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Abstract Animals host multi-species microbial communities (microbiomes) whose properties may
result from inter-species interactions; however, current understanding of host-microbiome
interactions derives mostly from studies in which elucidation of microbe-microbe interactions is
difficult. In exploring how Drosophila melanogaster acquires its microbiome, we found that a
microbial community influences Drosophila olfactory and egg-laying behaviors differently than
individual members. Drosophila prefers a Saccharomyces-Acetobacter co-culture to the same
microorganisms grown individually and then mixed, a response mainly due to the conserved
olfactory receptor, Or42b. Acetobacter metabolism of Saccharomyces-derived ethanol was
necessary, and acetate and its metabolic derivatives were sufficient, for co-culture preference.
Preference correlated with three emergent co-culture properties: ethanol catabolism, a distinct
volatile profile, and yeast population decline. Egg-laying preference provided a context-dependent
fitness benefit to larvae. We describe a molecular mechanism by which a microbial community
affects animal behavior. Our results support a model whereby emergent metabolites signal a
beneficial multispecies microbiome.

DOI: 10.7554/eLife.18855.001

Introduction

Multispecies microbial communities (microbiomes) influence animal biology in diverse ways (McFall-
Ngai et al., 2013): microbiomes modulate disease (van Nood et al., 2013), metabolize nutrients
(Zhu et al., 2011), synthesize vitamins (Degnan et al., 2014), and modify behavior (Bravo et al.,
2011). A central goal in host-microbiome studies is to understand the molecular mechanisms under-
pinning these diverse microbiome functions.

Some aspects of microbial community function are the product of inter-species interactions
(Rath and Dorrestein, 2012; Manor et al., 2014; Gerber, 2014; Gonzalez et al., 2012). For exam-
ple, microorganisms modulate the metabolomes of neighboring species (Derewacz et al.,
2015; Jarosz et al., 2014) and microbial metabolites (e.g., antibiotics) alter bacterial transcriptional
responses (Goh et al., 2002). Despite current understanding of microbial inter-species interactions
in vitro, some of which has been elucidated in exquisite detail, the consequences of microbial
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eLife digest Animals associate with communities of microorganisms, also known as their
microbiome, that live in or on their bodies. Within these communities, microbes - such as yeast and
bacteria — interact by producing chemical compounds called metabolites that can influence the
activity of other members of the community. These metabolites can also affect the host, helping
with nutrition or causing disease.

The behavior of an animal may help it to acquire its microbiome, although this has not been
properly explored experimentally. For example, the fruit fly Drosophila melanogaster acquires
members of its microbiome from the microbes found on the fermented fruit that it eats. It is
possible that the flies — and other animals — respond to microbial metabolites, which act as signals or
cues that cause the animal to avoid or seek the microbial community.

The fruit fly microbiome is commonly studied in the laboratory because it has a much simpler
composition than mammalian microbiomes. Previous studies have explored how the flies respond to
odors produced by individual types of microbes, but none have explored how the behavior of the
flies changes in response to the odors produced by a mixed microbial community.

Fischer et al. now show that fruit flies are preferentially attracted to microbiome members that
are interacting with each other. The flies detected members of the microbiome by responding to
chemicals that are only produced when community members grew together. For example, one
member of the microbial community produces ethanol that is then converted to acetate by another
community member. Neither ethanol nor acetate alone attracted flies as strongly.

Fischer et al. also discovered that both adult fruit flies and their larvae benefit from acquiring a
mixture of different microbes at the same time. Adult flies benefit by avoiding harmful
concentrations of either ethanol or acetic acid, and larvae benefit from developing in an
environment that reduces how quickly disease-causing microbes can grow.

Overall, the results presented by Fischer et al. detail how flies select a beneficial, interactive
microbiome from an external reservoir of microorganisms. Flies also have internal mechanisms, like
their immune system, that help them to select their microbiome. Therefore a future challenge will be
to integrate the behavioral and internal selection mechanisms into a single model of microbiome
acquisition.

DOI: 10.7554/eLife.18855.002

interspecies interactions within host-associated microbiomes are just beginning to be explored
experimentally.

Insight into host-associated microbiome function has stemmed mostly from whole-microbiome [e.
g., re-association of germ-free hosts with whole microbiomes (Ridaura et al., 2013) and modeling
microbiome function based on gene annotation (Costello et al., 2009)] or single-microorganism [e.
g., re-association of germ-free hosts with a single microorganism (Ivanov et al., 2009)] studies. How-
ever, these approaches tend to reveal only limited insight into inter-species microbial interactions,
which can provide hosts with essential services. For example, termite symbionts carry genes neces-
sary for metabolism of different parts of complex carbohydrates (Poulsen et al., 2014), yet their
function has not been demonstrated in vivo; co-occurring human gut symbionts share polysaccharide
breakdown products cooperatively (Rakoff-Nahoum et al., 2014, 2016), but the consequences of
such interactions for the host are unknown; inter-species bacterial interactions protect Hydra from
fungal infection (Fraune et al., 2015), but the mechanism of host protection is unclear. The need to
understand the effects of inter-species microbiome interactions motivated our current work.

Attractive model systems in which to study the outcomes of inter-species microbial interactions
for host biology would include a tractable host that harbors a simple multispecies microbiome. Here,
we report the use of Drosophila melanogaster to study interactions in a simple microbiome and their
consequences for host behavior.

The Drosophila microbiome consists largely of yeasts, acetic acid bacteria, and lactic acid bacteria
(Chandler et al., 2011, 2012, Broderick and Lemaitre, 2012; Camargo and Phaff,
1957, Staubach et al., 2013). Drosophila ingests microbiome members from the environment (e.g.,
fermenting fruit, [Camargo and Phaff, 1957, Barata et al., 2012; Erkosar et al., 2013, Blum et al.,
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2013; Broderick et al., 2014]), a behavior posited as a mechanism for Drosophila to select, acquire,
and maintain its microbiome (Broderick and Lemaitre, 2012; Blum et al., 2013). Drosophila behav-
ior toward environmental microorganisms has focused on yeasts (Becher et al, 2012
Christiaens et al., 2014; Schiabor et al., 2014; Palanca et al., 2013; Venu et al., 2014). Yeasts
attract Drosophila via ester production (Christiaens et al., 2014; Schiabor et al., 2014), induce Dro-
sophila egg-laying behavior (Becher et al., 2012), and are vital for larval development
(Becher et al., 2012). Lactic and acetic acid bacteria produce metabolites (e.g., acids) that may repel
Drosophila at high acid concentrations, while also inducing egg-laying preference for sites contain-
ing acetic acid (Ai et al., 2010; Joseph et al., 2009). One motivation of our study was to analyze
Drosophila behavior toward the yeast and bacteria that dominate the Drosophila microbiome.

Yeast and bacteria are largely studied within separate Drosophila sub-disciplines, despite their
shared habitat (Broderick and Lemaitre, 2012). Yeasts serve as food, providing Drosophila vitamins,
sterols, and amino acids (Broderick and Lemaitre, 2012). Lactic and acetic acid bacteria are gut
microbiome members (Wong et al., 2011) promoting larval development (Shin et al., 2011,
Storelli et al., 2011), increasing resistance to pathogens (Blum et al., 2013), inducing intestinal
stem cell proliferation (Buchon et al., 2009), and reducing adult sugar and lipid levels (Newell and
Douglas, 2014, Wong et al., 2014). Since microorganisms that are traditionally considered ‘food’
co-exist with those considered ‘microbiome’ in fruit fermentations and the two groups provide Dro-
sophila with different resources, we hypothesized that Drosophila might detect a beneficial commu-
nity via metabolites that are produced cooperatively by the desirable symbionts. Alternatively,
Drosophila might detect a different metabolite as the signal for each symbiont.

Fruit undergoes a well-characterized ripening process in which cell-wall degrading enzymes and
amylases convert the firm, starchy tissue into soft, sugar-rich fruit (El-Zoghbi, 1994; Abu-Goukh and
Bashir, 2003; Mao and Kinsella, 1981). The high sugar content supports microbial colonization and
fermentation by Drosophila-associated microorganisms, including yeasts, lactic acid bacteria, and
acetic acid bacteria (Barata et al., 2012; Barbe et al., 2001). Drosophila avoids ‘green’ fruit and is
attracted to ‘overripe’ fruit (Turner and Ray, 2009), yet it is unclear how Drosophila behavior is influ-
enced by the dynamic multispecies fruit microbiome and its metabolic properties. To this end, we
developed a model fruit fermentation system that afforded measurement of microbial populations,
microbial metabolites, and Drosophila behavior.

Here we demonstrate the importance of emergent microbiome metabolism—quantitatively differ-
ent or unique metabolites produced by the microbiome, but not by any of its members in isola-
tion—on behavior, suggesting that Drosophila larvae and adults benefit by behaviorally selecting a
multispecies, interactive microbiome.

Results

To determine whether Drosophila responds to emergent microbial community metabolites, we used
the T-maze olfactory assay to analyze Drosophila behavioral responses to several Drosophila micro-
biome members grown individually or in communities (Figure 1A, Supplementary file 2, Figure 1—
figure supplement 1). When the strains were grown individually, Drosophila was strongly attracted
to yeasts, moderately attracted to acetic acid bacteria, and neutral or slightly repelled by lactic acid
bacteria (Figure 1B,C). Because strains within a microbial group attracted Drosophila similarly, a rep-
resentative yeast, acetic acid bacterium, and lactic acid bacterium were used to test the effect of
interactions between microbiome members on Drosophila behavior. Drosophila preferred microbial
communities grown together to microorganisms grown individually and then mixed prior to analysis
(defined throughout as a separate-culture mixture, Figure 1D). Focusing on a model Saccharomyces
cerevisiae and Acetobacter malorum community, we found that when tested against apple juice
medium (AJM), Drosophila attraction to the community was stronger than to the separate-culture
mixture or individual members (Figure 1E). In sum, Drosophila detects, and prefers, microorganisms
growing together to a mixture of the same strains combined after they had completed growth.

We next measured the attractiveness and other properties of the co-culture over time. When
grown alone, the microorganisms had similar growth profiles (Figure 2A). However, when grown
with A. malorum, S. cerevisiae populations first increased, then decreased between 60 and 72 hr,
and were undetectable by 96 hr (Figure 2A). The decrease in S. cerevisiae viable counts mirrored a
decrease in pH (Figure 2—figure supplement 1A). Drosophila did not prefer the co-culture relative

Fischer et al. eLife 2017;6:€18855. DOI: 10.7554/eLife.18855 30of25


http://dx.doi.org/10.7554/eLife.18855

LIFE

A

Control arm

Test arm

1\'§3 e A =8 o8

“&E

Avoidance(-1) No Preference(0)

Control Arm Test Arm
Empty Tube

[Water

NS

[T Media control (AJM)

w A pasteuria

A

e C.

Attraction(+1)
Response Index (RI)= (test arm -control arm) / (total # flies)

Empty Tube

Benzaldehyde (1%)
Le. durionis
Leuconostoc sp_Fabian
L. brevis_wild
L. brevis_lab

NS 1 piantarum
NS L. fermentum
Ns Lactobacillus plantarum cs
- A. orleanensis

A. indonensiensis

A. cerevisiae

s __S. corevisiae

ACV (25%)|

nus_wild

malorum

H.uvarum
californica

-1.0 -0.5 0.0 0.5 1.0
Response Index
| —— |
Py 0.6 —
L]
°
£ 0.4 .
8 L]
c 0.21 4
g_ ==
@ 0.0 ﬁ.-
30
v HY
-0.2 T T .
x@ x@ s
9) 9 K4
T &
& &®
A o
S
o &
v ¥
Control Arm Test Arm
Empty Tube NS Empty Tube
ACV
Water (25%, viv)
Separﬂtt-;—;:fl:l;'e) mixture ‘;;::'I‘"‘;"
*mralif:ﬂxl:’e} mixture C?Lﬁl’i‘t;r)e
i [ Ity
Sepﬂvate(-cs::rr; mixture NS <(>sr~;: L;;e
i Tri-cult
S st
Co-culture Tri-culture
(Sc-Am) (Sc-Am-Lp)
-1.0 -0.5 0.0 0.5 1.0
Response Index
Control Arm Test Arm
Empty Tube Empty Tube

o

Media control (AJM)

m -

ACV
e e
[ [———

Separate-culture

mixture (Sc+Am)
0-culture
(Sc+Am)

Benzaldehyde

malorum (Am)

-1.0 05 00 05
Response Index

1.0

Figure 1. Drosophila detection of microbe-microbe
metabolite exchange. (A) T-maze setup and
quantification. (B) Drosophila behavior toward yeasts
(blue), acetic acid bacteria (red), and lactic acid

Figure 1 continued on next page

Ecology | Microbiology and Infectious Disease

to the separate-culture mixture at 34 hr; however,
Drosophila was more attracted to the co-culture
from 48-127 hr (Figure 2B). Moreover,
the Drosophila attraction to the 96 hr co-culture
was stronger than its preference for the 48, 54,
or 60 hr co-cultures (Figure 2B). Drosophila pref-
erence for the co-culture correlated with lower
pH and S. cerevisiae population density, despite
Drosophila olfactory avoidance of acid (Ai et al.,
2010) and reliance on yeast for nutrition
(Anagnostou et al., 2010) (Figure 2C,D). Dro-
sophila preference did not correlate with viable
A. malorum populations (Figure 2—figure sup-
plement 1B). Drosophila preference for the co-
culture increased relative to sterile media during
34-96 hr of growth, which is consistent with the
increase in Drosophila attraction being due to a
property of the co-culture rather than to a
decrease in attraction to the separate-culture
mixture (Figure 2—figure supplement 1C).
Moreover, Drosophila was more attracted to the
72 hr co-culture than individual cultures or the
separate-culture mixture at any other growth
stage (i.e. 24, 34, 72 hr; Figure 2—figure supple-
ment 1D,E). In sum, several properties of the
microbial community (e.g. S. cerevisiae density,
pH) parallel Drosophila detection of, and prefer-
ence for, the co-culture.

Mutants in broadly and narrowly tuned iono-
tropic and olfactory receptors [Irs and Ors,
respectively, (Abuin et al., 2011; Hallem and
Carlson, 2006)] were used to evaluate the role of
Drosophila olfactory reception in discriminating
the co-culture from the separate-culture mixture
during and immediately following peak attraction
(Figure 3—figure supplement 1). During the
most attractive phase of the co-culture (e.g. 67—
115 hr), homozygous mutants of Drosophila
ORCO and Or42b showed a significant reduction
in attraction to the co-culture, whereas no role
was detected for Drosophila homozygous
mutants in several Irs or Or35a (Figure 3A). As
co-culture growth proceeded (e.g. 139-163 hr),
attraction decreased and the role of Or42b and
ORCO waned (Figure 3). An independent homo-
zygous mutant of ORCO also showed reduced
attraction to the co-culture, whereas the hetero-
zygotes ORCO/+ and Or42/+ were attracted to
the co-culture similarly to wild-type flies
(Figure 3B).

ORCO is a required co-receptor for all other
Or gene products (Larsson et al., 2004) and
Or42b, one of the most conserved olfactory
receptors, detects esters and 1,1-diethoxyethane
(Mathew et al., 2013; Asahina et al., 2009,
Stokl et al., 2010). These results suggest that
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bacteria (brown) (Supplementary file 2). Mean + SEM
of 12-36 replicates (n = 2-6 experiments). Each T-maze
replicate uses a technical replicate of a microbial
culture and one cohort of Drosophila maintained in
separate vials for 3-5 days. Mock (two empty tubes),
ACV (25% apple cider vinegar versus water), and
benzaldehyde (1% versus paraffin oil [PO]). The one-
sample t-test was used to assess the mean deviance
from 0. Symbols: NS p>0.05; *p<0.05; **p<0.01;
***+5<0.001; ****p<0.0001. (C) Mean Drosophila
behavior toward each microorganism was graphed
according to microbial group. The means were
compared by one-way ANOVA with Tukey's post-hoc
comparison. (D) Drosophila behavior toward
community combinations of a representative yeast,
acetic acid bacterium, and lactic acid bacterium in
relation to their separate-culture mixture (grown
individually and mixed; Sc = S. cerevisiae; Am= A.
malorum; Lp = L. plantarum cs) grown for 96 hr;
Drosophila preference for the three- versus two-
membered community is the last column. Mean + SEM
of 12-18 replicates (n = 2-3 experiments). The one-
sample t-test assessed the mean deviance from 0. (E)
Drosophila olfactory behavior toward the S. cerevisiae
and A. malorum community and its constituent parts
relative to media grown for 48-60 hr. Mean + SEM of
18-30 replicates (n = 5 experiments). A one-way
ANOVA followed by post-hoc Tukey's multiple
comparison correction test evaluated whether the
means of the experimental groups were different from
one another.

DOI: 10.7554/¢eLife.18855.003

The following source data and figure supplements are
available for figure 1:

Source data 1. Raw Drosophila preference data for
Figure 1B,C.

DOI: 10.7554/¢eLife.18855.004

Source data 2. Raw Drosophila preference data for
Figure 1D.

DOI: 10.7554/¢eLife.18855.005

Source data 3. Raw Drosophila preference data for
Figure 1E.

DOI: 10.7554/¢eLife.18855.006

Figure supplement 1. Drosophila melanogaster
olfactory behavior toward different culture volumes of
Saccharomyces cerevisiae and Acetobacter malorum.
DOI: 10.7554/elife.18855.007

Figure supplement 1—source data 1. Raw Drosophila
preference data for Figure 1—figuresupplement 1.
DOI: 10.7554/¢eLife.18855.008

Ecology | Microbiology and Infectious Disease

Or42b enables Drosophila to distinguish the co-
culture from the separate-culture mixture. More-
over, a non-ORCO factor explains ~40% of Dro-
sophila co-culture preference (Figure 3A,B).
Previous work found that ORCO is fully responsi-
ble for the Drosophila attraction to apple cider
vinegar (Semmelhack and Wang, 2009), sug-
gesting that the behavioral circuit activated by
inter-species interactions between S. cerevisiae
and A. malorum is distinct from the circuit acti-
vated by apple cider vinegar.

We speculated that the emergent property of
co-culture attractiveness might arise from a dis-
tinct metabolic profile of the co-culture. Using
gas chromatography-mass spectrometry (GC-
MS), we identified volatiles unique to or differen-
tially produced in the co-culture compared to
the separate-culture mixture. Five co-culture vol-
atiles (ethanol, isobutanol, isoamyl alcohol, ace-
tic acid, isoamyl acetate) were confirmed with
standards (Table 1—source data 1 and 2) and
quantified with standard curves (Table 1—
source data 3 and 4). The alcohol concentra-
tions were lower, and acetic acid and isoamyl
acetate were unique in the co-culture relative to
the other experimental groups (Table 1). The
molecular profile was reminiscent of ethanol
catabolism as the unique co-culture metabolic
process. We therefore hypothesized that ethanol
catabolism was the emergent metabolic process.

We next measured ethanol and acetic acid
levels over time (24-156 hr) and compared the
chemical dynamics to Drosophila preference.
Consistent with a relationship between ethanol
catabolism, acetic acid anabolism, and Drosoph-
ila attraction, the dynamics of Drosophila co-cul-
ture preference mirrored ethanol depression and
acetic acid accumulation in the co-culture
(Figure 4A). Furthermore, as ethanol catabolism
and acetic acid anabolism proceeded (36-96 hr),
Drosophila attraction toward the co-culture
increased until 96 hr, at which point it
decreased, consistent with lower turnover of eth-
anol at the end of ethanol catabolism
(Figure 4A, black line).

We hypothesized that Drosophila preferred
the community during peak ethanol turnover
(e.g. co-cultures at ~72 hr of growth) compared
with the community during pre-ethanol catabo-
lism (e.g. co-culture at ~36 hr of growth) or dur-
ing late-stage ethanol catabolism, in which
ethanol turnover is low (e.g. co-culture at ~144

hr of growth; Figure 4A). Consistent with our hypothesis, Drosophila preferred the co-culture in the
middle stage of ethanol catabolism to earlier or later stages of ethanol catabolism (Figure 4B). To
test directly whether ethanol catabolism underpinned Drosophila co-culture preference, we evalu-
ated Drosophila preference for the co-culture harboring a mutant in adhA, which encodes
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Figure 2. Drosophila temporal preference for metabolite exchange. (A) S. cerevisiae and A. malorum viable populations. Mean + SEM of 2-3
experiments with one pooled replicate (2-3 cultures from the same colony) per experiment. Limit of detection is 20 CFU/mL. A curve was fitted to the
data with 40 values. Subsequently, an exponential plateau equation was compared between the individual cultures from 0 to 72 hr. The null hypothesis
that the k values are the same was not rejected (p>0.05). A separate analysis compared a slope of 0 between S. cerevisiae alone and S. cerevisiae with
A. malorum from 48-127 hr. The null hypothesis that the slopes were the same was rejected (p=0.0205). (B) Drosophila olfactory behavior toward co-
cultured S. cerevisiae and A. malorum versus its separate-culture mixture as a function of culture age. Mean + SEM of 16-18 replicates from three
experiments. Two statistical tests were run. First, a one-sample t-test assessed whether Drosophila was attracted, neutral, or repelled by the test arm by
evaluating mean deviance from 0. Symbols: NS p>0.05; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. Second, a one-way ANOVA followed by
Dunnet's post-hoc multiple comparison test evaluated whether Drosophila was attracted to the co-culture aged 96 hr differently than other aged co-
cultures. The results are shown in pink; unique letters indicate difference (p<0.05) from 96 hr. (C) Relationship between pH and Drosophila preference
for the S. cerevisiae and A. malorum co-culture versus the separate-culture mixture. Each data point represents the pH of a co-culture and the mean RI
of Drosophila toward the same co-culture. A linear standard curve with an unconstrained slope was generated and compared to a null model with
slope = 0. The data fit to an unconstrained slope better than to the null model (p<0.0001, slope = —0.3295). (D) Relationship between S. cerevisiae
populations and Drosophila preference for the co-culture versus the separate-culture mixture. Each data point represents viable S. cerevisiae
populations of the culture along with the mean Rl value toward the co-culture containing S. cerevisiae. A semilog standard curve with an unconstrained
slope was generated and compared to a null model with slope = 0. The data fit to an unconstrained slope better than to the null model (p<0.0001,
slope = —0.0349).

DOI: 10.7554/¢eLife.18855.009

The following source data and figure supplements are available for figure 2:

Source data 1. Raw Drosophila preference data for Figure 2B & Figure 2—figure supplement 1C.

DOI: 10.7554/elife.18855.010

Source data 2. Raw Drosophila preference data, microbial population data, and pH data for Figure 2A,C,D & Figure 2—figure supplement 1A,B.
DOI: 10.7554/eLife.18855.011

Figure supplement 1. Properties of the co-culture and its relationship to Drosophila preference.

DOI: 10.7554/¢eLife.18855.012

Figure supplement 1—source data 1. Raw Drosophila preference data and microbial population data for Figure 2—figure supplement 1D,E.

DOI: 10.7554/¢eLife.18855.013
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Figure 3. Role of olfactory receptor mutants in Drosophila detection of inter-species microbial interactions. (A)
The mean rank of the response index of the various Drosophila mutants toward the co-culture was compared with
the mean rank of wild-type fly behavior toward the co-culture using the Kruskal-Wallis test followed by Dunn's
post-hoc multiple comparisons testing. Symbols: *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. A lack of symbol
Figure 3 continued on next page
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Figure 3 continued

indicates no difference when comparing each mutant group to the wild-type group. The behavioral responses of
all Drosophila (wild-type and each mutant) toward the co-culture was greater than O (using the non-parametric
Wilcoxon signed rank test in which the medians were compared to 0, p<0.05, no symbols shown). Mean +/- SEM
of 12-24 replicates per time point per fly condition (n = 2-4 experiments per time point). (B) The mean rank of
mutant fly behavior toward the co-culture was compared between wild-type and the specified conditions using the
Kruskal-Wallis test followed by Dunn'’s post-hoc host multiple comparisons testing. Mean +/- SEM of 11-12
replicates (n = 2 experiments).

DOI: 10.7554/¢elife.18855.014

The following source data and figure supplement are available for figure 3:

Source data 1. Raw Drosophila preference data and microbial population data for Figure 3A and Figure 3—fig-
ure supplement 1.

DOI: 10.7554/eLife.18855.015

Source data 2. Raw Drosophila preference data for Figure 3B.

DOI: 10.7554/¢eLife.18855.016

Figure supplement 1. Effect of co-culture age on Drosophila attraction and microbial density.

DOI: 10.7554/¢elife.18855.017

pyrroloquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH-I), the enzyme that con-
verts yeast-derived ethanol into acetaldehyde on path to acetic acid (Shin et al., 2011). Co-cultures
using either A. malorum or A. pomorum wild-type (WT) along with S. cerevisiae were equally attrac-
tive to Drosophila (Figure 4—figure supplement 1). Drosophila preferred the co-culture containing
A. pomorum WT versus a separate-culture mixture; however, Drosophila did not prefer the co-cul-
ture containing A. pomorum adhA versus a separate-culture mixture (Figure 4C). Moreover, Dro-
sophila preferred the co-culture containing A. pomorum WT to the co-culture containing A.
pomorum adhA (Figure 4C). In sum, ethanol catabolism is necessary for Drosophila to discriminate
between the co-culture and the separate-culture mixture.

We next identified additional metabolites unique to the co-culture using solid-phase microextrac-
tion gas chromatography-mass spectrometry (SPME GC-MS). Acetic acid, six acetate esters, an acet-
aldehyde metabolic derivative (acetoin), a putative acetaldehyde metabolic derivative (2,4,5-
trimethyl-1,3-dioxolane), and two unknown metabolites were more abundant in the co-culture rela-
tive to the separate-culture mixture or co-culture with A. pomorum adhA (Table 2, Table 2—source
data 1-6). To determine the molecular basis for Drosophila co-culture preference, select metabolites
were added to the co-culture containing A. pomorum adhA. Esters and acetic acid, but not esters
alone, were sufficient to fully restore the attractiveness of the co-culture containing A. pomorum
adhA to the co-culture containing A. pomorum WT levels (Figure 4C).

Although acetate and its metabolic derivatives were sufficient for Drosophila co-culture prefer-
ence, acetaldehyde is a reactive intermediate during ethanol catabolism whose metabolic derivatives
might be increased in microbial communities compared with individual microbial cultures. Consistent
with this idea, acetoin was moderately increased in the co-culture compared with the separate-cul-
ture mixture (Table 2—source data 1); strikingly, acetoin was increased ~27 fold in the tri-culture (S.
cerevisiae, A. malorum, and L. plantarum) compared to the co-culture (Figure 5A,B, Figure 5—fig-
ure supplement 1) and was attractive to Drosophila (Figure 5C). In sum, emergent metabolites
from two- and three-membered communities, including acetaldehyde metabolic derivatives, attract
Drosophila.

To further investigate the potential role of acetaldehyde and its metabolic derivatives in Drosoph-
ila behavior, we performed a dose response in which acetaldehyde was added to the separate-cul-
ture mixture (Figure 6—figure supplement 1A) to evaluate its ability to induce attractiveness to co-
culture levels. Even at the lowest tested levels, acetaldehyde supplementation stimulated the sepa-
rate-culture mixture to attractiveness levels equal to the co-culture (Figure 6—figure supplement
1A). Three acetaldehyde metabolic derivatives—acetoin, 1,1-diethoxyethane (an acetal), and 2,3-
butanedione—were sufficient to induce the attractiveness of the separate-culture mixture to levels
equivalent to the co-culture containing A. pomorum WT using concentrations of each metabolite at
or below the physiological concentration of acetoin found in the tri-culture (Figure 6—figure sup-
plement 1B).
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Table 1. Summary of volatiles detected using GC-MS. Relative abundance of volatiles in the co-culture (S. cerevisiae and A. malorum
grown together) compared to the separate-culture mixture (S. cerevisiae and A. malorum grown separately, and their quantities added
in during analysis). GC-MS captured volatiles with XAD-4 beads suspended above the cultures during growth; subsequently, beads
were methanol-extracted (n = 6 experiments, Table 1—source data 1-2). Quantification is based on two experiments in which a linear
regression was computed with standards (Table 1—source data 3-4). Quantification is based on beads suspended above the cultures
between 84 and 96 hr of culture growth.

Identity Standard confirmation Relative quantification (co-culture: separate-culture mixture)
Ethanol Y 5.0-12.6-fold reduced

Isobutanol Y 7.3-24.7-fold reduced

Isoamyl acetate Y unique to co-culture

Isoamyl alcohol Y 3.6-6.4-fold reduced

Acetic acid Y unique to co-culture

DOI: 10.7554/elLife.18855.018

Source data 1. Extracted ion chromatograms of five metabolites detected by gas chromatography-mass spectrometry (GC-MS) in Table 1. Extracted
ion chromatograms of the five metabolites detected by gas chromatography- mass spectrometry (GC-MS). (A) Schematic depicting the experimental
setup (B-F) Representative extracted ion chromatograms from one replicate (out of three total) of one experiment (out of 3-4 total) of m/z values corre-
sponding to major metabolites identified in the experimental conditions along with appropriate standards. Acetic acid (B), isoamyl alcohol (C), isoamyl
acetate (D) isobutanol (E), and ethanol (F) were identified as the five major metabolites in the co-culture (S. cerevisiae and A. malorum). Isoamyl alcohol
(C), ethanol (E), and isobutanol (F) were identified as the major metabolites in S. cerevisiae grown alone. Extracted ion chromatograms were constructed
using the m/z value in the title of each graph. For acetic acid and isobutanol, the m/z value used corresponds to the molecular weight of the molecule.
For ethanol, the m/z used corresponds to the molecular weight minus one (hydrogen). For isoamyl alcohol, the m/z used corresponds to the loss of the
hydroxyl group (depicted), which may have picked up hydrogen and been lost as water. For isoamyl acetate, the m/z value corresponds to the molecule
shown within the graph. In all cases, figures showing the complete mass spectra between the metabolite and standard are found in Source data 2.
Microorganisms were grown 72-96 hr.

DOI: 10.7554/eLife.18855.019

Source data 2. Representative spectra of metabolites in Table 1. Representative spectra of acetic acid (A-B), isoamyl alcohol (C-E), isoamyl acetate (F-
G), ethanol (H-J) and isobutanol (K-L) in standard and experimental samples. Standard concentrations are denoted on individual graphs. All mass spec-
tra are one replicate (out of 3-4 experiments with three replicates per experiment).

DOI: 10.7554/eLife.18855.020

Source data 3. Linear regression of metabolites using GC-MS in Table 1. Estimation of volatile quantity using GC-MS. Separate experiments are
graphed in panels (A-E) and (F-J). (A-E) Data points represent the value of a single replicate per concentration for each standard. The abundance of a
single m/z value at a specific retention time was chosen for each standard. The values were fitted with a linear regression and the equation was used to
estimate the concentration of the five metabolites in the experimental samples from the same experiment. (F-J) Data points represent the mean + SEM
of three replicates for a given concentration for each standard. The abundance of a single m/z value at a specific retention time was chosen for each
standard. The values were fitted with a linear regression. The equation was used to estimate the concentration of the five metabolites in the experimen-
tal samples from the same experiment. When applicable an equation was calculated when the line was forced to go through XY = 0,0; these equations
were used to calculate the concentrations of isoamyl alcohol, isoamyl acetate, and isobutanol.

DOI: 10.7554/elife.18855.021

Source data 4. Raw spectral abundance data as a function of concentration used for linear regressions in Source data 3.

DOI: 10.7554/elife.18855.022

A pure metabolite mixture comprised of key metabolic groups produced by microbial communi-
ties and identified in this study (esters, acetaldehyde metabolic derivatives, alcohols, acid) attracted
Drosophila similarly to the co-culture (Figure 6A,B). Interestingly, the acetaldehyde metabolic deriv-
atives alone were sufficient to attract Drosophila similarly to the co-culture (Figure 6C). Moreover,
removal of the acetaldehyde metabolic derivatives group alone reduced Drosophila attraction
(Figure 6D). In sum, acetaldehyde metabolic derivatives are potent Drosophila attractants.

Overall, our results suggest that both esters and acetaldehyde metabolic derivatives are keystone
microbial community metabolites that attract Drosophila. We next created a simple 9-metabolite
mixture in water (containing only one acid, four esters, and four acetaldehyde metabolic derivatives)
and measured Drosophila preference toward this mixture in relation to the yeast-acetic acid bacteria
co-culture, the yeast-acetic acid bacteria-lactic acid bacteria microbial community, or apple cider vin-
egar (ACV). The defined mixture used concentrations for each acetaldehyde metabolic derivative
similar to the concentration of acetoin in the tri-culture and ester and acid concentrations that were

Fischer et al. eLife 2017;6:€18855. DOI: 10.7554/eLife.18855 9 of 25


http://dx.doi.org/10.7554/eLife.18855.018Table%201.Summary%20of%20volatiles%20detected%20using%20GC-MS.%20Relative%20abundance%20of%20volatiles%20in%20the%20co-culture%20(S.%20cerevisiae%20and%20A.%20malorum%20grown%20together)%20compared%20to%20the%20separate-culture%20mixture%20(S.%20cerevisiae%20and%20A.%20malorum%20grown%20separately,%20and%20their%20quantities%20added%20in%20during%20analysis).%20GC-MS%20captured%20volatiles%20with%20XAD-4%20beads%20suspended%20above%20the%20cultures%20during%20growth;%20subsequently,%20beads%20were%20methanol-extracted%20(n&x00A0;=&x00A0;6%20experiments,%20Table%201&x2014;source%20data%201&x2013;2).%20Quantification%20is%20based%20on%20two%20experiments%20in%20which%20a%20linear%20regression%20was%20computed%20with%20standards%20(Table%201&x2014;source%20data%203&x2013;4).%20Quantification%20is%20based%20on%20beads%20suspended%20above%20the%20cultures%20between%2084%20and%2096%20hr%20of%20culture%20growth.%2010.7554/eLife.18855.01810.7554/eLife.18855.019Table%201&x2014;source%20data%201.Extracted%20ion%20chromatograms%20of%20five%20metabolites%20detected%20by%20gas%20chromatography-mass%20spectrometry%20(GC-MS)%20in%20Table%201.Extracted%20ion%20chromatograms%20of%20the%20five%20metabolites%20detected%20by%20gas%20chromatography-%20mass%20spectrometry%20(GC-MS).%20(A)%20Schematic%20depicting%20the%20experimental%20setup%20(B-F)%20Representative%20extracted%20ion%20chromatograms%20from%20one%20replicate%20(out%20of%20three%20total)%20of%20one%20experiment%20(out%20of%203&x2013;4%20total)%20of%20m/z%20values%20corresponding%20to%20major%20metabolites%20identified%20in%20the%20experimental%20conditions%20along%20with%20appropriate%20standards.%20Acetic%20acid%20(B),%20isoamyl%20alcohol%20(C),%20isoamyl%20acetate%20(D)%20isobutanol%20(E),%20and%20ethanol%20(F)%20were%20identified%20as%20the%20five%20major%20metabolites%20in%20the%20co-culture%20(S.%20cerevisiae%20and%20A.%20malorum).%20Isoamyl%20alcohol%20(C),%20ethanol%20(E),%20and%20isobutanol%20(F)%20were%20identified%20as%20the%20major%20metabolites%20in%20S.%20cerevisiae%20grown%20alone.%20Extracted%20ion%20chromatograms%20were%20constructed%20using%20the%20m/z%20value%20in%20the%20title%20of%20each%20graph.%20For%20acetic%20acid%20and%20isobutanol,%20the%20m/z%20value%20used%20corresponds%20to%20the%20molecular%20weight%20of%20the%20molecule.%20For%20ethanol,%20the%20m/z%20used%20corresponds%20to%20the%20molecular%20weight%20minus%20one%20(hydrogen).%20For%20isoamyl%20alcohol,%20the%20m/z%20used%20corresponds%20to%20the%20loss%20of%20the%20hydroxyl%20group%20(depicted),%20which%20may%20have%20picked%20up%20hydrogen%20and%20been%20lost%20as%20water.%20For%20isoamyl%20acetate,%20the%20m/z%20value%20corresponds%20to%20the%20molecule%20shown%20within%20the%20graph.%20In%20all%20cases,%20figures%20showing%20the%20complete%20mass%20spectra%20between%20the%20metabolite%20and%20standard%20are%20found%20in%20Table%201&x2014;source%20data%202.%20Microorganisms%20were%20grown%2072&x2013;96%20hr.%2010.7554/eLife.18855.01910.7554/eLife.18855.020Table%201&x2014;source%20data%202.Representative%20spectra%20of%20metabolites%20in%20Table%201.Representative%20spectra%20of%20acetic%20acid%20(A-B),%20isoamyl%20alcohol%20(C-E),%20isoamyl%20acetate%20(F-G),%20ethanol%20(H-J)%20and%20isobutanol%20(K-L)%20in%20standard%20and%20experimental%20samples.%20Standard%20concentrations%20are%20denoted%20on%20individual%20graphs.%20All%20mass%20spectra%20are%20one%20replicate%20(out%20of%203&x2013;4%20experiments%20with%20three%20replicates%20per%20experiment).%2010.7554/eLife.18855.02010.7554/eLife.18855.021Table%201&x2014;source%20data%203.Linear%20regression%20of%20metabolites%20using%20GC-MS%20in%20Table%201.Estimation%20of%20volatile%20quantity%20using%20GC-MS.%20Separate%20experiments%20are%20graphed%20in%20panels%20(A-E)%20and%20(F-J).%20(A-E)%20Data%20points%20represent%20the%20value%20of%20a%20single%20replicate%20per%20concentration%20for%20each%20standard.%20The%20abundance%20of%20a%20single%20m/z%20value%20at%20a%20specific%20retention%20time%20was%20chosen%20for%20each%20standard.%20The%20values%20were%20fitted%20with%20a%20linear%20regression%20and%20the%20equation%20was%20used%20to%20estimate%20the%20concentration%20of%20the%20five%20metabolites%20in%20the%20experimental%20samples%20from%20the%20same%20experiment.%20(F-J)%20Data%20points%20represent%20the%20mean%20&x00B1;%20SEM%20of%20three%20replicates%20for%20a%20given%20concentration%20for%20each%20standard.%20The%20abundance%20of%20a%20single%20m/z%20value%20at%20a%20specific%20retention%20time%20was%20chosen%20for%20each%20standard.%20The%20values%20were%20fitted%20with%20a%20linear%20regression.%20The%20equation%20was%20used%20to%20estimate%20the%20concentration%20of%20the%20five%20metabolites%20in%20the%20experimental%20samples%20from%20the%20same%20experiment.%20When%20applicable%20an%20equation%20was%20calculated%20when%20the%20line%20was%20forced%20to%20go%20through%20X,Y&x00A0;=&x00A0;0,0;%20these%20equations%20were%20used%20to%20calculate%20the%20concentrations%20of%20isoamyl%20alcohol,%20isoamyl%20acetate,%20and%20isobutanol.%2010.7554/eLife.18855.02110.7554/eLife.18855.022Table%201&x2014;source%20data%204.Raw%20spectral%20abundance%20data%20as%20a%20function%20of%20concentration%20used%20for%20linear%20regressions%20in%20Table%201&x2014;source%20data%203.%2010.7554/eLife.18855.022IdentityStandard%20confirmationRelative%20quantification%20(co-culture:%20separate-culture%20mixture)EthanolY5.0&x2013;12.6-fold%20reducedIsobutanolY7.3&x2013;24.7-fold%20reducedIsoamyl%20acetateYunique%20to%20co-cultureIsoamyl%20alcoholY3.6&x2013;6.4-fold%20reducedAcetic%20acidYunique%20to%20co-culture
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.7554/eLife.18855

LIFE

Ecology | Microbiology and Infectious Disease

>

_ 10 * r0.5 1 S. cerevisiae,
2 8 ethanol
s 6 F0.4 _ 4 Co-culture,
£ 4 2 ethanol
s 2 | 038 Co-culture,
2 2 acetic acid
310 o2 ;1 @ Drosophila
208 e “a co-culture preference
S 0.6 X
04 ,/ k0.1
(7}
= 0.2
0.04—E——r—r—r—r—r—r—r—r—F00
24 36 48 60 72 84 96 108120132144 156
B Time (h) of microbial growth
Control Arm Test Arm
Empty tube NS Empty tube
L Co-culture
Media control (AJM) (72 h)
Co-culture
Co-culture (36 h) (72 h)
Co-culture
Co-culture (144 h) (72h)
T t
-1.0 -0.5 0.0 0.5 1.0
Response Index
Control Arm Test Arm
Empty Tube NS Empty Tube
Separate-culture mixture Co-culture
(S. cerevisiae + A. pomorum WT) (A. pomorum WT|
Separate-culture mixture NS Co-culture
(S. cerevisiae + A. pomorum W (A. pomorum adhA]
Co-culture
Co-culture (A. pomorum adhA) A (A. pomorum WT)
Co-culture
Co-culture (A. pomorum adhA B whk
+esters) (A. pomorum WT)
Co-culture (A. pomorum adhA B NS Co-culture
+ esters + acid) (A. pomorum WT)
T L] T
-1.0 -0.5 0.0 0.5 1.0

Response Index

Figure 4. Drosophila behavior and ethanol catabolism. (A) Dynamics of ethanol, acetic acid, and Drosophila co-
culture preference. Acetic acid was only detected in the co-culture. The abundance was derived from a linear
regression calculated from standards (Table 1—source data 3). Chemical data is the mean + SEM of two values
calculated from two experiments with three replicates per experiment (except acetic acid and ethanol
concentrations at 144 and 156 hr, which are from one experiment with three replicates). Drosophila co-culture
preference is the mean value of the preference shown in Figure 2B. The estimated ethanol concentrations in the
co-culture and S. cerevisiae culture were compared with multiple t-tests and multiple comparisons correction by
the Holm-Sidak method. Symbols: NS p>0.05; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (B) Drosophila
preference for stages of ethanol catabolism. 72 hr is ‘mid’ stage; 36 hr is ‘early’ stage and 144 is 'late’ stage. The
co-culture contains S. cerevisiae and A. malorum grown for the time indicated. AJM= apple juice media. Data
points represent the mean + SEM of the combined results of two experiments with 8-10 total replicates per group.
The one-sample t-test was used to assess the mean deviance from 0. (C) Drosophila olfactory behavior toward
specified conditions. Mean + SEM of 2-7 experiments with 10-42 total replicates. Two statistical tests were used to
evaluate the behavior. First, a one-sample t-test assessed the mean deviance from 0. Symbols: NS p>0.05;
*p<0.05; **p<0.01; ***p<0.001; ***p<0.0001. Second, a one-way ANOVA with Tukey’s post-hoc comparison
assessed whether the means of the bottom three experimental groups were different from one another
(differences are denoted by unique pink letters). Esters include ethyl acetate, isoamyl acetate, 2-phenethyl acetate,
isobutyl acetate, 2-methylbutyl acetate, and methyl acetate; acid is acetic acid. Amounts added are based on

Figure 4 continued on next page
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Figure 4 continued

physiological amounts in co-cultures and are found in Table 2. The co-culture contains S. cerevisiae and the
specified A. pomorum strain. acid= acetic acid.

DOI: 10.7554/eLife.18855.023

The following source data and figure supplements are available for figure 4:

Source data 1. Raw spectral abundance data associated with metabolites graphed in Figure 4A.

DOI: 10.7554/elife.18855.024

Source data 2. Raw Drosophila preference data for Figure 4B.

DOI: 10.7554/eLife.18855.025

Source data 3. Raw Drosophila preference data for Figure 4C.

DOI: 10.7554/¢elife.18855.026

Figure supplement 1. Drosophila behavior toward the co-culture using A. malorum or A. pomorum.

DOI: 10.7554/elife.18855.027

Figure supplement 1—source data 1. Raw Drosophila preference data for Figure 2—figure supplement 1.
DOI: 10.7554/¢elife.18855.028

in the range detected in the co-culture. The defined 9-metabolite mixture was more attractive than
all other conditions (Figure 6—figure supplement 2). In sum, acetaldehyde metabolic derivatives
and esters are potent Drosophila attractants whose detection may signal the presence of actively
metabolizing, multispecies microbial communities.

We hypothesized that Drosophila preference for communities during peak ethanol turnover
reflected fitness benefits derived from ingesting metabolites associated with different staged com-
munities. To test this hypothesis, we measured adult Drosophila survival when given ethanol and
acetic acid concentrations characteristic of microbial cultures at different stages of ethanol catabo-
lism. Adult Drosophila survival was highest when given metabolites associated with middle-staged
ethanol catabolism compared with pre- or end-stage ethanol catabolism (Figure 7—figure supple-
ment 1A). In sum, Drosophila preference provides benefits associated with consumption of microbial
community-generated metabolites.

Next, we explored the relationship between Drosophila attraction and egg-laying preference.
Drosophila preferred to lay eggs in the co-culture containing A. pomorum WT to the co-culture con-
taining A. pomorum adhA (Figure 7A). Therefore, we predicted that Drosophila larvae would
develop more quickly in the wild-type condition than the adhA condition. In contrast, we found that
larvae develop more slowly when consuming the co-culture containing A. pomorum WT compared
with the co-culture containing A. pomomrum adhA (Figure 7B). This result may be explained by the
fact that A. pomorum WT kills the nutritious yeast cells, whereas the A. pomorum adhA mutant does
not (Figure 7—figure supplement 1B). Given the role of yeast in Drosophila development
(Becher et al., 2012) the co-culture containing A. pomorum adhA, which supports yeast popula-
tions, may be more nutritive for developing Drosophila larvae than the co-culture containing A.
pomorum WT.

Another potential selective pressure on the choice of egg-laying sites is the presence of patho-
gens and parasites. The presence of parasitoid wasps increases Drosophila egg deposition in high
ethanol concentration sites, which are protective to larvae (Rollero et al., 2015). Drosophila also
avoids laying eggs in habitats containing pathogenic molds by detecting geosmin (Stensmyr et al.,
2012). Additionally, acetic acid, a unique metabolite in the co-culture containing A. pomorum WT,
inhibits phytopathogenic fungi (Kang et al., 2003). To test whether the co-culture containing A.
pomorum WT protects developing larvae from environmental fungi, we allowed Drosophila to lay
eggs in co-culture containing S. cerevisiae and either A. pomorum WT or A. pomorum adhA and
quantified the total number of eggs, pupae, and adults. We found that Drosophila laid significantly
more eggs in the co-culture containing A. pomorum WT than the co-culture containing A. pomorum
adhA (Figure 7C). Following open-air exposure to environmental microbes, unidentified fungi grew
on the co-cultures containing A. pomorum adhA, but did not grow on the co-cultures containing A.
pomorum WT (Figure 7D). Furthermore, more pupae and adults survived in the co-culture contain-
ing A. pomorum WT compared to the co-culture containing A. pomorum adhA (Figure 7E,F). In
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Table 2. Estimated concentrations of key metabolites in the co-culture using SPME GC-MS. Estimated concentrations of differentially
concentrated or unique metabolites in the co-culture. Linear regression equations (Lin. reg. egs. 1 and 2) were estimated from individ-
ual experiments in which peak areas of different concentrations of metabolites were fitted with a linear regression (Table 2—source
data 2, 3, 5 and 6). Normalized peak areas correspond to the specified metabolites in co-cultures containing S. cerevisiae and A.
malorum. Separate estimates were derived from a normalized peak area estimated from a single experiment (co-culture and standard
samples were from a run with similar internal standard signal) or from the mean normalized peak area estimated from all experiments
(co-cultures were run over four days, standards were run on two days). The final estimated concentration was an average of all esti-
mated concentrations (n = 4 estimates (two from each standard regression equation times two estimates of the normalized peak area),
except for methyl acetate, n = 2 estimates). The estimated concentrations (except acetoin) were added to the co-culture containing A.
pomorum adhA (Figure 4C). *Ethyl acetate, acetic acid, and acetoin concentrations were estimated from standards (Table 2—source
data 1 and 4).

Normalized peak area (single  Normalized peak area (Average, All Estimated concen-

Metabolite Lin. Reg. eq. 1 Lin. Reg. eq. 2 experiment) experiments) tration (%)

Isobutyl acetate Y =4151X— Y =23252X — 0.29 1.16 0.00023
0.1319 0.07251

Isoamyl acetate y = 8158X Y = 7800X 0.78 3.8 0.00026

2-Phenethyl acetate Y = 5129X Y = 6972X 1.2 1.9 0.00028
—0.04011 —0.2013

2-Methylbutyl acetate Y = 8995X — Y =8087X-0.1307 0.56 3.1 0.00023

acetate 0.05042

Methyl acetate Y =75.22X NA 0.018 0.040 0.00033
+0.004457

Ethyl acetate NA NA NA NA ~0.02*

Acetic acid NA NA NA NA ~3.0*

Acetoin NA NA NA NA ~0.01*

DOI: 10.7554/eLife.18855.029

Source data 1. Extracted ion chromatograms of differentially emitted or unique metabolites in the co-culture in Table 2. Extracted ion chromatograms
of differentially emitted or unique metabolites in the co-culture according to solid phase microextraction gas chromatography-mass spectrometry
(SPME GC-MS). Specific metabolites are displayed above each panel. For each panel, the left-most plot compares the co-culture containing S. cerevi-
siae and A. malorum to S. cerevisiae grown alone, A. malorum grown alone, or media (AJM [apple juice medium]); the right-most plot compares the
co-culture containing S. cerevisiae and A. pomorum wild-type to the co-culture containing S. cerevisiae and A. pomorum adhA, since A. pomorum
adhA is required for Drosophila co-culture preference (Figure 5A). The two plots within the same panel contain the same standard. The y-axis for each
plot is the ion current for a m/z value that discriminates the metabolite of interest over a specific retention time window. The following m/z values were
chosen for each metabolite based on standards or, in the cases of putative and unknown metabolites (I and J) were chosen from the experimental
groups: (A) m/z 74.04 (B) m/z 88.08 (C) m/z 73.03 (D) 87.05 (E) 74.02 (F) 104.04 (G) 60.05 (H) 88.05 (1) 101.06 (J) 101.06. Each panel is one representative
replicate of 1 experiment (out of 3-5 total replicates in three experiments).

DOI: 10.7554/eLife.18855.030

Source data 2. Linear regression of metabolites in defined metabolite mixtures in Table 2. Normalized peak areas corresponding to metabolites in a
defined metabolite mixture (from SPME GC-MS). A linear regression was calculated to quantify the metabolites in the co-culture. Each concentration is
from one replicate. A-E and F-I are two separate experiments. Linear regression was used to estimate the concentration of the metabolites in the co-
culture containing S. cerevisiae and A. malorum (Table 2) and to complement the co-culture containing A. pomorum adhA (Figure 4C).

DOI: 10.7554/eLife.18855.031

Source data 3. Peak area as a function of concentration used to estimate metabolite concentrations in co-cultures in Table 2.

DOI: 10.7554/eLife.18855.032

Source data 4. Extracted ion chromatograms of various m/z values used in.

DOI: 10.7554/elife.18855.033

Source data 5. Peak areas as a function of metabolite concentration used in linear regression in Source data 2A-E.

DOI: 10.7554/eLife.18855.034

Source data 6. Peak areas as a function of metabolite concentration used in Source data 2F-I.

DOI: 10.7554/elife.18855.035
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Figure 5. Acetaldehyde metabolic derivatives as attractive microbial community generated metabolites. (A) Representative chromatogram of m/z 88.05
in the tri-culture (S. cerevisiae-A. malorum-L. plantarum) compared to the co-culture (S. cerevisiae and A. malorum). (B) Estimated quantification is
based on a linear regression of acetoin (Figure 6—figure supplement 1). Relative quantification of acetoin in the tri-culture (one replicate with A.
malorum and one replicate with A. pomorum from separate days) and the co-culture (one replicate with A. malorum and two replicates with A.
pomorum from separate days). Difference in peak areas was assessed by an unpaired two-tailed t-test (**p<0.01). (C) Mean + SEM of three experiments
with 16-18 total replicates. A one-way ANOVA with Tukey's post-hoc multiple comparisons correction assessed the differences between Drosophila
behavior toward the co-culture with A. pomorum adhA and esters to various groups in which individual molecular groups were removed or added
(p>0.05; *p<0.05; **p<0.01; **p<0.001; ***p<0.0001). Esters include ethyl acetate, isoamyl acetate, 2-phenethyl acetate, isobutyl acetate, 2-
methylbutyl acetate, and methyl acetate. Esters added are based on physiological amounts in co-cultures and are calculated in Table 2 and Table 2—
source data 2). Acetoin is added in a similar amount as the tri-culture. Sc = S. cerevisiae, Ap = A. pomorum.

DOI: 10.7554/¢eLife.18855.036

The following source data and figure supplements are available for figure 5:

Source data 1. Extracted ion current for m/z 88.05 in Figure 5A.

DOI: 10.7554/eLife.18855.037

Source data 2. Peak areas associated with acetoin for Figure 5B.

DOI: 10.7554/eLife.18855.038

Source data 3. Raw Drosophila preference data for Figure 5C.

DOI: 10.7554/eLife.18855.039

Figure supplement 1. Acetoin linear regression.

DOI: 10.7554/eLife.18855.040

Figure supplement 1—source data 1. Extracted ion current for Figure 5—figure supplement 1.
DOI: 10.7554/eLife.18855.041

sum, Drosophila egg-laying preference in the co-culture containing A. pomorum WT may reflect an
underlying benefit in fungal pathogen defense.

Discussion

Here, we have demonstrated how emergent properties of a microbial community—volatile profile,
population dynamics, and pH—influence Drosophila attraction, survival, and egg-laying behaviors.
Our study is the first to identify the consequences of microbe-microbe metabolic exchange on ani-
mal behavior and discovers additional microbial interactions that attract Drosophila for further mech-
anistic study (Figure 1D).

Microbe-microbe metabolic exchange generates unique and quantitatively different volatiles
from those resulting from individual microbial metabolism (Table 1 and 2, Figure 8). Acetobacter-
generated acetate coupled to Saccharomyces-derived alcohols spawn diverse acetate esters (Table 1
and 2). We hypothesize that more complex and diverse communities, comprising alcohol-producing
yeasts, acetate-producing Acetobacter, and lactate-producing Lactobacillus, will generate a wider
array of attractive esters (Figure 8). The community of S. cerevisiae, A. malorum, and L. plantarum
emitted higher levels of acetoin and attracted Drosophila more strongly than the co-culture of S. cer-
evisiae and A. malorum (Figure 1D, Figure 5). Acetoin and 2,3-butanedione are formed by an o-ace-
tolactate intermediate in bacteria and directly from acetaldehyde in yeast (Chuang et al., 1968). We
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Figure 6. Drosophila behavior toward 21 metabolite mixtures . (A) Supplementary file 5 contains the
concentrations of all mixtures (in 50% AJM). The co-culture was grown for 96 hr. Mean + SEM of 4-6 replicates per
experimental group. Groups were tested over five days. (B) Drosophila attraction to a co-culture grown for 96 hr
and metabolite mixture #21. Mean + SEM of three experiments with 17-18 replicates per group. A Mann-Whitney
Figure 6 continued on next page
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Figure 6 continued

test compared the median values of the co-culture and metabolite mixture #21; the Wilcoxon Signed-Rank test
compared the median value of fly behavior toward the co-culture relative to metabolite mixture #21 to 0. (C)
Sufficiency of metabolite groups to attract Drosophila. The individual groups are: acetaldaldehyde metabolic
derivatives (1,1-diethoxyethane; acetoin; 2,3-butanedione); alcohols (ethanol; isobutanol; isoamyl alcohol; 2-methyl,
1-butanol; benzeneethanol); esters (isoamyl acetate; ethyl acetate; isobutyl acetate; 2-phenethyl acetate; butyl
acetate; 2-methylbutyl acetate; methyl acetate; phenethyl benzoate; propyl acetate; ethyl isobutyrate; ethyl
hexanoate; isovaleric acid; butyl ester; ethyl octanoate; ethyl decanoate; ethyl laurate); and acetic acid (acetic
acid). Mean = SEM of 6 replicates of 1 experiment (except the acetaldehyde metabolic derivative group which is
12 replicates from two experiments). A one-way ANOVA followed by Dunnet’s post-hoc comparison assessed the
difference between the co-culture and all experimental groups. NS p>0.05; *p<0.05; **p<0.01; ***p<0.001;
**+%<0.0001 (D) The same groups used in C were used and removed from metabolite mix #21. The difference
between the co-culture (Sc-Am) and each group was assessed in the same manner as in C. Mean +/- SEM of 6
replicates from one experiment.

DOI: 10.7554/¢eLife.18855.042

The following source data and figure supplements are available for figure 6:

Source data 1. Concentrations of mixtures and raw Drosophila preference data for Figure 6.

DOI: 10.7554/elife.18855.043

Figure supplement 1. Acetaldehyde metabolic derivatives can complement the co-culture containing

A. pomorum adhA, although their physiological concentrations are unknown.

DOI: 10.7554/¢eLife.18855.044

Figure supplement 1—source data 1. Raw Drosophila preference data for Figure 6—figure supplement 1.
DOI: 10.7554/elife.18855.045

Figure supplement 2. Drosophila behavior toward water amended with nine metabolites (9-metabolite mixture)
versus three different apple cider vinegars (ACV), a co-culture (Sc-Am = S. cerevisiae and A. malorum), or tri-
culture (Sc-Am-Lp = S. cerevisiae, A. malorum, L. plantarum cs).

DOI: 10.7554/¢elife.18855.046

Figure supplement 2—source data 1. Raw Drosophila preference data for Figure 6—figure supplement 2.
DOI: 10.7554/¢eLife.18855.047

therefore hypothesize that communities of yeasts and bacteria may emit high levels of attractive
acetaldehyde metabolic derivatives (Figure 8).

Previous studies have found that yeasts alone can produce esters in high concentrations
(Becher et al., 2012; Christiaens et al., 2014; Schiabor et al., 2014). In this study, we found that S.
cerevisiae produced low quantities of esters when grown alone. One explanation for the low ester
production is that in contrast to previous studies that have used more complex media, we used an
apple juice medium that is much lower in nitrogen content. Nitrogen content positively correlates
with the yeast ester production (Becher et al., 2012, Rollero et al., 2015). Our results suggest that
environmental nitrogen availability might predict microbial ester production and Drosophila attrac-
tion. In high nitrogen environments, yeasts likely produce ester compounds and strongly attract Dro-
sophila. However, in low nitrogen environments Acetobacter may be responsible for ester
production and Drosophila attraction; Acetobacter may be capable of producing esters in low nitro-
gen conditions or may generate locally high nitrogen environments by assimilating nitrogen from
yeast killed by its production of acetic acid. Future work should determine the relationship in wild
fruit fermentations between nitrogen content and ester production by yeasts and bacteria.

Drosophila behavioral studies have mostly focused on yeasts. Yeasts attract Drosophila and are
the preferred substrate for Drosophila to lay eggs (Becher et al., 2012). However, we find that Dro-
sophila attraction toward the co-culture increases as yeast viability declines (Figure 2). One reason
why Drosophila might be attracted to the co-culture as yeast populations decline is that yeasts pro-
vide essential nutrients. As such, the lysis of viable yeast by Acetobacter may benefit Drosophila
through the liberation of nutrients. An alternative explanation is that in their interaction with Dro-
sophila, Acetobacter may have benefited by evolving to produce esters that in other contexts (e.g.
high nitrogen environments) are produced by yeasts. The contribution of Drosophila-associated bac-
teria to Drosophila behavior is not as well understood as yeasts (Venu et al., 2014). Our results
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Figure 7. Drosophila egg-laying preference, nutrition,
and pathogen protection. (A) Drosophila was given a
choice to lay eggs in a co-culture containing S.
cerevisiae and A. pomorum wild-type (WT) or S.
Figure 7 continued on next page
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suggest that non-yeast microorganisms, espe-
cially when grown in microbial communities,
affect Drosophila behaviors. We reason that addi-
tional studies that couple chemical microbial
ecology with Drosophila behavior will herald the
discovery of additional microbe-influenced
behaviors and microbial community-generated
metabolites.

This study demonstrates the coordination of
ethanol synthesis and catabolism by S. cerevisiae
and Acetobacter, respectively, and the role of
ethanol in Drosophila behavior and survival. Non-
Saccharomyces Drosophila microbiome members
also make ethanol (Ruyters et al., 2015) and
diverse acetic acid bacteria catabolize ethanol,
generalizing our findings to other microbial com-
munity combinations. Ethanol can have deleteri-
ous or beneficial fitness consequences for
Drosophila  depending on  concentration
(Ranganathan et al., 1987; Azanchi et al., 2013)
and ecological context (Kacsoh et al., 2013). Our
results are consistent with Drosophila using prod-
ucts of inter-species microbiome metabolism to
detect a community that titrates ethanol concen-
tration optimally for the host. Work that further
dissects the consequences of acetic acid and eth-
anol concentrations on Drosophila biology and
investigates other community-level metabolic
profiles will be of interest to enrich the chemical
and ecological portrait of the Drosophila
microbiome.

Drosophila egg-laying preference for the co-
culture containing A. pomorum WT may provide
a fitness tradeoff for the host. On the one hand,
we observed that juice agar plates inoculated
with the co-culture containing A. pomorum WT
had fewer viable yeast cells and larvae developed
more slowly, likely due to the lower vital nutrients
(e.g. protein, vitamins) than would be available in
the co-culture containing A. pomorum adhA. On
the other hand, when exposed to environmental
microbes, juice agar plates inoculated with the
co-culture containing A. pomorum WT were not
invaded by fungi, whereas the co-culture contain-
ing A. pomorum adhA was susceptible to fungal
growth. This suggests that in more natural condi-
tions the catabolism of ethanol into acetic acid,
which delays larval development in the microbial
community studied here (e.g. in a community
with S. cerevisiae), ultimately has a protective
effect. Whether this is due to a direct elimination
of pathogens or instead indirectly limits fungal
competition, as has been shown for dietary
yeasts and Aspergillus sp. (Rohlfs and Kiirsch-
ner, 2010) is unknown. Future work that more
thoroughly dissects the Drosophila fitness
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Figure 7 continued

cerevisiae and A. pomorum adhA. The co-cultures were
grown for 96 hr and mixed 1:1 with a 1.6% agarose
solution. Drosophila was allowed to lay eggs for eight
hours. The Wilcoxon signed-rank test evaluated
whether the median value of each experimental group
was different from 0. Mean = SEM of 16-18 replicates
from two experiments. (B) Drosophila (40 females and
15 males) deposited eggs in fly vials for 4 hr containing
the co-culture of S. cerevisiae and A. pomorum WT
(WT) or the co-culture of S. cerevisiae and A. pomorum
adhA (adhA). Subsequently the number of pupae in
each condition was monitored over time. Mean = SEM
of 5 replicates of 1 experiment. Between 12-16 d,
larvae pupated in 3/5 WT replicates. Multiple unpaired
t-tests were used to compare means at each time
point. *p<0.05. (C) Drosophila (40 females and 15
males) deposited eggs for 4 hr after which the total
number of eggs were counted in the two experimental
groups. Mean +/- SEM of 12 replicates of 1 of 2
representative experiments. A Mann-Whitney test
compared the medians of each group. NS p>0.05;
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (D)
three days after egg-laying the plates containing eggs
quantified in (C) were exposed to the open
environment and the consequence of exposure was the
growth of unidentified fungi, as pictured. Control
plates that were not exposed to the environment did
not harbor any fungi. In experiment 1, 12/12 of the
adhA plates harbored fungi and 0/12 plates of WT
plates harbored fungi. In the second experiment 4/6
adhA plates harbored fungi and 0/6 of WT plates
harbored fungi. (E, F) Following environmental
exposure, the eggs were followed through pupation (E)
and adulthood (F). Mean +/- SEM of 12 replicates of 1
of 2 representative experiments. The median values in
E and F were compared the same way as in C.

DOI: 10.7554/elife.18855.048

The following source data and figure supplements are
available for figure 7:

Source data 1. Raw Drosophila egg-laying preference
data for Figure 7A.

DOI: 10.7554/eLife.18855.049

Source data 2. Raw developmental data for Figure 7B,
C,E,F.

DOI: 10.7554/eLife.18855.050

Figure supplement 1. Impact of co-culture

metabolites on adult survival and yeast populations.
DOI: 10.7554/eLife.18855.051

Figure supplement 1—source data 1. Raw survival
proportions for Figure 7-figuresupplement1A.

DOI: 10.7554/eLife.18855.052

Ecology | Microbiology and Infectious Disease

tradeoffs that result from its association with dif-
ferent microbiomes is of interest.

Our work raises questions about the conse-
quences of the observed behavior on micro-
biome assembly and stability in the Drosophila
intestine. Drosophila possesses specific and
regionalized gut immune responses to the micro-
biome (Lhocine et al., 2008; Ryu et al., 2008;
Paredes et al., 2011; Costechareyre et al.,
2016) implying a tolerant environment in which
privileged microbiome members are maintained
and reproduce in the Drosophila intestine. Other
work suggests that Drosophila acquires its adult
microbiome from exogenous sources, that adult
microbiome abundance drops without continuous
ingestion of exogenous microorganisms, and that
the microbiome can be shaped by diet
(Chandler et al., 2011, Blum et al., 2013;
Broderick et al., 2014). As such, a combination
of internal mechanisms, exogenous factors, and
host behavior likely sculpt the microbiome; deter-
mining the relative contribution of each will be
important moving forward. Complicating our
understanding of the contribution of these fac-
tors is the opaque distinction between ‘micro-
biome’ and ‘food’, since both are ingested from
the environment (Broderick, 2016). To dissect
the formation and stability of the Drosophila
microbiome, the fate of ingested microorganisms
needs to be monitored and microbial intestinal
replication needs to be surveyed as a function of
Drosophila behavior, age, immune status, micro-
biome membership, and nutritional state [e.g.
using synthetic diets without yeast; (Shin et al.,
2011, Piper et al., 2014)].

In sum, our results support a model in which
the Drosophila olfactory system is tuned to fruity
(e.g., esters) and buttery (several acetaldehyde
metabolic derivatives, such as 2,3-butanedione)
smelling metabolites promoted by microbe-
microbe interactions. We anticipate that account-
ing for microbial interactions in diverse host-
microbe studies will lead to new insights into
diverse aspects of microbial-animal symbioses.

Materials and methods

Fly maintenance

Fly stocks, genotypes, and sources are listed in
Supplementary file 1. Drosophila melanogaster
was reared at 25°C on a 12 hr:12 hr light: dark
cycle on autoclaved food (5% yeast, 10% dex-
trose, 7% cornmeal, 0.6% propionic acid, 0.7%
agar).

Fischer et al. eLife 2017;6:€18855. DOI: 10.7554/eLife.18855

17 of 25


http://dx.doi.org/10.7554/eLife.18855.048
http://dx.doi.org/10.7554/eLife.18855.049
http://dx.doi.org/10.7554/eLife.18855.050
http://dx.doi.org/10.7554/eLife.18855.051
http://dx.doi.org/10.7554/eLife.18855.052
http://dx.doi.org/10.7554/eLife.18855

LIFE

Ecology | Microbiology and Infectious Disease

i ahA o
fruit -.> pyruvate -.»aceta\dehyde '.Vethano\ —a-—> acetaldehyde —@-» acetic acid -@B-> acetate

sugars esters
ethanol
lactate H+ . S. cerevisiae
_—7 esters
a-acetolactate lactic acid 1,1-diethoxyethane ~acetoin @ A malorum
/ \ h\ 2,3 butanedione @ L. plantarum

! 2,3-butanediol
acetoin «— 2 3-butanedione acetoin

|

2,3-butanediol

Figure 8. Model of microbe-microbe metabolite exchange. Bolded are metabolites increased due to microbe-
microbe interactions.
DOI: 10.7554/eLife.18855.053

Microbial strains

Microorganisms used in this study are listed and described in Supplementary file 2. Microorganisms
were streaked onto yeast-peptone dextrose (YPD; 1% yeast extract (Becton Dickinson, and Com-
pany, Franklin Lakes, NJ, USA), 2% peptone (Becton Dickinson, and Company, Franklin Lakes, NJ,
USA), and 2% dextrose [Avantor Performance Materials, Center Valley, PA, USA]) or Man, de Rosa,
Sharpe (MRS, Fisher Scientific, Waltham, MA, USA) plates from a freezer stock.

T-maze olfactory attraction assays

The T-maze apparatus was a kind gift of the Carlson Laboratory. Flies were wet-starved for 15-26 hr
prior to T-maze olfactory experiments by placing flies into vials containing Kimwipes (Kimberly Clark,
Dallas, TX, USA) soaked with 2 mL of milliQ water. Flies were collected within four days (<65 flies
per vial) of emergence and matured on autoclaved food. Flies between 3 and 10 days-old were used
in experiments.

Single microbial colonies were picked from rich media (MRS and YPD) plates and grown over-
night. Cultures were washed 1X in PBS, diluted 100-fold, and 10 pul was aliquoted into 3 mL of apple
juice media (AJM, apple juice (Martinelli's Gold Medal, Watsonville, CA, USA), pH adjusted to 5.3
with 5M NaOH, with 0.5% yeast extract). Media was filtered with a 0.22 uM-size pore attached to a
250 mL polystyrene bottle (Corning, NY, USA). For co-culture experiments, 1e3-1e5 CFU of each
microorganism was placed simultaneously into AJM. Microorganisms were grown in 14 mL round
bottom polypropylene tubes (Corning Science, Tamaulipas, Mexico) at 28°C, 200 rpm for the time
noted in individual experiments. The microbial culture was diluted 1:1 with sterile milliQ water (0.22
uM filter [Millipore, Billerica, MA, USA]) and placed directly onto autoclaved 10 mm round Whatman
filter paper (GE Healthcare Life Science, Pittsburgh, PA, USA) placed near the bottom of 15 mL Cen-
triStar centrifuge tubes (Corning, NY). A total volume of 10 ul was used for all experiments.

Tubes containing 10 pl of total volume (1:1 microbial culture: water) placed onto 10 mM filter
paper and Drosophila were placed into the behavioral room (20-25°C, 50-70% humidity maintained
by a humidifier (Sunbeam Tower Humidifier, Boca Raton, FL, USA) and equilibrated for 10 min prior
to the beginning of the experiment. Flies (~40-130) were knocked into the T-maze apparatus and
rested for ~1 min. Subsequently, the two arms of the T-maze were twisted into the T-maze apparatus
and the flies were allowed to choose from the test and control arms for 2 min in the dark. No airflow
was used in the T-maze assay. Troubleshooting experiments in which red light was used to observe
Drosophila behavior suggested that Drosophila stopped short of reaching the culture placed on the
filter paper at the end of the tube. The test arm was alternated from one side of the apparatus to
the other every experimental replicate. A Response Index (Rl) was computed to analyze preference
for the test arm (flies in test arm-flies in control arm)/(total flies).

Chemicals
Chemicals can be found in Supplementary file 3.
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Microbial populations and pH

Selective plates were used to distinguish S. cerevisiae from A. malorum. MRS containing 50 pg/mL
cycloheximide selected for A. malorum while MRS containing 10 pg/mL chloramphenicol and 20 pg/
mL tetracycline selected for S. cerevisiae. pH of filtered cultures (0.22 uM) was measured using a
Beckman Coulter pH meter (Model Phi510, Fullerton, CA, USA).

Gas chromatography- Mass spectrometry

Microbial samples were grown in AJM for a specified amount of time in 14 mL round bottom tubes
fitted with an autoclaved tissue strainer (250 UM nylon mesh (Thermo Scientific Pierce, Grand Island,
NY) holding between 0.03 and 0.05 grams of autoclaved Amberlite XAD-4 resin (Sigma-Aldrich, St
Louis, MO, USA) prewashed in water and methanol. After microbial growth, XAD-4 from two cul-
tures was dumped into an autoclaved glass vial. XAD-4 was swirled with 900 pl methanol for 30 s.
500-750 pl of methanol was removed for GC-MS analysis. Quantification for Table 1 was derived
from beads suspended above the cultures from 84-96 hr of growth. Quantification for Figure 4A
was derived from beads suspended above the culture every 12 hr; time points on the graph refer to
the end point of the 12 hr span (e.g. 84 hr corresponds to beads suspended from 72-84 hr of
growth).

Samples (5 pl of methanol-extracted samples) were injected into the GC-MS (Agilent 7890A/
5975C) at 250°C using helium as the carrier gas at a flow rate of 1.1 mL per minute (column head
pressure 13 psi). The following chromatography temperature program was used for experiments to
initially identify metabolites in the co-culture and individually grown microorganisms: 40°C for 3 min
ramped at 1.7°C per minute to 200°C (held for 3 min) then to 220°C at 3°C per min and held for a
further 5 min. The total run time was 111.78 min. For experiments focused on the five major metabo-
lites, a shorter program was used that maintained the same first 10 min of the previous method (all
five volatiles eluted within 9 min). The chromatography temperature program was 40°C for 3 min,
ramped at 1.7°C per min to 46.8°C and held for 3 min, then ramped at 60°C per min until 220°C and
held for 5 min. The total run time was 17.9 min.

The mass spectrometer was run in electron-impact (El) mode at 70 eV. The temperatures of the
transfer line, quadrupole, and ionization source were 220°C, 180°C, and 230°C respectively. The ioni-
zation was off during the first 4 min to avoid solvent overloading with a source temperature of
230°C. Mass spectra were recorded in the range of 35-300 m/z. Full scan mode was used at a scan
rate of 6 scans/sec. The electron multiplier voltage was set in the relative mode to autotune
procedure.

In the initial experiments peaks were manually picked using Agilent Chemstation Software. Vola-
tiles associated with peaks were searched against the National Institute of Standards (NIST) 11 data-
base. Subsequent experiments focused on the five major volatiles identified in the initial
experiments by performing extracted ion chromatograms using an ion that successfully identified a
standard at a specific retention time. Quantification was performed by tabulating the maximum
abundance of the ion at a characteristic retention time and using a linear regression equation from a
dose-response of the standards (Table 1—source data 3 and 4).

Headspace solid phase microextraction (SPME) Gas chromatography-
Mass spectrometry

A Waters GCT Premier gas chromatography time of flight mass spectrometer (Milford, MA) with a
DB-5MS column (30m x 0.25 mm ID x 0.25 pum film thickness; Agilent) was used. Live cultures were
transferred to autoclaved glass vials (20 mL, 23x75 mm, Supelco, Bellefonte, PA, USA) with screw
caps (18 mm, 35 Shore A, Supelco, Bellefonte, PA, USA) after growing for 72 hr.

The glass vials containing live microbial cultures were analyzed via a 50/30 um carboxen/divinyl-
benzene/polydimethylsiloxane Stableflex solid-phase micro-extraction (SPME) fiber. The extraction
methodology was based on previous studies using SPME to extract volatiles form vinegars
(Callejon et al., 2008; Xiao et al., 2011). The syringe was inserted through the membrane of the
caps and sampled the volatiles for 30 min at 45°C; subsequently, metabolites were desorbed for 30
s at 240C and baked for an additional 4.5 min in the injection port. The gas chromatograph was fit-
ted with a microchannel plate (MCP) detector. The temperature program of the column was as fol-
lows: 40°C for 5 min, 2 °C a min for 17.5 min followed by 25 °C a min for 10 min. A final hold time of
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5 min at 325°C was used. The carrier gas was helium. A split ratio of 250 was used based on better
peak resolution. An internal standard of cineole (Sigma-Aldrich, St. Louis, MO, USA) was run with
each sample and used to compute relative abundances. The mass detector was in the range of 40 to
650 m/z.

To analyze the data, MassLynx software was used. The response threshold was set to an absolute
area of 10.00. The software automatically picked out peaks and computed peak areas. To obtain a
relative quantification, peaks were compared across samples and normalized to the internal stan-
dard. Peaks were first searched against the NIST5 database to identify potential hits. Most potential
metabolites were confirmed by a standard mixture in 50% AJM. The standard mixtures are in
Supplementary file 4.

Chemical complementation of co-culture containing A. pomorum adhA
A co-culture containing S. cerevisiae and A. pomorum WT or A. pomorum adhA was grown for 72 hr
before use in the T-maze. For the physiological concentrations of acetate-derived metabolites, con-
centrations were added as in Table 2 and then mixed 1:1 with water prior to behavioral analysis. For
the acetaldehyde metabolic derivatives chemical complementation group, a 1:1 mixture of the
mutant co-culture: water was supplemented with 1,1-diethoxyethane, 2,3-butanedione, and acetoin
at final concentrations of 0.01%, 0.15% and 0.15%, respectively and used immediately in the
T-maze. Acetic acid and/or acetaldehyde were added to the culture, allowed to sit at RT for 35 min,
mixed 1:1 with water and then placed into the T-maze vials.

Standard curves were used to calculate the concentrations of individual metabolites (Table 2—
source data 2, 3, 5 and 6). The standard curves were generated on two separate experiments in
which 3 concentrations of each standard was used. The concentrations of the metabolites were inde-
pendently calculated from the standard curve equations generated on the two separate days. Esti-
mated concentrations from each standard curve equation were averaged (Table 2). The
experimental data are based on the peak areas of the S. cerevisiae-A. malorum co-culture.

Ester, acid, and acetaldehyde metabolic derivative mixture

The 9-metabolite mixture contains 1.5% acetic acid, 0.0003% isoamyl acetate, 0.0003% 2-phenethyl
acetate, 0.01% ethyl acetate, 0.002% ethyl lactate, 0.3% 1,1-diethoxyethane, 0.3% 2,3-butanediol,
0.3% 2,3-butanedione, and 0.3% acetoin in filtered milliQ water.

Drosophila survival in the presence of ethanol and acetic acid

Adult male flies (0-3 d-old) were collected and matured for one day on fly food. Flies were then
placed into vials containing kimwipes with 5 mL of either Shields and Sang Insect Medium (Sigma,
St. Louis, MO; positive control), MilliQ water (negative control), or MilliQ water with ethanol (9.4%),
acetic acid (3.42%), or ethanol and acetic acid (1.4% and 2.8% respectively). Survival was assessed
every 12 hr for 7 d. For each condition 5 mL was given at 0 and 12 hr and every 24 hr thereafter.
Experimental replicates were considered separate vials (5-6 per group). Each replicate contained 8-
31 flies.

Egg-laying preference assay

Egg-preference assay was adapted from Joseph et al 2009 (Joseph et al., 2009). Microbial cultures
grown for 96 hr were heated to 65°C for 10 min, mixed 1:1 with 1.6% agarose and poured into a
35x 10 mm polystyrene tissue culture dish (Fisher Scientific, PA, USA) separated in two by a straight-
edge razor blade. Flies were starved for ~18 hr prior to the experiment. The 35 mm petri dish was
placed within clear flat top boxes with dimensions 2 5/16” X 2 5/16" X 5 1/16" (TAP plastics, San
Leandro, CA, USA). The test and control sides were alternated for each replicate. Drosophila aged
4-10 days (n = 50-100) was allowed to lay eggs for 8 hr. After the assay, the number of eggs on
deposited on each choice was tabulated and an egg-laying index was computed analogously to the
olfactory response index.
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Drosophila development in co-cultures containing S. cerevisiae and
either A. pomorum wild-type or adhA co-cultures with environmental
exposure

0-3 d-old Drosophila were collected (40 females and 15 males per tube). After three days, each
tube of flies was placed into six oz. polypropylene square bottom Drosophila bottles (Dot Scientific
Inc., MI, USA) in which a 35x10 mm polystyrene tissue culture dish (Fisher Scientific, PA, USA) was
fitted inside the opening hole. The culture dish contained either the co-culture with A. pomorum
wild-type and S. cerevisiae or the co-culture with A. pomorum adhA and S. cerevisiae. Drosophila
was allowed to lay eggs for 4 hr. The co-cultures were grown for 72 hr at 28 C, 200 rpm. The cultures
were mixed 1:1 with 1.6% agarose and 4 mL was poured into each 35 mm culture dish. The eggs
were counted manually immediately following the 4 hr time window of egg-laying. The plates were
placed into an incubator at 60% humidity and 25C on a 12:12 hr light dark cycle. After three days,
the plates were exposed to the environment by placing them on the floor with their lids off for 10
min. Subsequently, total pupae and adults were counted daily.

In the case of no open environmental exposure (Figure 7B), the co-culture was mixed with 1.6%
agarose 1:1. 8 mL was distributed into narrow polypropylene fly vials (28.5x95 mm, VWR, PA, USA).
After 4 hr, adults were removed and the eggs were placed in an incubator at 60% humidity and 25C
on a 12:12 hr light dark cycle.

Data analysis

Data analysis was performed in Prismv6.0b. Specific statistical tests are noted for individual experi-
ments. In behavioral experiments, a Shapiro-Wilk normality test determined whether the underlying
data were consistent or inconsistent with a normal distribution. If consistent, a parametric test was
used to evaluate differences; if inconsistent, a non-parametric test was used.
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