulakov et al., 2009; Hromádka et al., 2008) and since

synaptic weights within neocortex have a heavy tail lognormal distribution rather than a Gaussian

distribution (Ikegaya et al., 2013; Song et al., 2005). Models also show that the Vm distribution can

be either skewed or Gaussian depending on the synaptic input intensity (Ostojic, 2011). Therefore,

to distinguish between the proposed mechanisms, it is important to first assess whether the synaptic

current is normally versus lognormally distributed. Secondly, to test whether the transformation of

the synaptic input to spiking output is linear versus supralinear. We started by addressing the first

requirement by investigating the synaptic input in intracellular recordings. The most relevant part of

the data was found during the peak of a locomotor cycle where the Vm was in vicinity of Vthres and

was dominated by synaptic potentials (Figures 1D and 3A). The motor activity was clearly non–sta-

tionary, which means that the spike activity was likely to move between the fluctuation– and mean–

regime. Nevertheless, the rhythmic activity possessed a separation of timescales in the sense that

the activity between cycles ( ~ 1 s) contained much larger excursions in Vm than within cycles ( ~2-400

ms). Here, the mean Vm did not change much and for practical purposes it could be considered con-

stant within the cycle. In the following analysis of the intracellular data we regarded the dynamics in

Vm as stationary within a cycle – well aware that the comparison to theoretical models, which are

based on assumption of stationarity, should be taken with a grain of salt. We intended to investigate

the symmetry of the distribution of synaptic current using this assumption. The synaptic current

within a cycle is difficult to assess, but rather than the mean current, we were primarily interested in

the fluctuations in current, which we could approximate from Vm via Ohm’s law under the following

conditions. Within a cycle, the mean Vm was just below threshold and did not change its value much.

Therefore the voltage–activated conductances were approximately constant such that there was an

Ohmic relationship between synaptic current and Vm. This is likely justified for neurons in fluctuation–

driven regime, since the conductance is often high and dominated by balanced E/I synaptic input

(Destexhe et al., 2003; Kumar et al., 2008). The high conductance suppresses the coupling

between Vm and intrinsic conductance in a divisive manner (Kolind et al., 2012; Tiesinga et al.,

2000). Thus, in the fluctuation–driven regime the non–Ohmic contributions were likely smaller and

the IVm-relationship more linear than in the mean–driven regime.

Normally distributed synaptic input
We intended to test the hypothesis of normally distributed input, but since the approximation of

using the variability in Vm as a proxy for the variability in synaptic current is most valid for the neu-

rons in fluctuation–driven regime, we needed a way to distinguish neurons that were primarily in the

fluctuation–driven regime. We therefore propose a novel metric, the return map ratio , which quanti-

fies the degree of fluctuations leading up to a spike (Figure 3—figure supplement 1). The return

map ratio (RMR) quantifies how direct the subthreshold Vm–trajectory is between spikes and this

forms the basis for selecting neurons in our analysis. An RMR close to 0.5 has fluctuation–driven spik-

ing whereas a value close to 1 has mean–driven spiking (Figure 3—figure supplement 1A,B). There-

fore, we defined a neuron as fluctuation-driven if its RMR <0:7; in our sample of intracellular

recordings we found 50/68 neurons in this regime. A sample neuron, which was found in the fluctua-

tion–driven regime based on this metric illustrates how we obtained the distribution of sub–thresh-

old Vm (Figure 3A). The distribution was estimated both by selecting the Vm in between spikes

(temporal distribution) and by collecting instances of Vm prior to spike peak in a spike triggered

overlay (‘sigma’ in Figure 3B). These two estimates are in agreement with one another for the sam-

ple cell (Figure 3C). This agreement is also found across the population as quantified by the mean

and SD (Figure 3D). The skewness for the distributions across the population is small and scattered

around zero as expected for normal (symmetric) distributions (Figure 3E). From these data we con-

clude that the subthreshold Vm–distributions are not skewed, but rather symmetrical and Gaussian–

like (cf. inset distributions, Figure 3E). Nevertheless, the minimal requirement for confirming the
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two–regime hypothesis for the single neuron is that the synaptic current (not the synaptic potentials)

is Gaussian (Figure 1). As we argued earlier, if there is an Ohmic relationship between current and

potential, which is likely during high–conductance states, then this requirement would be granted.

More importantly, now that we do find a Gaussian Vm–distribution, it is difficult to contemplate a

non-linear IVm-relationship, which would result in such a symmetric distribution. The synaptic input

current would have to have a finely matched inverse distribution to cancel out this non–linearity in

order to achieve a symmetric Vm–distribution. A more parsimonious explanation therefore is that,

since the synaptic potentials are normally distributed, they are a result of a linear transformation of

synaptic currents, which are also normally distributed.

So far, we have only looked at Vm–distributions of single neurons, which operate primarily in the

subthreshold domain, and found that the synaptic input is most likely normally distributed. We do
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DOI: 10.7554/eLife.18805.008

The following figure supplements are available for figure 3:

Figure supplement 1. Quantifying the degree of fluctuations and selecting neurons in fluctuation–driven regime using the return map ratio metric.

DOI: 10.7554/eLife.18805.009

Figure supplement 2. Population–distribution of mean Vm is Gaussian.

DOI: 10.7554/eLife.18805.010
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not know whether the synaptic input is also normally distributed in the mean–driven regime, but

since the synaptic input is normally–distributed in the subthreshold region, it is likely also normally–

distributed in the suprathreshold region. Otherwise, the input statistics from the presynaptic neurons

would have to depend on the threshold of the post–synaptic neuron, which is unlikely.

Mean Vm across the population is normally distributed
Above, we established that the synaptic input to a given neuron is likely normally distributed, and if

this input is transformed in a supralinear fashion, the output firing rate distribution will be skewed.

Nevertheless, the foundation of the skewness in population rate distribution (Figure 2F) is not nec-

essarily directly linked to the skewness of the instantaneous rate distribution of single neurons. In

principle, it is possible to have a population with a normal distribution of mean firing rates, where

the cells themselves have lognormally distributed firing rates and vice versa. Therefore, we needed

to address the distribution of mean Vm across the population and test whether this was skewed or

normal. Further, since the sub–threshold IO-curve is linked to threshold, it is important to establish

the distance of mean Vm from threshold with respect to the size of synaptic fluctuations, i.e. standard

deviation of Vm (s). This distribution, i.e. ðVm � VthresÞ=s, turns out to also be normally distributed

with a mean around 3 s from threshold (Figure 3—figure supplement 2, plotted for all n ¼ 68 neu-

rons). The value used for Vthres here is the mean of the estimated thresholds for all spikes (see below).

If we assume, when normalizing Vm this way, the IO-curve has approximately the same nonlinearity

across all neurons, the population distribution of firing rates will also be skewed due to the nonlinear

transformation of the normally–distributed input (Figure 3—figure supplement 2F) to a lognor-

mally–distributed output. These results are in qualitative accordance with the scheme proposed pre-

viously (Roxin et al., 2011). As another piece of the puzzle, we need to establish the shape of the

neuronal response function, which rarely has been done in the subthreshold domain.

Neuronal response–function in subthreshold domain is nonlinear.
The link between a normally distributed input and a lognormally distributed output is a supralinear

transformation. To test whether this is a hallmark of the fluctuation–driven regime, we needed to

estimate the input–output (IO)–function for the subthreshold domain. The IO–function of neurons is

a fundamental property of the nervous system, and therefore it is well-characterized both theoreti-

cally (Gerstner et al., 2014) and experimentally (Silver, 2010). Nevertheless, it has rarely been

established for fluctuation–driven spiking. Here, we estimated the IO-function for subthreshold spik-

ing via the probability of eliciting a spike as a function of Vm in the following way. First, we collected

instances of Vm shortly before the spike–onset, where Vm is depolarized yet still not part of the deter-

ministic spike trajectory. The probability that a given value of Vm will cause a spike was estimated as

the histogram of Vm–instances (gray histogram, Figure 4A) divided by the total time spent at all val-

ues of Vm (green histogram). This gives the empirical relationship between Vm and the firing rate

(Jahn et al., 2011; Vestergaard and Berg, 2015). The IO–function had a strong non–linear shape

(Figure 4B). To capture the curvature we fitted both a power–law and an exponential for all n ¼ 68

neurons and the curvature had a weak negative correlation with the SD of the Vm–fluctuation

(Figure 4C–D) as demonstrated previously (Vestergaard and Berg, 2015). Similar expansive nonlin-

earity has previously been characterized in sensory–driven neurons (Anderson et al., 2000;

Hansel and van Vreeswijk, 2002; Miller and Troyer, 2002). It will transform the normally–distrib-

uted synaptic potentials into a lognormally–distributed spiking output in the fluctuation-driven

regime (Figure 1A). For mean–driven spiking the IO-function is not supralinear, but rather linear (or

even sublinear), and the normally–distributed synaptic input will therefore be transformed to a nor-

mally distributed spiking output (Figure 1B). In conclusion, neurons that have fluctuation–driven

spiking also have a non–linear IO-transformation of synaptic potentials to spiking output.

Lognormal firing rate distribution in single neurons
The normally distributed input combined with the nonlinear IO–transformation should result in a

skewed lognormal firing rate in the single neuron. To confirm this, we measured the distribution of

the instantaneous firing rate, i.e. the inverse of ISIs. The quiet period in between burst cycles were

not included in the analysis (Figure 1D–E), since in these periods Vm was far from Vthres and therefore

in an irrelevant part of the IO–function. The firing rate distribution of many cells was positively
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skewed and resembled a normal distribution with near zero skewness on a log-scale (sample cell

shown in Figure 5A). This is expected for poisson–like spiking in the fluctuation–driven regime

(Ostojic, 2011). Nevertheless, distributions for all the intracellularly recorded neurons (n ¼ 68) were

skewed to a varying degree from strong positive to zero skewness on a linear axis and similarly

shifted downwards on log axis (cf. gray and green histograms, Figure 5B). This suggests that neu-

rons were found in a spectrum between fluctuation– and mean–driven spiking. More negative log–

skewness were associated with higher mean rates (Figure 5C). This is probably due to a larger pres-

ence in the mean–regime at higher firing rates, where the distribution skewness is expected to be

negative on a log–scale, i.e. Gaussian on a linear scale. Note that the spectrum of skewness was sub-

stantially larger than it was for the Vm distributions above (Figure 3E). Skewed Gaussian distributions

are shown to illustrate the range of skewness in the data (Figure 5D). In conclusion, these results

suggest that the skewness in firing rates is an indicator of the degree of participation in the fluctua-

tion–driven regime.
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Figure 4. Fluctuation–driven spike–response curve is supralinear. (A) The empirical probability of evoking a spike

in a small window as a function of Vm is determined using spike–triggered overlays. The probability distribution is

estimated as the Vm–distribution of trajectories prior to spike–onset (gray histogram, 1.7 ms prior to peak)

normalized with the total (temporal) Vm–distribution (green histogram). Dividing this probability by the sampling

interval gives the firing rate (see Materials and methods). (B) The firing rate versus Vm for a sample neuron is

strongly nonlinear. A power–law (broken line) and an exponential (blue line) are fitted to capture the nonlinearity.

Note that the mean threshold ($) is below the largest subthreshold fluctuation (�), likely due to a depolarization of

threshold associated with a higher firing rate (see also Figure 6—figure supplement 1). (C) Power–law exponent

(a) for different neurons are weakly anti–correlated with the fluctuations (SD) in their Vm (‘sigma’, Figure 3B,

R ¼ �0:34, p<0.01). Linearity is indicated by horizontal broken line. (D) Exponential coefficient (b) for different

neurons are also anti–correlated with the fluctuations in Vm albeit not significantly (R ¼ �0:22, p>0.05).
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Time spent in regimes: intracellular data
A neuron is not just spiking in either the fluctuation– or the mean–driven regime, rather, it likely

spends time in both regimes during motor activity. To estimate the amount of time a given neuron

spends in either of the two regimes we calculated the fraction of time that the smoothed Vm was

above versus below threshold. We first look at two heuristic neurons, one in the fluctuation–driven

regime and one in the mean–driven regime. The fluctuation–driven neuron spent most of the time

below threshold (Figure 6A) and had more irregular spiking as quantified by a local measure of

irregularity, the CV2 (green line). CV2 is the difference of two adjacent ISIs divided by their mean

(Holt et al., 1996; Bruno et al., 2015). In contrast, the mean–driven neuron spent most time above

threshold and had more regular spiking, i.e. CV2 closer to zero (Figure 6B). Since the threshold was

firing rate–dependent due to the inactivation of the Naþ–conductance (Figure 6—figure supple-

ment 1) we used the most hyperpolarized value of threshold (broken line). The distribution of CV2

for all trials had higher mean for the fluctuation–driven cell than the mean–driven (cf. arrows,

Figure 6C). Also, the cumulative time spent below threshold was higher for the fluctuation–driven

cell (96%) than the mean–driven cell (35%, Figure 6D). This fraction of time spent below threshold

was quantified for every neuron (n ¼ 68) and the population distribution had a strong mode at 1

(top, Figure 6E) suggesting many neurons spent much time in the fluctuation–driven regime. To

compress the diversity within the population into a simpler representation, we used the reverse

cumulative distribution of neurons versus time spent below threshold (bottom, Figure 6E). This indi-

cates how many neurons (y-axis) spent at least a given fraction of time (x-axis) below threshold. The

intercept with the 50%–line (broken line) indicates what fraction of time half the population at least

spent below threshold. This fraction is remarkably high (84%) suggesting a prominent presence

within the fluctuation–driven regime.
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Transition between regimes by current injection
Mean- and fluctuation-driven spiking can be distinguished by important traits such as degree of

irregularity and log-skewness of the firing–rate distribution. To verify these traits, we used another

sample neuron as a heuristic illustration. We injected different levels of either positive or negative

bias currents in different trials while keeping all else constant. A negative constant current injection

(�1.0 nA) caused a decrease in firing rate and a slight increase in irregularity (green line) compared

with zero injected current (Figure 7A–B). Similarly, a positive current injection (1.7 nA) caused more

spikes and a decrease in irregularity (Figure 7C) consistent with a movement between regimes (inset

in Figure 7A). The decrease in irregularity with increasing input was further quantified as a negative

correlation between mean CV2 and injected current (R ¼ �0:84, p�0.001) over multiple trials (n=18,

Figure 7D). This is qualitatively in agreement with previous reports (Prut and Perlmutter, 2003;

Powers and Binder, 2000; Wohrer et al., 2013). The instantaneous firing rate in the control condi-

tion (0 nA) was lognormal as expected for the fluctuation–driven regime (top, Figure 7E). When add-

ing input current the distribution was shifted to the right and enriched with a negative skewness as
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DOI: 10.7554/eLife.18805.013

The following figure supplement is available for figure 6:

Figure supplement 1. Threshold depolarizes with increase in firing rate.
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expected for mean-driven spiking (bottom, Figure 7E). This relation between input and shape of

rate distribution was further confirmed by a negative correlation between multiple current injections

and skewness both on linear scale (gray dots) and log–scale (red dots, Figure 7F). Hence, skewness

and irregularity are indicators of the spiking regime.

Blocking inhibition causes change in regime
An alternative to injecting electrode current is to manipulate the balance of excitation and inhibition

(E/I) by pharmacological means. This is important for understanding the cause of irregularity and the

fluctuation–driven regime. Hence, we manipulated the synaptic input in a reduced preparation with

micro–superfusion of strychnine, a glycinergic blocker, over the transverse cut surface of the spinal

cord (described in [Berg et al., 2007; Vestergaard and Berg, 2015]). This affected only neurons at

the surface (<300 mm) without affecting the rest of the network, which was verified by careful moni-

toring of flow and the network activity via the nerve recordings. Comparing the spiking during con-

trol condition (Figure 8A) with that during blockade of inhibition (Figure 8B), we noticed a strong

increase in spiking. This is consistent with a depolarization due to disinhibition, thus ‘unbalancing’

the excitatory and inhibitory input. Reducing inhibition tipped the balance of E/I toward larger

inward synaptic current, which resulted in a more depolarized Vm (blue line) well above threshold

(arrows, Figure A–B). It also resulted in higher firing rates and lower irregularity on the peak (cf.

green lines). Generally, the irregularity (CV2) was higher in the control case than in the unbalanced

case (Figure 8C) similar to the results observed with current injection (Figure 7A–D). The irregularity
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was also negatively correlated with depolarization of the mean Vm when unbalancing the E/I

although it was uncorrelated in the control condition, where the spiking occurred in the fluctuation–

driven regime (Figure 8—figure supplement 1). The instantaneous firing rate was skewed and log-

normal in the control case (top, Figure 8D), similar to the above sample cell (top, Figure 7E). This

distribution became negatively skewed when adding inward current (bottom, Figure 7E). Similar

effect was seen when ‘unbalancing’ the synaptic input, which also result in larger inward current. The

firing rate increased (cf. broken lines, Figure 8D) and the distribution became negatively skewed (cf.

�0.2 and �1.5) as expected in the mean–driven regime (bottom). To quantify the increase in time

spent in the mean–driven regime, we performed an analysis similar to the analysis in the above sec-

tion (Figure 6D). The cumulative time spent below threshold was larger in the control condition

(78%) compared with the unbalanced case (56%, Figure 8E). These observations are largely consis-

tent with the consensus view that irregular fluctuation–driven spiking is due to a balance between

excitation and inhibition (Table 1).

CV2 as an indicator of spiking regime
In the above intracellular analyses we reported the spiking irregularity in terms of CV2 along with the

mean Vm, current injection and pharmacological manipulation of the balance of excitation and inhibi-

tion. The CV2 measure is convenient to use as an indicator of the mean– versus the fluctuation–driven
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DOI: 10.7554/eLife.18805.016

The following figure supplement is available for figure 8:

Figure supplement 1. Unbalancing E/I induces an anti–correlation between irregularity and depolarization.

DOI: 10.7554/eLife.18805.017
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regimes observed in the extracellular spiking data, since it only requires spike times. Therefore it is

important to validate CV2 as an indicator of spiking regime. In the above sample cell analyses we

note first, that when Vm spent a larger fraction of time above threshold, i.e. in mean–driven regime,

the CV2 was lower (Figure 6). Second, when depolarizing a neuron artificially either with constant

positive current (Figure 7D), or by blocking inhibition (Figure 8C), such that more spikes were in

mean–driven regime, the CV2 was decreased.

To further substantiate CV2 as an indicator of spiking regimes we looked again at the return map

ratio, which is an independent metric of fluctuations during inter-spike intervals. If CV2 is an indicator

of the spiking regime, it should be anti-correlated with the return map ratio. This was confirmed by

plotting the mean CV2 for all cells (n ¼ 68) against the mean return map ratio, which indeed demon-

strated a significant anti–correlation (R ¼ �0:34, p=0.005) (Figure 3—figure supplement 1E).

A second independent indicator of fluctuation regime is the cumulative time below threshold of

Vm (Figure 6D), which should be correlated with the mean CV2. We tested this using the most hyper-

polarized value of theshold, since it was the most conservative, but there was no significant correla-

tion between the cumulative time below threshold and the mean CV2. Perhaps the lack of linear

relationship is due to a bias from the reset voltage and after-hyperpolarization, which is different

from cell to cell and therefore randomly may introduce a large fraction of time spent below thresh-

old. Also, intense synaptic activity is known to quench the after–hyperpolarization (Berg et al.,

2008) and therefore this bias may be particularly strong when the synaptic input is not balanced as

in the mean–driven regime.

A third indicator of spiking regime is the skewness of the instantaneous firing rate distribution

(Figure 7E and 8D). We estimated the skewness of the individual firing rate distributions for all neu-

rons (n ¼ 68) and plotted it against the mean CV2 (data not shown). There was a significant positive

correlation between the two, regardless of whether the firing rate distribution was plotted on log or

linear scale (Rlog ¼ 0:43, p=0.0003, and Rlin ¼ 0:41, p=0.0006), which suggest CV2 as a valid measure

for spiking regimes.

A last indicator is the local mean membrane potential depolarization, which should be anti-corre-

lated with the instantaneous CV2, if the Vm is above threshold (Figure 8, Figure 8—figure supple-

ment 1D). Here, there was a lack of correlation between CV2 and Vm before blocking inhibition, in

the fluctuation–driven regime. However, after removal of inhibition, Vm was in supra–threshold

domain, which introduced an anti-correlation between CV2 and Vm. Hence, if the neuron is in the

mean-driven regime the CV2 is an indicator for the depolarization above threshold. To further verify

this we performed a similar test of the relationship between instantaneous CV2 and local depolariza-

tion for all neurons (without pharmacology). We found that all the cells with significant relationships

(p<0.05, n ¼ 16=68) had anti-correlation between Vm and CV2 (data not shown). In conclusion, the

CV2 measure is correlated with other measures and indicators of spiking regimes (except the cumula-

tive time below threshold) and therefore CV2 is a useful indicator in itself.

Noisy threshold has no effect
The irregularity in spiking could be caused by a noisy threshold rather than fluctuations in synaptic

potentials. Nevertheless, a noisy threshold can only explain a small part (if any) of the spiking irregu-

larity. First of all, if the irregularity, that we observed in spike times, was due to a noisy threshold

mechanism, we should see the same irregularity regardless of the depolarization, i.e. regardless of

whether the neuron was in the sub–threshold or supra–threshold domain. Yet, the spiking irregularity

was strongly dependent on depolarization (Figures 6–8). There was an adaptation in threshold (Fig-

ure 6—figure supplement 1). This was not random, but rather due to a gradual inactivation of Na
þ–channels throughout the burst (Henze and Buzsáki, 2001). The threshold of a given spike strongly

depended on the threshold of the previous spike (panel F) as well as the mean firing rate (panel G).

The same mechanism is behind spike–frequency adaptation, which is a well–described phenomenon

(Grigonis et al., 2016). The adaptation in threshold is likely to make the IO-function more sublinear

in the mean–driven regime, which will generally curb network activity.

In order to verify the extent of the threshold variance beyond the contribution from inactivation

of Na+–channels, we looked at the threshold of only the first spike of each cycle, such that the neu-

ron had ample time for recovery. The variance of the first–spike threshold (n ¼ 51) in a sample neu-

ron was s2

thres ¼ 0:8 mV2 whereas the variance in synaptic potentials was more than 17–fold higher
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(s2

Vm ¼ 14:0 mV2). Therefore a randomness in the threshold had little of no effect on the irregularity

of spiking compared with the randomness in synaptic input. In some recordings the threshold may

appear as uncorrelated with the membrane potential prior to the spike onset. However, rather than

a noisy threshold this is likely attributed to cellular morphology. If the cell is not electrically compact,

the axon initial segment, where the spike is initiated, will have a different potential than what is

recorded with the electrode. If this was the case, these observations would still be compatible with

the two–regime hypothesis, since spikes would still be driven either by fluctuations or a large mean

current, despite the disguise of a long electrotonic distance to the recording site.

Rich diversity in population firing rates
So far the analysis has been performed on serially acquired intracellular recordings across trials and

animals. This demonstrates that some neurons spiked primarily in the fluctuation–driven regime

while others spiked in the mean–driven regime. Nevertheless, it is still unclear what the parallel pop-

ulation activity was during a behavior and across behaviors. How many neurons were in one versus

the other regime and for how long? First, we assessed the neuronal participation in the motor pat-

terns by their degree of spiking during motor behavior. Neurons were active during both ipsi– and

contralateral scratching behaviors (Figure 9A–D). Most units had a rhythmic relationship with the

nerve signals and a higher firing rate for the ipsilateral scratching compared with contralateral

scratching behavior (cf. Figure 9C and D; Videos 1 and 2), which indicates participation of neurons

in a hemicord to a smaller degree in the contralateral movement than the ipsilateral movement.

The distribution of firing rates across the neuronal population over several trials was strongly

skewed, which indicate that most neurons spike relatively infrequently with a ‘fat-tail’ of higher spik-

ing (Figure 9E). The distribution covered two orders of magnitudes from 0.1–10 Hz and was akin to

a lognormal distribution (inset and green lines, Figure 9E). Similar lognormal–like distributions have

been observed in other parts of the nervous system (Buzsáki and Mizuseki, 2014). The implication

of the skewed distribution is that most neurons spiked at low rates, but there was relatively many

neurons spiking at higher rates indicating an overall rich diversity of firing rates.

Skewness preserved across behaviors
Although multi–functional spinal units have been reported previously (Berkowitz et al., 2010) it is

unclear how their participation is distributed and whether the asymmetry in distribution is linked to

different behaviors. To address this issue we analyzed the population spiking for multiple motor

behaviors. The induction of a distinct scratch behavior is location–specific (Stein, 2005). Multiple

behaviors can be evoked depending on exact location and which side of the body is touched. This

allowed us to induce two distinct behaviors: ipsi– and contralateral hindlimb scratching, while record-

ing from the same neuronal ensemble (Videos 1 and 2). These behaviors were reproducible over

multiple trials (>9 trials). Both behaviors had similar phase relationships between the muscle syner-

gists, although ipsilateral scratching had stronger activity (cf. Figure 9A and B). The firing rate distri-

bution was positively skewed in both behaviors with the similar qualitative shape (Figure 9E–F). This

skewness was also found across animals (green bars, Figure 9G, n=5) and close to zero on log–scale,

i.e. lognormal (black lower bars). To further quantify the uneven neuronal participation we used Lor-

enz statistics and the Gini-coefficient (O’Connor et al., 2010; Ikegaya et al., 2013). The Lorenz

curve characterizes the share of cumulative participation of individual neurons of the population

(Figure 9H). The diagonal corresponds to the case where all neurons have the same firing rate. The

deviation from equality is quantified by the Gini–coefficient, which is the fraction of area a to the

total area aþ b (Figure 9H). The higher the coefficient, the more unequal the participation across

neurons is. Both scratch behaviors had a Gini–coefficient of ~ 0.5 (Figure 9I). Although the mean fir-

ing rate could change between behaviors and between animals (Figure 9J), the skewness was quali-

tatively similar (Figure 9K). This suggests that the skewed lognormal–like firing rate distribution, and

hence a presence of the fluctuation–driven regime, was preserved across behaviors and animals.

Skewness in firing rate distribution is activity–dependent
Neurons do not occupy either the fluctuation– or the mean– driven regime all the time. Individual

neurons can move back and forth between regimes depending on the synaptic current they receive.

Neurons that spike predominantly in the mean–regime will have their mean firing rates closer
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together and more normally distributed compared with those spiking in the fluctuation–regime.

Hence, we expected the skewness of the distribution of mean firing rates across the population to

become more negative (on log–scale) as the general network activity increases. To address this, we

analyzed the spiking across neurons in parallel. First, we estimated the time–dependent firing rate of

each neuron in the population using optimal Gaussian kernel (Shimazaki and Shinomoto, 2010) and

measured skewness of the population distribution. The time–dependent population distribution was

b
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Figure 9. Skewed neuronal participation across behaviors. (A–B) Two distinct motor behaviors: Ipsilateral pocket scratch (left panel) and contralateral

pocket scratch (right panel) shown by intracellular recordings (top) and motor nerve activities. (C–D) Rastergrams showing the unit activities during

ipsilateral pocket scratch (C) and contralateral pocket scratch (D). Green areas mark the hip flexor phase. (E–F) spike count firing rate distribution for the

behaviors on linear and a semi-log plot (insets), indicate lognormal participation. Lognormal functions are fitted (solid green lines). (G) Skewness on

logarithmic (green bars) and linear scale (gray bars) is preserved across animals. (H) The inequal neuronal participation is calculated using Lorenz curve

and gini coefficient. (I) Gini–coefficients cluster around 0.5 across behaviors and animals. Mean (J) and standard deviation on (K) of the distribution of

firing rates on log–scale across behaviors and animals. Vm resting level in (A–B) is �60 mV.
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achieved by binning the rates in 10 ms windows

(Videos 1 and 2). The mean population rate and

its SD are indicated as black � gray lines

(Figure 10A). As the mean firing rate increased,

the skewness of the distribution (log–scale)

became negative, which is a sign of more neurons

were occupying the mean–driven regime (cf. inset

histograms, Figure 10A). This was further con-

firmed by a negative correlation between the

mean firing rate (black line in A) and the log–

skewness for all time points (Figure 10B). Hence,

as the general activity increased, the population

distribution became less lognormal and more

Gaussian, which suggests more neurons occupied

the mean–driven regime during a higher general

activity.

Occupancy within regimes across
population and time
To further gauge the division of neurons in the

two regimes we compared the irregularity of the

spiking using CV2. This metric was verified above

as a reliable indicator of spiking regimes. The dis-

tribution of the mean CV2 across the population

of neurons was clustered around 1 if all ISIs were

included (gray histogram, Figure 10C). However,

measuring the irregularity in the motor cycles

alone i.e. excluding the inter–burst intervals

(here, ISI < 0:5 s) the mean irregularity across

neurons was lower and clustered around 0.6 (red

histogram). Both distributions had substantial

spread around the mean, which suggests a rich

diversity spiking patterns.

To get a compound measure of the behavior

of the entire population across time, we consid-

ered the amount of time each neuron spent in the fluctuation–driven regime. We demarcated the

fluctuation–regime as having irregularity in spik-

ing above a critical value, i.e. CV2 > icrit. Choos-

ing icrit is not entirely objective. Complete

Poisson–type irregularity has CV2 ¼ 1, but the

spiking is still irregular for lower values

(Feng and Brown, 1999). Based on our data,

even when the CV2 » 0.5, the Vm spent as much

as 96% of the time below threshold (Figure 6C–

D) indicating fluctuation–driven spiking. Further,

neurons that had CV2 » 0.5, also had lognormal

firing rate distributions (Figure 7), which also

indicates the fluctuation–driven regime. For

these reasons, we suggest choosing icrit ¼ 0:5 for

distinguishing regular vs. irregular spiking. A

similar value was previously chosen to distinguish

between regular vs. irregular ‘choppers’ in the

cochlear nucleus (Young et al., 1988). Thus, the

population of spinal neurons had a large diver-

sity in time spent in the fluctuation–driven

regime. Some neurons spent as little as 20% in

Video 1. Skewness of the population firing rate is

activity–dependent: Behavior 1 (ipsilateral scratching).

The spiking activity in three lumbar segments shown as

a 24 by 8 pixel-grid, with each pixel representing a

recording channel (top left panels, segments D8, D9

and D10 indicated). Columns represent probe shanks

(separated by 200 mm) and rows the vertical positions

in the dorsoventral axis (~30 mm between each). The

light intensity of a pixel indicate the local firing rate in

time estimated using Gaussian kernels. The time-

dependent distribution of firing rates across the

population (green histogram, top right, logarithmic

x-axis) was fitted with a lognormal function (appearing

here as a normal distribution) with variable skewness

(solid black line). Skewness of fit on linear and log scale

is shown on slider (inset). Note the dependence on

overall activity. Lower panel: spike time rastergram

(horizontal lines represent spiking of the neurons, which

are sorted according to phase) and time is indicated

with a black bar. The scratch reflex was activated at the

time-point of the vertical dotted line (‘Stim onset’).

Sound is the aggregate spiking activity of the

population.

DOI: 10.7554/eLife.18805.019

Video 2. Skewness of the population firing rate is less

activity–dependent: Behavior 2 (contralateral

scratching). Same neuronal activity as in Video 1,

except the spinal network is now generating a different

behavior. The neuronal ensemble spikes at a lower

overall rate, which is reflected in a weaker relationship

between skewness and activity (compare with Video 1).

DOI: 10.7554/eLife.18805.020
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Figure 10. Skewness and irregularity across the neuronal population gauge occupation in both regimes across time. (A) Heat map of the distribution of

firing rates across the population (n ¼ 190 units, 1 animal) on log–scale (y–axis) as a function of time (x–axis). Lognormal mean � SD are indicated as

black and grey lines, respectively. Distribution is indicated (gray histograms) at two different time points (broken vertical lines). (B) Lognormal mean

population firing rate (black line in A) versus log–skewness are negatively correlated, indicating more neurons move into mean–driven regime as the

population rate increases. Scatter due to multiple trials, which is binned in sections, red crosses. (C) Distribution of irregularity (mean CV2) across

population for all ISIs (gray) and when excluding of inter–burst intervals (red). (D) Fraction of neurons, which spend a given amount of time in

fluctuation–driven regime (icrit ¼ 0:4; 0:5 and 0:6) normalized to 100% (Reverse cumulative distribution). The least time spent in fluctuation–driven regime

by half of the neurons (TIF50) is given by the intercept with the broken horizontal line and distribution (indicated by arrow). For this sample animal and

behavior TIF50 ¼ 56%. Inset: Values across animals, sample animal indicated ($). (E) The TIF50–values across animals in both behaviors as indicated by

similarity in values are remarkably conserved.

Figure 10 continued on next page
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the fluctuation–driven regime while other spent as much as 80%. To get a quantitative handle on the

occupation of neurons in the fluctuation–driven regime across the population, we considered the dis-

tribution of time spent with CV2 > icrit. This was formally quantified using the reverse cumulative dis-

tribution of neurons that spend a given fraction of time in the fluctuation–driven regime

(Figure 10D). The reverse cumulative distribution is plotted for 3 values of icrit (0.4, 0.5 and 0.6) to

indicate the sensitivity to parameter choice. Obviously, choosing a lower icrit results in a larger frac-

tion of time in the fluctuation–driven regime, i.e. the curve is shifted to the right. Choosing icrit larger

has the opposite effect. This inverted S–shaped curve gives the fraction of neurons (y–axis), which

spend at least a given time in the fluctuation–driven regime normalized to 100% (x–axis). Hence, half

of the population spent at least 58% of time in the fluctuation regime during ipsilateral scratching

(intercept of curve with the broken line, Figure 10D). We refer to this metric as the time in the fluc-

tuation–regime for half the neurons (TIF50). Similar TIF50–values were obtained for all five animals

(inset histogram). Qualitatively similar results were achieved for a different motor behavior, namely

contralateral scratching (Figure 10E). The TIF50 metric is a time–weighted analysis of irregularity of

spike trains. In addition to measuring the time in regimes, we measured how many spikes were in

one regime vs. the other. Hence, we calculated the reverse cumulative distribution of neurons that

had a given fraction of spikes in the fluctuation–driven regime (Figure 10—figure supplement 1).

Similar to TIF50, we defined a spike–weighted metric as the spikes in fluctuation regime for half the

neurons (SIF50). Both the SIF50– and TIF50–values were relatively conserved across animals as well as

behaviors (Figure 10D–E, Figure 10—figure supplement 1). The large values of TIF50 and SIF50

indicate that the fluctuation–driven regime had a strong presence during motor behaviors, and the

high similarity suggests that it may represent a conserved fundamental property of network activity.

Cell types and spiking activity
In the data analyses presented so far we have not addressed the neuronal identity of the recorded

units. Nevertheless, there is a spatial division subtypes of spinal neurons, which we could take advan-

tage of. During development, a distinct laminar organization of different cellular subtypes is formed

in the dorsoventral axis (Arber, 2012; Jessell, 2000). In particular, motoneurons are primarily found

in the most ventral part of the horn whereas interneurons are found in more medial to dorsal terri-

tory. Since this is the same axis that our electrode arrays were located along, it was possible to infer

a likelihood of cellular identity based on location. The electrode shanks have multiple distributed

electrodes (Figure 11A), which made it possible to approximate the soma location using trilatera-

tion. Trilateration is the geometrical process of determining the location of a source in space using

multiple recording sites combined with the fact that signals decay in the extracellular space (Manola-

kis, 1996). Thus, the node locations were approximated based on the amplitude of spike wave-

forms, which clearly decayed with distance (Figure 11B). Node locations were combined for all

shanks, probes and animals to form a scatter (Figure 11C). Combining these locations with depth of

individual shanks with respect to the surface of the spinal cord, we were able to investigate the spike

patterns with respect to the absolute neuronal location. The irregularity in spiking was quantified

(mean CV2) with respect to dorsoventral depth (Figure 11D). The distributions of mean firing rates

(not shown) and the mean CV2 (Figure 11E) had no obvious dependence on depth. In particular, the

spread in means was much smaller than the SD of the distributions themselves. The most parsimoni-

ous interpretation of these data is that the fluctuation–driven spiking regime was both present and

equally prominent in all the neurons, regardless of whether the cell body was in the ventral horn or

in the medial horn, i.e. equally present in motoneurons and interneurons.

Figure 10 continued

DOI: 10.7554/eLife.18805.021

The following figure supplement is available for figure 10:

Figure supplement 1. Distribution of neurons having fluctuation driven spikes and SIF50 values.

DOI: 10.7554/eLife.18805.022
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Discussion
In neuronal networks, spikes are generated in either the mean– or the fluctuation–driven regime

(Brunel, 2000; Gerstner et al., 2014; Kuhn et al., 2004; Tiesinga et al., 2000). In this report we

present evidence for the existence of both regimes during motor pattern generation in the spinal

cord. We consistently found normally distributed synaptic input combined with the supralinear shape

of the IO–function in the subthreshold region, and suggest this as a compelling mechanism behind

the lognormal population firing rate distribution (Roxin et al., 2011). Using spiking irregularity

across the neuronal population as a hallmark of the fluctuation regime, we found that half of the neu-

rons spent at least 50% of the time in this regime. Thus, the fluctuation–regime was not a rarity, but

rather had a prominent presence both across behaviors and across animals (Figure 10). To our

knowledge this is the first report, which quantifies occupation within spiking regimes of a neuronal

population, not just in the spinal cord, but also in the nervous system in general.

Stability and the two regimes
The fact that the relative time during which a subset of neurons occupied one of the two regimes

was conserved across both behaviors and animals could indicate a key principle of neuronal process-

ing. A fundamental challenge for neuronal networks is to perform functions while keeping the popu-

lation activity from falling into either of the two extreme states: (1) the quiescent state where the

neuronal spiking activity cannot remain self–sustained and (2) the unstable state of run–away recur-

rent spiking activity (Vogels et al., 2005; Kumar et al., 2008). It is well known that recurrent inhibi-

tion is important for maintaining stability, but other mechanisms may participate as well, e.g.

synaptic depression or active adjustment of the shape of the neuronal response function by adapta-

tion of spiking threshold. A nonlinear response function, as we observed in the fluctuation–regime

(Figure 4B), will amplify input via supralinear summation (Rubin et al., 2015). The upward curvature

will enhance synaptic fluctuations, which then accelerates the recurrent excitatory activity causing a
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dorsoventral axis. (B) Recorded waveforms at different locations of three sample units (colored in red, blue and green). The node locations are
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potentially unstable state. In contrast, the response function in the mean–driven regime, is linear or

even sublinear, which is likely to curb strong input. We therefore propose that the close proximity of

the TIF50–value to 50% is an indication of a self–organizing trade–off between sensitivity and stability

in order to preserve at once both network homeostasis and dynamical functionality. This conjecture

remains to be further substantiated in future studies. Furthermore, the TIF50– and SIF50–values

remain to be determined for other part of the nervous system and in other species.

Rhythm generation and regimes
The distinction between fluctuation– and mean–driven spiking is interesting because the two types

of spiking may have radically different causes, and this may hold an important clue to understanding

the enigmatic motor rhythm generation. The fluctuation–driven spiking is believed to be caused by

concurrent and random arrival of excitatory and inhibitory potentials resulting in a fluctuating sub-

threshold Vm (Table 1). In the mean–driven regime, on the other hand, the net membrane current is

so large that the mean Vm�s is above threshold, and the ISIs are therefore determined by the

recharging of the membrane capacitance following the refractory period of the previous spike

(Powers and Binder, 2000). This results in a deterministic trajectory of Vm and regular ISIs. More

importantly, for the mean–driven spiking the membrane current can be caused by intrinsically electri-

cal properties as well as synaptic input, whereas the fluctuation–driven spiking is exclusively caused

by synaptic input. An intrinsic property, which is commonly believed to be involved in rhythm–gener-

ation, is the pacemaker property that can autonomously generate neuronal bursting in the absence

of synaptic input (Brocard et al., 2010; Ramirez et al., 2004; 2011). The prominent presence of the

fluctuation–regime therefore implies that the majority of neuronal spikes were not driven primarily

by intrinsic properties such as pacemaker potentials, but rather by synaptic communication. This can

be interpreted in two ways: (1) if there is a pacemaker–driven rhythmogenic core of oscillatory neu-

rons responsible for the motor activity (Huckstepp et al., 2016), the core only represents a small

fraction of the network, or (2) since the fluctuation–regime is prominent and pacemaker neurons are

difficult to find, the motor–rhythm may be generated by other means such as emergent collective

processes in the network (Yuste, 2015). Generation of movements without the need of pacemaker

neurons have been predicted theoretically in central pattern generators (Kleinfeld and Sompolin-

sky, 1988) as well as more complex sequence generation (Hennequin et al., 2014). Even in the

respiratory system, which has the most stereotypic motor rhythm, pacemaker cells appear not to be

essential for generation of the rhythmic breathing, although this topic is still debated

(Feldman et al., 2013; Ramirez et al., 2011; Carroll and Ramirez, 2013; Chevalier et al., 2016). It

remains to be understood how a distributed emergent processes can generate motor rhythms on a

network level if, in fact, the pacemaker bursting is not an essential component.

Cell identity and circuit function
In spinal research, neuronal identification has improved over the last decades with the development

of genetic knockouts and molecular markers (Bikoff et al., 2016; Goulding, 2009; Britz et al.,

2015; Kiehn, 2006). Pinning down cellular identity improves the search for a potential specialization

in the circuit. However, the sole focus on cellular identity to address questions in spinal research car-

ries a weakness as well as a strength. It contains the risk of missing the collective dynamics and the

delicate interaction among neuronal cell types. Neural circuits operate to perform functions by col-

lective interaction between all neurons, where it is difficult, if not impossible, to link a particular func-

tion to the individual neuron. Functional activity may very well arise on circuit level as opposed to

cellular level. This caveat is known as the neuron doctrine versus emergent network phenomena

(Yuste, 2015; Grillner, 2006), and the neuron doctrine has almost exclusively been adopted in pre-

vious investigations of spinal motor circuits. To the best of our knowledge this report is the first

investigation of spinal motor circuits from an ensemble viewpoint.

Nevertheless, since motoneurons are fundamentally different from the rest of spinal neurons it

would be helpful to distinguish them from interneurons. In our experiments we sampled from neu-

rons, which were likely to be primarily interneurons since they are more numerous than motoneur-

ons. The fraction of motoneurons to interneurons is 1:8 (Walloe et al., 2011), but we were also likely

to sample motorneurons, since they have large somata. To explore this further, we investigated the

population activity and its relation to cellular identity by taking advantage of their spatial
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segregation in the dorsoventral axis (Arber, 2012; Jessell, 2000). We were able to associate an

absolute location of the cellular somata (using trilateration), and thus test for differences in spiking

activity (Figure 11). The distribution of firing rates as well as the spiking irregularity did not have any

dependence on location. This suggests that the fluctuation–driven spiking regime was both present

and equally prominent in all the neurons, regardless of whether the cell bodies were in the ventral or

medial horn, i.e. regardless of whether they were motoneurons or premotor interneurons.

Comparison with other parts of the CNS
Common features of network activity for different parts of the central nervous system may provide

hints towards fundamental principles of neuronal operations. In the present study we identified the

following features of population motor activity: (1) synaptic input to individual spinal neurons was

normally distributed (Figure 3), (2) the means of these normal distributions were also normally dis-

tributed across the population. In particular, the distance to threshold in terms of fluctuations, i.e.

ðVm � VthresÞ=s had a normal distribution and a distance from mean to threshold of 3s on average

(Figure 3—figure supplement 2F). (3) The neuronal response function was supralinear when the

mean input was in the subthreshold region (Figure 4). (4) There was a rich diversity of regular to

irregular spiking patterns. (5) The population firing rate was skewed and lognormal–like.

Many of these features have been identified before in other parts of CNS. The Vm of individual

neurons is often normally distributed in cortical neurons when considering either the up– or down–

state (Destexhe et al., 2003; Stern et al., 1997) and the spiking is irregular with a CV clustered

around 1 (Softky and Koch, 1993; Stevens and Zador, 1998). Similar irregularity is observed in

invertebrates (Bruno et al., 2015). The distribution of mean CV2 values in our experiments was clus-

tered around 0.6 when ignoring the inter–burst intervals (Figure 10C). This is more regular than

what is observed for typical cortical neurons (although see Feng and Brown, 1999), but similar to

cervical interneurons in monkeys performing isometric wrist flexion–extensions (Prut and Perlmut-

ter, 2003).

Lognormal population firing
We observed a skewed and lognormal–like population distribution across behaviors (Figure 9, Vid-

eos 1 and 2). Similar lognormal distributions have been reported in other parts of CNS (Buzsáki and

Mizuseki, 2014; Hromádka et al., 2008; O’Connor et al., 2010; Wohrer et al., 2013) and it

remains an open question how the skewness arises out of neuronal ensembles. Roxin et al proposed

the mechanism where the skewness arises from a nonlinear transformation of Gaussian input

(Roxin et al., 2011). Our data supports this hypothesis. First, we observed a normally distributed Vm

for individual cells, which is a proxy for the requirement of normally distributed input currents (Fig-

ure 3). Second, a supralinear IO–function covering most of this input (Figure 4). Third, a firing rate

distribution of individual cells which was typically highly skewed and lognormal–like although some

did not have lognormal firing (Figure 5). Nevertheless, there is a distinction between the lognormal

firing of individual neurons and the lognormal distribution of mean rates across the population.

Whereas the lognormal population firing rate remains to be fully understood, the skewed firing rate

distribution of individual neurons is fairly well understood. Here, the skewness is due to the fluctuat-

ing input and irregularity of spiking (Ostojic, 2011). Nevertheless, we argue the mechanism for the

lognormal population firing is the same as that for the individual neuron. If the subthreshold IO-func-

tion is approximately similar across the population, which our data implies (Figure 4), we can explain

the lognormal population firing by a supralinear transformation, if the mean Vm across the population

is also Gaussian. We did in fact find the distribution of mean Vm to be Gaussian (Figure 3—figure

supplement 2F).

Fluctuation–driven regime as a subprimary range in motoneurons?
Classical studies of spinal motoneurons indicate two regimes of spiking: a primary and a secondary

range (Kernell, 2006; Meehan et al., 2010), which corresponds to different parts of the mean–

driven spiking regime. This characterization was associated with the intrinsic properties without syn-

aptic input being present. Nevertheless, a different type of fluctuation–driven spiking was discovered

in experiments where synaptic input were present, in what was referred to the subprimary range in

mice (Manuel and Heckman, 2011) and humans (Kudina, 1999; Matthews, 1996). This subprimary
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range conforms to the fluctuation–regime though under a different terminology. As the name indi-

cates, the primary range has been considered to represent the dominant mode of spiking whereas

the subprimary range is a peculiarity. Nevertheless, a recent study recorded for the first time the

motoneuron discharge and muscle force and found that the subprimary range accounts for 90% of

the contraction force (Manuel and Heckman, 2011). This indicates that the fluctuation–regime may

have a more noteworthy role in covering the dynamical range in motor control than previously

assumed, which is in agreement with the observations of the present study.

Materials and methods

Experimental procedures
The experimental procedures are described in more detail at Bio-protocol (Petersen and Berg,

2017). We used the integrated turtle preparation with the spinal motor network intact (n ¼ 5 for the

multi–electrode recordings and n ¼ 60 for the serially aqquired intracellular recordings), in order to

address how the neuronal firing rates are distributed across the population of interneurons and

motoneurons in the spinal cord (Petersen et al., 2014). These sample sizes where assumed to be

large enough in the experimental design and because of a consistency in results, although a specific

power analysis was not conducted. To avoid the confounding factors of supraspinal input, we spinal-

ized the turtle. The transection was performed at the spinal cord at segments (D3-4) caudal to the

cervical segments, where the local circuitry has only little or no involvement in generation of motor

patterns (Mortin and Stein, 1989; Hao et al., 2014; Mui et al., 2012). The adult turtle preparation

is capable of producing elaborate motor patterns such as scratching. We used the semi-intact spinal

cord of adult turtles (Keifer and Stein, 1983; Petersen et al., 2014) and recorded from the seg-

ments D8-D10. These segments contain the essential CPG circuits (Mortin and Stein, 1989). Most

of the spinal cord including the sensory periphery is left intact. The blood is replaced and the spinal

column is provided with oxygenated Ringer’s solution so that the neurons and the network have

optimal conditions. In this experimental situation the motor behavior is as close to in vivo situation

as possible, and is indistinguishable from the intact condition (Keifer and Stein, 1983). The turtle

preparation allow for mechanical stability and the turtle’s resistance to anoxia allow for remarkable

durability of both the recording conditions and the motor pattern reproducibility (Vestergaard and

Berg, 2015).

Integrated preparation
Adult red-eared turtles (Trachemys scripta elegans) of either sex were placed on crushed ice for 2 hr

to ensure hypothermic anesthesia. The turtles were killed by decapitation and the blood was substi-

tuted by the perfusion with a Ringer’s solution containing (mM): 100 NaCl; 5 KCl; 30 NaHCO3;

2MgCl2; 3CaCl2; and 10 glucose, saturated with 95% O2 and 5% CO2 to obtain pH 7.6, to remove

the blood from the nervous system. We isolated the carapace containing the spinal cord segments

D4-Ca2 by transverse cuts (Keifer and Stein, 1983; Petersen et al., 2014) and perfused the cord

with Ringer’s solution through the vertebral foramen , using a steel tube and gasket pressing against

the D4 vertebra. We opened the spinal column on the ventral side along D8-D10 and gently

removed the dura mater with a fine scalpel and forceps. For each insertion site for the silicon

probed, we opened the pia mater with longitudinal cuts along the spinal cord with the tip of a bend

syringe needle tip (BD Microlance 3: 27G3/4", 0.4x 19 mm). We performed the cuts parallel to the

ventral horn between the ventral roots. The surgical procedures comply with Danish legislation and

were approved by the controlling body under the Ministry of Justice.

Network activation
We used a fire polished tip of a bent glass rod for mechanical stimulation, that was mounted linear

actuator. The actuator was controlled with a function generator: frequency, amplitude and duration

of the stimulus.

Extracellular recordings
Extracellular recordings were performed in parallel at 40 KHz using a 256 channel multiplexed

Amplipex amplifier (KJE-1001, Amplipex). Up to four 64-channel silicon probes were inserted in the
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incisions perpendicular to the spinal cord from the ventral side. We used the 64-channel Berg silicon

probes (Berg64 from NeuroNexus Inc., Ann Arbor, MI, USA) with 8 shanks, and 8 recording sites on

each shank arranged in a staggered configuration with 30 mm vertical distance. The shanks are dis-

tanced 200 mm apart. Recordings were performed at depths in the range of 400-1000 mm.

Intracellular recordings
The intracellular recordings were performed in current-clamp mode with an Axon Multiclamp 700B

amplifier (Molecular devices). Glass pipettes were pulled with a P-1000 puller (Sutter instruments)

and filled with a mixture of 0.9 M potassium acetate and 0.1 M KCl. Data were sampled at about 20

kHz with a 12-bit analog-to-digital converter (Axon Digidata 1440a, Molecular devices). We inserted

the glass electrodes from the ventral side of D8-D10 perpendicularly to the spinal cord. Neurons

were located at depths ranging from about 300–800 mm. Typically we had stable intracellular record-

ings for multiple trials.

Nerve recordings
Electroneurogram (ENG) recordings were performed with suction electrodes. The scratch behavior

was measured by the activity of the nerves: Hip Flexor, Knee Extensor, dD8 and HR-KF. The nerve

activities were recorded with a differential amplifier Iso-DAM8 (World Precision Instruments) with

bandwidth of 100 Hz–1 kHz.

Histology
For histological verification, we combined several staining techniques: The silicon probes were

painted with DiI (1–2% diluted in ethanol) before insertion into the spinal cord (Blanche et al., 2005;

Vandecasteele et al., 2011). Following successful experiments, we performed Nissl– and ChAT–

staining of the tissue, to determine the location of respectively neurons and motoneurons.

The histological processing is detailed in (Petersen et al., 2014). We carefully removed the tis-

sue, perfused it and put it in phosphate buffered saline (PBS) with 4% paraformaldehyde for 24–48

hrs and further stored it in PBS. The tissue was mounted in an agar solution and sliced into 100 mm

slices using a microtome (Leica, VT1000 S). The slices were washed with PBS and incubated over-

night at 5˚C with primary choline acetyltransferase antibodies goat anti-ChAT antibodies (1:500, Mili-

pore, USA) in blocking buffer, which is PBS with 5% donkey serum and 0.3% Triton X-100. The slices

were washed three times with PBS and incubated for 1 hr at room temperature with the secondary

antibody Alexa488 conjugated to donkey anti-goat antibodies (1:1000 Jackson) in blocking buffer.

After three washes with PBS, the slice was mounted on cover slit with a drop of ProLong Gold anti-

fade reagent (Invitrogen Molecular Probes, USA) and cured overnight at room temperature before

microscopy. The slice was viewed using a confocal microscope, Zeiss LSM 700 with diode lasers, on

a Zeiss Axiolmager M2 using 10x/0.30 EC Plan-Neofluar, 40x/0.6 Corr LD Plan-Neofluar, and 63x/

1.40 oil DIC Plan-Apochromat objectives (Zeiss).

Data analysis
The data analysis was primarily done in the programming languages Matlab and Python. The correla-

tion coefficient was calculated as the Pearson product-moment correlation coefficient.

Skewness of distribution
We use skewness (Press et al., 1992) or the third moment as a measure of asymmetry in the distri-

bution around the mean, sometimes referred to as Pearson’s moment coefficient of skewness. It can

be estimated using the method of moment estimator as

Skewness¼ 1

N

X

N

j¼1

xj��x

s

� �3

where x1; :::;xN are all the observations (Vm or firing rate) and s and �x are the sample standard devia-

tion and sample mean of the distribution. The skewness is a unitless number and a value of zero indi-

cates perfect symmetry. A positive skew has a tale pointing in the positive direction of the axis and a

negative value points in the opposite direction.
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Spike sorting
Spike sorting was performed in the Klustakwik-suite: SpikeDetekt, KlusterKwik v.3.0 and KlustaViewa

(Kadir et al., 2014). Raw extracellular signals were bandpass filtered from 400–9000 Hz, and spikes

were detected by a median based amplitude threshold with SpikeDetekt (Takekawa et al., 2012;

Kadir et al., 2014; Quiroga et al., 2004). An automatic clustering of the spikes was performed in

KlustaKwik, followed by manual cluster-cutting and cluster verification in KlustaViewa. The cluster

quality was evaluated by several measures: The shape of the autocorrelation function, the amount of

contamination in the refractory period, the Isolation distance (Harris et al., 2001) and the

Lratio (Schmitzer-Torbert and Redish, 2004) (Figure 2—figure supplement 2). Only well isolated

units was used in the further data analysis.

Time-dependent firing rates
The time-dependent firing rate n was estimated by a gaussian kernel by convolving the spike times,

sðtÞ, with a Gaussian kernel kðtÞ:

nðtÞ ¼
Z

¥

�¥
sðt� t0Þkðt0Þdt0

where kðtÞ is defined as

kðtÞ ¼ 1
ffiffiffiffiffiffi

2p
p

!
e
� t2

2!2

with the bandwidth ! optimized for each spike train with the sskernel method (Shimazaki and Shino-

moto, 2010). The estimated width was in the range of 100–500 ms.

Gini coefficient
The Gini coefficient is a measure of statistical dispersion and it is defined as a ratio of the areas on

the Lorenz curve diagram

Gini¼ a

aþ b
¼ 1� 2b

where aþ b is the area below the line of no dispersion (the diagonal, i.e. aþ b¼ 1=2), and b is the

Lorenz curve, i.e. the cumulative distribution of firing rates (Figure 9H).

Irregularity of the spiking activity
The irregularity of the spiking of individual neurons can be described by several measures. The most

common measures are the coefficient of variation (CV ¼ s=�) and the Fano factor (F ¼ s2=�), but

both measures easily overestimate the irregularity when the firing rate is non-stationary (Holt et al.,

1996; Ponce-Alvarez et al., 2010; Softky and Koch, 1993). More advanced methods of estimating

the time dependent variations in the irregularity have been developed (Shinomoto et al., 2009;

Shimokawa and Shinomoto, 2009; Miura et al., 2006), and here we use the widely used metric

CV2, which has been suggested to be the most robust measure of local spiking irregularity

(Wohrer et al., 2013; Ponce-Alvarez et al., 2010). The time dependent CV2 is defined by pairs of

adjacent inter-spike intervals ISIi and ISIiþ1:

CV2ðiÞ ¼
2jISIi� ISIiþ1j
ISIi þ ISIiþ1

where CV2 ¼ 1 for a Poisson process and CV2 ¼ 0 for a regular process. CV2 can take values in the

range from zero to two.

We noticed a small difference in the distribution of irregularity among the neurons recorded with

intracellular versus extracellular electrodes (data not shown). The neurons were recorded with intra-

cellular electrodes had more regular spiking than those recorded with extracellular electrodes. This

may be caused by a systematic bias in the way the intracellularly recorded neurons were collected,

as there is an experimental bias towards high firing rates. Spike sorting processing of the
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extracellular recordings, on the other hand, is likely to both miss spikes and contain false positives,

which will cause overestimation of spiking irregularity.

TIF50 and SIF50: time and spikes in fluctuation regime based on spiking
irregularity
To get a quantitative handle on the fraction of neurons found in the fluctuation–regime across the

population, we consider the distribution of neurons, f ðtÞ, which spends a given amount of normalized

time t in the fluctuation regime, i.e. with CV2 > icrit. We consider three values of icrit, 0.4, 0.5 and 0.6,

as indicators for when the neurons are in the fluctuation–regime. Formally we quantify the time in

fluctuation–regime for the population using the reverse cumulative distribution of neurons

(Figure 10D–E and Figure 10—figure supplement 1). The reverse cumulative fraction of neurons in

the fluctuation regime FðtÞ for a given fraction of normalized time t is

FðtÞ ¼ 1�
Z t

0

f ðtÞdt; 0<t� 1

This fraction FðtÞ is the fraction of neurons, which spend at least t amount of normalized time in

the fluctuation regime. To compress the distribution into a single number we use the fraction of time

in fluctuation regime of half of the population, TIF50, which is the value of t for which FðtÞ ¼ 50%

(arrows and broken lines, Figure 10D–E).

Since the firing rate is rarely constant, one may want to know how many spikes are elicited in the

mean– versus fluctuation regime. This is calculated in similar way, using the distribution of neurons

having a normalized fraction of spikes in the fluctuation regime, i.e. spikes with CV2 > icrit, f ðsÞ. The
reverse cumulative of f ðsÞ again gives the fraction of neurons which have at least s spikes in fluctua-

tion regime, normalized to 100%,

FðsÞ ¼ 1�
Z s

0

f ðsÞdt; 0<s� 1

Again we compress the distribution into a single number and use the fraction of spikes, which

occur in fluctuation regime of half of the population, SIF50, which is the value of s for which FðsÞ ¼
50% (arrows and broken lines Figure 10—figure supplement 1).

Estimating threshold
We use a definition of the action potential threshold, which is based on the phase plot of Vm versus

the derivative dVm=dt. This is the second method reported in Sekerli et al. (2004). The threshold is

found as the point in the trajectory in phase space, where there is a strong departure from rest prior

to the cycle. Since dVm=dt is proportional to the membrane current, this point represents a strong ini-

tiation of the inward current. Defining the slope of Vm in time, f ¼ dVm

dt
, the threshold is defined as the

largest peak in second derivative with respect to Vm in phase space, i.e. the maximum of d2 f

dV2
m
(red

dots, Figure 6—figure supplement 1B–C). This is the point with the largest acceleration from base-

line prior to the peak of the action potential. The Vm trace was low–pass filtering at 5000 Hz to

reduce the vulnerable to electrical noise of the estimates of derivatives.

Spike rate versus Vm (FV-curve)
The method for estimating the response rate as a function of Vm has been described previously

(Vestergaard and Berg, 2015). The relationship between firing rate, n, and membrane depolariza-

tion is based on the assumption that spikes occur as a random renewal point–process i.e. a Poisson

process. The rate is directly related to the probability, P, of a spike occurring in a small time window

at a certain time t:

Pðt; tþDtÞ ¼ nDt

The window Dt has to be small such that the chance of getting more than one spike in the window

is negligeble. The firing rate can thus be defined in terms of the probability of achieving a spike in

an infinitesimally small time window (Gerstner et al., 2014):
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nðtÞ ¼ lim
Dt!0

Pðt; tþDtÞ
Dt

This definition of n is also called the ‘stochastic intensity’. Since the probability P is strongly

dependent on the depolarization of the membrane potential, the firing rate will be similarly depen-

dent. To determine n as a function of Vm we have to empirically determine the probability, P, for the

smallest possible value of Dt, which is the sampling interval of the intracellular recordings. To get P

as a function of membrane potential, PðVmÞ, we first empirically determine the stochastic distribution

of Vm prior to the spike (1.5-1.7 ms prior), which we know will cause a spike. Then we normalize this

distribution with the amount of time spent at each Vm-level at all time. This is the estimated probabil-

ity of getting a spike, P, within a small time window Dt for a given Vm, i.e. the firing rate as a function

of Vm. This empirical method of relating firing rate and Vm was relatively recently invented

(Jahn et al., 2011) and used in determining IO properties of e.g. motoneurons (Vestergaard and

Berg, 2015). The shape of the spike response function is highly non-linear with upward curvature.

This has been observed in previous experiments (using a different method) and has often been

referred to as expansive non-linearity (Hansel and van Vreeswijk, 2002; Miller and Troyer, 2002;

Murphy and Miller, 2003; Priebe and Ferster, 2005, 2008). An exponential

nðVmÞ ¼ cebVm

was fitted to capture the curvature, where the curvature is represented in the exponent b, which

have units of 1=mV , and c is a constant of units 1=s. Such expansive non-linearities have also been

investigated in the visual cortex where they are often characterized as a power-law relationship, i.e.

nðVmÞ ¼ k½Vm�Ea�a

where k is a constant and a is the power >1, i.e. supralinear, and often ranging from 2-5 (Hansel and

van Vreeswijk, 2002; Miller and Troyer, 2002). This exponent is also a measure of the expansive

curvature of the non-linearity. Ea represent a subthreshold level of Vm, where the spiking probability

is zero, such that the values in the sampled traces are always larger than Ea, i.e. Vm > Ea. The curva-

ture dependence on synaptic fluctuations was assessed by the standard deviation of the distribution

of Vm traces prior to the spike in the diffusion regime, i.e. where there was no link to the Vm and the

spike occurrence. This distribution was chosen 18 ms prior to the spike (Figure 3B). The analysis and

fits were performed in Matlab with generic fitting functions.

Return map ratio: Intracellular metric for mean– vs. fluctuation–regime
In order to distinguish neurons in fluctuation– versus mean–regime, we employ a new metric for

quantifying the degree of fluctuations in Vm in between action potentials. We plot the values of Vm in

a return map, which is a plot of VmðtÞ versus Vmðt þ DtÞ. If the inter–spike Vm has a direct trajectory

from the reset potential to the next spike, Vm will smoothly increase and thus Vmðt þ DtÞ will always
be larger than VmðtÞ. Therefore each point will be above the line of unity (Figure 3—figure supple-

ment 1A–B). On the other hand, if Vm has fluctuations, it will have an indirect and convolved trajec-

tory from the reset value to the threshold. This will manifest as containing values of Vmðt þ DtÞ which
are actually smaller than VmðtÞ. Thus we use the ratio of points above versus below the unity line as a

metric for how convolved and fluctuating the path of Vm is from reset to threshold. If the ratio is

~ 0.5 then Vm is highly fluctuating, whereas if the ratio is approaching 1 the path is straight without

any fluctuations. We choose a mean value of the histogram of all values to 0.7 to classify neurons as

fluctuation– or mean–driven (Figure 3—figure supplement 1C). This metric of straight versus con-

volved trajectory had significant negative correlation with other measures of fluctuation– regime,

e.g. spike rate skewness, spike irregularity (CV2) and least time below threhold (LTBT, Figure 3—fig-

ure supplement 1D–F). The choice of Dt is not important as long as it is larger than the timescale of

electronic fluctuations of the amplifiers and smaller than the timescale of synaptic fluctuations in Vm.

We consistently used Dt ¼ 1:5 ms for all neurons. The return map ratio is intended as a metric to ana-

lyze sub-threshold activity and therefore spikes were removed from the traces, including a 6 ms win-

dow before and after the peak. Also, the Vm containing the interburst (defined as having ISIs

> 300 ms) intervals was removed.
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Determining cellular location using trilateration
Trilateration is a geometrical process of determining the location of a source in 2D–space using mul-

tiple recording sites scattered in space. We adapted the method to take advantage of a distance–

dependent decay of the electrical signal from the action potential in the extracellular space. In this

way, the amplitudes of the waveforms, which were simultaneously recorded on multiple electrodes,

revealed the location of the source in space relative to the position of the electrodes. We assumed

that the electrical signal decayed as 1=r2, where r is the distance.

Data selection
In Figure 2, the following trials were used: n ¼ ½6; 4; 9; 5; 6� for ipsilateral pocket scratch and n ¼
½6; 3; 10; 5; 6� for contralateral pocket scratch. Data used in Figure 7 has already been published in a

different context (Berg et al., 2007). A small subset of the neurons used in Figure 3D–E (n ¼ 10 out

of 68) has been acquired in a reduced preparation (Petersen et al., 2014) and published for an

investigation of a different matter (Berg et al., 2007; Berg and Ditlevsen, 2013). The data from

experiments of blockade of inhibition using superfusion of strychnine has also been published previ-

ously in the investigation of a different matter (Vestergaard and Berg, 2015). Regarding excluding

spikes from the analysis in Figure 3C–E: For the temporal distribution (panel C), only ISIs > 6 ms was

included and for the spike triggered Vm-distribution only ISIs > 20 ms was included, all having ISIs

< 300 ms. Estimating the FV-curve (Figure 4) all spikes having ISIs > 1.7 ms was included.

Definition of fluctuation– and mean–driven spiking
Neuronal spiking has traditionally been considered to occur when the mean inward current of the

cellular membrane is large enough to cross the rheobase such that the mean membrane potential

(Vm) is above threshold (Vthres). In practice, the mean Vm will not exceed Vthres by very much due to

the active spiking and after–hyperpolarization, but if this mechanism was turned off the mean mem-

brane current (Im) would drive Vm across threshold, formally written as Imthres=Rm where Rm is the

membrane resistance. Spikes elicited in this manner are in the mean–driven regime (Gerstner et al.,

2014; Renart et al., 2007). They have shorter inter–spike intervals (ISIs) because of the large Im and

regular spiking due to the after–hyperpolarization. In contrast, when the mean Vm is below threshold,

i.e. Im < Vthres=Rm, spikes are elicited by temporary fluctuations in Vm due to synaptic bombardment.

Such spiking is in the fluctuation–driven regime (Kuhn et al., 2004; Tiesinga et al., 2000;

Gerstner et al., 2014; Roxin et al., 2011). The random synaptic fluctuations cause the spiking to be

more irregular, which results in a higher coefficient of variation (CV, defined as the standard devia-

tion (s) divided by the mean of ISIs), than for the mean–driven regime (cf. Figure 1D–E). Therefore

irregularity is an indicator of the spiking regime. Another indicator of the fluctuation–driven regime

is positive skewness of the firing rate distribution (Figure 1A–B). These indicators are used to quan-

tify the fraction of the population that is in one versus the other regime.
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Denève S, Machens CK. 2016. Efficient codes and balanced networks. Nature Neuroscience 19:375–382. doi: 10.
1038/nn.4243, PMID: 26906504
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