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Abstract Mammalian lifespan differs by >100 fold, but the mechanisms associated with such

longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts

isolated from 16 species of mammals and maintained under identical cell culture conditions. We

developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression

by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites

correlating with species longevity. Cells from longer lived species up-regulated genes involved in

DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and

showed high levels of amino acids but low levels of lysophosphatidylcholine and

lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of

primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in

longevity across mammals at the level of global gene expression and metabolite levels and reveals

pathways that define these differences.

DOI: 10.7554/eLife.19130.001

Introduction
The maximum lifespan of mammalian species differs by more than 100-fold, ranging from ~2 years in

shrews to >200 years in bowhead whales (Tacutu et al., 2013). While it has long been observed that

maximum lifespan tends to correlate positively with body mass and time to maturity, but negatively

with growth rate, mass-specific metabolic rate, and number of offspring (Peters, 1986;

Sacher, 1959; Western, 1979), the underlying molecular basis is only starting to be understood.

One way to study the control of longevity is to identify the genes, pathways, and interventions

capable of extending lifespan or delaying aging phenotypes in experimental animals. Studies using

model organisms have uncovered several important conditions, such as knockout of insulin-like

growth factor 1 (IGF-1) receptor (Friedman and Johnson, 1988; Holzenberger et al., 2003;
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Tatar et al., 2001), inhibition of mechanistic target of rapamycin (mTOR) (Harrison et al., 2009;

Kenyon, 2010; Miller et al., 2014), mutation in growth hormone (GH) receptor (Coschigano et al.,

2000), ablation of anterior pituitary (e.g. Snell dwarf mice) (Flurkey et al., 2002), augmentation of

proteins of the sirtuin family (Chang and Guarente, 2013; Gomes et al., 2013; Mouchiroud et al.,

2013; Wood et al., 2004), and restriction of dietary intake (Guarente and Kenyon, 2000;

Heilbronn and Ravussin, 2003; McCay et al., 1935; Weindruch et al., 1986). While many of these

genes and pathways have been verified in yeast, flies, worms, and mice, the comparisons largely

involve treatment and control groups of the same species, and the extent to which they explain the

longevity variations across different species is unclear. For example, do the long-lived species have

metabolic profiles resembling calorie restriction? Do they suppress IGF-1 or growth hormone signal-

ing compared with the shorter-lived species? More generally, how do the evolutionary strategies of

longevity relate to the experimental strategies that extend lifespan in model organisms?

To address these questions, a popular approach has been to compare exceptionally long-lived

species with closely related species of common lifespan and identify the features associated with

exceptional longevity. Examples include the amino acid changes in Uncoupling Protein 1 (UCP1) and

production of high-molecular-mass hyaluronan in the naked mole rat (Kim et al., 2011; Tian et al.,

2013); unique sequence changes in IGF1 and GH receptors in Brandt’s bat (Seim et al., 2013); gene

gain and loss associated with DNA repair, cell-cycle regulation, and cancer, as well as alteration in

insulin signaling in the bowhead whale (Keane et al., 2015; Seim et al., 2014); and duplication of

the p53 gene in elephants (Abegglen et al., 2015). Again, it is important to ascertain whether these

mechanisms are unique characteristics of specific exceptionally long-lived species, or whether they

can also help account for the general lifespan variation (Martin, 1988; Partridge and Gems, 2002).

An extension of this approach has been cross-species analyses in a larger scale. For example, sev-

eral biochemical studies across multiple mammalian and bird species identified some features corre-

lating with species lifespan. Longevity of fibroblasts and erythrocytes in vitro (Röhme, 1981), poly

(ADP-ribose) polymerase activity (Grube and Bürkle, 1992), and rate of DNA repair

(Cortopassi and Wang, 1996) were found to be positively correlated with longevity, whereas mito-

chondrial membrane and liver fatty acid peroxidizability index (Pamplona et al., 1998, 2000), rate

of telomere shortening (Haussmann et al., 2003), and oxidative damage to DNA and mitochondrial

DNA (Adelman et al., 1988; Barja and Herrero, 2000) showed negative correlation. The advent of

high-throughput RNA sequencing (RNAseq) and mass spectrometry technologies has enabled the

quantification of whole transcriptomes (Fushan et al., 2015), metabolomes (Ma et al., 2015b), and

ionomes (Ma et al., 2015a), across multiple species and organs. These studies revealed the complex

transcriptomic and metabolic landscape across different organs and species, as well as some over-

laps with the changes observed in the long-lived mutants created in laboratory (Ma et al., 2015b).

While molecular profiling of mammals at the level of tissues may better represent the underlying

biology, profiling in cell culture represents more defined experimental conditions and allows further

manipulation to alter the identified molecular phenotypes. In this study, we examined the transcrip-

tomes and metabolomes of primary skin fibroblasts across 16 species of mammals, to identify the

molecular patterns associated with species longevity. We report that the genes involved in DNA

repair and glucose metabolism were up-regulated in the longer lived species, whereas proteolysis

and protein translocation activities were suppressed. The longer lived species also had lower levels

of lysophosphatidylcholine and lysophosphatidylethanolamine and higher levels of amino acids; and

the latter finding was validated in an independent dataset of bird and primate fibroblasts. Thus,

molecular insights into longevity may indeed come from defined cell culture systems in mammals.

Results

Gene expression by RNA sequencing
To identify the molecular signatures associating with the differences in longevity, we obtained pri-

mary, sun-protected abdominal skin fibroblasts from 13 species of rodents, two species of bats and

one species of shrew, representing a wide range of maximum lifespan (ML; from 2.2 years in shrew

to 34.0 years in little brown bat) and adult weight (AW; from 10 g in little brown bat to 20 kg in bea-

ver) (Figure 1, Figure 1—source data 1A). Female time to maturity (FTM) and the body mass

adjusted residuals (i.e. MLres and FTMres) were included as additional longevity trait (Figure 1,
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Materials and methods). We profiled gene expression by RNAseq on 28 samples representing 15

species (except gerbil) (Figure 1—source data 1B). Only five of these species had publicly available

genomes; this posed a challenge as reliable reference sequences were crucial for accurate RNAseq

read alignment and read counting. The gene orthology information was also limited or unavailable

for the less common species. To address these issues, we developed a pipeline to obtain species-

specific ortholog sets (Figure 2A, Materials and methods). We defined a set of mouse reference

sequences based on Ensembl and then performed de novo transcriptome assembly for each species.

BLAST was used to find reciprocal best hits between the assembled transcriptome (and published

genome, if available) and the mouse reference (Altschul et al., 1997; Camacho et al., 2009;

Tatusov et al., 1997). The reciprocal best hits were then trimmed down to open reading frame and

Figure 1. Phylogenetic relationship among species used in the study. The tree was constructed using Neighbor-Joining method based on nucleotide

sequences. Shrew was used as the out-group. Gerbil was collected for metabolite data only and mouse was included as reference. The species are

colored by taxonomic order. Adult Weight (AW), Maximum Lifespan (ML), Female Time to Maturity (FTM), Maximum Lifespan Residual (MLres), and

Female Time to Maturity Residual (FTMres) of these species are displayed in log10 scale.

DOI: 10.7554/eLife.19130.002

The following source data is available for figure 1:

Source data 1. Species and samples used in the current study.

DOI: 10.7554/eLife.19130.003
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Figure 2. Cross-species analysis of gene expression in cultured skin fibroblasts. (A) Pipeline to obtain the species-specific ortholog sets and expression

values. See Materials and methods or a more detailed description of the methodology. (B) Sequence identity of ortholog sets compared to mouse.

Nucleotide and amino acid sequence identity of the ortholog sets in each species was compared to mouse reference (mouse was set as 100%). The

ortholog sequences were based on de novo assembled transcriptomes, as well as NCBI genomes (if available; indicated by ‘#’). The box plot shows the

Figure 2 continued on next page
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the quality of the ortholog sets was assessed by multiple sequence alignment (Materials and

methods).

The median nucleotide sequence identity for our ortholog sets with respect to mouse ranged

from 83.2% (shrew) to 95.0% (African grass rat), and protein sequence identity from 88.0% (little

brown bat) to 96.8% (African grass rat) (Figure 2B), consistent with the evolutionary distance of the

species to mouse. The read alignment rates were also largely consistent across samples (Figure 2C).

For a number of sequences with poor coverage, the consensus sequences of closely related species

were used instead, but this did not significantly affect the results (Figure 2—figure supplement 1).

After data filtering and normalization (Materials and methods), the expression of 9389 gene ortho-

logs was reliably detected across the 28 samples (Supplementary file 1). For those species with

publicly available genomes, ~10,000–11,000 genes could be reliably detected and the read counts

also showed strong agreement (Pearson correlation coefficient 0.95–0.98 for log10 counts; Fig-

ure 1—source data 1C).

Gene expression patterns in fibroblasts follow phylogeny
To assess the gene expression patterns across the species, we performed Principal Component

Analysis and projected the data on the first three Principal Components (Figure 3A). The samples

segregated predominantly by their taxonomic relationship. For example, the species belonging to

the sub-orders Sciuromorpha (chipmunk, red squirrel, and fox squirrel), Hystricomorpha (guinea pig,

porcupine, and chinchilla), and Myomorpha (African grass rat, meadow vole, cotton rate, white-

footed mouse, and deer mouse) separated clearly from one another (Figure 3A). The topology of

the expression phylogram was also similar to the tree based on nucleotide sequences (Figure 3B),

suggesting the expression patterns are influenced by phylogeny. In addition, the biological and tech-

nical replicates of the respective species clustered together, confirming that the within-species varia-

tion was generally smaller than the cross-species variation (Ma et al., 2015b).

Expression of many genes correlates with longevity traits
To identify the genes with significant correlation to longevity, we performed regression by general-

ized least squares between the gene expression values and AW, as well as the four longevity traits

(ML, FTM, MLres, and FTMres). The phylogenetic relationship of the species was incorporated in the

variance-covariance matrix, and four different trait evolutionary models were tested to select the

best models based on maximum likelihood (Materials and methods) (Lavin et al., 2008; Ma et al.,

2015b). A two-step verification procedure was applied to assess robustness of the results (Ma et al.,

2015b). Briefly, the potential outlier point was first identified and excluded to improve the regres-

sion fit (the regression slope p value was reported as ‘p value.robust’). Regression was then repeated

by excluding each species, one at a time, to report the maximal (i.e. least significant) p value (‘p

value.max’), to ensure the overall relationship did not depend on any single species.

We qualified as top hits those genes meeting both criteria of p value.robust < 0.01 (~11% FDR)

and p value.max < 0.05. The numbers of top hits were 675 for AW, 812 for ML, 830 for FTM, 508 for

MLres, and 793 for FTMres, with roughly equal proportions in positive and negative correlations

(Table 1—source data 1A–F) and some overlap among the four longevity traits (Figure 3C). For

most of the top hits, the directions of correlation were consistent across the four longevity traits

(even for those that failed to reach statistical significance), suggesting there was a core set of longev-

ity-associated genes and the minor inaccuracy in the reported lifespan data was unlikely to affect the

overall results. On the other hand, the overlap with the hits identified by AW was much smaller

Figure 2 continued

distribution across the 9389 gene orthologs, with the central bars indicating median values. (C) Read alignment rates for mapping to complete

genomes and ortholog sets. Percent of total reads that could be uniquely aligned to the complete genomes (if available, indicated by ‘#’; shaded bars)

or to the ortholog sets are shown. Error bars refer to standard error of mean. Number of samples (biological and technical replicates) per species is

indicated in parenthesis.

DOI: 10.7554/eLife.19130.004

The following figure supplement is available for figure 2:

Figure supplement 1. Quality assessment of orthologs.

DOI: 10.7554/eLife.19130.005
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Figure 3. Gene expression variation and correlation with longevity. (A) Projection of the first three Principal Components (PCs) in Principal Component

Analysis. Values in parenthesis indicate percentage of variance explained by each of the PCs. Points are colored by taxonomic order (same color

scheme as in Figure 1) (B) Gene expression phylogram. Color of the nodes indicates the result of 1000 times bootstrap. (C) Overlap of genes

associating with Adult Weight and indicated longevity traits. AW: Adult Weight; ML: Maximum Lifespan; FTM: Female Time to Maturity; MLres:

Figure 3 continued on next page
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(Figure 3C), indicating the observed correlations were not driven mainly by body mass differences.

For the 827 top hits supported by two or more longevity traits, we performed pathway enrichment

analysis using DAVID (Table 1, Table 1—source data 1G–H) (Huang da et al., 2009a,

2009b) based on mouse pathways.

Genes showing positive correlation with lifespan
The top pathways for the genes with positive correlation included ‘nucleotide binding’ (15% of the

genes with positive correlation to longevity), ‘DNA repair’ (4%), ‘glucose metabolic process’ (4%),

and ‘chromosome organization’ (4%) (Table 1, Figure 3D). The ‘DNA repair’ genes included those in

DNA mismatch repair (Msh6, Pms2), nonhomologous end joining and possibly other repair pathways

(Pnkp), nucleotide excision repair and DNA double-strand break repair (Ercc1), Fanconi anemia-asso-

ciated DNA damage response network (C17orf70, Fancg), and protection of telomeres (Rif1, Terf1,

Tinf2). The products of checkpoint kinase Chek1 and anaphase promoting complex substrate Pttg1

were regulators of cell cycle.

Among the other genes, Hif1a encodes the alpha subunit of hypoxia-inducible factor 1 (HIF-1), a

key transcription factor in mediating the metabolic responses to hypoxia, whereas Prdx3 encodes

mitochondrial peroxiredoxin that regulates redox homeostasis. In particular, Pnkp (Figure 4A),

Prdx3, and Rif1 reached statistical significance in all four longevity traits (Table 1—source data 1F).

Consistent with the findings, over-expression of hif-1 in C. elegans was shown to promote longevity

(Zhang et al., 2009), whereas deletion of rif1 and msh6 in yeast (Austriaco and Guarente, 1997;

Laschober et al., 2010), knockout of prdx3 in C. elegans (Ha et al., 2006), and disruption of Ercc1

in mouse (Weeda et al., 1997) were all detrimental and led to decreased lifespan. Several previous

studies also suggested that long-lived species generally have enhanced DNA repair capacity

(Cortopassi and Wang, 1996), higher poly (ADP-ribose) polymerase activity (Grube and Bürkle,

1992), up-regulation of genes in base-excision repair and superoxide metabolic process

(Fushan et al., 2015), as well as reduced free-radical production (Perez-Campo et al., 1998),

reduced oxidant generation (Sohal et al., 1995), and less oxidative damage to nuclear DNA

(Adelman et al., 1988) and mitochondrial DNA (Barja and Herrero, 2000), although the degree of

contribution toward the observed differences in lifespan varied and might be affected by several

confounding effects (Debrabant et al., 2014; Montgomery et al., 2012; Promislow, 1994).

‘Glucose metabolic process’ included the gene products of hexokinase (Hk1), glucose phosphate

isomerase (Gpi1), triose phosphate isomerase (Tpi1), phosphofructose kinase (Pfkp), and pyruvate

dehydrogenase kinase (Pdk1), which are involved in glycolysis/gluconeogenesis. The glucan branch-

ing enzyme (encoded by Gbe1) and several phosphorylase kinases (encoded by Phka2, Phkb, Phkg2)

regulate the metabolism of glycogen. In addition, the genes coding for NAD synthetase (Nadsyn1),

which is involved in converting nicotinate adenine dinucleotide (NaAD) to nicotinamide adenine

dinucleotide (NAD), also showed positive correlation with all four longevity traits (Figure 4B). Previ-

ously, it was observed that NAD+ levels declined with age and affected SIRT1 functions, whereas

supplementation with NAD+ precursors reversed the aging phenotypes in mouse muscle

(Gomes et al., 2013), and overexpression of SIRT1 in mouse brain could protect against aging-

dependent circadian changes (Chang and Guarente, 2013). Calorie restriction also increases the

NAD+/NADH ratio in yeast (Lin et al., 2004). As our study did not directly quantify the NAD+/

NADH ratio, it remains to be seen if the high Nadsyn1 expression in the fibroblasts of the long-lived

species affects these metabolites.

Figure 3 continued

Maximum Lifespan Residual; FTMres: Female Time to Maturity Residual. (D) Heat map showing expression patterns of the top enrichment pathways.

Species are arranged in the order of increasing longevity (the four longevity traits are scaled between 0 and 1).

DOI: 10.7554/eLife.19130.006

The following figure supplement is available for figure 3:

Figure supplement 1. Interaction network among the top hits in (A) positive and (B) negative correlation with longevity.

DOI: 10.7554/eLife.19130.007
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http://dx.doi.org/10.7554/eLife.19130.008Table%201.Pathway%20enrichment%20analysis%20of%20genes%20with%20significant%20correlation%20with%20the%20longevity%20traits.The%20genes%20were%20supported%20by%20at%20least%20two%20longevity%20traits%20(p%20value.robust&x00A0;%3C&x00A0;0.01%20and%20p%20value.max&x00A0;%3C&x00A0;0.05).%20Pathway%20enrichment%20was%20performed%20using%20DAVID.%20The%20percentages%20of%20positive%20or%20negative%20correlating%20genes%20belonging%20to%20each%20pathway%20were%20indicated%20in%20parentheses.%20Only%20selected%20pathways%20are%20shown%20here.%20GO%20(BP):%20Gene%20Ontology%20(Biological%20Process).%20GO%20(BP):%20Gene%20Ontology%20(Molecular%20Functions).%20SP/PIR:%20SwissProt%20and%20Protein%20Information%20Resource.%20See%20Table%201&x2014;source%20data%201%20for%20more%20details.%2010.7554/eLife.19130.00810.7554/eLife.19130.009Table%201&x2014;source%20data%201.Phylogenetic%20regression%20of%20gene%20expression%20against%20longevity%20traits.Regression%20against%20(A)%20Adult%20Weight;%20(B)%20Maximum%20Lifespan;%20(C)%20Female%20Time%20to%20Maturity;%20(D)%20Maximum%20Lifespan%20Residual;%20and%20(E)%20Female%20Time%20to%20Maturity%20Residual.%20&x2018;coef.all&x2019;,%20&x2018;p%20value.all&x2019;,%20and%20&x2018;q%20value.all&x2019;%20refer%20to%20the%20regression%20slope,%20p%20value,%20and%20FDR-adjusted%20q%20value%20using%20all%20the%20species.%20&x2018;p%20value.robust&x2019;%20and%20&x2018;q%20value.robust&x2019;%20refer%20to%20the%20statistics%20after%20removing%20the%20potential%20outlier%20point.%20&x2018;p%20value.max&x2019;%20and%20&x2018;q%20value.max&x2019;%20refer%20to%20the%20maximal%20(least%20significant)%20regression%20p%20value%20and%20q%20value%20when%20each%20one%20of%20the%20species%20was%20left%20out,%20one%20at%20a%20time.%20Only%20genes%20with%20p%20value.robust%3C0.01%20and%20p%20value.max%3C0.05%20are%20shown.%20(F)%20Top%20hits%20identified%20by%20two%20or%20more%20longevity%20traits.%20The%20p%20value.robust%20against%20each%20of%20the%20four%20longevity%20traits%20(ML,%20FTM,%20MLres,%20and%20FTMres)%20as%20well%20as%20adult%20weight%20(AW)%20are%20shown.%20These%20genes%20were%20the%20input%20for%20pathway%20enrichment%20analysis.%20Pathway%20enrichment%20analysis%20of%20genes%20showing%20(G)%20positive%20and%20(H)%20negative%20correlation%20with%20longevity%20traits.%20Enrichment%20was%20performed%20using%20DAVID%20with%20default%20settings.%20Only%20the%20top%2010%20clusters%20are%20shown.%20(I)%20System%20level%20analyses%20of%20gene%20functions.%20The%20numbers%20of%20shared%20genes%20between%20longevity%20associated%20genes%20(either%20positively%20or%20negatively%20or%20both)%20and%20human%20aging%20genes,%20essential%20genes,%20transcription%20factor%20genes,%20and%20housekeeping%20genes%20are%20shown.%20The%20enrichment%20p%20value%20was%20calculated%20by%20Fisher&x2019;s%20exact%20test%20with%20two%20different%20background%20gene%20sets.%2010.7554/eLife.19130.009Annotation%20clusterEnriched%20terms%20and%20genesNo.%20of%20genesp%20ValuePositive%20CorrelationCluster%20No.%201(15%)GO%20(MF):&x00A0;adenyl%20nucleotide%20binding505.25&x00A0;&x00D7;&x00A0;10&x2212;3GO%20(MF):&x00A0;nucleotide%20binding641.21&x00A0;&x00D7;&x00A0;10&x2212;2Acly,%20Atad2,%20Atp2b4,%20Cdk2,%20Cdk20,%20Chd7,%20Chek1,%20Chkb,%20Cpsf7,%20D2hgdh,%20Dgkq,%20Dhx58,%20Dock6,%20Ero1lb,%20Etnk1,%20Fastkd5,%20Fn3krp,%20Gnai1,%20Guk1,%20Hk1,%20Hmgcr,%20Hnrnpd,%20Hyou1,%20Insr,%20Madd,%20Map4k5,%20Mastl,%20Mlkl,%20Mov10,%20Msh6,%20Mx2,%20Nadsyn1,%20Oplah,%20Pdk1,%20Pfkp,%20Phka2,%20Phkg2,%20Pkmyt1,%20Pms2,%20Pnkp,%20Ppp2r4,%20Prkar1b,%20Qrsl1,%20Rbm10,%20Rbm15b,%20Rbm38,%20Rhot2,%20Rnasel,%20Rps6ka2,%20Sacs,%20Sirt3,%20Slirp,%20Smarca1,%20Smarca5,%20Srsf9,%20Stk19,%20Stk36,%20Tbrg4,%20Tesk2,%20Thnsl1,%20Tia1,%20Top3a,%20Trpm4,%20Ttf2,%20Tyk2,%20Vps4a,%20Ythdc2Positive%20CorrelationCluster%20No.%202(4%)SP/PIR:&x00A0;DNA%20damage141.16&x00A0;&x00D7;&x00A0;10&x2212;3SP/PIR:&x00A0;DNA%20repair124.25&x00A0;&x00D7;&x00A0;10&x2212;3GO%20(BP):&x00A0;cellular%20response%20to%20stress161.01&x00A0;&x00D7;&x00A0;10&x2212;1Bnip3,%20C17orf70,%20Chek1,%20Dtx3l,%20Ercc1,%20Errfi1,%20Fancg,%20Hif1a,%20Mapkbp1,%20Msh6,%20Myd88,%20Pms2,%20Pnkp,%20Prdx3,%20Prpf19,%20Pttg1,%20Rad51b,%20Rif1,%20Rnaseh1,%20Slx4,%20Tdp2,%20Terf1,%20Tinf2,%20Top3a,%20Wrap53Positive%20CorrelationCluster%20No.%204/5(4%)GO%20(BP):&x00A0;glucose%20metabolic%20process111.22&x00A0;&x00D7;&x00A0;10&x2212;3GO%20(BP):&x00A0;hexose%20metabolic%20process115.68&x00A0;&x00D7;&x00A0;10&x2212;3GO%20(BP):&x00A0;generation%20of%20precursor%20metabolites%20and%20energy154.59&x00A0;&x00D7;&x00A0;10&x2212;3Aldh5a1,%20Atp2b4,%20Atp6v0d1,%20Atp6v0e2,%20Ero1lb,%20Fads1,%20Gbe1,%20Gpi1,%20Hexa,%20Hk1,%20Insr,%20Ndst1,%20Ndufa8,%20Pdk1,%20Pfkp,%20Pgp,%20Phka2,%20Phkb,%20Phkg2,%20Prkar1b,%20Sdhaf3,%20Tmx4,%20Tpi1,%20Trpm4,%20Tsc2Positive%20CorrelationCluster%20No.%206(4%)SP/PIR:&x00A0;chromatin%20regulator111.61&x00A0;&x00D7;&x00A0;10&x2212;2GO%20(BP):&x00A0;chromosome%20organization172.22&x00A0;&x00D7;&x00A0;10&x2212;2Bnip3,%20Cenph,%20Chd7,%20Dtx3l,%20Ercc1,%20H2afv,%20Hdac2,%20Jade1,%20Kdm5d,%20Kmt2c,%20Pttg1,%20Rcor1,%20Rrp8,%20Smarca1,%20Smarca5,%20Smyd3,%20Terf1,%20Tinf2,%20Wdr5,%20Wrap53Negative%20CorrelationCluster%20No.%201(9%)GO%20(BP):&x00A0;modification-dependent%20protein%20catabolic%20process272.39&x00A0;&x00D7;&x00A0;10&x2212;4SP/PIR:&x00A0;ubiquitin%20conjugation%20pathway263.35&x00A0;&x00D7;&x00A0;10&x2212;4GO%20(BP):&x00A0;proteolysis361.09&x00A0;&x00D7;&x00A0;10&x2212;2Adamts2,%20Agtpbp1,%20Anapc4,%20Atg10,%20Atg4a,%20Atg7,%20Btbd1,%20Ctsl,%20Ctsz,%20Dcaf10,%20Dda1,%20Dpp8,%20Fbxl17,%20Fbxl20,%20Fbxo18,%20Fbxw2,%20Kcmf1,%20Map1lc3b,%20Med8,%20Mmp2,%20Mycbp2,%20Oma1,%20Pcsk5,%20Pgpep1,%20Pmepa1,%20Ppp2r5c,%20Rad18,%20Rfwd2,%20Rnf14,%20Rnf2,%20Rnf6,%20Sumo3,%20Tpp2,%20Ube2b,%20Ube2v1,%20Ufm1,%20VhlNegative%20CorrelationCluster%20No.%202(9%)GO%20(BP):&x00A0;protein%20localization384.67&x00A0;&x00D7;&x00A0;10&x2212;5GO%20(BP):&x00A0;protein%20transport347.99&x00A0;&x00D7;&x00A0;10&x2212;5Agap1,%20Akap7,%20Ap3d1,%20Atg10,%20Atg4a,%20Atg7,%20Bax,%20Cav1,%20Clpx,%20Cnih1,%20Col4a3bp,%20Cry2,%20Dirc2,%20Ergic2,%20Fdx1l,%20Fkbp15,%20Gabarapl2,%20Gdi2,%20Gm10273,%20Golt1b,%20Hspa9,%20Ift46,%20Ipo4,%20Kif1bp,%20Kpna4,%20Laptm4a,%20Lrp4,%20mt-Nd4,%20Mtch1,%20Ndel1,%20Ndufb11,%20Necap1,%20Ppp3ca,%20Rab18,%20Rab2a,%20Rab6a,%20Rhot1,%20Sar1a,%20Sec22a,%20Sec31a,%20Sec62,%20Slc25a12,%20Slc29a1,%20Slc33a1,%20Slc35a4,%20Snx12,%20Snx13,%20Stx17,%20Timm8a1,%20Tomm6,%20Trappc6b,%20Trp53,%20Tsg101,%20Vps36,%20Vps53,%20YwhagNegative%20CorrelationCluster%20No.%203(18%)GO%20(BP):&x00A0;regulation%20of%20transcription741.62&x00A0;&x00D7;&x00A0;10&x2212;5SP/PIR:&x00A0;transcription%20regulation551.04&x00A0;&x00D7;&x00A0;10&x2212;3Actl6a,%20Agtpbp1,%20Ak6,%20Anp32a,%20Anp32e,%20Atf6b,%20Bckdha,%20Bmi1,%20Ccdc59,%20Cd3eap,%20Cdc5l,%20Cggbp1,%20Clk2,%20Cnbp,%20Cops7a,%20Crtc3,%20Cry2,%20Csrp2,%20Ebna1bp2,%20Ehmt2,%20Elk4,%20Ergic2,%20Fbxo18,%20Fip1l1,%20Fosb,%20Foxo3,%20Gatad2b,%20Gid8,%20Gmcl1,%20Gtf2h1,%20Gtf2h2,%20Gtf2h5,%20Harbi1,%20Hlx,%20Hmga1-rs1,%20Hnrnpab,%20Hnrnpf,%20Ift57,%20Ing2,%20Ints4,%20Ipo4,%20Jund,%20Klf11,%20Klf2,%20Klf4,%20Klf9,%20Kpna4,%20Mafb,%20Mapk1,%20Mdm4,%20Med16,%20Med17,%20Med31,%20Med8,%20Mef2a,%20Mettl8,%20Mmp2,%20Mnt,%20Morf4l2,%20Mta1,%20Mtdh,%20Mxd1,%20Mycbp2,%20Nabp2,%20Ncor2,%20Neo1,%20Nfe2l2,%20Nr1d2,%20Papd4,%20Parp2,%20Phf12,%20Phlpp1,%20Pkig,%20Pomp,%20Pop5,%20Ppp1r8,%20Ppp2r5c,%20Ppp3ca,%20Ptbp1,%20R3hdm4,%20Rab18,%20Rad18,%20Rbbp4,%20Rfwd2,%20Rnf14,%20Rnf2,%20Rnf6,%20Rps6ka4,%20Rrs1,%20Sap30l,%20Sav1,%20Scoc,%20Sfmbt1,%20Sin3b,%20Snrk,%20Sqstm1,%20Srpk2,%20Ssbp1,%20Tep1,%20Tgfbr3,%20Trim35,%20Trip6,%20Trp53,%20Tsg101,%20Ube2b,%20Ube2v1,%20Ubtf,%20Ufm1,%20Vhl,%20Vps36,%20Wiz,%20Xrcc5,%20Yeats4,%20Zbtb14,%20Zfp414,%20Zfp637,%20Zfp655,%20Zfp710,%20Zfp821
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Figure 4. Selected genes and stress resistance conditions with significant correlation to longevity. (A) Pnkp and (B) Nadsyn1 show positive correlation

with the longevity traits. (C) Trp53, (D) Bax, (E) Mapk1, and (F) Jund show negative correlation with the longevity traits. In each plot, the gene

expression values (vertical axis) and the longevity traits (horizontal axis; FTM: Female Time to Maturity; FTMres: Female Time to Maturity Residual) are

centered at 0 on log10 scale and then transformed by the best-fit variance-covariance matrix under phylogenetic regression (i.e. to remove the

phylogenetic relationship). The potential outlier point has been removed and the remaining points are shown on the plot and colored by taxonomic

group (same color scheme as in Figure 1). The regression slope p value (i.e. p value.robust) and R2 value are indicated. Error bars indicate standard

error of mean. Resistance to (G) cadmium and (H) paraquat treatments. In each plot, the lethal dose (LD50) values (vertical axis) and the longevity traits

Figure 4 continued on next page
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Genes showing negative correlation with lifespan
With regard to the top hits showing negative correlation, the major enriched pathways included

‘proteolysis’ (9% of the genes with negative correlation to longevity), ‘protein transport/localization’

(9%), and ‘regulation of transcription’ (18%) (Table 1, Figure 3D). For ‘proteolysis’, we observed rel-

atively low expression of the genes coding for E2 ubiquitin-conjugating enzyme (Ube2b, Ube2v1),

E3 ubiquitin-protein ligase (Rad18, Mycbp2), ubiquitin-like modifier (Sumo3, Ufm1), as well as several

proteins containing RING finger domain (Rnf2, Rnf6, Rnf14, Rfwd2) or F-box domain (Fbxl17, Fbxl20,

Fbxo18, Fbxw2), both of which are known to be involved in the ubiquitination pathway. Also, low

expression was observed for the genes encoding autophagy related proteins (Atg4a, Atg7, Atg10)

and lysosomal cysteine proteinases (Ctsl, Ctsz). The genes implicated in ‘protein transport/localiza-

tion’ included several vesicle trafficking proteins (Sec22a, Sec31a, Sec62, Golt1b), mitochondrial

membrane translocases (Timm8a1, Tomm6), and nuclear transport receptors (Ipo4, Kpna4). As for

‘regulation of transcription’, we observed down-regulation of the genes coding for mediator com-

plex subunits (Med8, Med16, Med17, Med31), zinc finger proteins (Zfp414, Zfp655, Zfp637, Zfp710,

Zfp821), Kruppel-like factors (Klf2, Klf4, Klf9, Klf11), and members of the MYC/MAX/MAD network

of transcription factors (Mxd1, Mnt).

Interestingly, the pathways related to ‘response to DNA damage’ and ‘cellular response to stress’

were also enriched (5% of the genes with negative correlation to longevity). A closer examination

revealed that the enrichment signal was due to a number of genes involved in apoptosis regulation,

including the tumor suppressor TP53 (encoded by Trp53), BCL-2 associated X protein BAX (encoded

by Bax), transcription factor FOXO3 (encoded by Foxo3), as well as mitogen-activated protein (MAP)

kinase (encoded by Mapk1) (Figure 4C–E); they were therefore distinct from those genes directly

involved in DNA repair (and found above to have positive correlation with longevity). Several other

growth signaling factors, such as transforming growth factor beta (TGF-b) receptor (encoded by

Tgfbr3) and transcription factor JunD (encoded by Jund), were also relatively low in longer lived spe-

cies (Figure 4F). In particular, the transcription factor FOXO3 can be activated by oxidative stress

(Essers et al., 2004), and the genetic variation within the FOXO3A gene was found to be strongly

associated with human longevity (Willcox et al., 2008).

Genes enriched in network interaction and housekeeping functions
To understand the regulatory network among the top hits, we visualized the protein-protein interac-

tion using the STRING database (Jensen et al., 2009). The results revealed significant network inter-

action among the genes with positive correlation and those with negative correlation (p

value < 10�10 in both cases; Figure 3—figure supplement 1), suggesting that the longevity-correlat-

ing genes were indeed functionally related. Next, we analyzed the system level functions of the top

hits to determine if they belonged to the known categories of ‘Aging genes’, ’Essential genes’,

’Housekeeping genes’ or ‘Transcription Factor genes’ (Table 1—source data 1I). Interestingly, close

to 40% of the top hits belonged to the ‘Housekeeping genes’ (Fisher exact test p

value = 3.646�10�26), whereas the other categories were much less significant (Table 1—source

data 1I). Therefore, the longevity variation across these species was accompanied by the coordi-

nated modulation of a large number of genes with housekeeping functions in a systemic manner.

Fibroblast resistance to lethal stresses and toxicity
The longevity-associated expression patterns identified above suggested that the longer lived spe-

cies might be more efficient at handling and repairing cellular damage. It was previously demon-

strated that skin-derived fibroblasts from long-lived rodent species were more tolerant of the stress

conditions induced by cadmium, hydrogen peroxide, heat, and DNA alkylating agent methyl metha-

nesulfonate (MMS), and were more resistant to the metabolic inhibition by rotenone treatment and

in low-glucose medium (Harper et al., 2007). To see if the same effects could be observed in our

Figure 4 continued

(horizontal axis; ML: Maximum Lifespan) are plotted on ordinary scale (without log transformation). The regression slope p values are 9.16 � 10�3 and

1.39 � 10�2, respectively.

DOI: 10.7554/eLife.19130.010
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study, we subjected the primary fibroblasts to six different stress conditions: treatments with cad-

mium, hydrogen peroxide, MMS, paraquat, and thapsigargin (inhibitor of sarco/endoplasmic reticu-

lum Ca2+ ATPase), as well as to low-glucose culture medium. As expected, the results showed

positive correlation between ML and the resistance to cadmium and paraquat (Figure 4G,H),

although the other conditions did not reach the statistical threshold of p value < 0.05.

Metabolites correlating with longevity traits
For 12 of the rodent species, we also performed metabolic analyses (Townsend et al., 2013) (Fig-

ure 1—source data 1D). After data filtering and normalization, 144 water-soluble metabolites and

82 lipids were reliably detected across the 22 biological samples (Supplementary file 2). Principal

Component Analysis (Figure 5A) and the phylogram based on metabolite levels (Figure 5B) both

indicated that the metabolic profiles of these species, like the gene expression, segregated accord-

ing to phylogeny, although the patterns were less clear-cut than those based on the RNAseq data-

set. This might be partly due to the much smaller number of metabolites detected compared to the

genes (226 metabolites vs. 9389 genes). Nevertheless, the biological and technical replicates clus-

tered together (Figure 5B), suggesting that the within-species variation was relatively small.

To identify the metabolites with significant correlation with the longevity traits, we also applied

the phylogenetic regression method described above. At the cut-off of p value.robust < 0.01 (~11%

FDR) and p value.max < 0.05, 13 metabolites showed significant correlation with AW, 26 metabolites

with ML, 20 metabolites with FTM, 16 metabolites with MLres and 19 metabolites with FTMres

(Figure 5C, Table 2—source data 1A–F). Twenty-three of these metabolites were supported by two

or more longevity traits. Pathway analysis revealed the enrichment of ‘common amino acids’ among

the top hits with positive correlation, and ‘glycerophospholipids’ among the top hits with negative

correlation (Table 2—source data 1G–H). In particular, several showed positive correlation with mul-

tiple longevity traits (Figure 5D, Table 2); so did a number of nucleotides/nucleosides including

ADP, GDP, and adenosine. In terms of negative correlation, a number of lysophosphatidylchonline

(LPC; e.g. C16:0 LPC, C18:0 LPC, C18:1 LPC) and lysophosphatidylethanolamine (LPE; e.g. C20:4

LPE, C22:6 LPE) showed significant relationship (Table 2—source data 1), which were consistent

with the previous report of low LPC and LPE in long-lived mammals (Ma et al., 2015b). LPC levels

were also previously reported to decrease with age but maintained in mice under caloric restriction

(De Guzman et al., 2013).

Validation of amino acid patterns in primate and bird fibroblasts
To further examine our observation of the positive correlation between amino acids and the longev-

ity traits, we independently obtained and quantified the amino acid levels in a larger collection of

primary fibroblasts from 15 primate species and 33 bird species. All 10 of the amino acids associated

with lifespan in rodent fibroblasts (arginine, glutamate, histidine, leucine, lysine, methionine, phenyl-

alanine, proline, tryptophan, tyrosine, and valine) were also found to have a significant positive asso-

ciation with lifespan in bird and primate fibroblasts (Table 2; Figure 5—figure supplement 1). The

associations were particularly strong for amino acids with hydrophobic side chains. When we

adjusted for the effects of body mass, the observed relationships weakened significantly (Table 2),

likely due to the strong correlation between AW and ML. Nevertheless, the same weakening was

also evident in the rodent fibroblasts (Table 2—source data 1), indicative of the consistency in the

trends. Overall, the positive correlation between fibroblast amino acid levels and species longevity

was a feature consistent across rodents, primates, and birds, indicating that some of the longevity

signatures identified here may be representative of and generalized to other species.

Discussion
All lines of mammals descended from the same common ancestor over the previous 230 million

years and have since undergone remarkable diversification in body size, metabolic rate, fertility, and

longevity, with corresponding changes in the gene expression and metabolite landscape

(Fushan et al., 2015; Ma et al., 2015b). As fibroblasts can be obtained without sacrificing animals

and can be cultured under standardized conditions, it is of great interest to determine if their gene

expression and metabolite patterns represent lifespan variation across mammals. Fibroblasts are

also amenable to experimental manipulation. On the other hand, cross-species gene expression
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Figure 5. Metabolite variation and correlation with longevity. (A) Projection of the first three Principal Components (PCs) in Principal Component

Analysis. Values in parenthesis indicate percent of variance explained by each of the PCs. Points are colored by taxonomic order (same color scheme as

in Figure 1) (B) Metabolite phylogram. Color of the nodes indicates the result of 1000 times bootstrap. (C) Overlap of metabolites associating with

Adult Weight and longevity traits. AW: Adult Weight; ML: Maximum Lifespan; FTM: Female Time to Maturity; MLres: Maximum Lifespan Residual;

FTMres: Female Time to Maturity Residual. (D) Amino acids showing positive correlation with Maximum Lifespan (ML). In each plot, the amino acid

levels (vertical axis) and the longevity traits (horizontal axis) are centered at 0 on log10 scale and then transformed by the best-fit variance-covariance

Figure 5 continued on next page
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analyses are often hampered by the lack of publicly available genomes and gene orthology informa-

tion, especially for those species not commonly studied. Using primary fibroblasts from 16 species of

rodents, bats, and shrew, we developed a pipeline for generating species-specific ortholog sets,

profiled gene expression by RNAseq and metabolites by mass spectrometry, and identified the

molecular features associated with longevity traits.

Our pipeline can be easily extended for a larger number of species. We defined gene orthology

based on reciprocal best hit in BLAST (Tatusov et al., 1997) and ignored the issues of gene duplica-

tion and gene loss. Sequence fragments and missing sequences were filled up using consensus data

Figure 5 continued

matrix under phylogenetic regression (i.e. to remove the phylogenetic relationship). The potential outlier point has been removed and the remaining

points are shown on the plot and colored by taxonomic group. The regression slope p value (i.e. p value.robust) and R2 value are indicated. Error bars

indicate standard error of mean.

DOI: 10.7554/eLife.19130.011

The following figure supplement is available for figure 5:

Figure supplement 1. Amino acid levels in primate and bird fibroblasts correlate positively with species maximum lifespan.

DOI: 10.7554/eLife.19130.012

Table 2. Amino acid levels showing consistent positive correlation with longevity traits.

For the mammalian fibroblast dataset, the number of longevity traits (out of Maximum Lifespan; Female Time to Maturity; Maximum

Lifespan Residual; and Female Time to Maturity Residual) with significant positive correlation with the amino acid levels at two different

cut-offs (p value.robust < 0.01 and p value.robust < 0.05) are shown. For the primate and bird fibroblast dataset, the regression was

performed using primate data only, bird data only, and the pooled data of both. The regression slope p value < 0.05 are in bold.

Amino acid

Mammalian fibroblasts Primate and bird fibroblasts

No. of longevity traits (out of four) with
significant correlation

Regression slope p value with species maxi-
mum lifespan

Regression slope p value with species maxi-
mum lifespan residual

p value.
robust < 0.01

p value.
robust < 0.05

Primates
only Birds only

Primates and
birds

Primates
only Birds only

Primates and
birds

arginine 3 4 3.4 � 10�2 8.6 � 10�2 3.1 � 10�2 3.8 � 10�1 1.1 � 10�2 2.1 � 10�2

glutamate 2 4 6.5 � 10�2 1.8 � 10�2 1.1 � 10�2 4.6 � 10�2 2.8 � 10�1 1.3 � 10�1

histidine 0 4 9.4 � 10�2 6.0 � 10�2 4.3 � 10�2 2.3 � 10�1 1.4 � 10�1 1.7 � 10�1

leucine 2 4 2.9 � 10�3 6.0 � 10�2 4.8 � 10�3 1.4 � 10�2 5.9 � 10�1 2.3 � 10�1

lysine 3 3 9.8 � 10�3 8.2 � 10�2 1.4 � 10�2 9.1 � 10�2 2.9 � 10�1 2.5 � 10�1

methionine 1 3 3.2 � 10�1 1.4 � 10�2 2.7 � 10�2 3.0 � 10�1 3.0 � 10�2 4.9 � 10�2

phenylalanine 1 4 9.8 � 10�3 1.2 � 10�3 2.1 � 10�4 8.2 � 10�2 1.3 � 10�1 1.2 � 10�1

proline 1 4 4.4 � 10�3 3.9 � 10�4 3.6 � 10�5 3.5 � 10�2 1.2 � 10�1 5.4 � 10�2

tryptophan 2 4 9.2 � 10�3 7.8 � 10�4 1.2 � 10�4 2.6 � 10�2 2.5 � 10�1 1.5 � 10�1

tyrosine 1 3 3.2 � 10�1 8.8 � 10�3 1.8 � 10�2 4.3 � 10�1 1.7 � 10�1 2.9 � 10�1

valine 0 3 1.2 � 10�2 5.4 � 10�3 1.0 � 10�3 2.0 � 10�1 2.8 � 10�1 3.2 � 10�1

DOI: 10.7554/eLife.19130.013

Source data 1. Phylogenetic regression of metabolite levels against longevity traits. Regression against (A) Adult Weight; (B) Maximum Lifespan; (C)

Female Time to Maturity; (D) Maximum Lifespan Residual; and (E) Female Time to Maturity Residual. ‘coef.all’, ‘p value.all’, and ‘q value.all’ refer to the

regression slope, p value, and FDR-adjusted q value using all the species. ‘p value.robust’ and ‘q value.robust’ refer to the statistics after removing the

potential outlier point. ‘p value.max’ and ‘q value.max’ refer to the maximal (least significant) regression p value and q value when each one of the spe-

cies was left out, one at a time. Only genes with p value.robust < 0.01 and p value.max < 0.05 are shown. (F) Top hits identified by two or more longev-

ity traits. The p value.robust against each of the four longevity traits (ML, FTM, MLres, and FTMres) as well as adult weight (AW) are shown. These

metabolites were the input for pathway enrichment analysis. Pathway enrichment analysis of metabolites showing (G) positive and (H) negative correla-

tion with longevity traits. Enrichment was performed based on hypergeometric statistics. (I) Top hits identified by two or more longevity traits, using

cut-off of p value.robust < 0.05. The p value.robust against each of the four longevity traits (ML, FTM, MLres, and FTMres) as well as adult weight (AW)

are shown.

DOI: 10.7554/eLife.19130.014
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from the other species. While these steps unavoidably introduced inaccuracy within our species-spe-

cific ortholog sequences, they did not affect the overall read alignment results (Figure 2B–C, Fig-

ure 2—figure supplement 1). Furthermore, we observed no significant differences in sequence

divergence between those ortholog sets showing correlation to longevity and those that did not

(Wilcoxon Rank Sum Test p value = 0.32; Figure 2—figure supplement 1D), so the degree of lon-

gevity correlation was not biased by the degree of sequence conservation.

The gene expression findings revealed a clear segregation based on phylogeny (Figure 3A–B),

suggesting that evolutionary relationships significantly influenced the expression patterns. On the

other hand, the metabolite patterns were less clear-cut (Figure 5A–B), which might be attributed to

the smaller number of species and metabolites. Using phylogenetic regression and a two-step verifi-

cation procedure, we identified a list of genes and metabolites with significant correlations to multi-

ple longevity traits. The pathways of ‘nucleotide binding’, ’DNA repair’, ’chromosome organization’,

and ‘glucose metabolic process’ were enriched among the genes with positive correlation with lon-

gevity, whereas ‘proteolysis’, ‘protein transportation/localization’ and ‘regulation of transcription’

were enriched for genes showing a negative correlation. Furthermore, a significant number of these

longevity-correlating genes are involved in ‘housekeeping’ functions, implying that lifespan variation

across species is often accompanied by coordinated shifts in the gene expression landscape and

modulation of fundamental biological processes.

The link between proteolysis/autophagy and aging has been proposed by a number of authors.

In general, proteolytic functions decline and oxidized proteins increase with age, and autophagy

genes are required for the lifespan extension effects of Insulin/IGF-1 signaling and dietary restriction

(Chondrogianni and Gonos, 2008; Hansen et al., 2008; Kenyon, 2010; Kevei and Hoppe, 2014;

Löw, 2011; Meléndez et al., 2003; Rubinsztein et al., 2011; Starke-Reed and Oliver, 1989;

Vernace et al., 2007). Activation of proteasome or autophagy has been shown to extend lifespan in

C. elegans (Chondrogianni et al., 2015; Ghazi et al., 2007), yeast (Kruegel et al., 2011), and flies

(Simonsen et al., 2008). Immunoproteasome and proteasome activity was also elevated in the livers

of long-lived Snell dwarf mice and in mice exposed to drugs known to extend lifespan

(Pickering et al., 2015). On the other hand, our results suggest that fibroblasts from the

longer lived animals actually have lower expression levels of genes involved in proteolysis, autoph-

agy, and apoptosis but higher expression of genes related to DNA repair and maintenance. In par-

ticular, the genes coding for the tumor suppressor TP53, apoptosis regulator BAX, and several

growth and proliferation signaling pathways were all down-regulated in the fibroblasts of the

longer lived species (Figure 4C–F). One possible interpretation may be that the longer lived species

generate less damage and/or have better repair mechanisms, so that the cells rely less on proteoly-

sis, autophagy and apoptosis. Previous studies reported enhanced DNA repair capacity and reduced

oxidative damage in longer lived species (Adelman et al., 1988; Cortopassi and Wang, 1996;

Grube and Bürkle, 1992; Perez-Campo et al., 1998; Sohal et al., 1995). Down-regulation of the

ubiquitin ligase complex was also reported in the liver of longer lived mammalian species

(Fushan et al., 2015). In agreement, our toxicology experiments confirmed that the fibroblasts of

longer lived species were more resistant to oxidative stress induced by cadmium and paraquat treat-

ments. In terms of metabolites, the pattern of low LPC and LPE among long-lived species was con-

sistent with previous reports, and the positive correlation between amino acids and longevity was

independently validated using fibroblasts from multiple species of primates and birds, suggesting

that these changes in cell biology are likely to have evolved, independently, in each of these sepa-

rate lineages in association with slower aging and longer lifespan.

On the other hand, several possible caveats in our data warrant additional attention. The levels of

gene expression could be influenced by confounding factors such as gene length and proximity to

other genes (Chiaromonte et al., 2003), and our definition of orthology might have missed out

those genes with less conserved sequences. Our analyses were limited to those genes expressed in

fibroblasts, and the effects of different spliced isoforms were not captured by our data. Furthermore,

although our RNA sequencing and metabolic measurements were performed on cells of second or

third passage, it was nevertheless possible that in vitro culture conditions might have introduced

changes in chromatin architecture (Zhu et al., 2013), or that differences in stress-related pathways

might reflect differential responses to the culture conditions. In addition, the use of ML as an aging

research metric can be problematic for the less well documented animals due to the small sample

size, high variance, and reliance on a single individual per species (Moorad et al., 2012). Although
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FTM is less prone to reporting bias and shows strong correlation with ML (Spearman correlation

coefficient 0.87), it may be influenced by seasonality factors. Other parameters with better statistical

properties, such as mean adult lifespan and 90th quantile of longevity (Moorad et al., 2012), should

be used in place of ML in the long run, although at the moment such records are available for only a

limited number of species.

Overall, our study supports the idea that gene expression, and to some degree metabolite levels,

in fibroblast cultures can uncover differences in cell biology and metabolism that correspond to lon-

ger life. Apparently, these expression patterns are preserved when the intraorganismal environment

is removed and cells instead are subjected to standardized cell culture conditions in the lab setting.

This makes fibroblasts a particularly attractive experimental system to examine and manipulate

molecular patterns, with gene expression (or metabolite patterns) as a readout. While our study rep-

resents an initial study, this approach can be extended to a larger group of species and samples,

refining the molecular signatures and then manipulating them via genetic and environmental manip-

ulations. Ultimately, this should reveal the genetic basis for differences in species longevity and lead

to new strategies for targeting them, thereby shifting cells, and ultimately organisms, to the state of

cells from related longer-lived species.

Materials and methods

Sample collection
Primary skin fibroblast samples were collected from shrew (Blarina brevicauda), big brown bat (Epte-

sicus fuscus), little brown bat (Myotis lucifugus), guinea pig (Cavia porcellus), porcupine (Erethizon

dorsatum), chinchilla (Chinchilla lanigera), chipmunk (Tamias striatus), fox squirrel (Sciurus niger), red

squirrel (Sciurus vulgaris), beaver (Castor canadensis), gerbil (Meriones unguiculatus), African grass

rat (Arvicanthis niloticus), meadow vole (Microtus pennsylvanicus), cotton rat (Sigmodon hispidus),

white-footed mouse (Peromyscus leucopus), and deer mouse (Peromyscus maniculatus brandii) (Fig-

ure 1—source data 1). The post-pubertal animals (gender and ages were not recorded) were caught

opportunistically in an area extending approximately 400 km north and 80 km south of Ann Arbor,

MI, USA (Harper et al., 2007). Abdominal skin areas were sterilized with 70% ethanol wipes and

biopsies of at least 5 mm by 5 mm in area were obtained and placed in complete media (CM) made

of Dulbecco’s modified Eagle medium (DMEM, high-glucose variant, Gibco-Invitrogen, Carlsbad,

CA) supplemented with 20% heat-inactivated fetal bovine serum, antibiotics (100 U mL�1 penicillin

and 100 mg mL�1 streptomycin; Sigma, St. Louis, MO) and 0.25 mg mL�1 of fungizone (Biowhittaker-

Cambrex Life Sciences, Walkersville, MD) on ice and shipped overnight to our laboratory

(Harper et al., 2007). Biological replicates (i.e. tissues from different individuals) and technical repli-

cates were collected on selected species (Figure 1—source data 1).

Cell culture
The conditions for establishment and maintenance of the cultures have been reported previously

(Harper et al., 2007; Murakami et al., 2003; Salmon et al., 2005). Briefly, trypsinized cells were

grown to 90% confluence, and we found no significant differences among species in the interval

between initial seeding and initial confluence (Harper et al., 2007). Cells were then harvested and

placed in a new culture flask, fed at days 3 and 7, and then subcultured to a fixed density of 7.5�105

cells for 75 cm2 flask. These cells were then harvested 7 days later and cryopreserved at 106 cells

per vial.

Production of cells for RNA sequencing and metabolite profiling always started by thawing a vial

of cryopreserved cells and allowing them to expand until the culture had produced sufficient cells (at

least 30 � 106 cells) for analysis. These cultures were kept under low-oxygen conditions (3% O2) after

thawing to minimize selection for resistance to O2 toxicity (Busuttil et al., 2003; Parrinello et al.,

2003). Cells were harvested using trypsin and pelleted by centrifuging for 5 min at 230 rcf. After

counting, the cells were divided into aliquots of 10 � 106 cells. Two washes with PBS (-Ca,-Mg) were

performed, any excess PBS was drained, and the pellets were frozen at �80˚C. Technical replicates
were made by growing a minimum of 60 � 106 cells and labeling half of the cells after counting as

separate samples.
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Life history data of the species
The Adult Weight (AW), Maximum Lifespan (ML) and Female Time to Maturity (FTM) data of the spe-

cies (or if not available, for a closely related species) were obtained from the Animal Ageing and

Longevity (AnAge, RRID:SCR_001470) Database (Tacutu et al., 2013). In addition, since both ML

and FTM increase with AW, we calculated the body mass adjusted residuals (i.e. MLres and FTMres),

to represent the ratio between the observed longevity and the expected longevity based on body

mass (Ma et al., 2015b; Tacutu et al., 2013). Two allometric equations were used to calculate the

residuals. The MLres equation, MLres = ML/(4.88�AW0.153), was based directly on the documenta-

tion of the AnAge database (http://genomics.senescence.info/help.html#anage). The FTMres equa-

tion, FTMres = FTM/(78.1�AW0.217), was based on linear regression using the FTM and body mass

records of 1330 mammalian species in the AnAge database.

RNA sequencing
RNAseq libraries were prepared as previously described (Fushan et al., 2015). Paired end sequenc-

ing was done on the Illumina HiSeq2000 platform generating approximately 30 to 75 million reads

per sample, with read length 50 or 100 nucleotides (Figure 1—source data 1). The raw data were

processed by Cutadapt (RRID:SCR_011841) (Martin, 2011) to remove low-quality reads.

Species-specific ortholog sets and expression values
Reference genomes were publicly available for five species (Eptesicus fuscus, Myotis lucifugus, Cavia

porcellus, Chinchilla lanigera, Peromyscus maniculatus brandii). To ensure consistency across the

entire dataset, we developed the following pipeline to identify species-specific ortholog sets, map

the reads and obtain expression values (Figure 2).

Step 1: generate mouse reference. Based on the Mus musculus Ensembl genome and annotation

(release 78) (RRID:SCR_006773), the longest transcript was extracted for each protein-coding gene

locus, after confirming the presence of start and stop codons and the proper reading frame. Those

transcripts containing highly repetitive or highly similar sequences were identified and removed

using BLAST (RRID:SCR_004870) (at e-value cut-off 10�6) (Camacho et al., 2009). This generated

the Mouse Reference, representing the coding sequences of 16,816 unique protein-coding genes

(Supplementary file 1).

Step 2: identify species-specific ortholog sets. For each species, the transcriptome was assembled

de novo from the RNAseq reads using Trinity (RRID:SCR_013048) (Grabherr et al., 2011). BLAST

(with ‘dc-megablast’ option) was performed between Mouse Reference and the assembled transcrip-

tome (and the published genome, if available) of each species to identify the reciprocal best hits

(Tatusov et al., 1997). The sequences were trimmed down to open reading frame (i.e. flanked by

start and stop codons) using Exonerate (Slater and Birney, 2005). Within each ortholog sets, multi-

ple sequence alignment was performed using MUSCLE (RRID:SCR_011812) (Edgar, 2004) and the

percentage of sequence identity was assessed by MView (Brown et al., 1998). For the sequence

fragments or missing sequences due to poor coverage, they were filled up using the consensus. We

confirmed the filling up procedure did not significantly affect the read counting results (Figure 2—

figure supplement 1). Seventy-four percent of the ortholog sets did not require filling up or were

filled up <10% of the sequence length, whereas 5% of the ortholog sets were filled up 90–100% of

the sequence length (Figure 2—figure supplement 1A). When the expression values were standard-

ized to mean = 0 and standard deviation = 1 within each ortholog set, there was no significant bias

against those ortholog sets with high percentage of filling up (Figure 2—figure supplement 1B).

Step 3: read mapping, counting, filtering and normalization. The RNAseq reads were mapped to

the species-specific ortholog sets using STAR (Dobin et al., 2013), with an average read alignment

rate of ~40% (Figure 1—source data 1). As comparison, read mapping to publically available

genomes achieved an average alignment rate of ~85% (Figure 1—source data 1). The lower align-

ment rate to the species-specific ortholog sets was likely due to the exclusion of 5’ and 3’ untrans-

lated regions, repetitive or highly similar sequences, and introns. Nevertheless, the alignment rates

were largely similar across the samples and species (Figure 2C). Read counting was performed by

featureCounts (RRID:SCR_012919) (Liao et al., 2014) and those ortholog sets with too high counts

(i.e. read counts contributing to >5% of the total counts; three orthologs were removed this way) or

too low counts (i.e. <10 counts in four or more samples) were discarded. The library sizes were then
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scaled by trimmed mean of M-values (TMM) method, log10-transformed, and quantile-normalized

(Robinson and Oshlack, 2010). The final expression set consisted of 9389 gene orthologs across 28

samples. Shapiro Test confirmed normalcy assumption was valid for 89% of the genes on log10

scale. The pairwise DNA distance within each ortholog set was calculated based on the Kimura 2-

parameters distance (Kimura, 1980).

Metabolite profiling and data processing
For rodent cells, the metabolite levels were quantified by mass spectrometry as previously described

(Townsend et al., 2013). From the raw metabolite measurements, we only kept metabolites

with <10% missing values. The raw values were normalized separately for the three collection modes

(water soluble positive ionization mode ‘HILIC-pos’, water soluble negative ionization mode ‘HILIC-

neg’, and lipid mode ‘C8-pos’), first by the internal standards, and then by the total signals within

each mode. The data were then log10-transformed and quantile normalized. The final expression set

consisted of 226 metabolites across 22 samples. Shapiro Test confirmed normalcy assumption was

valid for 90% of the metabolites on log10 scale.

Principal component analysis and phylograms
Principal component analysis was performed on the standardized expression values or metabolite

values and the first three Principal Components were extracted. The phylograms were constructed

using the neighbor joining method (Saitou and Nei, 1987), based on the distance matrix of 1 minus

Pearson correlation coefficient of the standardized expression values or metabolite values. The reli-

ability of the branching patterns was assessed by 1000 times bootstrap.

Phylogenetic regression and two-step verification procedure
To identify genes or metabolites with significant correlation to the longevity traits, regression was

performed using the generalized least square approach, by incorporating the phylogenetic relation-

ship in the variance-covariance matrix (Felsenstein, 1985; Ma et al., 2015b; Revell, 2012). As previ-

ously described (Ma et al., 2015b), four different trait evolution models (‘null’, ‘Brownian motion’,

’Pagel’s lambda’, and ’Ornstein-Uhlenbeck’) were tested and the best fit model was selected based

on maximum likelihood.

A two-step procedure was applied to verify the robustness of the results (Ma et al., 2015b). In

the first step, the species whose exclusion would lead to most improvement in the slope p value (i.e.

a potential outlier), was identified and removed. The regression p value of this step was reported as

‘p value.robust’. In the second step, each of the remaining species was removed, one at a time, and

the regression was repeated. The largest (i.e. least significant) p value of this step was reported as ‘p

value.max’. The False Discovery Rate adjusted values were ‘q value.robust’ and ‘q value.max’,

respectively. To qualify as a top hit, we required a gene to have p value.robust < 0.01 and p value.

max < 0.05. For pathway enrichment purposes, we further required that the genes were identified

as a top hit in two or more longevity traits (ML, FTM, MLres or FTMres).

Pathway enrichment analysis and interaction network
For the genes, pathway enrichment analysis was performed using DAVID (RRID:SCR_003033)

(Huang da et al., 2009a, 2009b). The 16,816 unique protein-coding genes in Mouse Reference

were set as the background and the pathways were based on Mus musculus. For those genes show-

ing positive and negative correlation with longevity (supported by two or more longevity traits), we

queried Gene Ontology (‘GO Term’; Biological Process and Molecular Functions only), SwissProt

and Protein Information Resource (‘SP PIR Keywords’), and Kyoto Encyclopedia of Genes and

Genomes (‘KEGG Pathway’). For comparison, pathway enrichment was also performed using only

the 9389 expressed orthologs as background. STRING (RRID:SCR_005223) version 10 (Jensen et al.,

2009) was used to visualize the interaction network among the top hits, based on the mouse genes.

The required score was set as 400 and the network output was generated using R package (RRID:

SCR_006442) ‘STRINGdb’. Selected nodes were highlighted based on the enriched pathways.

We also analyzed the association between longevity-associated genes (either positively or nega-

tively or both) and each of four functional groups of genes – aging genes, essential genes, transcrip-

tion factor genes, and housekeeping genes. These human gene sets were originally collected and
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analyzed in a previous study (Zhang et al., 2016). Human aging genes were obtained from GenAge

(RRID:SCR_010223) (build 17) (de Magalhães and Toussaint, 2004). They include both genes

related to fundamental human aging processes and those associated with human longevity based on

evidence from human and model organisms. Human essential genes are the human orthologs of

mouse essential genes, whose deletions result in prenatal, prenatal or postnatal lethality in mouse.

Human transcript factor genes were from Panther database (RRID:SCR_004869) (Mi et al., 2013).

Human housekeeping genes were from (Eisenberg and Levanon, 2013). Housekeeping genes are

considered to be involved in basic cell maintenance, and thus expected to maintain relatively con-

stant expression levels in different cells and conditions (Eisenberg and Levanon, 2013). For the

enrichment analysis, we used two different sets of background genes. One includes all the orthologs

tested (i.e. 16,816 genes), and the other only genes expressed in fibroblasts (i.e. 9389 genes). All

mouse genes were mapped to their human orthologs through Ensembl BioMart (RRID:SCR_002344)

(Smedley et al., 2015), and only genes with one to one mapping relationship were used. In this anal-

ysis, we used 14,749 and 8809 human orthologs as background genes. Enrichment statistics were

based on Fisher’s exact test.

For the metabolites, pathway information was obtained from ConsensusPathDB (RRID:SCR_

002231) (Kamburov et al., 2009) and Human Metabolome Database (HMDB) (RRID:SCR_007712)

(Wishart et al., 2013). For ConsensusPathDB, only pathways with known KEGG IDs were incorpo-

rated. Analysis was performed on pathways with at least 5 but less than 100 metabolites. Enrichment

statistics was based on a hypergeometric distribution (Tavazoie et al., 1999). Odd ratios and

expected counts were calculated as previously described (Gentleman et al., 2013).

Evaluation of amino acid levels in bird and primate fibroblast cell lines
An untargeted metabolomics screen was conducted using fibroblasts from 32 bird species and 13

species of non-human primates. The detailed methods were described in McDonnell et al. (2013).

Briefly, frozen cell cultures were homogenized in water, volumes were adjusted based on protein

concentration in the extract, and proteins were precipitated by ethanol containing recovery stand-

ards. Each extract was split into two aliquots (for LC-MS and GC-MS), dried down. LC-MS aliquot

was re-suspended in water containing injection standards and analyzed on an Agilent 1200 LC/6530

qTOF LC-MS system using a Waters Acquity HSS T3 C18 column. GC-MS aliquot was derivatized by

BSTFA and analyzed on Agilent 7890 A-5975C inert XL MSD GCMS instrument using HP-5MS 5%

phenyl-methyl siloxane column (30m x 250 mm x 0.25 mm). Data extraction and analysis was per-

formed using Agilent MassHunter Qualitative Analysis software and in-house metabolite libraries.

Although the original dataset contained information on 4383 metabolites, including 456 of known

chemical identity, the analysis for this paper was restricted to the ten amino acids for which p<0.05

for association with maximum lifespan in the analysis of mammalian (i.e. rodent, shrew and bat) fibro-

blasts (Figure 5 and Table 2—source data 1). A regression analysis was performed using a model in

which the dependent variable was the logarithm of the species maximal lifespan, and the indepen-

dent variables were the metabolite level and a categorical variable reflecting whether the species

was bird or primate. The procedure tested the association between metabolite and lifespan in the

entire set of species, but did not make the assumption that the slope was necessarily the same for

birds as for primates. The resulting F-statistic was evaluated for significance based upon an empiri-

cally generated set of null distributions (for each metabolite) by permutation. When two or more of

the untargeted features were annotated as corresponding to the same amino acid (seven cases), we

tabulated the degree of association from the feature most strongly correlated with lifespan among

the species studied. Although these would introduce some bias in favor of correlation, we noted

that in four out of the seven cases, the multiple features were all significant at p value < 0.05; in the

other three cases, the features were all significant at p value < 0.2. Parallel analyses were also done

for bird species and for non-human primate species independently.

Resistance of rodent fibroblasts to lethal and metabolic stresses
The methods used are as previously described (Harper et al., 2007; Murakami et al., 2003;

Salmon et al., 2005). Briefly, each test procedure began by culturing the cells at a density of

3 � 104 cells in 100 mL CM in 96-well microtiter plates for 24 hr, followed by a period of 24 hr in

medium lacking serum but containing 2% bovine serum albumin (BSA, Sigma) with antibiotics and
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fungizone at the same concentration as CM. For assessment of resistance to H2O2, paraquat, and

cadmium (Sigma), the cells in the 96-well plates were washed and exposed to the stress agent for 6

hr. For assessment of resistance to methyl methanesulfonate (MMS), the cells were incubated with

MMS in DMEM for 24 hr, washed and then incubated with DMEM supplemented with 2% BSA, anti-

biotics, and fungizone for 18 hr. For assessment of cell metabolism in low-glucose medium, cells

were incubated in DMEM containing a range of glucose concentrations for 1 hr. Survival was

assessed by WST-1 tests. All incubations were at 37˚C in a humidified incubator with 5% CO2 in air.

For calculation of the resistance of each cell line to chemical stressors, at each dose of chemical

stressor, mean survival was calculated for triplicate wells for each cell line. The LD50, i.e. dose of

stress agent that led to survival of 50% of the cells, was then calculated using Probit analysis as

implemented in NCSS software (NCSS, Kaysville, UT). ED50 values for glucose withdrawal were cal-

culated in a similar manner to estimate the level of glucose or rotenone associated with a 50%

reduction in cellular metabolic activity.

Acknowledgements
We wish to thank William Kohler and Melissa Han for development of cell lines and preparation of

cell pellets. Supported by NIH AG047745, AG023122, AG047200, DK089503, DK097153, and Life

Extension Foundation.

Additional information

Funding

Funder Grant reference number Author

National Institutes of Health DK097153 Charles F Burant

National Institutes of Health AG047200 Zhengdong D Zhang
Andrei Seluanov
Vera Gorbunova
Vadim N Gladyshev

National Institutes of Health AG047745 Vadim N Gladyshev

National Institutes of Health AG023122 Vadim N Gladyshev

National Institutes of Health DK089503 Vadim N Gladyshev

Life Extension Foundation Vera Gorbunova
Andrei Seluanov

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

SM, RAM, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting

or revising the article; AU, AG, Y-MT, CFB, SR, QZ, ZDZ, AS, VG, CBC, Acquisition of data, Analysis

and interpretation of data, Drafting or revising the article; VNG, Conception and design, Analysis

and interpretation of data, Drafting or revising the article

Author ORCIDs

Vadim N Gladyshev, http://orcid.org/0000-0002-0372-7016

Additional files
Supplementary files
. Supplementary file 1. Gene expression values. (A) Raw counts. (B) log10 normalized values.

DOI: 10.7554/eLife.19130.015

. Supplementary file 2. Metabolite levels. (A) Raw values. (B) log10 normalized values.

DOI: 10.7554/eLife.19130.016

Ma et al. eLife 2016;5:e19130. DOI: 10.7554/eLife.19130 20 of 25

Research article Cell Biology Genomics and Evolutionary Biology

http://orcid.org/0000-0002-0372-7016
http://dx.doi.org/10.7554/eLife.19130.015
http://dx.doi.org/10.7554/eLife.19130.016
http://dx.doi.org/10.7554/eLife.19130


References
Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, Kiso WK, Schmitt DL, Waddell PJ, Bhaskara
S, Jensen ST, Maley CC, Schiffman JD. 2015. Potential mechanisms for cancer resistance in elephants and
comparative cellular response to DNA damage in humans. JAMA 314:1850–1860. doi: 10.1001/jama.2015.
13134, PMID: 26447779

Adelman R, Saul RL, Ames BN. 1988. Oxidative damage to DNA: relation to species metabolic rate and life span.
PNAS 85:2706–2708. doi: 10.1073/pnas.85.8.2706, PMID: 3128794
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