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Abstract Ferritins are ubiquitous proteins that oxidise and store iron within a protein shell to

protect cells from oxidative damage. We have characterized the structure and function of a new

member of the ferritin superfamily that is sequestered within an encapsulin capsid. We show that

this encapsulated ferritin (EncFtn) has two main alpha helices, which assemble in a metal dependent

manner to form a ferroxidase center at a dimer interface. EncFtn adopts an open decameric

structure that is topologically distinct from other ferritins. While EncFtn acts as a ferroxidase, it

cannot mineralize iron. Conversely, the encapsulin shell associates with iron, but is not

enzymatically active, and we demonstrate that EncFtn must be housed within the encapsulin for

iron storage. This encapsulin nanocompartment is widely distributed in bacteria and archaea and

represents a distinct class of iron storage system, where the oxidation and mineralization of iron

are distributed between two proteins.

DOI: 10.7554/eLife.18972.001

Introduction
Encapsulin nanocompartments are a family of proteinaceous metabolic compartments that are

widely distributed in bacteria and archaea (Sutter et al., 2008; Akita et al., 2007;

McHugh et al., 2014; Contreras et al., 2014). They share a common architecture, comprising an

icosahedral shell formed by the oligomeric assembly of a protein, encapsulin, that is structurally

related to the HK97 bacteriophage capsid protein gp5 (Helgstrand et al., 2003). Gp5 is known to

assemble as a 66 nm diameter icosahedral shell of 420 subunits. In contrast, both the Pyrococcus fur-

iosus (Akita et al., 2007) and Myxococcus xanthus (McHugh et al., 2014) encapsulin shell-proteins

form 32 nm icosahedra with 180 subunits; while the Thermotoga maritima (Sutter et al., 2008)

encapsulin is smaller still with a 25 nm, 60-subunit icosahedron. The high structural similarity of the

encapsulin shell-proteins to gp5 suggests a common evolutionary origin for these proteins

(McHugh et al., 2014).

The genes encoding encapsulin proteins are found downstream of genes for dye-dependent per-

oxidase (DyP) family enzymes (Roberts et al., 2011), or encapsulin-associated ferritins (EncFtn)

(He and Marles-Wright, 2015). Enzymes in the DyP family are active against polyphenolic
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compounds such as azo dyes and lignin breakdown products; although their physiological function

and natural substrates are not known (Roberts et al., 2011). Ferritin family proteins are found in all

kingdoms and have a wide range of activities, including ribonucleotide reductase (Aberg et al.,

1993), protecting DNA from oxidative damage (Grant et al., 1998), and iron storage

(Bradley et al., 2014). The classical iron storage ferritin nanocages are found in all kingdoms and

are essential in eukaryotes; they play a central role in iron homeostasis, where they protect the cell

from toxic free Fe2+ by oxidizing it and storing the resulting Fe3+ as ferrihydrite minerals within their

central cavity.

The encapsulin-associated enzymes are sequestered within the icosahedral shell through interac-

tions between the shell’s inner surface and a short localization sequence (Gly-Ser-Leu-Lys) appended

to their C-termini (Sutter et al., 2008). This motif is well-conserved, and the addition of this

sequence to heterologous proteins is sufficient to direct them to the interior of encapsulins

(Rurup et al., 2014; 2015; Cassidy-Amstutz et al., 2016).

A recent study of the Myxococcus xanthus encapsulin showed that it sequesters a number of dif-

ferent EncFtn proteins and acts as an ‘iron-megastore’ to protect these bacteria from oxidative

stress (McHugh et al., 2014). At 32 nm in diameter, it is much larger than other members of the fer-

ritin superfamily, such as the 12 nm 24-subunit classical ferritin nanocage and the 8 nm 12-subunit

Dps (DNA-binding protein from starved cells) complex (Grant et al., 1998; Andrews, 2010); and is

thus capable of sequestering up to ten times more iron than these ferritins (McHugh et al., 2014).

The primary sequences of EncFtn proteins have Glu-X-X-His metal coordination sites, which are

shared features of the ferritin family proteins (Andrews, 2010). Secondary structure prediction iden-

tifies two major a-helical regions in these proteins; this is in contrast to other members of the ferritin

superfamily, which have four major a-helices (Supplementary file 1). The ‘half-ferritin’ primary

sequence of the EncFtn family and their association with encapsulin nanocompartments suggests a

distinct biochemical and structural organization to other ferritin family proteins. The

Rhodospirillum rubrum EncFtn protein (Rru_A0973) shares 33% protein sequence identity with the

M. xanthus (MXAN_4464), 53% with the T. maritima (Tmari_0787), and 29% with the P. furiosus

eLife digest Iron is essential for life as it is a key component of many different enzymes that

participate in processes such as energy production and metabolism. However, iron can also be

highly toxic to cells because it readily reacts with oxygen. This reaction can damage DNA, proteins

and the membranes that surround cells.

To balance the cell’s need for iron against its potential damaging effects, organisms have evolved

iron storage proteins known as ferritins that form cage-like structures. The ferritins convert iron into

a less reactive form that is mineralised and safely stored in the central cavity of the ferritin cage and

is available for cells when they need it.

Recently, a new family of ferritins known as encapsulated ferritins have been found in some

microorganisms. These ferritins are found in bacterial genomes with a gene that codes for a protein

cage called an encapsulin. Although the structure of the encapsulin cage is known to look like the

shell of a virus, the structure that the encapsulated ferritin itself forms is not known. It is also not

clear how encapsulin and the encapsulated ferritin work together to store iron.

He et al. have now used the techniques of X-ray crystallography and mass spectrometry to

determine the structure of the encapsulated ferritin found in some bacteria. The encapsulated

ferritin forms a ring-shaped doughnut in which ten subunits of ferritin are arranged in a ring; this is

totally different from the enclosed cages that other ferritins form.

Biochemical studies revealed that the encapsulated ferritin is able to convert iron into a less

reactive form, but it cannot store iron on its own since it does not form a cage. Thus, the

encapsulated ferritin needs to be housed within the encapsulin cage to store iron.

Further work is needed to investigate how iron moves into the encapsulin cage to reach the

ferritin proteins. Some organisms have both standard ferritin cages and encapsulated ferritins; why

this is the case also remains to be discovered.

DOI: 10.7554/eLife.18972.002
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(PF1192) homologues. The GXXH motifs are strictly conserved in each of these species

(Supplementary file 1).

Here we investigate the structure and biochemistry of EncFtn in order to understand iron storage

within the encapsulin nanocompartment. We have produced recombinant encapsulin (Enc) and

EncFtn from the aquatic purple-sulfur bacterium R. rubrum, which serves as a model organism for

the study of the control of the bacterial nitrogen fixation machinery (Pope et al., 1985), in Escheri-

chia coli. Analysis by transmission electron microscopy (TEM) indicates that their co-expression leads

to the production of an icosahedral nanocompartment with encapsulated EncFtn. The crystal struc-

ture of a truncated hexahistidine-tagged variant of the EncFtn protein (EncFtnsH) shows that it forms

a decameric structure with an annular ‘ring-doughnut’ topology, which is distinct from the four-heli-

cal bundles of the 24meric ferritins (Lawson et al., 1991) and dodecahedral DPS proteins

(Grant et al., 1998). We identify a symmetrical iron bound ferroxidase center (FOC) formed

between subunits in the decamer and additional metal-binding sites close to the center of the ring

and on the outer surface. We also demonstrate the metal-dependent assembly of EncFtn decamers

using native PAGE, analytical gel-filtration, and native mass spectrometry. Biochemical assays show

that EncFtn is active as a ferroxidase enzyme. Through site-directed mutagenesis we show that the

conserved glutamic acid and histidine residues in the FOC influence protein assembly and activity.

We use our combined structural and biochemical data to propose a model for the EncFtn-catalyzed

sequestration of iron within the encapsulin shell.

Results

Assembly of R. rubrum EncFtn encapsulin nanocompartments in E. coli
We produced recombinant R. rubrum encapsulin nanocompartments in E. coli by co-expression of

the encapsulin (Rru_A0974) and EncFtn (Rru_A0973) proteins, and purified these by sucrose gradient

ultra-centrifugation (Figure 1A) (Sutter et al., 2008). TEM imaging of uranyl acetate-stained sam-

ples revealed that, when expressed in isolation, the encapsulin protein forms empty compartments

with an average diameter of 24 nm (Figure 1B and Figure 1—figure supplement 1A/C), consistent

with the appearance and size of the T. maritima encapsulin (Sutter et al., 2008). We were not able

Figure 1. Purification of recombinant R. rubrum encapsulin nanocompartments. (A) Recombinantly expressed encapsulin (Enc) and co-expressed

EncFtn-Enc were purified by sucrose gradient ultracentrifugation from E. coli B834(DE3) grown in SeMet medium. Samples were resolved by 18%

acrylamide SDS-PAGE; the position of the proteins found in the complexes as resolved on the gel are shown with arrows. (B/C) Negative stain TEM

image of recombinant encapsulin and EncFtn-Enc nanocompartments. Samples were imaged at 143,000 x magnification, with scale bar shown as 25

nm. Representative encapsulin and EncFtn-Enc complexes are indicated with red arrows.

DOI: 10.7554/eLife.18972.003

The following figure supplement is available for figure 1:

Figure supplement 1. Full-frame transmission electron micrographs of R. rubrum nanocompartments.

DOI: 10.7554/eLife.18972.004

He et al. eLife 2016;5:e18972. DOI: 10.7554/eLife.18972 3 of 31

Research article Biochemistry Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.18972.003
http://dx.doi.org/10.7554/eLife.18972.004
http://dx.doi.org/10.7554/eLife.18972


Figure 2. Purification of recombinant R. rubrum EncFtnsH. (A) Recombinant SeMet-labeled EncFtnsH produced

with 1 mM Fe(NH4)2(SO4)2 in the growth medium was purified by nickel affinity chromatography and size-exclusion

chromatography using a Superdex 200 16/60 column (GE Healthcare). Chromatogram traces measured at 280 nm

and 315 nm are shown with the results from ICP-MS analysis of the iron content of the fractions collected during

the experiment. The peak around 73 ml corresponds to a molecular weight of around 130 kDa when compared to

calibration standards; this is consistent with a decamer of EncFtnsH. The small peak at 85 ml corresponds to the 13

kDa monomer compared to the standards. Only the decamer peak contains significant amounts of iron as

indicated by the ICP-MS analysis. (B) Peak fractions from the gel filtration run were resolved by 15% acrylamide

SDS-PAGE and stained with Coomassie blue stain. The bands around 13 kDa and 26 kDa correspond to EncFtnsH,

as identified by MALDI peptide mass fingerprinting. The band at 13 kDa is consistent with the monomer mass,

while the band at 26 kDa is consistent with a dimer of EncFtnsH. The dimer species only appears in the decamer

fractions. (C) SEC-MALLS analysis of EncFtnsH from decamer fractions and monomer fractions allows assignment of

Figure 2 continued on next page
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to resolve any higher-order structures of EncFtn by TEM. Protein purified from co-expression of the

encapsulin and EncFtn resulted in 24 nm compartments with regions in the center that exclude stain,

consistent with the presence of the EncFtn within the encapsulin shell (Figure 1C and Figure 1—fig-

ure supplement 1B/C).

R. rubrum EncFtn forms a metal-ion stabilized decamer in solution
We purified recombinant R. rubrum EncFtn as both the full-length sequence (140 amino acids) and a

truncated C-terminal hexahistidine-tagged variant (amino acids 1–96 plus the tag; herein EncFtnsH).

In both cases the elution profile from size-exclusion chromatography (SEC) displayed two peaks

(Figure 2A). SDS-PAGE analysis of fractions from these peaks showed that the high molecular

weight peak was partially resistant to SDS and heat-induced denaturation; in contrast, the low

molecular weight peak was consistent with monomeric mass of 13 kDa (Figure 2B). MALDI peptide

mass fingerprinting of these bands confirmed the identity of both as EncFtn. Inductively coupled

plasma mass spectrometry (ICP-MS) analysis of the SEC fractions showed 100 times more iron in the

oligomeric fraction than the monomer (Figure 2A, blue scatter points; Table 1), suggesting that

EncFtn oligomerization is associated with iron binding. In order to determine the iron-loading stoi-

chiometry in the EncFtn complex, further ICP-MS experiments were performed using

selenomethionine (SeMet)-labelled protein EncFtn (Table 1). In these experiments, we observed

sub-stoichiometric metal binding, which is in contrast to the classical ferritins (Le Brun et al., 2010).

Size-exclusion chromatography with multi-angle laser light scattering (SEC-MALLS) analysis of

Figure 2 continued

an average mass of 132 kDa to decamer fractions and 13 kDa to monomer fractions, consistent with decamer and

monomer species (Table 2).

DOI: 10.7554/eLife.18972.005

Table 1. Determination of the Fe/EncFtnsH protein ratio by ICP-MS. EncFtnsH was purified as a SeMet derivative from E. coli B834(DE3)

cells grown in SeMet medium with 1 mM Fe(NH4)2(SO4)2. Fractions from SEC were collected, acidified and analysed by ICP-MS.

EncFtnsH concentration was calculated based on the presence of two SeMet per mature monomer. Samples where the element was

undetectable are labelled with n.d. These data were collected from EncFtnsH fractions from a single gel-filtration run.

Peak
EncFtnsH
retention volume (ml)

Element concentration (mM)
Derived EncFtnsH
concentration (mM)

Derived Fe/
EncFtnsH monomerCa Fe Zn Se

Decamer 66.5 n.d. 6.7 n.d. 24.6 12.3 0.5

68.3 n.d. 28.4 n.d 124.5 62.3 0.5

70.1 2.9 93.7 2.4 301.7 150.9 0.6

71.9 6.9 120.6 3.7 379.8 189.9 0.6

73.7 1.9 64.4 0.8 240.6 120.3 0.5

75.5 0.9 21.1 n.d. 101.7 50.8 0.4

77.3 n.d. 6.2 n.d. 42.6 21.3 0.3

79.1 0.1 2.4 n.d. 26.5 13.3 0.2

80.9 1.0 1.5 n.d. 22.3 11.2 0.1

82.7 n.d. 0.2 n.d. 29.2 14.6 n.d

Monomer 84.5 n.d. 0.1 n.d. 34.9 17.5 n.d

86.3 n.d. n.d n.d. 28.9 14.4 n.d

88.1 n.d. n.d. n.d. 17.4 8.7 n.d.

89.9 n.d. n.d. n.d. 5.5 2.8 n.d.

91.7 n.d. n.d. n.d. 0.1 0.07 0.2

DOI: 10.7554/eLife.18972.006
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samples taken from each peak gave calculated molecular weights consistent with a decamer for the

high molecular weight peak and a monomer for the low molecular weight peak (Figure 2C,

Table 2).

We purified EncFtnsH from E. coli grown in MM with or without the addition of 1 mM Fe

(NH4)2(SO4)2. The decamer to monomer ratio in the sample purified from cells grown in iron-supple-

mented media was 4.5, while that from the iron-free media was 0.11, suggesting that iron induces

the oligomerization of EncFtnsH in vivo (Figure 3A, Table 3). To test the metal-dependent oligomeri-

zation of EncFtnsH in vitro, we incubated the protein with various metal cations and subjected sam-

ples to analytical SEC and non-denaturing PAGE. Of the metals tested, only Fe2+, Zn2+ and Co2+

induced the formation of significant amounts of the decamer (Figure 3B, Figure 3—figure supple-

ment 1/2). While Fe2+ induces the multimerization of EncFtnsH, Fe
3+ in the form of FeCl3 does not

have this effect on the protein, highlighting the apparent preference this protein has for the ferrous

form of iron. To determine if the oligomerization of EncFtnsH was concentration dependent we per-

formed analytical SEC at 90 and 700 mM protein concentration (Figure 3C). At the higher concentra-

tion, no increase in the decameric form of EncFtn was observed; however, the shift in the major

peak from the position of the monomer species indicated a tendency to dimerize at high

concentration.

Crystal structure of EncFtnsH
We determined the crystal structure of EncFtnsH by molecular replacement to 2.0 Å resolution (see

Table 1 for X-ray data collection and refinement statistics). The crystallographic asymmetric unit con-

tained thirty monomers of EncFtn with visible electron density for residues 7 – 96 in each chain. The

protein chains were arranged as three identical annular decamers, each with D5 symmetry. The dec-

amer has a diameter of 7 nm and thickness of 4 nm (Figure 4A). The monomer of EncFtn has an

N-terminal 310-helix that precedes two 4 nm long antiparallel a-helices arranged with their long axes

at 25˚ to each other; these helices are followed by a shorter 1.4 nm helix projecting at 70˚ from a2

(Figure 4B). The C-terminal region of the crystallized construct extends from the outer circumfer-

ence of the ring, indicating that the encapsulin localization sequence in the full-length protein is on

the exterior of the ring and is thus free to interact with its binding site on the encapsulin shell protein

(Sutter et al., 2008).

The monomer of EncFtnsH forms two distinct dimer interfaces within the decamer (Figure 4 C/D).

The first dimer is formed from two monomers arranged antiparallel to each other, with a1 from each

monomer interacting along their lengths and a3 interdigitating with a2 and a3 of the partner chain.

This interface buries one third of the surface area from each partner and is stabilized by thirty hydro-

gen bonds and fourteen salt bridges (Figure 4C). The second dimer interface forms an antiparallel

four-helix bundle between helices 1 and 2 from each monomer (Figure 4D). This interface is less

extensive than the first and is stabilized by twenty-one hydrogen bonds, six salt bridges, and a num-

ber of metal ions.

Table 2. Estimates of EncFtnsH molecular weight from SEC-MALLS analysis. EncFtnsH was purified

from E. coli BL21(DE3) grown in minimal medium (MM) by nickel affinity chromatography and size-

exclusion chromatography. Fractions from two peaks (decamer and monomer) were pooled

separately (Figure 1C) and analysed by SEC-MALLS using a Superdex 200 10/300 GL

column (GE Healthcare) and Viscotek SEC-MALLS instruments (Malvern Instruments) (Figure 2C). The

decamer and monomer peaks were both symmetric and monodisperse, allowing the estimation of

the molecular weight of the species in these fractions (Folta-Stogniew, 2006). The molecular weights

are quoted to the nearest kDa due to the resolution limit of the instrument. The proteins analyzed by

SEC-MALLS came from single protein preparation.

Molecular Weight (kDa) Decamer peak Monomer peak

Theoretical 133 13

EncFtnsH-decamer fractions 132 15

EncFtnsH-monomer fractions 126 13

DOI: 10.7554/eLife.18972.007
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The arrangement of ten monomers in alternating orientation forms the decamer of EncFtn, which

assembles as a pentamer of dimers (Figure 4A). Each monomer lies at 45˚ relative to the vertical

central-axis of the ring, with the N-termini of alternating subunits capping the center of the ring at

each end, while the C-termini are arranged around the circumference. The central hole in the ring is

2.5 nm at its widest in the center of the complex, and 1.5 nm at its narrowest point near the outer

surface, although it should be noted that a number of residues at the N-terminus are not visible in

the crystallographic electron density and these may occupy the central channel. The surface of the

decamer has distinct negatively charged patches, both within the central hole and on the outer cir-

cumference, which form spokes through the radius of the complex (Figure 4—figure supplement

1).

EncFtn ferroxidase center
The electron density maps of the initial EncFtnsH model displayed significant positive peaks in the

mFo-DFc map at the center of the 4-helix bundle dimer (Figure 5—figure supplement 1). Informed

by the ICP-MS data indicating the presence of iron in the protein we collected diffraction data at the

experimentally determined iron absorption edge (1.74 Å) and calculated an anomalous difference

Fourier map using this data. Inspection of this map showed two 10-sigma peaks between residues

Glu32, Glu62 and His65 of two adjacent chains, and a statistically smaller 5-sigma peak between

Figure 3. Effect of Fe2+ and protein concentration on the oligomeric state of EncFtnsH in solution. (A) Recombinant EncFtnsH was purified by Gel

filtration Superdex 200 chromatography from E. coli BL21(DE3) grown in MM or in MM supplemented with 1 mM Fe(NH4)2(SO4)2 (MM+Fe2+). A higher

proportion of decamer (peak between 65 and 75 ml) is seen in the sample purified from MM+Fe2+ compared to EncFtnsH-MM, indicating that Fe2+

facilitates the multimerization of EncFtnsH in vivo. (B) EncFtnsH-monomer was incubated with one molar equivalent of Fe2+ salts for two hours prior to

analytical gel-filtration using a Superdex 200 PC 3.2/30 column (GE Healthcare). Both Fe2+ salts tested induced the formation of decamer indicated by

the peak between 1.2 and 1.6 ml. Monomeric and decameric samples of EncFtnsH are shown as controls. Peaks around 0.8 ml were seen as protein

aggregation. (C) Analytical gel filtration of EncFtn monomer at different concentrations to illustrate the effect of protein concentration on

multimerization. The major peak shows a shift towards a dimer species at high concentration of protein, but the ratio of this peak (1.5–1.8 ml) to the

decamer peak (1.2–1.5 ml) does not change when compared to the low concentration sample.

DOI: 10.7554/eLife.18972.008

The following figure supplements are available for figure 3:

Figure supplement 1. Effect of metal ions on the oligomeric state of EncFtnsH in solution.

DOI: 10.7554/eLife.18972.009

Figure supplement 2. PAGE analysis of the effect of metal ions on the oligomeric state of EncFtnsH.

DOI: 10.7554/eLife.18972.010
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residues Glu31 and Glu34 of the two chains. Modeling metal ions into these peaks and refinement

of the anomalous scattering parameters allowed us to identify these as two iron ions and a calcium

ion respectively (Figure 5A). An additional region of asymmetric electron density near the di-iron

binding site in the mFo-DFc map was modeled as glycolic acid, presumably a breakdown product of

the PEG 3350 used for crystallization. This di-iron center has an Fe-Fe distance of 3.5 Å, Fe-Glu-O

distances between 2.3 and 2.5 Å, and Fe-His-N distances of 2.5 Å (Figure 5B). This coordination

geometry is consistent with the di-nuclear ferroxidase center (FOC) found in ferritin (Bertini et al.,

2012). It is interesting to note that although we did not add any additional iron to the crystallization

trials, the FOC was fully occupied with iron in the final structure, implying that this site has a very

high affinity for iron.

The calcium ion coordinated by Glu31 and Glu34 adopts heptacoordinate geometry, with coordi-

nation distances of 2.5 Å between the metal ion and carboxylate oxygens of Glu31 and Glu34 (E31/

34-site). A number of ordered solvent molecules are also coordinated to this metal ion at a distance

of 2.5 Å. This heptacoordinate geometry is common in crystal structures with calcium ions

(Figure 5C) (Katz et al., 1996). While ICP-MS indicated that there were negligible amounts of cal-

cium in the purified protein, the presence of 140 mM calcium acetate in the crystallization mother

liquor favors the coordination of calcium at this site. The fact that the protein does not multimerize

in solution in the presence of Fe3+ may indicate that these metal binding sites have a lower affinity

for the ferric form of iron, which is the product of the ferroxidase reaction. A number of additional

metal-ions were present at the outer circumference of at least one decamer in the asymmetric unit

(Figure 5D). These ions are coordinated by His57, Glu61 and Glu64 from both chains in the FOC

Table 3. Gel-filtration peak area ratios for EncFtnsH decamer and monomer on addition of different metal ions. EncFtnsH was

produced in E. coli BL21(DE3) cultured in MM and MM with 1 mM Fe(NH4)2(SO4)2 (MM+Fe2+) and purified by gel-filtration

chromatography using an Superdex 200 16/60 column (GE Healthcare). Monomer fractions of EncFtnsH purified from MM were pooled

and run in subsequent analytical gel-filtration runs over the course of three days. Samples of EncFtnsH monomer were incubated with

one molar equivalent of metal ion salts at room temperature for two hours before analysis by analytical gel filtration chromatography

(AGF) using a Superdex 200 10/300 GL column. The area for resulting protein peaks were calculated using the Unicorn software (GE

Healthcare); peak ratios were calculated to quantify the propensity of EncFtnsH to multimerize in the presence of the different metal

ions. The change in the ratios of monomer to decamer over the three days of experiments may be a consequence of experimental

variability, or the propensity of this protein to equilibrate towards decamer over time. The increased decamer: monomer ratio seen in

the presence of Fe2+, Co2+, and Zn2+ indicates that these metal ions facilitate multimerization of the EncFtnsH protein, while the other

metal ions tested do not appear to induce multimerization. The analytical gel filtration experiment was repeated twice using two

independent preparations of protein, of which values calculated from one sample are presented here.

Method Sample Monomer area Decamer area Decamer/Monomer

Gel filtration Superdex 200 chromatography EncFtnsH-MM 64.3 583.6 0.1

EncFtnsH-MM+Fe2+ 1938.4 426.4 4.5

Analytical Gel filtration Day1 EncFtnsH-decamer fractions 20.2 1.8 11.2

EncFtnsH-monomer fractions 2.9 21.9 0.1

Fe(NH4)2(SO4)2/EncFtnsH-monomer 11.0 13.0 0.8

FeSO4-HCl/EncFtnsH-monomer 11.3 11.4 1.0

Analytical Gel filtration Day2 EncFtnsH-monomer fractions 8.3 22.8 0.4

CoCl2/EncFtnsH-monomer 17.7 14.5 1.2

MnCl2/EncFtnsH-monomer 3.1 30.5 0.1

ZnSO4/EncFtnsH-monomer 20.4 9.0 2.3

FeCl3/EncFtnsH-monomer 3.9 28.6 0.1

Analytical Gel filtration Day3 EncFtnsH-monomer fractions 6.3 23.4 0.3

MgSO4/EncFtnsH-monomer 5.8 30.2 0.2

Ca acetate/EncFtnsH-monomer 5.6 25.2 0.2

DOI: 10.7554/eLife.18972.011
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dimer and are 4.5 Å apart; Fe-Glu-O distances are between 2.5 and 3.5 Å and the Fe-His-N distances

are 4 and 4.5 Å.

Structural alignment of the di-iron binding site of EncFtnsH to the FOC of Pseudo-nitzschia multis-

eries ferritin (PmFtn, PDB ID: 4ITW) reveals a striking similarity between the metal binding sites of

EncFtnsH and the classical ferritins (Pfaffen et al., 2013) (Figure 6A). The di-iron site of EncFtnsH is

by necessity symmetrical, as it is formed through a dimer interface, while the FOC of ferritin does

not have these constraints and varies in different species at a position equivalent to His65 of the sec-

ond EncFtn monomer in the FOC interface (His65’) (Figure 6A). Structural superimposition of the

FOCs of ferritin and EncFtn brings the four-helix bundle of the ferritin fold into close alignment with

the EncFtn dimer, showing that the two families of proteins have essentially the same architecture

around the di-iron center (Figure 6B). The linker connecting helices 2 and 3 of ferritin is congruent

with the start of the C-terminal helix of one EncFtn monomer and the N-terminal 310 helix of the sec-

ond monomer (Figure 6C).

Mass spectrometry of the EncFtn assembly
In order to confirm the assignment of the oligomeric state of EncFtnsH and investigate further the

Fe2+-dependent assembly, we used native nano-electrospray ionization (nESI) and ion-mobility mass

spectrometry (IM-MS). As described above, by recombinant production of EncFtnsH in minimal

media we were able to limit the bioavailability of iron. Native MS analysis of EncFtnsH produced in

Figure 4. Crystal structure of EncFtnsH. (A) Overall architecture of EncFtnsH. Transparent solvent accessible surface view with a-helices shown as tubes

and bound metal ions as spheres. Alternating subunits are colored blue and green for clarity. The doughnut-like decamer is 7 nm in diameter and 4.5

nm thick. (B) Monomer of EncFtnsH shown as a secondary structure cartoon. (C/D) Dimer interfaces formed in the decameric ring of EncFtnsH. Subunits

are shown as secondary structure cartoons and colored blue and green for clarity. Bound metal ions are shown as orange spheres for Fe3+ and grey

and white spheres for Ca2+.

DOI: 10.7554/eLife.18972.012

The following figure supplement is available for figure 4:

Figure supplement 1. Electrostatic surface of EncFtnsH.

DOI: 10.7554/eLife.18972.013
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Figure 5. EncFtnsH metal binding sites. (A) Wall-eyed stereo view of the metal-binding dimerization interface of

EncFtnsH. Protein residues are shown as sticks with blue and green carbons for the different subunits, iron ions are

shown as orange spheres and calcium as grey spheres, and the glycolic acid ligand is shown with yellow carbon

atoms coordinated above the di-iron center. The 2mFo-DFc electron density map is shown as a blue mesh

contoured at 1.5 s and the NCS-averaged anomalous difference map is shown as an orange mesh and contoured

at 10 s. (B) Iron coordination within the FOC including residues Glu32, Glu62, His65 and Tyr39 from two chains.

Protein and metal ions are shown as in A. Coordination between the protein and iron ions is shown as yellow

dashed lines with distances indicated. (C) Coordination of calcium within the dimer interface by four glutamic acid

residues (E31 and E34 from two chains). The calcium ion is shown as a grey sphere and water molecules involved

in the coordination of the calcium ion are shown as crosses. (D) Metal coordination site on the outer surface of

EncFtnsH. The two calcium ions are coordinated by residues His57, Glu61 and Glu64 from the two chains of the

FOC dimer, and are located at the outer surface of the complex, positioned 10 Å away from the FOC iron.

Figure 5 continued on next page
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Figure 5 continued

DOI: 10.7554/eLife.18972.014

The following figure supplement is available for figure 5:

Figure supplement 1. Putative ligand-binding site in EncFtnsH.

DOI: 10.7554/eLife.18972.015

Figure 6. Comparison of the symmetric metal ion binding site of EncFtnsH and the ferritin FOC. (A) Structural

alignment of the FOC residues in a dimer of EncFtnsH (green/blue) with a monomer of Pseudo-nitzschia multiseries

ferritin (PmFtn) (PDBID: 4ITW) (orange) (Pfaffen et al., 2013). Iron ions are shown as orange spheres and a single

calcium ion as a grey sphere. Residues within the FOC are conserved between EncFtn and ferritin PmFtn, with the

exception of residues in the position equivalent to H65’ in the second subunit in the dimer (blue). The site in

EncFtn with bound calcium is not present in other family members. (B) Secondary structure of aligned dimeric

EncFtnsH and monomeric ferritin highlighting the conserved four-helix bundle. EncFtnsH monomers are shown in

green and blue and aligned PmFtn monomer in orange as in A. (C) Cartoon of secondary structure elements in

EncFtn dimer and ferritin. In the dimer of EncFtn that forms the FOC, the C-terminus of the first monomer (green)

and N-terminus of the second monomer (blue) correspond to the position of the long linker between a2 and a3 in

ferritin PmFtn.

DOI: 10.7554/eLife.18972.016

The following figure supplement is available for figure 6:

Figure supplement 1. Comparison of quaternary structure of EncFtnsH and ferritin.

DOI: 10.7554/eLife.18972.017
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this way displayed a charge state distribution consistent with an EncFtnsH monomer (blue circles,

Figure 7A1) with an average neutral mass of 13,194 Da, in agreement with the predicted mass of

the EncFtnsH protein (13,194.53 Da). Under these conditions, no significant higher order assembly

was observed and the protein did not have any coordinated metal ions. Titration with Fe2+ directly

before native MS analysis resulted in the appearance of a new charge state distribution, consistent

with an EncFtnsH decameric assembly (+22 to +26; 132.65 kDa) (Figure 7A2/3). After instrument

optimization, the mass resolving power achieved was sufficient to assign iron-loading in the complex

to between 10 and 15 Fe ions per decamer (Figure 7B, inset top right), consistent with the presence

of 10 irons in the FOC and the coordination of iron in the Glu31/34-site occupied by calcium in the

crystal structure (Dmass observed ~0.67 kDa). MS analysis of EncFtnsH after addition of further Fe2+

did not result in iron loading above this stoichiometry. Therefore, the extent of iron binding seen is

limited to the FOC and Glu31/34 secondary metal binding site. These data suggest that the deca-

meric assembly of EncFtnsH does not accrue iron in the same manner as classical ferritin, which is

able to sequester around 4500 iron ions within its nanocage (Mann et al., 1986). Ion mobility

Figure 7. Native mass spectrometry and ion mobility analysis of iron loading in EncFtnsH. All spectra were acquired in 100 mM ammonium acetate, pH

8.0 with a protein concentration of 5 mM. (A) Native nanoelectrospray ionization (nESI) mass spectrometry of EncFtnsH at varying iron concentrations.

A1, nESI spectrum of iron-free EncFtnsH displays a charge state distribution consistent with EncFtnsH monomer (blue circles, 13,194 Da). Addition of 100

mM (A2) and 300 mM (A3) Fe2+ results in the appearance of a second higher molecular weight charge state distribution consistent with a decameric

assembly of EncFtnsH (green circles, 132.6 kDa). (B) Ion mobility (IM)-MS of the iron-bound holo-EncFtnsH decamer. Top, Peaks corresponding to the 22

+ to 26+ charge states of a homo-decameric assembly of EncFtnsH are observed (132.6 kDa). Top Insert, Analysis of the 24+ charge state of the

assembly at m/z 5528.2 Th. The theoretical average m/z of the 24+ charge state with no additional metals bound is marked by a red line (5498.7 Th);

the observed m/z of the 24+ charge state indicates that the EncFtnsH assembly binds between 10 (green line, 5521.1 Th) and 15 Fe ions (blue line,

5532.4 Th) per decamer. Bottom, The arrival time distributions (ion mobility data) of all ions in the EncFtnsH charge state distribution displayed as a

greyscale heat map (linear intensity scale). Bottom right, The arrival time distribution of the 24+ charge state (dashed blue box) has been extracted and

plotted. The drift time for this ion is shown (ms), along with the calibrated collision cross section (CCS), W (nm2).

DOI: 10.7554/eLife.18972.018

The following figure supplements are available for figure 7:

Figure supplement 1. Native IM-MS analysis of the apo-EncFtnsH monomer.

DOI: 10.7554/eLife.18972.019

Figure supplement 2. Gas-phase disassembly of the holo-EncFtnsH decameric assembly.

DOI: 10.7554/eLife.18972.020

He et al. eLife 2016;5:e18972. DOI: 10.7554/eLife.18972 12 of 31

Research article Biochemistry Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.18972.018
http://dx.doi.org/10.7554/eLife.18972.019
http://dx.doi.org/10.7554/eLife.18972.020
http://dx.doi.org/10.7554/eLife.18972


analysis of the EncFtnsH decameric assembly, collected with minimal collisional activation, suggested

that it consists of a single conformation with a collision cross section (CCS) of 58.2 nm2 (Figure 7B).

This observation is in agreement with the calculated CCS of 58.7 nm2derived from our crystal struc-

ture of the EncFtnsH decamer (Marklund, 2015). By contrast, IM-MS measurements of the mono-

meric EncFtnsH at pH 8.0 under the same instrumental conditions revealed that the metal-free

protein monomer exists in a wide range of charge states (+6 to +16) and adopts many conforma-

tions in the gas phase with collision cross sections ranging from 12 nm2 to 26 nm2 (Figure 7—figure

supplement 1). These observations are indicative of an unstructured protein with little secondary or

tertiary structure (Beveridge et al., 2014). Thus, IM-MS studies highlight that higher order structure

in EncFtnsH is mediated/stabilized by metal binding, an observation that is in agreement with our

solution studies. Taken together, these results suggest that di-iron binding, forming the FOC in

EncFtnsH, is required to stabilize the 4-helix bundle dimer interface, essentially reconstructing the

classical ferritin-like fold; once stabilized, these dimers readily associate as pentamers, and the over-

all assembly adopts the decameric ring arrangement observed in the crystal structure.

We subsequently performed gas phase disassembly of the decameric EncFtnsH using collision-

induced dissociation (CID) tandem mass spectrometry. Under the correct CID conditions, protein

assemblies can dissociate with retention of subunit and ligand interactions, and thus provide struc-

turally-informative evidence as to the topology of the original assembly; this has been termed ‘atypi-

cal’ dissociation (Hall et al., 2013). For EncFtnsH, this atypical dissociation pathway was clearly

Figure 8. Spectroscopic evidence for the ferroxidase activity and comparison of iron loading capacity of apoferritin, EncFtnsH, encapsulin, and EncFtn-

Enc. (A) Apoferritin (10 mM monomer concentration) and EncFtnsH decamer fractions (20 mM monomer concentration, 10 mM FOC concentration) were

incubated with 20 and 100 mM iron (2 and 10 times molar equivalent Fe2+ per FOC) and progress curves of the oxidation of Fe2+ to Fe3+ at 315 nm

were recorded in a spectrophotometer. The background oxidation of iron at 20 and 100 mM in enzyme-free controls are shown for reference. (B)

Encapsulin and EncFtn-Enc complexes at 10 mM asymmetric unit concentration were incubated with Fe2+ at 20 and 100 mM and progress curves for iron

oxidation at A315 were measured in a UV/visible spectrophotometer. Enzyme free controls for background oxidation of Fe2+ are shown for reference. (C)

Histogram of the iron loading capacity per biological assembly of EncFtnsH, encapsulin, EncFtn-Enc and apoferritin. The results shown are for three

technical replicates and represent the optimal iron loading by the complexes after three hours when incubated with Fe2+.

DOI: 10.7554/eLife.18972.021

The following figure supplement is available for figure 8:

Figure supplement 1. TEM visualization of iron-loaded bacterial nanocompartments and ferritin.

DOI: 10.7554/eLife.18972.022

He et al. eLife 2016;5:e18972. DOI: 10.7554/eLife.18972 13 of 31

Research article Biochemistry Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.18972.021
http://dx.doi.org/10.7554/eLife.18972.022
http://dx.doi.org/10.7554/eLife.18972


evident; CID of the EncFtnsH decamer resulted in the appearance of a dimeric EncFtnsH subcomplex

containing 0, 1, or 2 iron ions (Figure 7—figure supplement 2). In light of the crystal structure, this

observation can be rationalized as dissociation of the EncFtnsH decamer by disruption of the non-

FOC interface with at least partial retention of the FOC interface and the FOC-Fe. Thus, this obser-

vation supports our crystallographic assignment of the overall topology of the EncFtnsH assembly as

a pentameric assembly of dimers with two iron ions located at the FOC dimer interface. In addition,

this analysis provides evidence that the overall architecture of the complex is consistent in the crys-

tal, solution and gas phases.

Ferroxidase activity
In light of the identification of an iron-loaded FOC in the crystal structure of EncFtn and our native

mass spectrometry data, we performed ferroxidase and peroxidase assays to demonstrate the cata-

lytic activity of this protein. In addition, we also assayed equine apoferritin, an example of a classical

ferritin enzyme, as a positive control. Unlike the Dps family of ferritin-like proteins, EncFtn showed

no peroxidase activity when assayed with the substrate ortho-phenylenediamine (Pesek et al.,

2011). The ferroxidase activity of EncFtnsH was measured by recording the progress curve of Fe2+

oxidation to Fe3+ at 315 nm after addition of 20 and 100 mM Fe2+ (2 and 10 times molar ratio Fe2+/

FOC). In both experiments the rate of oxidation was faster than background oxidation of Fe2+ by

molecular oxygen, and was highest for 100 mM Fe2+ (Figure 8A). These data show that recombinant

EncFtnsH acts as an active ferroxidase enzyme. When compared to apoferritin, EncFtnsH oxidized

Fe2+ at a slower rate and the reaction did not run to completion over the 1800 s of the experiment.

Addition of higher quantities of iron resulted in the formation of a yellow/red precipitate at the end

of the reaction. We also performed these assays on purified recombinant encapsulin; which, when

assayed alone, did not display ferroxidase activity above background Fe2+ oxidation (Figure 8B). In

contrast, complexes of the full EncFtn encapsulin nanocompartment (i.e. the EncFtn-Enc protein

complex) displayed ferroxidase activity comparable to apoferritin without the formation of precipi-

tates (Figure 8B).

We attributed the precipitates observed in the EncFtnsH ferroxidase assay to the production of

insoluble Fe3+ complexes, which led us to propose that EncFtn does not directly store Fe3+ in a min-

eral form. This observation agrees with native MS results, which indicates a maximum iron loading of

10–15 iron ions per decameric EncFtn; and the structure, which does not possess the enclosed iron-

storage cavity characteristic of classical ferritins and Dps family proteins that can directly accrue min-

eralized Fe3+ within their nanocompartment structures.

To analyze the products of these reactions and determine whether the EncFtn and encapsulin

were able to store iron in a mineral form, we performed TEM on the reaction mixtures from the fer-

roxidase assay. The EncFtnsH reaction mixture showed the formation of large, irregular electron-

dense precipitates (Figure 8—figure supplement 1A). A similar distribution of particles was

observed after addition of Fe2+ to the encapsulin protein (Figure 8—figure supplement 1B). In con-

trast, addition of Fe2+ to the EncFtn-Enc nanocompartment resulted in small, highly regular, electron

dense particles of approximately 5 nm in diameter (Figure 8—figure supplement 1C); we interpret

these observations as controlled mineralization of iron within the nanocompartment. Addition of

Fe2+ to apoferritin resulted in a mixture of large particles and small (~2 nm) particles consistent with

partial mineralization by the ferritin and some background oxidation of the iron (Figure 8—figure

supplement 1D). Negative stain TEM of these samples revealed that upon addition of iron, the

EncFtnsH protein showed significant aggregation (Figure 8—figure supplement 1F); while the

encapsulin, EncFtn-Enc system, and apoferritin are present as distinct nanocompartments without

significant protein aggregation (Figure 8—figure supplement 1G–I).

Iron storage in encapsulin nanocompartments
The results of the ferroxidase assay and micrographs of the reaction products suggest that the oxi-

dation and mineralization function of the classical ferritins are split between the EncFtn and encapsu-

lin proteins, with the EncFtn acting as a ferroxidase and the encapsulin shell providing an

environment and template for iron mineralization and storage. To investigate this further, we added

Fe2+ at various concentrations to samples of apo-ferritin, EncFtn, isolated encapsulin, and the

EncFtn-Enc protein complex, and subjected these samples to a ferrozine assay to quantify the
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amount of iron associated with the proteins after three hours of incubation. The maximum iron load-

ing capacity of these systems was calculated as the quantity of iron per biological assembly

(Figure 8C). In this assay, the EncFtnsH decamer binds a maximum of around 48 iron ions before

excess iron induces protein precipitation. The encapsulin shell protein can sequester about 2200 iron

ions before significant protein loss occurs, and the reconstituted EncFtn-Enc nanocompartment

sequestered about 4150 iron ions. This latter result is significantly more than the apoferritin used in

our assay, which sequesters approximately 570 iron ions in this assay (Figure 8C, Table 5).

Consideration of the functional oligomeric states of these proteins, where EncFtn is a decamer

and encapsulin forms an icosahedral cage, and estimation of the iron loading capacity of these com-

plexes gives insight into the role of the two proteins in iron storage and mineralization. EncFtn deca-

mers bind up to 48 iron ions (Figure 8C), which is significantly higher than the stoichiometry of

fifteen metal ions visible in the FOC and E31/34-site of the crystal structure of the EncFtnsH decamer

and our MS analysis. The discrepancy between these solution measurements and our MS analysis

may indicate that there are additional metal-binding sites on the interior channel and exterior faces

of the protein; this is consistent with our identification of a number of weak metal-binding sites at

the surface of the protein in the crystal structure (Figure 5D). These observations are consistent with

hydrated Fe2+ ions being channeled to the active site from the E31/34-site and the subsequent exit

of Fe3+ products on the outer surface, as is seen in other ferritin family proteins (Pesek et al., 2011;

Behera and Theil, 2014). While the isolated encapsulin shell does not display any ferroxidase activ-

ity, it binds around 2200 iron ions in our assay (Table 5). This implies that the shell can bind a signifi-

cant amount of iron on its outer and inner surfaces. While the maximum reported loading capacity

of classical ferritins is approximately 4500 iron ions (Mann et al., 1986), in our assay system we were

only able to load apoferritin with around 570 iron ions. However, the recombinant EncFtn-Enc nano-

compartment was able to bind over 4100 iron ions in the same time period, over seven times the

amount seen for the apoferritin. We note we do not reach the experimental maximum

iron loading for apoferritin and therefore the total iron-loading capacity of our system may be signifi-

cantly higher than in this experimental system.

Taken together, our data show that EncFtn can catalytically oxidize Fe2+ to Fe3+; however, iron

binding in EncFtn is limited to the FOC and several surface metal binding sites. In contrast, the

Figure 9. Purification of recombinant R. rubrum EncFtnsH FOC mutants. Single mutants E32A, E62A, and H65A of EncFtnsH produced from E. coli BL21

(DE3) cells grown in MM and MM supplemented with iron were subjected to Superdex 200 size-exclusion chromatography. (A) Gel-filtration

chromatogram of the E32A mutant form of EncFtnsH resulted in an elution profile with a majority of the protein eluting as the decameric form of the

protein and a small proportion of monomer. (B) Gel-filtration chromatograhy of the E62A mutant form of EncFtnsH resulted in an elution profile with a

single major decameric peak. (C) Gel-filtration chromatography of the H65A mutant form of EncFtnsH resulted in a single peak corresponding to the

protein monomer.

DOI: 10.7554/eLife.18972.023
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encapsulin protein displays no catalytic activity, but has the ability to bind a considerable amount of

iron. Finally, the EncFtn-Enc nanocompartment complex retains the catalytic activity of EncFtn, and

sequesters iron within the encapsulin shell at a higher level than the isolated components of the sys-

tem, and at a significantly higher level than the classical ferritins (Andrews, 2010). Furthermore, our

recombinant nanocompartments may not have the physiological subunit stoichiometry, and the iron-

loading capacity of native nanocompartments is potentially much higher than the level we have

observed.

Mutagenesis of the EncFtnsHferroxidase center
To investigate the structural and biochemical role played by the metal binding residues in the di-iron

FOC of EncFtnsH we produced alanine mutations in each of these residues: Glu32, Glu62, and His65.

These EncFtnsH mutants were produced in E. coli cells grown in MM, both in the absence and pres-

ence of additional iron. The E32A and E62A mutants eluted from SEC at a volume consistent with

the decameric form of EncFtnsH, with a small proportion of monomer; the H65A mutant eluted at a

Figure 10. Native mass spectrometry of EncFtnsH mutants. All spectra were acquired in 100 mM ammonium

acetate, pH 8.0 with a protein concentration of 5 mM. (A) Wild-type EncFtnsH in the absence of iron displays a

charge state distribution consistent with a monomer (see also Figure 8). (B) E32A EncFtnsH displays a charge

states consistent with a decamer (green circles); a minor species, consistent with the monomer of E32A mutant is

also observed (blue circles). (C) E62A EncFtnsH displays charge states consistent with a decamer (green circles). (D)

H65A EncFtnsH displays charge states consistent with both monomer (blue circles) and dimer (purple circles).

DOI: 10.7554/eLife.18972.024
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Table 4. Data collection and refinement statistics. Statistics for the highest-resolution shell are shown in parentheses. Friedel mates

were averaged when calculating reflection numbers and statistics.

WT E32A E62A H65A

Data collection

Wavelength (Å) 1.74 1.73 1.73 1.74

Resolution range (Å) 49.63 - 2.06
(2.10 - 2.06)

48.84 - 2.59
(2.683 - 2.59)

48.87 - 2.21
(2.29 - 2.21)

48.86 - 2.97
(3.08 - 2.97)

Space group P 1 21 1 P 1 21 1 P 1 21 1 P 1 21 1

Unit cell (Å) a
b
c
b (˚)

98.18
120.53
140.30
95.36

97.78
120.28
140.53
95.41

98.09
120.23
140.36
95.50

98.03
120.29
140.43
95.39

Total reflections 1,264,922
(41,360)

405,488
(36,186)

1,069,345
(95,716)

323,853
(32,120)

Unique reflections 197,873
(8,766)

100,067
(9,735)

162,379
(15,817)

66,658
(6,553)

Multiplicity 6.4 (4.7) 4.1 (3.7) 6.6 (6.1) 4.9 (4.9)

Anomalous multiplicity 3.2 (2.6) N/A N/A N/A

Completeness (%) 99.2 (88.6) 99.0 (97.0) 100 (97.0) 100 (99.0)

Anomalous completeness (%) 96.7 (77.2) N/A N/A N/A

Mean I/sigma(I) 10.6 (1.60) 8.46 (1.79) 13.74 (1.80) 8.09 (1.74)

Wilson B-factor 26.98 40.10 33.97 52.20

Rmerge 0.123 (0.790) 0.171 (0.792) 0.0979 (1.009) 0.177 (0.863)

Rmeas 0.147 (0.973) 0.196 (0.923) 0.1064 (1.107) 0.199 (0.966)

CC1/2 0.995 (0.469) 0.985 (0.557) 0.998 (0.642) 0.989 (0.627)

CC* 0.999 (0.846) 0.996 (0.846) 0.999 (0.884) 0.997 (0.878)

Image DOI 10.7488/ds/1342 10.7488/ds/1419 10.7488/ds/1420 10.7488/ds/1421

Refinement

Rwork 0.171 (0.318) 0.183 (0.288) 0.165 (0.299) 0.186 (0.273)

Rfree 0.206 (0.345) 0.225 (0351) 0.216 (0.364) 0.237 (0.325)

Number of non-hydrogen atoms 23,222 22,366 22,691 22,145

macromolecules 22,276 22,019 21,965 22,066

ligands 138 8 24 74

water 808 339 702 5

Protein residues 2,703 2,686 2,675 2,700

RMS(bonds) (Å) 0.012 0.005 0.011 0.002

RMS(angles) (˚) 1.26 0.58 1.02 0.40

Ramachandran favored (%) 100 99 100 99

Ramachandran allowed (%) 0 1 0 1

Ramachandran outliers (%) 0 0 0 0

Clash score 1.42 1.42 1.79 0.97

Average B-factor (Å2) 33.90 42.31 41.34 47.68

macromolecules 33.80 42.35 41.31 47.60

ligands 40.40 72.80 65.55 72.34

solvent 36.20 38.95 41.46 33.85

PDB ID 5DA5 5L89 5L8B 5L8G
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volume consistent with the monomeric form of EncFtnsH (Figure 9). For all of the mutants studied,

no change in oligomerization state was apparent upon addition of Fe2+ in vitro.

In addition to SEC studies, native mass spectrometry of the apo-EncFtnsH mutants was performed

and compared with the wild-type apo-EncFtnsH protein (Figure 10). As described above, the apo-

EncFtnsH has a charge state distribution consistent with an unstructured monomer, and decamer for-

mation is only initiated upon addition of ferrous iron. Both the E32A mutant and E62A mutant dis-

played charge state distributions consistent with decamers, even in the absence of Fe2+. This gas-

Table 5. Iron loading capacity of EncFtn, encapsulin and ferritin. Protein samples (at 8.5 mM) including decameric EncFtnsH,

encapsulin, EncFtn-Enc and apoferritin were mixed with Fe(NH4)2(SO4) (in 0.1% (v/v) HCl) of different concentrations in 50 mM Tris-HCl

(pH 8.0), 150 mM NaCl buffer at room temperature for 3 hrs in the air. Protein-Fe mixtures were centrifuged at 13,000 x g to remove

precipitated material and desalted prior to the Fe and protein content analysis by ferrozine assay and BCA microplate assay,

respectively. Fe to protein ratio was calculated to indicate the Fe binding capacity of the protein. Protein stability was compromised at

high iron concentrations; therefore, the highest iron loading with the least protein precipitation was used to derive the maximum iron

loading capacity per biological assembly (underlined and highlighted in bold). The biological unit assemblies are a decamer for

EncFtnsH, a 60mer for encapsulin, a 60mer of encapsulin loaded with 12 copies of decameric EncFtn in the complex, and 24mer for

horse spleen apoferritin. Errors are quoted as the standard deviation of three technical repeats in both the ferrozine and BCA

microplate assays. The proteins used in Fe loading experiment came from a single preparation.

Protein sample
Fe(NH4)2(SO4)2

loading (mM)
Fe detected by
ferrozine assay (mM)

Protein detected by BCA
microplate assay (mM)

Fe / monomeric
protein

Maximum Fe loading per
biological assembly unit

8.46 mM
EncFtnsH-10mer

0 4.73 ± 2.32 5.26 ± 0.64 0.90 ± 0.44

39.9 9.93 ± 1.20 5.36 ± 0.69 1.85 ± 0.22

84 17.99 ± 2.01 4.96 ± 0.04 3.63 ± 0.41

147 21.09 ± 1.94 4.44 ± 0.21 4.75 ± 0.44 48 ± 4

224 28.68 ± 0.30 3.73 ± 0.53 7.68 ± 0.08

301 11.27 ± 1.10 2.50 ± 0.05 4.51 ± 0.44

8.50 mM
Encapsulin

0 -1.02 ± 0.54 8.63 ± 0.17 -0.12 ± 0.06

224 62.24 ± 2.49 10.01 ± 0.58 6.22 ± 0.35

301 67.94 ± 3.15 8.69 ± 0.42 7.81 ± 0.36

450 107.96 ± 8.88 8.50 ± 0.69 12.71 ± 1.05

700 97.51 ± 3.19 7.26 ± 0.20 13.44 ± 0.44

1000 308.63 ± 2.06 8.42 ± 0.34 36.66 ± 0.24 2199 ± 15

1500 57.09 ± 0.90 1.44 ± 0.21 39.77 ± 0.62

2000 9.2 ± 1.16 0.21 ± 0.14 44.73 ± 5.63

8.70 mM EncFtn-
Enc

0 3.31 ± 1.57 6.85 ± 0.07 0.48 ± 0.23

224 116.27 ± 3.74 7.63 ± 0.12 15.25 ± 0.49

301 132.86 ± 4.03 6.66 ± 0.31 19.96 ± 0.61

450 220.57 ± 27.33 6.12 ± 1.07 36.06 ± 4.47

700 344.03 ± 40.38 6.94 ± 0.17 49.58 ± 5.82

1000 496.00 ± 38.48 7.19 ± 0.08 68.94 ± 5.35 4137 ± 321

1500 569.98 ± 73.63 5.73 ± 0.03 99.44 ± 12.84

2000 584.30 ± 28.33 4.88 ± 0.22 119.62 ± 5.80

8.50 mM
Apoferritin

0 3.95 ± 2.26 9.37 ± 0.24 0.42 ± 0.25

42.5 10.27 ± 1.12 8.27 ± 0.30 1.24 ± 0.18

212.5 44.48 ± 2.76 7.85 ± 0.77 5.67 ± 0.83

637.5 160.93 ± 4.27 6.76 ± 0.81 23.79 ± 3.12 571 ± 75

1275 114.92 ± 3.17 3.84 ± 0.30 29.91 ± 2.95

1700 91.40 ± 3.37 3.14 ± 0.35 29.13 ± 3.86
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phase observation is consistent with SEC measurements, which indicate both of these variants were

also decamers in solution. Thus it seems that these mutations allow the decamer to form in the

absence of iron in the FOC. In contrast to the glutamic acid mutants, MS analysis of the H65A

mutant is similar to wild-type apo-EncFtnsH and is present as a monomer; interestingly a minor popu-

lation of dimeric H65A was also observed.

We propose that the observed differences in the oligomerization state of the E32A and E62A

mutants compared to wild-type are due to the changes in the electrostatic environment within the

FOC. At neutral pH the glutamic acid residues are negatively charged, while the histidine residues

are predominantly in their uncharged state. In the wild-type (WT) EncFtnsH this leads to electrostatic

repulsion between subunits in the absence of iron. Coordination of Fe2+ in this site stabilizes the

dimer and reconstitutes the active FOC. The geometric arrangement of Glu32 and Glu62 in the FOC

explains their behavior in solution and the gas phase, where they both favor the formation of deca-

mers due to the loss of a repulsive negative charge. The FOC in the H65A mutant is destabilized

through the loss of this metal coordinating residue and potential positive charge carrier, thus favor-

ing the monomer in solution and the gas phase.

To understand the impact of the mutants on the organization and metal binding of the FOC, we

determined the X-ray crystal structures of each of the EncFtnsH mutants (See Table 4 for data collec-

tion and refinement statistics). The crystal packing of all of the mutants in this study is essentially iso-

morphous to the EncFtnsH structure. All of the mutants display the same decameric arrangement in

the crystals as the EncFtnsH structure, and the monomers superimpose with an average RMSDCa of

less than 0.2 Å.

Figure 11. Comparison of the EncFtnsH FOC mutants vs wild type. The structures of the three EncFtnsH mutants were all determined by X-ray

crystallography. The E32A, E62A and H65A mutants were crystallized in identical conditions to the wild type. EncFtnsH structure and were essentially

isomorphous in terms of their unit cell dimensions. The FOC residues of the mutants and native EncFtnsH structures are shown as sticks with

coordinated Fe2+ as orange and Ca2+ as grey spheres and are colored as follows: wild type, grey; E32A, pink; E62A, green; H65A, blue. Of the mutants,

only H65A has any coordinated metal ions, which appear to be calcium ions from the crystallization condition. The overall organization of FOC residues

is retained in the mutants, with almost no backbone movements. Significant differences center around Tyr39, which moves to coordinate the bound

calcium ions in the H65A mutant; and Glu32, which moves away from the metal ions in this structure.

DOI: 10.7554/eLife.18972.027

The following figure supplements are available for figure 11:

Figure supplement 1. FOC dimer interface of EncFtnsH-E32A mutant.

DOI: 10.7554/eLife.18972.028

Figure supplement 2. FOC dimer interface of EncFtnsH-E62A mutant.

DOI: 10.7554/eLife.18972.029

Figure supplement 3. FOC dimer interface of EncFtnsH-H65A mutant.

DOI: 10.7554/eLife.18972.030
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Close inspection of the region of the protein

around the FOC in each of the mutants highlights

their effect on metal binding (Figure 11 and Fig-

ure 11—figure supplement 1–3). In the E32A

mutant the position of the side chains of the

remaining iron coordinating residues in the FOC

is essentially unchanged, but the absence of the

axial-metal coordinating ligand provided by the

Glu32 side chain abrogates metal binding in this

site. The Glu31/34-site also lacks metal, with the

side chain of Glu31 rotated by 180˚ at the Cb in

the absence of metal (Figure 11—figure supple-

ment 1). The E62A mutant has a similar effect on

the FOC to the E32A mutant, however the entry

site still has a calcium ion coordinated between

residues Glu31 and Glu34 (Figure 11—figure

supplement 2). The H65A mutant diverges signif-

icantly from the wild type in the position of the

residues Glu32 and Tyr39 in the FOC. E32

appears in either the original orientation as the

wild type and coordinates Ca2+ in this position,

or it is flipped by 180˚ at the Cb, moving away

from the coordinated calcium ion in the FOC.

Tyr39 moves closer to Ca2+ compared to the

wild-type and coordinates the calcium ion (Fig-

ure 11—figure supplement 3). A single calcium

ion is present in the entry site of this mutant;

however, Glu31 of one chain is rotated away

from the metal ion and is not involved in

coordination.

Taken together the results of our data show

that these changes to the FOC of EncFtn still per-

mit the formation of the decameric form of the

protein. While the proteins all appear decameric

in crystals, their solution and gas-phase behavior

differs considerably and the mutants no longer

show metal-dependent oligomerization. These

results highlight the importance of metal coordi-

nation in the FOC for the stability and assembly

of the EncFtn protein.

To address the question of how mutagenesis

of the iron coordinating residues affects the enzymatic activity of the EncFtnsH protein we recorded

progress curves for the oxidation of Fe2+ to Fe3+ by the different mutants as before. Mutagenesis of

E32A and H65A reduces the activity of EncFtnsH by about 40%-55%; the E62A mutant completely

abrogates activity, presumably through the loss of the bridging coordination for the formation of the

di-nuclear iron center of the FOC (Figure 12). Collectively, the effect of mutating these residues in

the FOC confirms the importance of the iron coordinating residues for the ferroxidase activity of the

EncFtnsH protein.

Discussion
Our study reports on a new class of ferritin-like proteins (EncFtn), which are associated with bacterial

encapsulin nanocompartments (Enc). By studying the EncFtn from R. rubrum we demonstrate that

iron binding results in assembly of EncFtn decamers, which display a unique annular architecture.

Despite a radically different quaternary structure to the classical ferritins, the four-helical bundle scaf-

fold and FOC of EncFtnsH are strikingly similar to ferritin (Figure 6A). A sequence-based

Figure 12. Relative ferroxidase activity of EncFtnsH
mutants. EncFtnsH, and the mutant forms E32A, E62A

and H65A, each at 20 mM, were mixed with 100 mM

acidic Fe(NH4)2(SO4)2. Ferroxidase activity of the

mutant forms is determined by measuring the

absorbance at 315 nm for 1800 s at 25 ˚C as an

indication of Fe3+ formation. The relative ferroxidase

activity of mutants is plotted as a proportion of the

activity of the wild-type protein using the endpoint

measurement of A315. Three technical repeats were

performed and the plotted error bars represent the

calculated standard deviations. The FOC mutants

showed reduced ferroxidase activity to varied extents,

among which E62A significantly abrogated the

ferroxidase activity.

DOI: 10.7554/eLife.18972.031

The following figure supplement is available for

figure 12:

Figure supplement 1. Progress curves recording

ferroxidase activity of EncFtnsH mutants. 20 mM wild-

type EncFtnsH, E32A, E62A and H65A mutants were

mixed with 20 mM or 100 mM acidic Fe(NH4)2(SO4)2,

respectively.

DOI: 10.7554/eLife.18972.032
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phylogenetic tree for proteins in the ferritin family was constructed; in addition to the classical ferri-

tins, bacterioferritins and Dps proteins, our analysis included the encapsulin-associated ferritin-like

proteins (EncFtns) and a group related to these, but lacking the encapsulin sequence (Non-EncFtn).

The analysis revealed that the EncFtn and Non-EncFtn proteins form groups distinct from the other

clearly delineated groups of ferritins, and represent outliers in the tree (Figure 13). While it is diffi-

cult to infer ancestral lineages in protein families, the similarity seen in the active site scaffold of

these proteins highlights a shared evolutionary relationship between EncFtn proteins and other

Figure 13. Phylogenetic tree of ferritin family proteins. The tree was built using the Neighbor-Joining method

(Saitou and Nei, 1987) based on step-wise amino acid sequence alignment of the four-helical bundle portions of

ferritin family proteins (Supplementary file 1). The tree is drawn to scale, with branch lengths in the same units as

those of the evolutionary distances used to infer the phylogenetic tree; the likely root of the tree is indicated by a

red arrow. The evolutionary distances were computed using the p-distance method (Nei and Kumar, 2000) and

are in the units of the number of amino acid differences per site. The rate variation among sites was modeled with

a gamma distribution (shape parameter = 2.5). The analysis involved 104 amino acid sequences. All ambiguous

positions were removed for each sequence pair. There were a total of 262 positions in the final dataset.

Evolutionary analyses were conducted in MEGA7 (McCoy et al., 2007)

DOI: 10.7554/eLife.18972.033
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members of the ferritin superfamily that has been noted in previous studies

(Andrews, 2010; Lundin et al., 2012). From this analysis, we propose that the four-helical fold of

the classical ferritins may have arisen through gene duplication of an ancestor of EncFtn. This gene

duplication would result in the C-terminal region of one EncFtn monomer being linked to the N-ter-

minus of another and thus stabilizing the four-helix bundle fold within a single polypeptide chain

(Figure 6B). Linking the protein together in this way relaxes the requirement for the maintenance of

a symmetrical FOC and thus provides a path to the diversity in active-site residues seen across the

ferritin family (Figure 6A, residues Glu95, Gln128 and Glu131 in PmFtn, Supplementary file 1)

(Andrews, 2010; Lundin et al., 2012).

Relationship between ferritin structure and activity
The quaternary arrangement of classical ferritins into an octahedral nanocage and Dps into a

dodecamer is absolutely required for their function as iron storage compartments (Chasteen and

Harrison, 1999). The oxidation and mineralization of iron must be spatially separated from the host

cytosol to prevent the formation of damaging hydroxyl radicals in the Fenton and Haber-Weiss reac-

tions (Honarmand Ebrahimi et al., 2012). This is achieved in all ferritins by confining the oxidation

of iron to the interior of the protein complex, thus achieving sequestration of the Fe3+ mineralization

product. A structural alignment of the FOC of EncFtn with the classical ferritin PmFtn shows that the

central ring of EncFtn corresponds to the external surface of ferritin, while the outer circumference

of EncFtn is congruent with the inner mineralization surface of ferritin (Figure 6—figure supplement

1A). This overlay highlights the fact that the ferroxidase center of EncFtn faces in the opposite direc-

tion relative to the classical ferritins and is essentially inside out regarding iron storage space (Fig-

ure 6—figure supplement 1B, boxed region). Analysis of each of the single mutations (E32A, E62A

and H65A) made in the FOC highlights the importance of the iron-coordinating residues in the cata-

lytic activity of EncFtn. Furthermore, the position of the calcium ion coordinated by Glu31 and Glu34

seen in the EncFtnsH structure suggests an entry site to channel metal ions into the FOC; we propose

that this site binds hydrated iron ions in vivo and acts as a selectivity filter and gate for the FOC

(Haldar et al., 2011). The constellation of charged residues on the outer circumference of EncFtn

(His57, Glu61 and Glu64) could function in the same way as the residues lining the mineralization sur-

face within the classical ferritin nanocage (Le Brun et al., 2010), and given their proximity to the

FOC these sites may be the exit portal and mineralization site (Honarmand Ebrahimi et al., 2012).

The absolute requirement for the spatial separation of oxidation and mineralization in ferritins

suggests that the EncFtn family proteins are not capable of storing iron minerals due to the absence

of an enclosed compartment in their structure (Figure 6—figure supplement 1B). Our biochemical

characterization of EncFtn supports this hypothesis, indicating that while this protein is capable of

oxidizing iron, it does not accrue mineralized iron in an analogous manner to classical ferritins. While

EncFtn does not store iron itself, its association with the encapsulin nanocage suggests that minerali-

zation occurs within the cavity of the encapsulin shell (McHugh et al., 2014). Our ferroxidase assay

data on the recombinant EncFtn-Enc nanocompartments, which accrue over 4100 iron ions per com-

plex and form regular nanoparticles, are consistent with the encapsulin protein acting as the store

for iron oxidized by the EncFtn enzyme. TEM analysis of the reaction products shows the production

of homogeneous iron nanoparticles only in the EncFtn-Enc nanocompartment (Figure 8—figure sup-

plement 1).

Docking the decamer structure of EncFtnsH into the pentamer of the T. maritima encapsulin

Tmari_0786 (PDB ID: 3DKT) (Sutter et al., 2008) shows that the position of the C-terminal exten-

sions of our EncFtnsH structure are consistent with the localization sequences seen bound to the

encapsulin protein (Figure 14A). Thus, it appears that the EncFtn decamer is the physiological state

of this protein. This arrangement positions the central ring of EncFtn directly above the pore at the

five-fold symmetry axis of the encapsulin shell and highlights a potential route for the entry of iron

into the encapsulin and towards the active site of EncFtn. A comparison of the encapsulin nanocom-

partment and the ferritin nanocage highlights the size differential between the two complexes

(Figure 14B) that allows the encapsulin to store significantly more iron. The presence of five FOCs

per EncFtnsH decamer and the fact that the icosahedral encapsulin nanocage can hold up to twelve

of decameric EncFtn between each of the internal five-fold vertices means that they can achieve a

high rate of iron mineralization across the entire nanocompartment. This arrangement of multiple
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reaction centers in a single protein assembly is reminiscent of classical ferritins, which has 24 FOCs

distributed around the nanocage.

Our structural data, coupled with biochemical and ICP-MS analysis, suggest a model for the activ-

ity of the encapsulin iron-megastore (Figure 14C). The crystal structure of the T. maritima encapsulin

shell protein has a negatively charged pore positioned to allow the passage of Fe2+ into the encap-

sulin and directs the metal towards the central, negatively charged hole of the EncFtn ring (Fig-

ure 4—figure supplement 1). The five metal-binding sites on the interior of the ring (Glu31/34-sites)

may select for the Fe2+ ion and direct it towards their cognate FOCs. We propose that the oxidation

of Fe2+ to Fe3+ occurs within the FOC according to the model postulated by (Honarmand Ebrahimi

et al., 2012) in which the FOC acts as a substrate site through which iron passes and is released on

to weakly coordinating sites at the outer circumference of the protein (His57, Glu61 and Glu64),

where it is able to form ferrihydrite minerals which can be safely deposited within the lumen of the

encapsulin nanocompartment (Figure 14).

Here we describe for the first time the structure and biochemistry of a new class of encapsulin-

associated ferritin-like protein and demonstrate that it has an absolute requirement for compartmen-

talization within an encapsulin nanocage to act as an iron store. Further work on the EncFtn-Enc

nanocompartment will establish the structural basis for the movement of iron through the encapsulin

shell, the mechanism of iron oxidation by the EncFtn FOC and its subsequent storage in the lumen

of the encapsulin nanocompartment.

Materials and methods

Cloning
Genes of interest were amplified by PCR using R. rubrum ATCC 11,170 genomic DNA (DSMZ) as

the template and KOD Hot Start DNA Polymerase (Novagen). Primers used in this study are listed in

Supplementary file 2. PCR products were visualized in 0.8% agarose gel stained with SYBR Safe

(Life Technologies, UK). Fragments of interest were purified by gel extraction (Qiagen, UK) before

digestion by endonuclease restriction enzymes (Thermo Fisher Scientific, UK) at 37˚C for 1 hr,

Figure 14. Model of iron oxidation in encapsulin nanocompartments. (A) Model of EncFtnsH docking to the encapsulin shell. A single pentamer of the

icosahedral T. maritima encapsulin structure (PDBID: 3DKT) (Sutter et al., 2008) is shown as a blue surface with the encapsulin localization sequence of

EncFtn shown as a purple surface. The C-terminal regions of the EncFtn subunits correspond to the position of the localization sequences seen in

3DKT. Alignment of EncFtnsH with 3DKT positions the central channel directly above the pore in the 3DKT pentamer axis (shown as a grey pentagon).

(B) Surface view of EncFtn within the encapsulin nanocompartment (grey and blue respectively). The lumen of the encapsulin nanocompartment is

considerably larger than the interior of ferritin (shown in orange behind the encapsulin for reference) and thus allows the storage of significantly more

iron. The proposed pathway for iron movement through the encapsulin shell and EncFtn FOC is shown with arrows. (C) Model ofiron oxidation within

an encapsulin nanocompartment. As EncFtn is unable to mineralize iron on its surface directly, Fe2+ must pass through the encapsulin shell to access

the first metal binding site within the central channel of EncFtnsH (entry site) prior to oxidation within the FOC and release as Fe3+ to the outer surface

of the protein where it can be mineralized within the lumen of the encapsulin cage.

DOI: 10.7554/eLife.18972.034
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followed by ligation with similarly digested vector pET-28a(+) or pACYCDuet-1 at room temperature

for 1 hr. Ligation product was transformed into chemically competent Escherichia coli Top10 cells

and screened against 50 ng/ml kanamycin for pET-28a(+) based constructs or 34 ng/ml chlorampheni-

col for pACYCDuet-1 based constructs. DNA insertion was confirmed through Sanger sequencing

(Edinburgh Genomics, The University of Edinburgh, UK). Sequence verified constructs were trans-

formed into E. coli BL21(DE3) or Tuner(DE3) for protein production. Alternatively, plasmids trans-

formed into E. coli B834(DE3) cells were cultured in selenomethionine medium.

Protein production and purification
A single colony of E. coli BL21(DE3) or Tuner(DE3) cells, transformed with protein expression plas-

mid, was transferred into 10 ml LB medium, or M9 minimal medium (MM), supplemented with

appropriate antibiotic, and incubated overnight at 37 ˚C with 200 rpm shaking. The overnight pre-

culture was then inoculated into 1 liter of LB medium and incubated at 37 ˚C with 200 rpm shaking.

Recombinant protein production was induced at OD600= 0.6 by the addition of 1 mM IPTG and the

incubation temperature was reduced to 18˚C for overnight incubation. Cells were pelleted by centri-

fugation at 4000 g for 20 min at 4 ˚C, and resuspended 10-fold (volume per gram of cell pellet) in

PBS to wash cells before a second centrifugation step. Cells were resuspended in 10-times (v/w) of

appropriate lysis buffer for the purification method used (see details of buffers below) and lysed by

sonication on ice, with ten cycles of 30-second burst of sonication at 10 mm amplitude and 30 s of

cooling. Cell lysate was clarified by centrifugation at 20,000 x g, 30 min, 4 ˚C; followed by filtration

using a 0.22 mM syringe filter (Millipore, UK).

Selenomethionine labelled protein was produced by growing a single colony of E. coli B834 (DE3)

cells transformed with protein expression plasmids in 100 ml LB medium supplemented with appro-

priate antibiotic overnight at 37 ˚C with shaking at 200 rpm. The overnight pre-culture was pelleted

by centrifugation 3,000 x g, 4 ˚C, 15 min and washed twice with M9 minimal medium. The washed

cells were transferred to 1 liter of SeMet medium, which contains M9 minimal medium, 40 mg/L of

each L-amino acid (without methionine), 40 mg/L selenomethionine, 2 mM MgSO4, 0.4% (w/v) glu-

cose and 1 mM Fe(NH4)2(SO4)2. Cells were incubated at 37 ˚C with 200 rpm shaking and recombi-

nant protein production was induced at OD600= 0.6 by the addition of 1 mM IPTG and the

incubation temperature was reduced to 18 ˚C for overnight incubation. Cells were harvested and

lysed as above.

His-tagged protein purification
Clarified cell lysate was loaded onto a 5 ml HisTrap column (GE Healthcare, UK) pre-equilibrated

with HisA buffer (50 mM Tris-HCl, 500 mM NaCl and 50 mM imidazole, pH 8.0). Unbound proteins

were washed from the column with HisA buffer. His-tagged proteins were then eluted by a step gra-

dient of 50% HisA buffer and 50% HisB buffer (50 mM Tris-HCl, 500 mM NaCl and 500 mM imidaz-

ole, pH 8.0). Fractions containing the protein of interest, as determined by 15% (w/v) acrylamide

SDS-PAGE, were pooled before loading onto a gel-filtration column (HiLoad 16/600 Superdex 200,

GE Healthcare) equilibrated with GF buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl). Fractions were

subjected to 15% SDS-PAGE and those containing the protein of interest were pooled for further

analysis.

Sucrose gradient ultracentrifugation purification
Co-expressed encapsulin and EncFtn (EncFtn-Enc) and encapsulin protein were both purified accord-

ing to the protocol used by M. Sutter (Sutter, 2008). Briefly, EncFtn-Enc or encapsulin was

expressed based on pACYCDuet-1 vector. The E. coli cells were grown, induced, harvested and son-

icated in a similar way as described above. GF buffer used in this purification contains 50 mM Tris-

HCl, pH 8.0, and 150 mM NaCl. To remove RNA contamination, the lysate was supplemented with

50 mg/ml RNase A and rotated at 10 rpm and room temperature for 2 hrs, followed by centrifugation

at 34,000 x g and 4 ˚C for 20 min and filtering through 0.22 mM syringe filter. Proteins were pelleted

through 38% (w/v) sucrose cushion by ultracentrifugation at 100,000 x g and 4 ˚C for 21 hrs. 10% -

50% (w/v) sucrose gradient ultracentrifugation was applied to further separate the proteins at

100,000 x g and 4 ˚C for 17 hrs. Protein was dialyzed against GF buffer to remove sucrose before

being used in chemical assays or TEM.
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Transmission electron microscopy
TEM imaging was performed on purified encapsulin, EncFtn, and EncFtn-Enc and apoferritin. Puri-

fied protein at 0.1 mg/ml concentration was spotted on glow-discharged 300 mesh carbon-coated

copper grids and excess liquid wicked off with filter paper (Whatman, UK). The grids were washed

with distilled water and blotted with filter paper three times before staining with 0.2% uranyl ace-

tate, blotting and air-drying. Grids were imaged using a JEM1400 transmission electron microscope

and images were collected with a Gatan CCD camera. Images were analyzed using ImageJ

(NIH, Bethesda, MD) and size-distribution histograms were plotted using Prism 6 (GraphPad soft-

ware). To observe iron mineral formation by TEM, protein samples at 8.5 mM concentration including

EncFtnsH, encapsulin, EncFtn-Enc and apoferritin were supplemented with acidic Fe(NH4)2(SO4)2 at

their maximum iron loading ratio in room temperature for 1 hr. The mixtures were subjected to TEM

analysis with or without uranyl acetate staining. TEM experiments without Fe loading were repeated

three times, a representative set of images are presented here. Proteins loaded with Fe and imaged

by TEM were from single preparation.

Protein crystallization and X-ray data collection
EncFtnsH was purified by anion exchange and Superdex 200 size- exclusion chromatography and

concentrated to 10 mg/ml (based on extinction coefficient calculation). Crystallization drops were

set up using the hanging drop vapor diffusion method at 292 K. Glass coverslips were set up with 1–

2 ml protein mixed with 1 ml well solution (0.14 M calcium acetate and 15% (w/v) PEG 3350) and

sealed over 1 ml of well solution. Crystals appeared after 5 days and were harvested from the well

using a LithoLoop (Molecular Dimensions Limited, UK), transferred briefly to a cryoprotection solu-

tion containing well solution supplemented with 1 mM FeSO4 (in 0.1% (v/v) HCl), 20% (v/v) PEG 200,

and subsequently flash cooled in liquid nitrogen. Crystals of the EncFtnsHsingle mutations were pro-

duced in the same manner as for the EncFtnsH wild-type protein.

All crystallographic datasets were collected on the macromolecular crystallography beamlines at

Diamond Light Source (Didcot, UK) at 100 K using Pilatus 6M detectors. Diffraction data were inte-

grated and scaled using XDS (Kabsch, 2010) and symmetry related reflections were merged with

Aimless (Evans, 2011). Data collection statistics are shown in Table 4. The resolution cut-off used

for structure determination and refinement was determined based on the CC1/2 criterion proposed

by Karplus and Diederichs (2012).

The structure of EncFtnsH was determined by molecular replacement using PDB ID: 3K6C as the

search model, modified to match the sequence of the target protein using Chainsaw (Stein, 2008).

A single solution comprising three decamers in the asymmetric unit was found by molecular replace-

ment using Phaser (McCoy et al., 2007). The initial model was rebuilt using Phenix.autobuild

(Adams et al., 2010) followed by cycles of refinement with Phenix.refine (Afonine et al., 2012), with

manual rebuilding and model inspection in Coot (Emsley et al., 2010). The final model was refined

with isotropic B-factors, torsional NCS restraints, and with anomalous group refinement. The model

was validated using MolProbity (Chen et al., 2010). Structural superimpositions were calculated

using Coot. Crystallographic figures were generated with PyMOL. Multiple sequence alignment of

EncFtn and ferritin family proteins was performed using Clustal Omega Sievers and Higgins, 2014

and displayed with Espript 3.0 (Gouet et al., 2003). Model refinement statistics are shown in

Table 4. The final models and experimental data are deposited in the PDB and diffraction image

files are available at the Edinburgh DataShare repository.

Horse spleen apoferritin preparation
Horse spleen apoferritin purchased from Sigma Aldrich (UK) was dissolved in deaerated MOPS

buffer (100 mM MOPS, 100 mM NaCl, 3 g/100 ml Na2S2O4 and 0.5 M EDTA, pH 6.5)

(Bauminger et al., 1991). Protein was dialyzed against 1 liter MOPS buffer in room temperature for

two days before buffer exchanging to GF buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl) in a viva-

spin column with 5 kDa cut-off (Sartorius, UK) for several times. Fe content of apoferritin was

detected using ferrozine assay (Riemer et al., 2004). Protein concentration was determined using

Pierce Microplate BCA Protein Assay Kit. Apoferritin containing less than 0.5 Fe per 24-mer was

used in the ferroxidase assay. Apoferritin used in the Fe loading capacity experiment was prepared

in the same way with 5–15 Fe per 24-mer.
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Ferroxidase assay
1 mM and 200 mM Fe(NH4)2(SO4)2 stock solutions were prepared in 0.1% (v/v) HCl anaerobically.

Protein solutions with 20 mM FOC were diluted from ~10 mg/ml frozen stock in GF buffer (50 mM

Tris-HCl, pH 8.0 and 150 mM NaCl) anaerobically. Ferroxidase activity was initiated by adding 450 ml

protein to 50 ml of acidic Fe(NH4)2(SO4)2 at the final concentration of 100 mM and 20 mM in the air,

respectively. The ferroxidase activity was measured by monitoring the Fe3+ formation which gives

rise to the change of the absorbance at 315 nm (Bonomi et al., 1996). Absorbance at 315 nm was

recorded every second over 1800 s using a quartz cuvette in a JASCO V-730 UV/VIS spectrophotom-

eter (JASCO Inc., Easton, MD). In recombinantly coexpressed nanocompartments the ratio of EncFtn

to Enc was assumed as 2 to 1, assuming each of the twelve pentameric vertices of the icosahedral

encapsulin were occupied with decameric EncFtn. The data are presented as the mean of three tech-

nical replicates with error bars indicating one standard deviation from the mean. Proteins used here

were from a single preparation.

Iron loading capacity of ferritins
In order to determine the maximum iron loading capacity, around 8.5 mM proteins including deca-

meric EncFtnsH, Encapsulin, EncFtn-Enc and apoferritin were loaded with various amount of acidic Fe

(NH4)2(SO4)2 ranging from 0 to 1700 mM. Protein mixtures were incubated in room temperature for

3 hrs before desalting in Zebra spin desalting columns (7 kDa cut-off, Thermo Fisher Scientific, UK)

to remove free iron ions. The protein concentration was determined using PierceMicroplate BCA

assay kit (Thermo Fisher Scientific). The protein standard curve was plotted according to the manu-

facturer. The Fe content in the samples was determined using modified ferrozine assay

(Riemer et al., 2004). Briefly speaking, 100 ml protein sample was mixed with 100 ml mixture of equal

volume of 1.4 M HCl and 4.5% (w/v) KMnO4 and incubated at 60 ˚C for 2 hrs. 20 ml of the iron-detec-

tion reagent (6.5 mM ferrozine, 6.5 mM neocuproine, 2.5 M ammonium acetate, and 1 M ascorbic

acid dissolved in H2O) was added to the cooled tubes. 30 min later, 200 ml of the solution was trans-

ferred into a well of 96-well plate and the absorbance at 562 nm was measured on the plate reader

Spectramax M5 (Molecular Devices, UK). The standard curve was plotted using various concentra-

tions of FeCl3 (in 10 mM HCl) diluted in the gel-filtration buffer. Three technical repeats were per-

formed for both the ferrozine and microplate BCA assays. Samples analyzed by ICP-MS were

prepared in the same way by mixing protein and ferrous ions and desalting. The proteins used in the

Fe loading experiment came from a single preparation.

Peroxidase assay
The peroxidase activity of EncFtnsH was determined by measuring the oxidation of ortho-phenylene-

diamine (OP) by H2O2 Pesek et al. (2011). EncFtnsH decameric and monomeric fractions purified

from MM were both used in the assay. Ortho-phenylenediamine was prepared as a 92.5 mM stock

solution in 50 mM Tris-HCl (pH 8.0). 80, 70, 60, 50, 40, 30, 20 and 10 mM of OP were prepared by

diluting the stock solution in the 50 mM Tris-HCl (pH 8.0). 100 ml of each diluted OP was added to a

96-well plate in 3 repeats. 1 ml of 32 mM protein was supplemented into each well to a final concen-

tration of 160 nM, followed by the addition of 2 ml of 30% H2O2. After 15 min shaking in the dark,

the reaction was stopped by adding 100 ml of 0.5 M H2SO4. The peroxidase activity was measured

by monitoring the absorbance at 490 nm in the SpectraMax M5 Microplate Reader (Molecular Devi-

ces) (Pesek et al., 2011).

ICP-MS analysis
Protein samples were diluted 50-fold into a solution of 2.5% HNO3 (Suprapur, Merck, UK) containing

20 mg/L Pt as internal standard. Matrix-matched elemental standards (containing analyte metal con-

centrations 0 – 1000 mg/L) were prepared by serial dilution from individual metal standard stocks

(VWR) with identical solution compositions, including the internal standard. All standards and sam-

ples were analyzed by ICP-MS using a Thermo x-series instrument (Thermo Fisher Scientific) operat-

ing in collision cell mode (using 3.0 ml min-1 flow of 8% H2 in He as the collision gas). Isotopes 44Ca,
56Fe, 66Zn, 78Se, and 195Pt were monitored using the peak-jump method (100 sweeps, 25–30 ms

dwell time on 5 channels per isotope, separated by 0.02 atomic mass units) in triplicate. The protein

samples used in ICP-MS came from a single protein preparation.
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Mass spectrometry analysis
For native MS analysis, all protein samples were buffer exchanged into 100 mM ammonium acetate

(pH 8.0; adjusted with dropwise addition of 1% ammonia solution) using Micro Biospin Chromatog-

raphy Columns (Bio-Rad, UK) prior to analysis and the resulting protein samples were analyzed at a

final concentration of ~5 mM (oligomer concentration). In order to obtain Fe-bound EncFtn, 100 mM

or 300 mM of freshly prepared FeCl2 was added to apo-EncFtnsH (monomer peak) immediately prior

to buffer exchange into 100 mM ammonium acetate (pH 8.0). Samples were analyzed on a quadru-

pole ion-mobility time of flight instrument (Synapt G2, Waters Corp., Manchester, UK), equipped

with a nanomate nanoelectrospray infusion robot (Advion Biosciences, Ithaca, NY). Instrument

parameters were tuned to preserve non-covalent protein complexes. After optimization, typical

parameters were: nanoelectrospray voltage 1.54 kV; sample cone 50 V; extractor cone 0 V; trap colli-

sion voltage 4 V; source temperature 80˚C; and source backing pressure 5.5 mbar. For improved

mass resolution the sample cone was raised to 155 V. Ion mobility mass spectrometry (IM-MS) was

performed using the travelling-wave mobility cell in the Synapt G2, employing nitrogen as the drift

gas. Typically, the IMS wave velocity was set to 300 m/s; wave height to 15 V; and the IMS pressure

was 1.8 mbar. All native MS experiments were performed on samples from two independent protein

preparations. For collision cross section determination, IM-MS data was calibrated using denatured

equine myoglobin and data was analyzed using Driftscope v2.5 and MassLynx v4.1 (Waters Corp.,

UK). Theoretical collision cross sections (CCS) were calculated from pdb files using IMPACT software

v. 0.9.1 (Marklund, 2015). In order to obtain information on the topology of the EncFtnsH assembly,

gas-phase dissociation of the Fe-associated EncFtnsH complex was achieved by increasing the sam-

ple cone and/or trap collision voltage prior to MS analysis.

SEC-MALLS
Size-exclusion chromatography (ÄKTA-Micro; GE Healthcare) coupled to UV, static light scattering

and refractive index detection (Viscotec SEC-MALS 20 and Viscotec RI Detector:VE3580; Malvern

Instruments, UK) were used to determine the molecular mass of fractions decamer and monomer of

EncFtnsH in solution individually. Protein concentration was determined by measurement of absor-

bance at 280 nm and calculated using the extinction coefficient e0.1%= 1.462 mg�1 ml-1 cm�1. 100

ml of 1.43 mgml-1 fractions of EncFtnsH decamer and 4.03 mg ml -1 fractions of EncFtnsH monomer

were run individually on a Superdex 200 10/300 GL size-exclusion column pre-equilibrated in 50 mM

Tris-HCl (pH 8.0), 150 mM NaCl at 22˚C with a flow rate of 0.5 ml/min. Light scattering, refractive

index (RI) and A280nm were analyzed by a homo-polymer model (OmniSEC software, v 5.1; Malvern

Instruments) using the following parameters for fractions of decamer and monomer: the extinction

coefficient (dA/dc) at 280 nm was 1.46 AU mg ml�1 and specific refractive index increment (dn/dc)

was 0.185 ml g�1. The proteins analyzed by SEC-MALLS came from single protein preparation.

Metal binding analysis by PAGE
Recombinant EncFtnsH fractions at 50 mM concentration were incubated with one molar equivalent

of metal ions at room temperature for 2 hrs. Half of each sample was mixed with 5 x native loading

buffer (65 mM Tris-HCl, pH 8.5, 20% glycerol and 0.01% bromophenol blue) and run on non-dena-

turing PAGE gels (10% acrylamide) and run in Tris/glycine buffer, 200 V, 4 ˚C for 50 min. The remain-

ing samples were left for an additional three hours prior to SDS-PAGE (15% acrylamide) analysis.

SDS-PAGE gels were run at room temperature at 200 V, room temperature for 50 min. Gels were

stained with Coomassie Brilliant Blue R250 and scanned after de-staining in water. The proteins used

in this experiment came from single protein preparation.

Analytical size-exclusion chromatography
For analysis of the multimeric state of EncFtn proteins by analytical size-exclusion gel-

filtration chromatography (AGF) 25 ml of 90 mM protein was loaded into Superdex 200 PC 3.2/30 col-

umn (GE Healthcare) at 15 ˚C with GF buffer running at 0.05 ml/min and pressure limit 0.45 MPa. In

order to use AGF to determine how metal ions influence the assembly of EncFtnsH, 90 mM EncFtnsH
monomer fractions were mixed with equal molar concentrations of metal ion solutions including

FeSO4 in 0.1% (v/v) HCl, Fe(NH4)2(SO4)2, FeCl3, CoCl2, calcium acetate (CaAc), ZnSO4 and MnCl2 at

room temperature for 2 hrs prior to AGF analysis. Protein samples without metal titration were also
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analyzed as a control group. Both monomer and decamer fractions of EncFtnsH left at room temper-

ature for 2 hrs, or overnight, were also analysed as controls to show the stability of the protein sam-

ples in the absence of additional metal ions. The AGF results have been repeated twice using two

independent preparations of protein, of which only one representative trace is presented in the

paper.

Accession codes and datasets
Coordinates and structure factors for the structures presented in this paper have been deposited in

the PDB under the following accession codes: EncFtnsH, 5DA5; EncFtnsH-E32A, 5L89; EncFtnsH-

E62A, 5L8B; EncFtnsH-H65A, 5L8G (DOIs for X-ray diffraction image data are shown in Table 4). All

MS datasets presented in this paper can be found, in the raw format at 10.7488/ds/1449.
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