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Abstract Blockade of lysosomal calcium release due to lysosomal lipid accumulation has been

shown to inhibit mTORC1 signaling. However, the mechanism by which lysosomal calcium regulates

mTORC1 has remained undefined. Herein we report that proper lysosomal calcium release through

the calcium channel TRPML1 is required for mTORC1 activation. TRPML1 depletion inhibits

mTORC1 activity, while overexpression or pharmacologic activation of TRPML1 has the opposite

effect. Lysosomal calcium activates mTORC1 by inducing association of calmodulin (CaM) with

mTOR. Blocking the interaction between mTOR and CaM by antagonists of CaM significantly

inhibits mTORC1 activity. Moreover, CaM is capable of stimulating the kinase activity of mTORC1

in a calcium-dependent manner in vitro. These results reveal that mTOR is a new type of CaM-

dependent kinase, and TRPML1, lysosomal calcium and CaM play essential regulatory roles in the

mTORC1 signaling pathway.

DOI: 10.7554/eLife.19360.001

Introduction
Mechanistic target of rapamycin (mTOR) plays an essential role in sensing a myriad of environmental

cues including nutrients and growth factor stimulation to regulate cell growth and proliferation

(Wullschleger et al., 2006). mTOR independently associates with raptor or rictor to form two dis-

tinct complexes, mTORC1 and mTORC2, respectively. The two complexes share several common

subunits, including the catalytic mTOR subunit, mLST8, DEPTOR, and the Tti1/Tel2 complex

(Laplante and Sabatini, 2012). Among the remaining components, PRAS40 are specific to mTORC1,

whereas rictor, mSin1 protor1/2 are unique to mTORC2 (Laplante and Sabatini, 2012). These two

complexes differ in their sensitivity to rapamycin, upstream signals and downstream outputs

(Laplante and Sabatini, 2012). The mTORC1 complex integrates different extracellular and intracel-

lular signal inputs, such as growth factors, amino acids, stress and energy status, to regulate cellular

processes such as protein and lipid synthesis and autophagy, by phosphorylating and activating p70

S6 kinase (p70S6K) (Chung et al., 1992; Price et al., 1992) and eukaryotic translation initiation fac-

tor 4E-binding protein 1 (4E-BP1) (Lin et al., 1995; von Manteuffel et al., 1996). In contrast,

mTORC2 is involved in Akt phosphorylation and regulation of the cellular cytoskeleton (Bhaskar and
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Hay, 2007). Activation of mTORC1 by amino acids requires the translocation of mTORC1 from the

cytosol to the surface of lysosomes, which is dependent on the Rag GTPase heterodimers RagA/B

and RagC/D (Kim et al., 2008; Sancak et al., 2008).

The second messenger calcium has been shown to play an important role in the regulation of

mTOR signaling. Earlier hints that calcium might be involved in mTOR signaling came from observa-

tions that calcium was required for the activation of p70S6K (Conus et al., 1998; Graves et al.,

1997; Hannan et al., 2003). But the underlying mechanism was attributed to upstream regulators

such as PI3K or isoforms of PKC. More definitive roles of calcium and its signaling mediator calmodu-

lin (CaM) in mTORC1 signaling were demonstrated in the context of amino acid activation of the

pathway (Gulati et al., 2008). It was shown that the phosphorylation of S6K1 in response to amino

acids was inhibited by the cell permeable calcium chelator BAPTA-AM while thapsigargin, which

releases intracellular calcium, activated mTORC1 activity. Moreover, it was shown that the activation

of mTORC1 by amino acids was inhibited by antagonists of CaM or its knockdown using siRNA, sug-

gesting that CaM is required for mTORC1 activity. The underlying mechanism by which calcium and

CaM regulate mTORC1 was attributed to the binding of calcium-activated CaM to the hVps34, lead-

ing to the activation of its kinase activity. While the sensitivity of mTORC1 to BAPTA-AM and CaM

antagonists have been reproducibly observed, ensuing studies have cast some doubt on the notion

that hVps34 is a key mediator of calcium and CaM in the regulation of mTORC1 in similar and other

cellular systems (Mercan et al., 2013; Yan et al., 2009).

In a previous study, we found that small molecules that are known to induce Niemann-Pick Dis-

ease Type C (NPC) phenotype inhibited mTOR (Xu et al., 2010). Independently, it has also been

reported that NPC cells showed significant defects in lysosomal calcium homeostasis (Lloyd-

Evans et al., 2008; Shen et al., 2012). Cells that have mutations in or deficient mucolipin transient

receptor potential (TRP) channel 1 (TRPML1) display altered Ca2+ homoeostasis similar to that seen

in NPC cells (Cheng et al., 2010; Dong et al., 2010; Shen et al., 2011). Cells treated with chemical

NPC inducers exhibited reduced TRPML1-mediated lysosomal Ca2+ release in response to a TRPML1

agonist, indicating dysfunction of this calcium channel. Furthermore, it has been shown that TRPML1

homolog in fly is required for TORC1 activation and fusion of amphisomes with lysosomes, and the

inhibition of TORC1 can be rescued by feeding fly larvae with a high-protein diet (Wong et al.,

2012; Venkatachalam et al., 2013). Furthermore, TORC1 also exerts reciprocal control on TRPML

function, establishing the connection between TRPML and TORC1 signaling pathway in fly cells.

Whether TRPML1 regulates mTORC1 signaling pathway in mammalian cells remains unknown. Put-

ting these findings together, we hypothesized that a defect in lysosomal calcium homeostasis in

NPC cells might be responsible for the observed inhibition of the mTOR signaling pathway.

We validated our hypothesis by demonstrating that depletion of TRPML1 inhibits mTORC1 while

overexpression or pharmacologic activation of TRPML1 activates mTORC1. We traced the likely site

of regulation of mTORC1 pathway by calcium and CaM by determining the sensitivity of mTORC1

activity to BAPTA-AM and CaM antagonists in response to various upstream activators of the kinase

complex and narrowed it to mTORC1 itself. We found that CaM interacted with mTORC1 and acti-

vated its kinase activity. Together, these findings shed significant new light on mTORC1 signaling

pathway and offer a unifying mechanism that accounts for most, if not all, earlier observations impli-

cating calcium and CaM in the regulation of mTORC1 by different upstream activators in distinct cel-

lular context.

Results

TRPML1 is required for the activation of mTORC1
To determine whether TRPML1 is required for mTORC1 signaling, HEK293T cells were transduced

with lentiviral shRNA targeting human TRPML1 (Sh1 and Sh2) or a scrambled shRNA (Scr). Due to

lack of reliable hTRPML1 antibodies, the knockdown efficiency was assessed by RT-qPCR (Figure 1a,

bottom panel) as well as indirectly by the expression level of ectopically expressed EGFP-TRPML1.

The activity of mTORC1, as judged by the phosphorylation of S6K, was significantly inhibited upon

TRPML1 knockdown, while the phosphorylation of Akt (T308) was not affected (Figure 1a). To deter-

mine whether the mTOR inhibition caused by TRPML1 knockdown was due to blockade of lysosos-

mal calcium release, we performed a rescue experiment in Human Umbilical Vein Endothelial Cells
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(HUVEC) (Figure 1b) and HEK293T (Figure 1—figure supplement 1a) using thapsigargin, a sarco/

endoplasmic reticulum Ca2+-ATPase inhibitor that increases cytosolic calcium concentrations

(Lytton et al., 1991). Indeed, the inhibition of mTORC1 activity by TRPML1 knockdown was rescued

by thapsigargin, suggesting that mTORC1 inhibition was due, in large part, to the lack of lysosomal

Figure 1. TRPML1 is required for the full activation of mTORC1. (a) HEK293T cells were transduced with lentiviral scrambled shRNA (Scr) and shRNA

targeting human TRPML1 (Sh1 and Sh2), respectively. To assess the knockdown efficiency, a fraction of transduced cells were transfected with EGFP-

TRPML1. After 24 hr, transfected or untransfected cells were lysed and subjected to immunoblotting. Untransfected cells were used to detect p-S6K,

S6K and p-Akt, and transfected cells were used to detect GFP and GAPDH. RT-qPCR was also performed to evaluate the knockdown efficiency (bottom

panel) (mean ± s.d., n = 2 independent experiments). (b) Scrambled shRNA or TRPML1 shRNA-transduced HUVEC were treated with vehicle control or

thapsigargin (5 mM) for an additional 2 hr. Cells were lysed and subjected to immunoblotting. Knockdown efficiency was assessed by RT-qPCR (right

panel). The bottom panel of plots shows the percentage of p-S6K and p-4EBP1 levels compared with scramble shRNA transduced vehicle control

treated HUVEC normalized by GAPDH loading control (mean ± s.d., n = 2 independent experiments). (c and d) Scrambled shRNA or TRPML1 shRNA

transduced HEK293T cells were deprived for 24 hr of serum (c) or 3 hr of leucine (d) and, where indicated, were stimulated with 600 nM insulin or 52 mg/

ml leucine for 10 min. Simultaneously, another fraction of scrambled shRNA or TRPML1 shRNA-transduced cells were transfected with EGFP-TRPML1

for 24 hr. Cells were lysed and subjected to immunoblotting. The plots show the percentage of p-S6K levels compared with scramble shRNA

transduced serum (c) or leucine (d) starved HEK293T cells normalized by total S6K control (mean ± s.d., n = 2 independent experiments, respectively).

(e) Scrambled shRNA or TRPML1 shRNA-transduced HEK293T cells were transfected with Rag AQ66A or Rag CS75L for 24 hr. Cells were lysed and

subjected to immunoblotting. The plot shows the percentage of p-S6K level compared with scramble shRNA transduced empty vector transfected

HEK293T cells normalized by total S6K control. (mean ± s.d. for n = 3 independent experiments).

DOI: 10.7554/eLife.19360.002

The following figure supplement is available for figure 1:

Figure supplement 1. Effects of TRPML1 on mTORC1 activation.

DOI: 10.7554/eLife.19360.003
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calcium release. Moreover, knocking down TRPML1 also attenuated the activation of mTORC1 by

insulin (Figure 1c), leucine (Figure 1d) as well as overexpression of constitutively active RagA or

RagC (Figure 1e). Furthermore, we determined the phosphorylation of S6K in normal human fibro-

blasts (TRPML1 +/+) and fibroblasts from a mucolipidosis IV patient (TRPML1 -/-). Compared with

TRPML1 +/+ human fibroblasts, TRPML1 -/- cells showed decreased phosphorylation of S6K (Fig-

ure 1—figure supplement 1b). Interestingly, this inhibition was partially reversed by leucine com-

pared with that in wild type cells (Figure 1—figure supplement 1c). However, the treatment of

thapsigargin fully restored the phosphorylation of S6K (Figure 1—figure supplement 1b), suggest-

ing that in mammalian cells, the decrease in mTORC1 activity in TRPML1 mutant cells is not only due

to the incomplete autophagy that has been reported in Drosophila (Wong et al., 2012). In addition,

knockdown of other lysosomal channels, such as TPC2 and P2X4, did not significantly inhibit

mTORC1 signaling (Figure 1—figure supplement 1d), indicating that the decreased mTOR activity

upon TRPML1 knockdown was not due to the dysregulation of the structure of the endolysosmal sys-

tem, and as one of the lysosomal calcium channels, TRPML1 may play a more dominant role in the

regulation of mTORC1 signaling.

Having shown that TRPML1-mediated lysosomal calcium release is necessary for mTORC1 activity,

we then turned to the reciprocal question of whether an increase in lysosomal calcium release

through TRPML1 could stimulate mTORC1. Thus, HEK293T cells were transfected with expression

plasmids for EGFP-TRPML1 and its non-conducting pore mutant (D471K/D472K) EGFP-TRPML1

(KK), respectively. The phosphorylation of S6K was slightly but significantly increased by overexpres-

sion of wild type TRPML1 but not the non-conducting pore mutant TRPML1 (KK) (Figure 2a). Next,

we treated HEK293T cells with TRPML1 agonist MLSA1 (Shen et al., 2012; Feng et al., 2014). The

phosphorylation of S6K was increased by MLSA1 in a dose-dependent manner (Figure 2b). In con-

trast, MLSA1 failed to increase the phosphorylation of S6K in the cells transduced with lentiviral

TRPML1 shRNA, or pretreated with bafilomycin A1 or Glycyl-L-phenylalanine 2-naphthylamide

(GPN), suggesting that the increase in S6K phosphorylation induced by MLSA1 was mediated by

calcium released through TRPML1 (Figure 2c,d). Upon amino acids stimulation, mTOR translocated

from the cytosol to the lysosome, colocalizing with EGFP-TRPML1 (Figure 2—figure supplement 1),

indicating that the activation of TRPML1 acted independently of the translocation of mTORC1

induced by amino acids. The upregulated TRPML1 has been reported to promote autophagy

(Wang et al., 2015; Medina et al., 2015; Wong et al., 2012). To determine if activation of mTORC1

in response to TRPML1 overexpression was due to up-regulated autophagy, we overexpressed con-

stitutively active Rab7A (Q67L) and dominant negative Rab7A (T22N) in HEK293T cells (Jager et al.,

2004; Hyttinen et al., 2013). As shown in Figure 2—figure supplement 2, overexpression of

neither constitutively active nor dominant negative Rab7A affected mTORC1 signaling, while overex-

pression of TRPML1 plus MLSA1 treatment stimulated the phosphorylation of S6K, suggesting that

the activated mTORC1 by TRPML1 stimulation was not mediated through autophagy.

Calcium and CaM are required for activation of mTORC1
Both intracellular calcium and CaM have been reported to be required for mTORC1 activity

(Conus et al., 1998; Graves et al., 1997; Gulati et al., 2008; Hannan et al., 2003; Mercan et al.,

2013). We thus treated HEK293T cells with the cytosolic Ca2+ chelator BAPTA-AM (BAPTA) or the

CaM antagonists W-7 and calmidazolium (CMDZ). In agreement with previous studies (Gulati et al.,

2008; Ke et al., 2013; Graves et al., 1997; Zhou et al., 2010), we observed that BAPTA , W-7 and

CMDZ inhibited phosphorylation of S6K in a dose-dependent manner with IC50 values of 3.96 ±

1.30 mM, 21.59 ± 1.81 mM and 10.36 ± 0.59 mM, respectively (Figure 3—figure supplement 1). In

comparison to S6K, phosphorylation of Akt (S473), the substrate of mTORC2, was also inhibited by

CMDZ and W-7, but at much higher concentrations (EC50 values of 27.21 ± 9.82 mM and 45.91 ±

9.61 mM, respectively) compared with that of p-S6K, while BAPTA did not show appreciable inhibi-

tion to p-Akt (S473) (Figure 3—figure supplement 1c). In addition, CMDZ and BAPTA also showed

potent inhibitory effect on mTORC1 signaling pathway in HUVEC and A549 cells (Figure 3—figure

supplement 2a,b), suggesting that mTORC1 is also regulated by Ca2+/CaM in primary and other

cancer cells.

Next, we investigated how fast mTORC1 and mTORC2 responded to BAPTA or CMDZ. As shown

in Figure 3a, both CMDZ and BAPTA caused appreciable inhibition of mTORC1 activity within 0.5–

1 hr as judged by the phosphorylation of S6K and 4EBP1. In contrast, the phosphorylation of Akt
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Figure 2. Overexpression or pharmacological stimulation of TRPML1 activates mTORC1 signaling pathway. (a) HEK293T cells (80% confluency) were

transfected with EGFP vector, EGFP-TRPML1 or its non-conducting pore mutant (D471K/D472K) EGFP-TRPML1 (KK) for 20 hr. Cells were lysed and

subjected to immunoblotting. The plot shows the percentage of p-S6K levels compared with vector transfected cells normalized by total S6K control

(mean ± s.d., n = 3 independent experiments). (b) HEK293T cells were treated with different concentrations of ML-SA1 for 3 hr. Cells were lysed and

subjected to immunoblotting. The plot shows the dose-response curve of ML-SA1 normalized by total S6K. (c) Scrambled shRNA or TRPML1 shRNA

transduced HEK293T cells were treated with varying concentrations of MLSA1 for 3 hr. Cells were lysed and subjected to immunoblotting. The plot

shows the percentage of p-S6K levels compared with scramble shRNA transduced vehicle control treated 293T cells normalized by GAPDH loading

control (mean ± s.d., n = 3 independent experiments). (d) HEK293T cells were pretreated with bafilomycin A1 (1 mM) or GPN (200 mM) for 1 hr, followed

by treatment with or without MLSA1 for an additional 1.5 hr. Cells were lysed and subjected to immunoblotting. The plot shows the percentage of

p-S6K levels compared with vehicle control normalized by GAPDH loading control (mean ± s.d., n = 3 independent experiments). *p<0.05, **p<0.01,

n.s. no significant difference.

DOI: 10.7554/eLife.19360.004

The following figure supplements are available for figure 2:

Figure supplement 1. Colocalization of EGFP-TRPML1 and mTOR.

DOI: 10.7554/eLife.19360.005

Figure supplement 2. Effects of constitutively active or dominant negative Rab 7A.

DOI: 10.7554/eLife.19360.006
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Figure 3. Regulation of mTORC1 by cytosolic calcium and CaM occurs proximal to mTORC1 itself. (a) Effects of 10 mM CaM antagonist calmidazolium

(CMDZ) or 25 mM cytosolic Ca2+ chelator BAPTA-AM (BAPTA) on the phosphorylation of different proteins of the mTOR signaling pathway at different

time points. The bottom panel of plots shows the percentage of p-S6K and p-Akt (S473) levels compared with 0 min treated 293T cells normalized by

total S6K and total Akt control, respectively (mean ± s.d., n = 3 independent experiments). (b and d) Effects of CMDZ (10 mM) or BAPTA-AM (25 mM) on

the phosphorylation of indicated proteins in response to deprivation and stimulation with leucine (b) and insulin (d). Cell lysates were prepared from

HEK293T cells deprived for 3 hr of leucine (b) or 24 hr of serum (d) and, where indicated, stimulated with 52 mg/ml leucine or 600 nM insulin for 10 min.

CMDZ (10 mM) or BAPTA-AM (25 mM) was added 1 hr prior to cell harvesting. The plots show the percentage of p-S6K levels compared with vehicle

control treated leucine (b) or serum (d) starved HEK293T cells normalized by total S6K control (mean ± s.d., n = 3 independent experiments,

respectively). (c) Effects of CMDZ (10 mM) on the phosphorylation of S6K in HEK293T cells transfected with constitutively active RagA or RagC in

expression vectors. Cell lysates were prepared and subjected to immunoblotting. The plot shows the percentage of p-S6K levels compared with vector

transfected vehicle control treated 293T cells normalized by GAPDH loading control (mean ± s.d., n = 3 independent experiments). (e and f) Effects of

25 mM BAPTA-AM (e) and 10 mM CMDZ (f) on the phosphorylation state of S6K in HEK293T cells stably expressing constitutively active Rheb as

indicated. HEK293T cells were transduced with lentiviral FLAG-tagged RhebN153T, and treated with indicated compounds for 1 hr. Cell lysates were

prepared and used for immunoblotting. The plots show the percentage of p-S6K levels compared with vehicle control treated empty lentiviral vector

transduced 293T cells normalized by total S6K control (mean ± s.d., n = 2 independent experiments). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, n.s.

no significant difference.

DOI: 10.7554/eLife.19360.007

The following figure supplements are available for figure 3:

Figure supplement 1. Effects of calmodulin antagonist (a) calmidazolium (CMDZ), (b) W-7 and (c) cytosolic Ca2+ chelator BAPTA-AM on

phosphorylation state of S6K (T389) and Akt (S473).

DOI: 10.7554/eLife.19360.008

Figure 3 continued on next page
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(T308) and its substrate, mTOR (S2448), was not significantly affected by CMDZ until 6 hr post treat-

ment. In addition, CMDZ did not cause significant inhibition of phosphorylation of Akt (S473) until

3 hr after treatment, indicating that the response of mTORC2 to the CaM antagonist has a much

slower onset than that of mTORC1 (Figure 3a, left panel). Although the onset of the effect of BAPTA

on 4EBP1 phosphorylation was slightly slower than that of CMDZ, BAPTA did not significantly affect

the phosphorylation of either Akt (S473, T308) or mTOR even after 6 hr (Figure 3a, right panel).

These results suggest that CaM regulates both mTORC1 and mTORC2, but the two complexes differ

in their sensitivity to CaM and calcium. Interestingly, after a 6-hr treatment with BAPTA, the inhibi-

tion of phosphorylation of S6K and 4EBP1 was partially reversed, which is consistent with a previous

report that over time upon treatment with BAPTA, a gradual increase in intracellular Ca2+ was seen

(Wei et al., 1998). The relatively short time required for CMDZ and BAPTA to exert their effects on

mTORC1 and their faster onset than those on mTORC2 suggested that the inhibition of mTORC1

likely occurred independently of its upstream signaling events, such as phosphorylation of Akt

(T308).

Regulation of mTORC1 by cytosolic calcium and CaM occurs proximal
to mTORC1 itself
To further explore the level at which Ca2+ and CaM regulate mTORC1 signaling, we determined the

effects of CMDZ and BAPTA on mTORC1 activation in response to various upstream activating stim-

uli of mTORC1. Similar to previous observations (Gulati et al., 2008), we found that leucine-stimu-

lated mTORC1 activation was inhibited by BAPTA and CMDZ (Figure 3b, Lanes 4 vs. 2 and 6 vs. 2).

The activation of mTORC1 by leucine has been shown to be mediated by the small GTPases RagA/B

and RagC/D (Kim et al., 2008), and overexpression of constitutively active RagAQ66L/RagCS75N can

bypass leucine to activate mTORC1. We found that activation of mTORC1 by either RagAQ66L or

RagCS75N remained sensitive to CMDZ (Figure 3c). Next, we determined whether activation of

mTORC1 by insulin was also sensitive to CaM blockade. Although insulin strongly increased the

phosphorylation of Akt (T308) (Figure 3d, Lanes 2), the mTORC1 activity remained sensitive to

CMDZ as well as BAPTA-AM (Figure 3d, Lanes 4 and 6). It has been reported that mTOR is directly

bound to and activated by Rheb-GTP (Long et al., 2005). Thus, we used HEK293T, HUVEC and

A549 to produce stable cell lines overexpressing constitutively active RhebN153T as previously

described (Yan et al., 2006), and determined their sensitivity to BAPTA and CMDZ. RhebN153T-

induced phosphorylation of S6K remained sensitive to inhibition by BAPTA and CMDZ in HEK293T,

HUVEC and A549 cells (Figure 3e,f, Figure 3—figure supplement 2c,d). Together, these results

suggested that the site of regulation of mTORC1 by Ca2+ and CaM lies proximal to mTORC1 itself.

CaM interacts with mTOR
CaM has been previously reported to indirectly interact with mTORC1, and human vacuolar protein

sorting 34 (hVps34) was shown to mediate the interaction between CaM and mTORC1 in HeLa cells

(Gulati et al., 2008). To our surprise, when hVps34 was knocked down in HEK293T cells, binding of

CaM to mTOR was not affected (Figure 4a), neither was the sensitivity of mTORC1 to CaM (Fig-

ure 4—figure supplement 1), ruling out hVps34 as a mediator of CaM-mTOR interaction in

HEK293T cells. These results raised the possibility that CaM may directly interact with a subunit of

the mTORC1 complex, thereby regulating its kinase activity. Indeed, CaM sepharose could pull

down mTOR and raptor, but not PRAS40, in a Ca2+-dependent manner (Figure 4b). The interaction

between mTOR and CaM was sensitive to detergents and the CaM antagonist W-7 (Figure 4b and

Figure 4—figure supplement 2). However, Ca2+ did not affect the assembly of mTORC1 complex

(Figure 4—figure supplement 3), suggesting that one of the interactions of CaM sepharose with

mTOR and raptor could be indirect. To identify the subunit in mTORC1 that interacts with CaM, we

knocked down raptor and mTOR, respectively, and determined the remaining interaction between

Figure 3 continued

Figure supplement 2. Effects of calmodulin antagonist calmidazolium (CMDZ) and cytosolic Ca2+ chelator BAPTA-AM on mTOR signaling pathway in

HUVEC and A549 cells.

DOI: 10.7554/eLife.19360.009
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Figure 4. CaM interacts with mTORC1 and regulates mTORC1 kinase activity in vitro. (a) CaM interacts with mTOR independent of hVps34 or raptor.

Cell lysates were prepared from HEK293T cells transduced with lentiviral shRNAs targeting human mTOR, raptor, hVps34 or scrambled shRNA,

followed by CaM sepharose precipitation in the presence of CaCl2 (1 mM) or EGTA (5 mM). The cell lysates and precipitates were analyzed by

immunoblotting to detect the indicated proteins. (b) Endogenous mTORC1 was pulled down by CaM sepharose in a Ca2+-dependent manner.

HEK293T cells were lysed in CHAPS buffer, and the lysates were incubated with CaM sepharose in the presence of CaCl2 (1 mM) or EGTA (5 mM). The

precipitates were analyzed by immunoblotting. (c and d) Cell lysates were prepared from HEK293T cells in CHAPS buffer, and endogenous mTORC1

was immunoprecipitated by a raptor antibody. ATP (250 mM), Torin1 (100 nM), CMDZ (8 mM), CaM (2 mM) or/and CaCl2 (1 mM) were added into the

kinase reaction as indicated. Phosphorylation of 4EBP1 (c) and S6K (d) were detected by immunoblotting. The plots show the fold of change of

phosphorylation of 4EBP1 (c) or S6K (d) compared with control group (first lane) normalized by total GST-tagged protein control. (mean ± s.d., n = 6

and 5 independent experiments, respectively).

DOI: 10.7554/eLife.19360.010

The following figure supplements are available for figure 4:

Figure supplement 1. Effects of calmidazolium (CMDZ) on hVps34 depleted cells.

DOI: 10.7554/eLife.19360.011

Figure supplement 2. CaM interacts with mTORC1 independently of raptor or hVps34.

DOI: 10.7554/eLife.19360.012

Figure supplement 3. The presence or absence of Ca2+ does not affect the association of mTORC1.

DOI: 10.7554/eLife.19360.013

Figure supplement 4. Proposed model of regulation of mTORC1 by TRPML1, lysosomal calcium and CaM.

DOI: 10.7554/eLife.19360.014
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each subunit and CaM sepharose (Figure 4a). Knockdown of raptor had no effect on the pulldown

of mTOR by CaM sepharose. In contrast, knockdown of mTOR significantly reduced the binding of

raptor as well as mTOR to CaM (Figure 4a), suggesting that the interaction between mTOR and

CaM is independent of raptor.

Ca2+ and CaM activate the kinase activity of isolated mTORC1 complex
in vitro
Having shown that CaM binds to mTORC1, we asked the question of whether CaM and Ca2+ had a

direct effect on the intrinsic kinase activity of isolated mTORC1 complex in vitro. Thus, endogenous

mTORC1 complex was immunoprecipitated by an anti-raptor antibody, and an in vitro kinase assay

was performed using purified recombinant 4EBP1 as a substrate (Sarbassov et al., 2004). As shown

in Figure 4c, the phosphorylation of 4EBP1 by immunoprecipitated mTORC1 complex was signifi-

cantly increased in the presence of both CaCl2 (1 mM) and CaM (2 mM), but not CaM alone, indicat-

ing that CaM activates mTORC1 kinase activity in vitro in a Ca2+-dependent manner (Figure 4c, top

left and top right panels, Lanes 1–3, respectively). Importantly, the activation of mTORC1 by Ca2+/

CaM was inhibited by Torin 1 (Figure 4c, top left panel, Lane 4), a TOR kinase inhibitor, and CMDZ

(Figure 4c, top right panel, Lane 4), indicating that the phosphorylation of 4EBP1 was dependent on

TOR kinase activity and CaM. Similar results were obtained from the in vitro kinase assay using puri-

fied recombinant S6K as the substrate (Figure 4d). Together, these results demonstrated that bind-

ing of CaM to mTORC1 leads to the stimulation of kinase activity of the mTORC1 complex.

Discussion
The work described in this manuscript reveals a novel mechanism of regulation of mTORC1 by lyso-

somal calcium and CaM (Figure 4—figure supplement 4), shedding new light on the mTOR signal-

ing pathway. In the current model of mTORC1 activation (Dibble and Cantley, 2015;

Buerger et al., 2006; Efeyan and Sabatini, 2013; Saito et al., 2005), growth factors, energy, and

other inputs signal to mTORC1 primarily through the TSC-Rheb axis; amino acids act by regulating

the nucleotide state of the heterodimeric Rag GTPases and promoting the translocation of mTORC1

onto lysosomes, where it interacts with and becomes activated by lysosomally-localized, GTP-bound

Rheb (Sancak et al., 2008). Our results have uncovered another role of lysosomal localization of

mTORC1, i.e., to receive localized lysosomal calcium stimulation. Integrating our previous observa-

tions (Xu et al., 2010) and the results from the present study, we propose an addition to the current

model of mTOR signaling pathway: upon the translocation of mTORC1 onto the lysosome, properly

released lysosomal calcium enriches local Ca2+ concentration, prompting Ca2+ binding to a local

population of CaM, which in turn binds mTORC1 and stimulates the kinase activity of the mTORC1

complex.

The depletion of the homolog of TRPML1, TRPML in Drosophila, results in decreased TORC1 sig-

naling, which was attributed to incomplete autophagy, and was completely reversed by feeding fly

larvae with a high-protein diet (Wong et al., 2012; Venkatachalam et al., 2013). However, we

showed that in TRPML1-knockdown mammalian cells or mucolipidosis IV human fibroblasts, the

inhibited mTORC1 signaling was only partially reversed by leucine or overexpression of constitutively

active Rag GTPase, suggesting that there is a difference in the mechanisms of regulation of mTOR

by Ca2+/CaM between mammalian and fly cells. Interestingly, thapsigargin, which increases cytosolic

Ca2+, could completely restore phosphorylation of S6K in TRPML1 deficient cells to the control level.

Given that increased cytosolic Ca2+ also positively regulates the Ca2+-dependent fusion of late-

endosomes and autophagosomes to lysosomes (Grotemeier et al., 2010; Lloyd-Evans et al., 2008;

Wong et al., 2012), the rescue effect of thapsigargin might be due to the combined effects of

autophagy as well as the direct stimulation of mTORC1 by Ca2+/CaM in mammalian cells. On the

other hand, TRPML1 is significantly upregulated under amino acids starvation (Wang et al., 2015),

when mTORC1 dissociates from the lysosomal surface and becomes inactive, indicating that

mTORC1 and TRPML1 may form reciprocal regulation loop. In addition, it has been recently

reported that under starvation, lysosomal Ca2+ release through TRPML1 activates local calcineurin, a

Ca2+, CaM-dependent protein phosphatase, which dephosphorylates TFEB and promotes its nuclear

translocation as well as regulates lysosomal biogenesis (Medina et al., 2015), suggesting another

local function of lysosomal Ca2+.
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Our model of regulation of mTORC1 by Ca2+ and CaM differs from that proposed in a previous

report (Gulati et al., 2008), even though some of the experimental observations are in agreement.

Similar to previous reports (Gulati et al., 2008; Ke et al., 2013; Graves et al., 1997), we found that

mTORC1 activity is sensitive to inhibition by BAPTA-AM and CaM antagonist CMDZ (Figure 3), sug-

gesting that both intracellular calcium and CaM are required for mTORC1 activation. However, the

precise mechanism of regulation of mTORC1 by calcium and CaM is distinct in our new model. First,

we demonstrated that the lysosomal pool of calcium plays a unique and critical role in mTORC1 acti-

vation in mammalian cells. In earlier studies, however, the sources of calcium have been only sug-

gested to be extracellular (Conus et al., 1998; Gulati et al., 2008) or conventional intracellular

calcium stores such as the ER (Ke et al., 2013; Graves et al., 1997; Zhou et al., 2010). Second, a

previous study showed the CaM associates with mTORC1 complex through hVps34, and calcium

and CaM activate mTORC1 via hVps34 activation (Gulati et al., 2008). In an independent study, it

was shown that hVps15, but not Ca2+/CaM, activates hVps34 (Yan et al., 2009). Similarly, we also

found that knockdown of hVps34 had no effect on the interaction between CaM and mTORC1 in

HEK293T cells, ruling out involvement of hVps34 in the regulation of mTORC1 via Ca2+/CaM, at least

in this cell type. We surmise that most of the previous results implicating calcium or CaM in the regu-

lation of mTORC1 may be explained by our current model.

In previous studies, in vitro kinase assay of mTORC1 used EDTA in immunoprecipitation buffer

(Kim et al., 2002, 2003), which precluded the detection of any regulatory effect of calcium and

CaM. By performing the mTOR kinase assay in the absence or presence of calcium and CaM in vitro,

we were able to observe a dramatic activation of mTORC1 by calcium and CaM, revealing the func-

tional consequence of the binding of CaM to mTOR–activation of its intrinsic kinase activity. As such,

mTOR is a new type of atypical CaM-dependent kinase. The newly uncovered roles of lysosomal cal-

cium and CaM in the regulation of mTOR signaling not only fill a gap in our understanding of this

fundamental signaling pathway, but also offer new molecular targets for discovering and developing

novel mTOR inhibitors.

Materials and methods

Cell lines and tissue culture
HEK293T (RRID: CVCL_0063, purchased from ATCC, the identity has been authenticated using STR

profiling) and A549 (RRID: CVCL_0023, purchased from ATCC, the identity has been authenticated

using STR profiling) cells were cultured in low glucose DMEM (Life Technology) supplemented with

10% FBS (Life Technology). Healthy human fibroblasts (Coriell Insititute, GM03440) and mucolipido-

sis IV human fibroblasts (Coriell Insititute, GM02048) were cultured in EMEM (ATCC) supplemented

with 15% FBS. HUVEC (purchased from Lonza) were cultured in EGM media (Lonza). All cells were

cultured at 37˚C with the presence of 5% CO2. All cell lines were tested for mycoplasma contamina-

tion and showed negative result. HEK293T and A549 cells have been authenticated using STR profil-

ing at Johns Hopkins Genetic Resources Core Facility. Match percent was searched and compared

with American Tissue Culture Collection database. HEK293T cells showed 100% matching to ATCC

HEK293T reference profiling (ATCC number CRL-3216), and A549 cells showed 93% matching to

ATCC A549 reference profiling (ATCC number CCL-185). Given � 80% level of matching indicates

that the cell lines are related, we concluded that both HEK293T and A549 cell lines are

authenticated.

Leucine starvation and stimulation of the cells
Almost confluent cultures in 6-well plates were washed once with leucine-free low glucose DMEM

(US Biological), incubated in leucine-free DMEM for 3 hr, and stimulated with 52 mg/ml leucine for

10 min. For those cells treated with calmidazolium (CMDZ, Cayman Chemical) or BAPTA-AM (Cay-

man Chemical), compounds were added 1 hr prior to cell harvesting. Cells were processed for bio-

chemical assays as described below.

Growth factor starvation and insulin stimulation of the cells
Almost confluent cultures in 6-well plates were washed once with FBS-free DMEM, incubated in

FBS-free DMEM for 24 hr, and stimulated with 600 nM insulin (Life Technology) for 10 min. For those
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cells treated with calmidazolium (CMDZ) or BAPTA-AM, compounds were added 1 hr prior to cell

harvesting. Cells were processed for biochemical assays as described below.

Immunoblotting analysis
After indicated treatments, cells were washed once with ice-cold PBS and lysed in ice-cold RIPA

buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1%

sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM

Na3VO4, 1 mg/ml leupeptin). After brief sonication, the cell debris was removed by centrifugation at

13,000 rpm for 10 min in a microfuge, and the protein amount in the supernatant was quantified

and mixed with a proper volume of 5x SDS loading buffer. Proteins were then separated by SDS-

PAGE and transferred to nitrocellulose membranes. After blocking at room temperature for 1 hr,

membranes were immunoblotted with anti-p-S6K (T389) (1:1000, Cell Signaling Technology, Cat.

9205, RRID: AB_330944), p-Akt (T308) (1:1000, Cell Signaling Technology, Cat. 9275, RRID: AB_

329828), p-Akt (S473) (1:1000, Cell Signaling Technology, Cat. 9271, RRID: AB_329825), p-4EBP1

(S65) (1:1000, Cell Signaling Technology, Cat. 9451, RRID: AB_330947), p-mTOR (S2448) (1:1000,

Cell Signaling Technology, Cat. 2971, RRID: AB_330970), mTOR (1:1000, Cell Signaling Technology,

Cat. 2983, RRID: AB_2105622), Akt (1:1000, Cell Signaling Technology, Cat. 9272, RRID: AB_

329827), raptor (1:1000, Cell Signaling Technology, Cat. 2280, RRID: AB_10830734), PRAS40

(1:1000, Cell Signaling Technology, Cat. 2610, RRID: AB_916206), hVps34 (1:1000, Cell Signaling

Technology, Cat. 3811, RRID: AB_2062856), HA tag (1:1000, Santa Cruz Biotechnology, Cat. sc-

7392, RRID: AB_627809), myc tag (1:1000, Santa Cruz Biotechnology, Cat. sc-40, RRID: AB_627268),

FLAG tag (1:5000, Sigma, Cat. F1804, RRID: AB_262044), GFP (1:1000, Santa Cruz Biotechnology,

Cat. sc-9996, RRID: AB_627695), S6K (1:1000, Santa Cruz Biotechnology, Cat. sc-8418, RRID: AB_

628094), GAPDH (1:1000, Santa Cruz Biotechnology, Cat. sc-20357, RRID: AB_641107) at 4˚C over-

night with the primary antibodies, followed by incubation with HRP-conjugated anti-mouse (1:10000,

GE Healthcare, Cat. NXA931, RRID: AB_772209), anti-rabbit (1:10000, GE Healthcare, Cat. NA934,

RRID: AB_772206) or anti-goat IgG (1:10000, Santa Cruz Biotechnology, Cat. sc-2020, RRID: AB_

631728) at room temperature for 1 hr. Antibody-protein complexes were detected using enhanced

chemiluminescence (ECL) immunoblotting detection reagent. The band intensity was measured

using ImageJ software (National Institute of Health, USA)

CaM sepharose precipitation
Cells were washed once with ice-cold wash buffer (40 mM HEPES [pH 7.4], 150 mM NaCl), and lysed

in ice-cold lysis buffer (40 mM HEPES [pH 7.4], 150 mM NaCl, 0.3% CHAPS or 1% NP-40 or 1% Tri-

ton-X100, phosphatase inhibitor cocktail (Sigma) and protease inhibitor cocktail (Roche). The cell

debris was removed by centrifugation at 13,000 rpm for 10 min in a microfuge. Five percent of the

supernatant was reserved as ’input’, and the rest of the supernatant was equally divided into two

groups: one contained 1 mM CaCl2, and another one contained 5 mM EGTA. The lysates were incu-

bated with pre-washed CaM sepharose (GE Healthcare) at 4˚C for 2 hr with rotation. The beads

were washed with CaCl2 (1 mM) or EGTA (5 mM) -containing CHAPS (0.3% ) buffer 3 times, and

boiled at 95˚C for 5 min. Elution of the protein from CaM sepharose was subjected to immunoblot-

ting to analyze the recovery of indicated proteins or peptides.

Immunoprecipitations and in vitro kinase assay
Cells were washed once with ice-cold wash buffer (40 mM HEPES [pH 7.4], 150 mM NaCl), and lysed

in ice-cold CHAPS buffer (40 mM HEPES [pH 7.4], 150 mM NaCl, 2 mM EDTA, 0.3% CHAPS, phos-

phatase inhibitor cocktail and protease inhibitor cocktail). The cell debris was removed by centrifuga-

tion at 13,000 rpm for 10 min in a microfuge. The soluble fractions of cell lysates were mixed with

anti-raptor antibody (4 mg/10 cm dish, Life Technology, Cat. 42–4000, RRID: AB_2533523), and the

mixtures were incubated with rotation for 1.5 hr at 4˚C. 80 ml of a 50% slurry of protein A/G plus-

sepharose (Santa Cruz Biotechnology) was then added and the incubation continued for an addi-

tional 1 hr. Immunoprecipitates were washed twice with ice-cold CHAPS buffer, and once with

mTOR kinase buffer (25 mM HEPES [pH 7.4], 50 mM KCl, 10 mM MgCl2). The kinase assays were

performed as previously described (Kim et al., 2002). CaM (2 mM) or/and CaCl2 (1 mM) were added

into the kinase reaction as indicated. CMDZ (8 mM) or Torin 1 (100 nM, Cayman Chemical) was
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incubated with the reaction mixtures 10 min prior to initiating the reaction by addition of 250 mM

ATP (Sigma). The phosphorylation states of S6K or 4EBP1 were detected by immunoblotting.

Real-time qPCR
HEK293T, HUVEC and A549 cells were transduced with lentivirus carrying scramble shRNA or indi-

cated shRNA. Total RNA was collected using RNeasy Mini Kit (QIAGEN). cDNA was generated with

SuperScript III First-Strand kit (Invitrogen), and real-time PCR was carried out using TaqMan Univer-

sal Master Mix II (Life Technologies). Real-time PCR primers and probes were from Thermo Fisher

Scientific: MCOLN1 FAM (Hs01100653_m1), TPCN2 FAM (Hs01552063_m1). Human GAPDH VIC

(Hs02758991_g1) was used as an endogenous control.

cDNA manipulations and mutagenesis
Myc-mTOR (Addgene plasmid # 1861), pRK5-HA GST RagA 66L (Addgene plasmid # 19300), pRK5-

HA GST RagC 75L (Addgene plasmid # 19305) and HA GST PreScission p70 S6K1 (Addgene plasmid

# 15511) were gifts from David Sabatini. pcDNA3-FLAG-Rheb-N153T (Addgene plasmid # 19997)

was a gift from Fuyuhiko Tamanoi. pcDNA-CaM was a gift from David Yue. TRPML1-HA (Addgene

plasmid # 18825) was a gift from Craig Montell. EGFP-Rab7A Q67L (Addgene plasmid # 28049) and

EGFP-Rab7A T22N (Addgene plasmid # 28048) were gifts from Qing Zhong.

FLAG-tagged RhebN153T was amplified by PCR and cloned into the EcoRI site of pLVX-AcGFP-N1

vector. GST-tagged 4EBP1 was amplified by PCR and cloned into a pDEST15-based vector. FLAG-

tagged CaM was amplified by PCR and cloned into a pGEX6-based vector. TRPML1 was amplified

by PCR and cloned into a pEGFP-based vector. All ligations were performed with Infusion Kit (Clon-

tech Laboratories, Inc.) according to the manufacture’s instruction. After sequence verification, these

plasmids were used, as described below, in transient cDNA transfections, bacterial protein expres-

sion or to produce the lentiviruses needed to generate cell lines stably expressing the proteins.

cDNA transfection-based experiments
For transfection experiments, HEK293T cells were seeded in 6-well plates or 6 cm culture dishes.

After 24 hr, cells were transfected with the pRK5-based cDNA expression plasmids indicated in the

figures (500 ng of truncated mTOR fragments; 200 ng HA-GST-tagged RagA 66L or RagC 75L, 1000

ng of EGFP-tagged TRPML1, and same amount of proper empty vectors) using Lipofectamine 2000

(Life Technology) according to the manufacturer’s instructions.

Preparation of p70S6K1, GST-4EBP1 and FLAG-CaM for Use in
mTORC1 Kinase Assays
HA-GST-PreScission-p70 S6K1 was transfected into HEK293T cells as described above, and after

48 hr the cells were treated with 20 mM LY294002 for 1 hr prior to cell harvesting and lysis. HA-GST-

PreSciss-S6K1 was purified as described (Burnett et al., 1998). The purified protein was stored at

�20˚C in 20% glycerol.

GST-fused 4EBP1 protein was expressed and purified from BL21 (DE3) Escherichia coli. Bacteria

were grown to an OD of 0.8 and induced for 16 hr at 18˚C with 0.5 mM IPTG (American Bioanalyti-

cal). Bacteria were pelleted, and lysed in ice-cold PBS containing 1% Triton X-100, 1mg/mL lysozyme

(Sigma-Aldrich) and protease inhibitor cocktail by sonication. Cell debris was cleared by centrifuga-

tion. The supernatant was mixed with pre-equilibrated glutathione sepharose 4B resin for 1 hr at 4˚C
with rotation. After gentle centrifugation, GST-4EBP1 was eluted by 10 mM reduced glutathione,

and the protein sample was desalted by PD-10 desalting columns and then eluted by the elution

buffer (150 mM NaCl, 40 mM HEPES [pH 7.4]). The purified protein was stored at �20˚C in 20%

glycerol.

GST-FLAG-CaM protein was expressed and purified as GST-4EBP1. GST tag was removed by

PreScission (GE Healthcare) according to the manufacturer’s instruction. The purified protein was

stored at �20˚C in 20% glycerol.

Mammalian lentiviral shRNAs
TRC lentiviral shRNAs targeting hTRPML1, mTOR, hVps34 and raptor were obtained from Sigma.

The TRC number for each shRNA is as follows:
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Human mTOR shRNA #1: TRCN0000038677

Human mTOR shRNA #2: TRCN0000039785

Human raptor shRNA #1: TRCN0000039772

Human raptor shRNA #2: TRCN0000010415

Human TRPML1 shRNA #1: TRCN0000083297

Human TRPML1 shRNA #2: TRCN0000083296

Human hVps34 shRNA #1: TRCN0000037794

Human hVps34 shRNA #2: TRCN0000037795

Human TPC2 shRNA #1: TRCN0000043919

Human TPC2 shRNA #2: TRCN0000043921

Human P2X4 shRNA #1: TRCN0000044960

Human P2X4 shRNA #2: TRCN0000044962

Lentivirus production and cell transduction
HEK293T cells were seeded in 15-cm culture dishes. When 50–70% confluent, the cells were co-

transfected with 9 mg lentiviral vector (empty, lentiviral vector containing sequences expressing indi-

cated proteins, scramble shRNA or shRNA targeting indicated proteins) + 6 mg pspAX2 + 3 mg

pMD2G using lipofectamine 2000 according to manufacturer’s instructions. After 24 hr, 48 hr and

72 hr, the supernatants were harvested, respectively, and concentrated using PEG6000 as described

before (Kutner et al., 2009). The concentrated virus was stored at �80˚C.
HEK293T or HUVEC cells were seeded in 10 cm culture dishes. When cells were 40% confluent,

concentrated lentiviral solutions were added into the cell culture medium. After 48 hr, cells were

treated with antibiotics to select transduced cells.

Immunostaining
Cells were fixed with 4% (wt/vol) paraformaldehyde in PBS for 20 min at room temperature (RT).

After wash, cells were permeabilized by PBS/0.5% Triton X-100 and incubated at RT for 10 min.

After blocking, cells were incubated with anti-mTOR antibody (1:150, Cell Signaling Technology,

Cat. 2983) at 4˚C overnight, followed by incubating with Alexa Fluor 568 (1:500, Life technologies,

Cat. A11011) for 1 hr at RT. Images were captured using a Zeiss LSM 700 confocal microscope.

Data analysis
All graphs were created using GraphPad Prism software, and statistical analysis was performed with

GraphPad Prism. Data are presented as the mean ± s.d. Two-tail t-test statistical comparisons were

made using ANOVA. A P value < 0.05 was considered statistically significant. No statistical method

was used to predetermine sample size. The experiments were not randomized. The investigators

were not blinded to allocation during experiments.

Acknowledgements
This work was supported in part by the National Cancer Institute (R01CA184103), the Flight Atten-

dant Medical Research Institute (JOL), and the Johns Hopkins Institute for Clinical and Translational

Research (ICTR), which is funded in part by Grant Number UL1 TR 001079. We are grateful to Dr.

Laixi Wang and Hui Cai for technical advice. We thank Drs. Sarah Head and Zufeng Guo for technical

help and support.

Additional information

Funding

Funder Grant reference number Author

National Institutes of Health R01CA184103 Ruo-Jing Li
Jing Xu
Chenglai Fu
Jing Zhang
Yujun George Zheng
Hao Jia

Li et al. eLife 2016;5:e19360. DOI: 10.7554/eLife.19360 13 of 16

Short report Biochemistry

http://dx.doi.org/10.7554/eLife.19360


Jun O Liu

Flight Attendant Medical Re-
search Institute

Ruo-Jing Li
Jing Xu
Chenglai Fu
Jing Zhang
Yujun George Zheng
Hao Jia
Jun O Liu

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

R-JL, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or

revising the article; JX, CF, JZ, YGZ, HJ, Acquisition of data, Analysis and interpretation of data;

JOL, Conception and design, Analysis and interpretation of data, Drafting or revising the article

Author ORCIDs

Chenglai Fu, http://orcid.org/0000-0003-4300-9948

Jun O Liu, http://orcid.org/0000-0003-3842-9841

References
Bhaskar PT, Hay N. 2007. The two TORCs and Akt. Developmental Cell 12:487–502. doi: 10.1016/j.devcel.2007.
03.020, PMID: 17419990

Buerger C, DeVries B, Stambolic V. 2006. Localization of Rheb to the endomembrane is critical for its signaling
function. Biochemical and Biophysical Research Communications 344:869–880. doi: 10.1016/j.bbrc.2006.03.220

Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. 1998. RAFT1 phosphorylation of the translational
regulators p70 S6 kinase and 4E-BP1. PNAS 95:1432–1437. doi: 10.1073/pnas.95.4.1432

Cheng X, Shen D, Samie M, Xu H. 2010. Mucolipins: Intracellular TRPML1-3 channels. FEBS Letters 584:2013–
2021. doi: 10.1016/j.febslet.2009.12.056, PMID: 20074572

Chung J, Kuo CJ, Crabtree GR, Blenis J. 1992. Rapamycin-FKBP specifically blocks growth-dependent activation
of and signaling by the 70 kd S6 protein kinases. Cell 69:1227–1236. doi: 10.1016/0092-8674(92)90643-Q

Conus NM, Hemmings BA, Pearson RB. 1998. Differential regulation by calcium reveals distinct signaling
requirements for the activation of Akt and p70S6k. Journal of Biological Chemistry 273:4776–4782. doi: 10.
1074/jbc.273.8.4776, PMID: 9468542

Dibble CC, Cantley LC. 2015. Regulation of mTORC1 by PI3K signaling. Trends in Cell Biology 25:545–555.
doi: 10.1016/j.tcb.2015.06.002

Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H. 2010. PI
(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the
endolysosome. Nature Communications 1:38. doi: 10.1038/ncomms1037, PMID: 20802798

Sarbassov DD, Kim DH, Guertin DA, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM,
Sarbassov DD. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-
independent pathway that regulates the cytoskeleton. Current Biology 14:1296–1302. doi: 10.1016/j.cub.2004.
06.054, PMID: 15268862

Efeyan A, Sabatini DM. 2013. Nutrients and growth factors in mTORC1 activation. Biochemical Society
Transactions 41:902–905. doi: 10.1042/BST20130063

Feng X, Xiong J, Lu Y, Xia X, Zhu MX. 2014. Differential mechanisms of action of the mucolipin synthetic agonist,
ML-SA1, on insect TRPML and mammalian TRPML1. Cell Calcium 56:446–456. doi: 10.1016/j.ceca.2014.09.004

Graves LM, He Y, Lambert J, Hunter D, Li X, Earp HS. 1997. An intracellular calcium signal activates p70 but not
p90 ribosomal S6 kinase in liver epithelial cells. Journal of Biological Chemistry 272:1920–1928. doi: 10.1074/
jbc.272.3.1920, PMID: 8999881

Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Dieterle A, Viollet B, Wesselborg S, Proikas-
Cezanne T, Stork B. 2010. AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cellular
Signalling 22:914–925. doi: 10.1016/j.cellsig.2010.01.015

Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F, Kozma SC, Thomas AP, Thomas G. 2008. Amino
acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metabolism 7:456–465. doi: 10.1016/j.
cmet.2008.03.002, PMID: 18460336

Hannan KM, Thomas G, Pearson RB. 2003. Activation of S6K1 (p70 ribosomal protein S6 kinase 1) requires an
initial calcium-dependent priming event involving formation of a high-molecular-mass signalling complex.
Biochemical Journal 370:469–477. doi: 10.1042/bj20021709, PMID: 12429015

Hyttinen JMT, Niittykoski M, Salminen A, Kaarniranta K. 2013. Maturation of autophagosomes and endosomes:
A key role for Rab7. Biochimica Et Biophysica Acta 1833:503–510. doi: 10.1016/j.bbamcr.2012.11.018

Li et al. eLife 2016;5:e19360. DOI: 10.7554/eLife.19360 14 of 16

Short report Biochemistry

http://orcid.org/0000-0003-4300-9948
http://orcid.org/0000-0003-3842-9841
http://dx.doi.org/10.1016/j.devcel.2007.03.020
http://dx.doi.org/10.1016/j.devcel.2007.03.020
http://www.ncbi.nlm.nih.gov/pubmed/17419990
http://dx.doi.org/10.1016/j.bbrc.2006.03.220
http://dx.doi.org/10.1073/pnas.95.4.1432
http://dx.doi.org/10.1016/j.febslet.2009.12.056
http://www.ncbi.nlm.nih.gov/pubmed/20074572
http://dx.doi.org/10.1016/0092-8674(92)90643-Q
http://dx.doi.org/10.1074/jbc.273.8.4776
http://dx.doi.org/10.1074/jbc.273.8.4776
http://www.ncbi.nlm.nih.gov/pubmed/9468542
http://dx.doi.org/10.1016/j.tcb.2015.06.002
http://dx.doi.org/10.1038/ncomms1037
http://www.ncbi.nlm.nih.gov/pubmed/20802798
http://dx.doi.org/10.1016/j.cub.2004.06.054
http://dx.doi.org/10.1016/j.cub.2004.06.054
http://www.ncbi.nlm.nih.gov/pubmed/15268862
http://dx.doi.org/10.1042/BST20130063
http://dx.doi.org/10.1016/j.ceca.2014.09.004
http://dx.doi.org/10.1074/jbc.272.3.1920
http://dx.doi.org/10.1074/jbc.272.3.1920
http://www.ncbi.nlm.nih.gov/pubmed/8999881
http://dx.doi.org/10.1016/j.cellsig.2010.01.015
http://dx.doi.org/10.1016/j.cmet.2008.03.002
http://dx.doi.org/10.1016/j.cmet.2008.03.002
http://www.ncbi.nlm.nih.gov/pubmed/18460336
http://dx.doi.org/10.1042/bj20021709
http://www.ncbi.nlm.nih.gov/pubmed/12429015
http://dx.doi.org/10.1016/j.bbamcr.2012.11.018
http://dx.doi.org/10.7554/eLife.19360


Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL. 2004. Role for Rab7 in maturation of late
autophagic vacuoles. Journal of Cell Science 117:4837–4848. doi: 10.1242/jcs.01370

Ke Z, Liang D, Zeng Q, Ren Q, Ma H, Gui L, Chen S, Guo M, Xu Y, Gao W, Zhang S, Chen L, Gui S, Chen M, Guo
Y, Xu W, Gao S. 2013. hsBAFF promotes proliferation and survival in cultured B lymphocytes via calcium
signaling activation of mTOR pathway. Cytokine 62:310–321. doi: 10.1016/j.cyto.2013.03.011

Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2002. mTOR
interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:
163–175. doi: 10.1016/S0092-8674(02)00808-5, PMID: 12150925

Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM. 2003.
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction
between raptor and mTOR. Molecular Cell 11:895–904. doi: 10.1016/S1097-2765(03)00114-X, PMID: 12718876

Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan K-L. 2008. Regulation of TORC1 by Rag GTPases in nutrient
response. Nature Cell Biology 10:935–945. doi: 10.1038/ncb1753

Kutner RH, Zhang X-Y, Reiser J. 2009. Production, concentration and titration of pseudotyped HIV-1-based
lentiviral vectors. Nature Protocols 4:495–505. doi: 10.1038/nprot.2009.22

Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274–293. doi: 10.1016/j.
cell.2012.03.017, PMID: 22500797

Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC. 1995. Control of PHAS-I by insulin in 3T3-L1 adipocytes.
Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-
independent pathway. The Journal of Biological Chemistry 270:18531–18538. doi: 10.1074/jbc.270.31.18531 ,
PMID: 7629182

Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A,
Platt FM. 2008. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of
lysosomal calcium. Nature Medicine 14:1247–1255. doi: 10.1038/nm.1876

Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. 2005. Rheb binds and regulates the mTOR kinase. Current
Biology 15:702–713. doi: 10.1016/j.cub.2005.02.053, PMID: 15854902

Lytton J, Westlin M, Hanley MR. 1991. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-
ATPase family of calcium pumps. The Journal of Biological Chemistry 266:17067–17071. PMID: 1832668

Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C,
Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A, Gao H, Xu
M, et al. 2015. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell
Biology 17:288–299. doi: 10.1038/ncb3114

Mercan F, Lee H, Kolli S, Bennett AM. 2013. Novel role for SHP-2 in nutrient-responsive control of S6 kinase 1
signaling. Molecular and Cellular Biology 33:293–306. doi: 10.1128/MCB.01285-12, PMID: 23129808

Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE. 1992. Rapamycin-induced inhibition of the 70-kilodalton S6
protein kinase. Science 257:973–977. doi: 10.1126/science.1380182, PMID: 1380182

Saito K, Araki Y, Kontani K, Nishina H, Katada T. 2005. Novel role of the small GTPase Rheb: its implication in
endocytic pathway independent of the activation of mammalian target of rapamycin. Journal of Biochemistry
137:423–430. doi: 10.1093/jb/mvi046, PMID: 15809346

Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. 2008. The Rag GTPases
bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501. doi: 10.1126/science.
1157535, PMID: 18497260

Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong Xian-ping, Yu T, Lieberman AP, Showalter HD, Xu H, Yao
S, Dibble XP, Dong T, Yu AP. 2012. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP
channel and lysosomal calcium release. Nature Communications 3:731. doi: 10.1038/ncomms1735

Shen D, Wang X, Xu H. 2011. Pairing phosphoinositides with calcium ions in endolysosomal dynamics:
phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of
calcium channels in the endolysosomes. BioEssays : News and Reviews in Molecular, Cellular and
Developmental Biology 33:448–457. doi: 10.1002/bies.201000152, PMID: 21538413

Venkatachalam K, Wong CO, Montell C. 2013. Feast or famine: role of TRPML in preventing cellular amino acid
starvation. Autophagy 9:98–100. doi: 10.4161/auto.22260, PMID: 23047439

von Manteuffel SR, Gingras AC, Ming XF, Sonenberg N, Thomas G. 1996. 4E-BP1 phosphorylation is mediated
by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. PNAS 93:4076–4080.
doi: 10.1073/pnas.93.9.4076

Wang W, Gao Q, Yang M, Zhang X, Yu L, Lawas M, Li X, Bryant-Genevier M, Southall NT, Marugan J, Ferrer M,
Xu H. 2015. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient
starvation. PNAS 112:E1373–E1381. doi: 10.1073/pnas.1419669112

Wei H, Wei W, Bredesen DE, Perry DC. 1998. Bcl-2 protects against apoptosis in neuronal cell line caused by
thapsigargin-induced depletion of intracellular calcium stores. Journal of Neurochemistry 70:2305–2314.
doi: 10.1046/j.1471-4159.1998.70062305.x, PMID: 9603195

Wong CO, Li R, Montell C, Venkatachalam K. 2012. Drosophila TRPML is required for TORC1 activation. Current
Biology 22:1616–1621. doi: 10.1016/j.cub.2012.06.055, PMID: 22863314

Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:471–484. doi: 10.
1016/j.cell.2006.01.016, PMID: 16469695

Xu J, Dang Y, Ren YR, Liu JO. 2010. Cholesterol trafficking is required for mTOR activation in endothelial cells.
PNAS 107:4764–4769. doi: 10.1073/pnas.0910872107

Li et al. eLife 2016;5:e19360. DOI: 10.7554/eLife.19360 15 of 16

Short report Biochemistry

http://dx.doi.org/10.1242/jcs.01370
http://dx.doi.org/10.1016/j.cyto.2013.03.011
http://dx.doi.org/10.1016/S0092-8674(02)00808-5
http://www.ncbi.nlm.nih.gov/pubmed/12150925
http://dx.doi.org/10.1016/S1097-2765(03)00114-X
http://www.ncbi.nlm.nih.gov/pubmed/12718876
http://dx.doi.org/10.1038/ncb1753
http://dx.doi.org/10.1038/nprot.2009.22
http://dx.doi.org/10.1016/j.cell.2012.03.017
http://dx.doi.org/10.1016/j.cell.2012.03.017
http://www.ncbi.nlm.nih.gov/pubmed/22500797
http://dx.doi.org/10.1074/jbc.270.31.18531&x00A0;
http://www.ncbi.nlm.nih.gov/pubmed/7629182
http://dx.doi.org/10.1038/nm.1876
http://dx.doi.org/10.1016/j.cub.2005.02.053
http://www.ncbi.nlm.nih.gov/pubmed/15854902
http://www.ncbi.nlm.nih.gov/pubmed/1832668
http://dx.doi.org/10.1038/ncb3114
http://dx.doi.org/10.1128/MCB.01285-12
http://www.ncbi.nlm.nih.gov/pubmed/23129808
http://dx.doi.org/10.1126/science.1380182
http://www.ncbi.nlm.nih.gov/pubmed/1380182
http://dx.doi.org/10.1093/jb/mvi046
http://www.ncbi.nlm.nih.gov/pubmed/15809346
http://dx.doi.org/10.1126/science.1157535
http://dx.doi.org/10.1126/science.1157535
http://www.ncbi.nlm.nih.gov/pubmed/18497260
http://dx.doi.org/10.1038/ncomms1735
http://dx.doi.org/10.1002/bies.201000152
http://www.ncbi.nlm.nih.gov/pubmed/21538413
http://dx.doi.org/10.4161/auto.22260
http://www.ncbi.nlm.nih.gov/pubmed/23047439
http://dx.doi.org/10.1073/pnas.93.9.4076
http://dx.doi.org/10.1073/pnas.1419669112
http://dx.doi.org/10.1046/j.1471-4159.1998.70062305.x
http://www.ncbi.nlm.nih.gov/pubmed/9603195
http://dx.doi.org/10.1016/j.cub.2012.06.055
http://www.ncbi.nlm.nih.gov/pubmed/22863314
http://dx.doi.org/10.1016/j.cell.2006.01.016
http://dx.doi.org/10.1016/j.cell.2006.01.016
http://www.ncbi.nlm.nih.gov/pubmed/16469695
http://dx.doi.org/10.1073/pnas.0910872107
http://dx.doi.org/10.7554/eLife.19360


Yan L, Findlay GM, Jones R, Procter J, Cao Y, Lamb RF. 2006. Hyperactivation of mammalian target of rapamycin
(mTOR) signaling by a gain-of-function mutant of the Rheb GTPase. Journal of Biological Chemistry 281:
19793–19797. doi: 10.1074/jbc.C600028200, PMID: 16728407

Yan Y, Flinn RJ, Wu H, Schnur RS, Backer JM. 2009. hVps15, but not Ca 2+ /CaM, is required for the activity and
regulation of hVps34 in mammalian cells. Biochemical Journal 417:747–755. doi: 10.1042/BJ20081865

Zhou X, Lin DS, Zheng F, Sutton MA, Wang H. 2010. Intracellular calcium and calmodulin link brain-derived
neurotrophic factor to p70S6 kinase phosphorylation and dendritic protein synthesis. Journal of Neuroscience
Research 88:1420–1432. doi: 10.1002/jnr.22321, PMID: 20029971

Li et al. eLife 2016;5:e19360. DOI: 10.7554/eLife.19360 16 of 16

Short report Biochemistry

http://dx.doi.org/10.1074/jbc.C600028200
http://www.ncbi.nlm.nih.gov/pubmed/16728407
http://dx.doi.org/10.1042/BJ20081865
http://dx.doi.org/10.1002/jnr.22321
http://www.ncbi.nlm.nih.gov/pubmed/20029971
http://dx.doi.org/10.7554/eLife.19360

