
*For correspondence: iwitten@

princeton.edu

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 16

Received: 11 July 2016

Accepted: 15 September 2016

Published: 16 September 2016

Reviewing editor: Naoshige

Uchida, Harvard University,

United States

Copyright Akhlaghpour et al.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Dissociated sequential activity and
stimulus encoding in the dorsomedial
striatum during spatial working memory
Hessameddin Akhlaghpour1, Joost Wiskerke1,2, Jung Yoon Choi1,2,
Joshua P Taliaferro1, Jennifer Au1, Ilana B Witten1,2*

1Princeton Neuroscience Institute, Princeton University, Princeton, United States;
2Department of Psychology, Princeton University, Princeton, United States

Abstract Several lines of evidence suggest that the striatum has an important role in spatial

working memory. The neural dynamics in the striatum have been described in tasks with short

delay periods (1–4 s), but remain largely uncharacterized for tasks with longer delay periods. We

collected and analyzed single unit recordings from the dorsomedial striatum of rats performing a

spatial working memory task with delays up to 10 s. We found that neurons were activated

sequentially, with the sequences spanning the entire delay period. Surprisingly, this sequential

activity was dissociated from stimulus encoding activity, which was present in the same neurons,

but preferentially appeared towards the onset of the delay period. These observations contrast

with descriptions of sequential dynamics during similar tasks in other brains areas, and clarify the

contribution of the striatum to spatial working memory.

DOI: 10.7554/eLife.19507.001

Introduction
One of the most fundamental components of cognition is working memory, the ability to remember

information over short periods of time and use the memory to guide ongoing behavior (Badde-

ley, 1992, 2003; Cowan, 2008). Given the fundamental nature of working memory, much effort has

been invested in studying its underlying neural mechanisms, and several cortical regions have

emerged as important contributors. For example, neural activity in prefrontal and parietal cortex

encodes stimuli during the delay period of working memory tasks, suggesting these areas contribute

to maintaining the memory (Arnsten, 2011; Baeg et al., 2003; Erlich et al., 2015; Funahashi et al.,

1989; Fuster and Alexander, 1971; Guo et al., 2014; Hanks et al., 2015; Harvey et al., 2012;

Horst and Laubach, 2012; Jung et al., 1998; Kojima and Goldman-Rakic, 1982; Lak et al., 2014;

Powell and Redish, 2014; Romo et al., 1999; Schoenbaum and Eichenbaum, 1995; Shadlen and

Newsome, 2001; Spellman et al., 2015; Wang et al., 2013b; Yoon et al., 2008).

However, working memory is not implemented merely in cortex, but instead emerges from the

interaction between cortical and subcortical areas (Floresco et al., 1997; Kopec et al., 2015;

Parnaudeau et al., 2013), with the striatum as a key subcortical region. For example, human imag-

ing studies have noted increased activation of the striatum during working memory tasks

(Chang et al., 2007; Lewis et al., 2004; Olesen et al., 2004; Postle and D’Esposito, 1999). In addi-

tion, in the primate caudate, metabolic activity and single cell recordings point to elevated activity

during spatial working memory (i.e. tasks that involve a memory for location) (Kermadi and Joseph,

1995; Levy et al., 1997). Finally, electric stimulation or lesions of the primate caudate, as well as

pharmacological silencing of the analogous region in rats, the dorsomedial striatum (DMS), leads to

disruptions of spatial working memory (Balleine and O’Doherty, 2010; Cohen, 1972; Mordvi-

nov, 1981; Rosvold and Delgado, 1956; Spencer et al., 2012; Stamm, 1969).
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Neural correlates of working memory in the striatum have been characterized in the case of rela-

tively short delay period (1–4 s), but less is known about striatal dynamics in the case of longer delay

periods (Antzoulatos and Miller, 2011; Chiba et al., 2015; Hikosaka et al., 1989; Histed et al.,

2009; Kawagoe et al., 1998; Kermadi and Joseph, 1995; Pasupathy and Miller, 2005). This is a

significant knowledge gap, given that animals (and humans) can remember stimuli over many sec-

onds in real world situations.

We sought to answer several questions in this study. First, is sustained delay-period activity a fea-

ture of striatal activity in the case of long delay periods (>4 s), as has been observed in primates for

short delay periods (1–4 s)? (Hikosaka et al., 1989; Kawagoe et al., 1998; Schultz and Romo,

1988; Schultz et al., 1994) If so, does that activity encode the memory of the stimulus throughout

the delay period?

Another possibility is that there is sequential transient activation of neurons in the striatum during

the delay period. This is a reasonable hypothesis, given that (1) memory-encoding sequences have

been observed in cortical and hippocampal areas in working memory tasks (Fujisawa et al., 2008;

Harvey et al., 2012; Horst and Laubach, 2012; MacDonald et al., 2013; Pastalkova et al., 2008),

and (2) the striatum is known to exhibit sequential activity in tasks that do not directly involve work-

ing memory (Lustig et al., 2005; Matell and Meck, 2000, 2004; Mello et al., 2015). If we do

observe sequences during a working memory task, do those sequences encode the memory of the

stimulus throughout the delay period, as has been observed in other brain regions?

To address these questions and characterize striatal dynamics during working memory, we

trained rats to perform a spatial working memory task that involved long delay periods (up to 10 s).

We recorded single unit activity during this task from the DMS, a region involved in spatial working

memory and other related aspects of cognition (Corbit and Janak, 2007; Jin et al., 2014;

Kimchi and Laubach, 2009; Ragozzino et al., 2002; Stalnaker et al., 2010; Wang et al., 2013a;

Yin et al., 2005). We used information theoretic analyses and population decoding to characterize

the neural dynamics in the recorded population.

Results

Behavioral performance
Rats were trained on an operant delayed non-match to position (DNMP) task (Figure 1A,B)

(Dunnett et al., 1988). At the beginning of each trial, a sample lever would appear in one of two

possible locations on the front wall of the chamber. The rat was required to press the sample lever,

at which point the lever would retract into the wall and the delay period began. The end of the delay

period was signaled by the illumination of the nose port on the back wall of the chamber (delay

period duration of 1 s, 5 s, or 10 s, determined randomly). During the delay period, the nose port

remained inactive (i.e. the light in the nose port remained off and nose-poking has no effect), and

the rats spent the majority of their time at the nose port (Figure 1B, bottom-center panel; Figure 1—

figure supplement 1A), waiting for the variable length delay period to terminate. After the illumina-

tion of the nose port, the rat was then required to place its nose into the illuminated port in order

for both levers to appear in the front wall of the chamber. If the rat subsequently pressed the choice

lever that did not match the initial sample lever (’non-match’), it would receive a liquid reward in a

central receptacle (Figure 1A–B).

Of note, the rats’ accuracy in this task declined with the length of the delay period (p<10–4

repeated measures ANOVA, Figure 1C). This delay-dependence provides validation that the short-

term memory component of the task played a role in the rats’ performance, as expected in a work-

ing memory task.

In addition, omission rates and response latencies during the task revealed that the rats were

highly engaged during the course of each trial. Omission rates were low regardless of the length of

the delay period (<10%, Figure 1—figure supplement 1B). In addition, median response latencies

were short for all subjects for all 3 types of response (Figure 1D; median sample press latency

< 3.5 s, median nose-poke latency < 1 s, median choice press latency < 3.5 s).

To determine if neural activity in the DMS contributed to performance of the DNMTP task, we

inactivated the DMS using the GABAA agonist muscimol, while rats performed the task (Figure 2A).

We found a significant decline in choice accuracy with the infusion of muscimol in comparison to the
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Figure 1. Delayed non-match to position (DNMP) task. (A) Schematic illustration of the task structure. A trial starts

with the presentation of the sample lever at one of two locations (’sample press’). By pressing the sample lever,

the rat initiates the delay period (1 s, 5 s, or 10 s duration). At the end of the delay period, the nose port on the

back wall of the chamber is activated, and by entering the port (i.e. nose-poking), both levers are presented. By

pressing the lever that does not correspond to the sample lever at the beginning of the trial (i.e. choice press), the

rat receives a reward; pressing the other lever results in a timeout (T/O). (B) Top: Schematic illustration of the

chamber and the rat’s position at the time of the sample lever press (left), the delay period (middle), and the

choice lever press (right). Bottom: Occupancy-map of the rats’ head position for right-sample trials at the time of

the sample lever press (time window from 250 ms before to 250 ms after lever press), delay period (center, time

window is the entire delay period for 10 s delay period trials only), and choice lever press (right, time window from

250 ms before to 250 ms after lever press). Occupancy-maps were generated by averaging the occupancy-maps of

the 9 rats used in the electrophysiology experiments. Individual occupancy-maps were calculated by binning the

head positions over the respective time windows into 0.5”� 0.5” tiles (covering the 9.5”�12” chamber). (C)

Accuracy is delay dependent, decreasing as the duration of the delay period increases (p<10–4). Solid black line

represents mean accuracy, and dotted grey lines represent the accuracy for each individual rat. Accuracy was

calculated from the final recording session. (D) Response latency for each individual rat for sample press (time

from sample presentation to sample press), nose-poke (time from nose port activation to nose-poke), and choice

press (time from choice presentation to choice press). Center of each boxplot represents the median, edges

correspond to 25th and 75th percentile, and whiskers correspond to fifth and 95th percentile.

Figure 1 continued on next page
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infusion of saline (Figure 2B–C: p<0.001 effect for infusion day, repeated measures ANOVA, n = 7).

Importantly, muscimol infusion had no significant effect on median response latencies for rats,

suggesting minimal motor impairment (Figure 2D). We also examined the effects of muscimol on

the number of trials performed, sample omission rates, trial abort rates, sample bias, and choice

bias and found that none of these measures were significantly affected by DMS inactivation across

the population (Figure 2—figure supplement 1, Wilcoxon signed rank test, n = 7). However, a sub-

set of rats did perform fewer trials when treated with muscimol, which is consistent with the DMS

being implicated in motivation or response vigor (Wang et al., 2013a).

Sequential activation of neurons
Spiking activity for 105 neurons was isolated from the DMS of 9 rats (summary of electrode localiza-

tions in Figure 3A). Between 5 and 25 units were recorded in each subject (Figure 3B, inset). The

average firing rates of these units tended to be low (population mean < 6 Hz) (Figure 3B), consistent

with previous reports of medium spiny neurons in the dorsal striatum (Berke, 2008; Berke et al.,

2004; Mallet et al., 2005).

To determine if and how the neurons’ firing rates evolved during the course of a trial, we exam-

ined the time-varying firing rate of each neuron relative to the onset of the delay period. The

recorded units displayed a diversity of firing rate patterns; for instance, the example unit depicted in

Figure 4A showed a transient peak in its firing rate a few seconds into the delay period. In order to

visualize the activity across the neural population, we ordered the units by the time of the peak firing

rate for the 10 s delay trials, and then generated firing rate heat-maps for 1 s, 5 s, and 10 s delay-

Figure 1 continued

DOI: 10.7554/eLife.19507.002

The following figure supplement is available for figure 1:

Figure supplement 1. Behavior during the delayed non-match to sample task.

DOI: 10.7554/eLife.19507.003
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Figure 2. Inactivation of dorsomedial striatum (DMS) impairs accuracy during the DNMP task. (A) Red circles with blue fillings represent location of

injection cannula tips as revealed by post-mortem histological analysis. (B) Muscimol infusion in DMS impairs accuracy when compared to infusion of

saline (p<0.001; effect of muscimol repeated measures ANOVA, no significant interaction effect between delay length and infusion day). Error bars are

± 1 SEM across 7 rats. (C) Accuracy was significantly impaired for the 5 s and 10 s delay trials (*p<0.05; Wilcoxon signed rank test) but not for 1 s delay

trials (p=0.38; Wilcoxon signed rank test, n=7 rats). (D) No signficant effect of DMS inactivation on median response latency for sample press

(top, p=0.58), nose-poke (middle, p=0.28), and choice press (bottom, p=0.92; Wilcoxon signed rank test, n=7 rats).

DOI: 10.7554/eLife.19507.004

The following figure supplement is available for figure 2:

Figure supplement 1. Additional behavioral measures were not signficantly effected by muscimol treatment.

DOI: 10.7554/eLife.19507.005
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Figure 3. Electrophysiological recording of neural activity in the dorsomedial striatum (DMS). (A) Red circles with

blue fillings correspond to location of DMS electrode array tips in 9 rats. Electrodes array rows were oriented in

the A/P direction to span a length of 1.6 mm, centered at A/P: 1.2 mm. Inset: Example image of electrode lesions

in DMS (blue DAPI stain; 1 mm scale bar). (B) Histogram of mean firing rate of 105 isolated units. Inset: number of

units isolated from each rat.
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10 s, 5 s, and 1 s delays, aligned to the onset of the delay period. Each row is a single unit. Rows in all three plots were sorted by the peak
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DOI: 10.7554/eLife.19507.007

The following figure supplements are available for figure 4:

Figure supplement 1. Presence of sequential activity when controlling for position, and when aligning to event markers other than delay period onset.

DOI: 10.7554/eLife.19507.008

Figure supplement 2. Ridge-to-background analysis to quantify the presence of firing rate sequences.

DOI: 10.7554/eLife.19507.009
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duration trials (Figure 4B). Neurons displayed sequential peaks of activity that spanned the entirety

of the 10 s long delay period (Figure 4B, left panel). The firing rates for the shorter delay trials dis-

played similar sequential activity throughout the delay period (Figure 4B, middle and right panel),

when ordered based on the peak times for the 10 s delay-duration trials (p<10–7, Spearman correla-

tion test between peak times of 5 s-delay trials and 10 s-delay trials). Note, by design, only neurons

that were engaged during the first 1 s or 5 s of the 10 s-long delay period could be part by the

sequence for the shorter delay trials, which is why the sequences involved fewer neurons for the

shorter delay periods.

To further validate and characterize the finding of sequential firing rate peaks, we repeated the

same analysis after randomly shifting the time of the recorded spikes and the behavioral timestamps

for each neuron (Figure 4C). The shifted data (Figure 4C) differed substantially from the non-shifted

data (Figure 4B), confirming that the activity sequences that we observed were not an artifact of

ordering the activity based on the peak response. In the shifted data, sequences were non-existent

in the 5 s and 1 s duration trials and there was no correlation between the order of the peak firing

rate for the 10 s delay-duration trials and for the 5 s delay-duration trials (p=0.29, Spearman correla-

tion test). As another method to quantify the presence of sequential firing rate activity, we calculated

the ridge-to-background ratio (Harvey et al., 2012; see Materials and methods). Ridge to-back-

ground ratios were significantly greater than chance level for all delay period lengths (Figure 4—fig-

ure supplement 1A, p<0.001; one tailed test using the ratios from the randomly shifted data as the

null distribution).

In comparison to the shifted data, the distribution of peak firing rate times in the real data

revealed a bias towards the onset of the delay period (Figure 4—figure supplement 2E). In other

words, although the sequences spanned the delay period, there were more peaks towards the

beginning of the delay period relative to what would be expected by chance (p<0.01, Wilcoxon rank

sum test).

Because the rats were not stationary during the entirety of the delay period, the possibility arises

that the sequences were in fact a byproduct of neural selectivity for position or movement. To con-

trol for this possibility, we re-calculated the sequences while using only the subset of time during

which the rats were positioned in front of the nose port (Figure 4—figure supplement 2A–D). We

found that even when controlling for the rats’ position by excluding times that they were not at the

nose port, sequences were evident that closely matched the sequences based on the full dataset

(Figure 4—figure supplement 2B). Ridge-to-background analysis confirmed that the presence of fir-

ing rate sequences was statistically significant, even when using only data from times when the rat

was at the nose port (Figure 4—figure supplement 1B). We therefore conclude that sequential acti-

vations of DMS neurons are not a by-product of responses to movement or position.

As an additional approach to control for the possibility that sequential firing activity might be due

to position and locomotion selectivity, we found that time in the delay period is a significant predic-

tor of neural activity, even when taking into account position/locomotion variables as alternative pre-

dictors. More specifically, we modeled each neuron’s spiking activity using two generalized linear

models (GLMs), one with position related predictors only (i.e. head position, head direction, and

velocity – all calculated using head tracking) and the other with both the position-related predictors

as well as time from the delay period onset as a predictor (see Materials and methods for details).

Time from delay onset significantly improves the model in 80% of the neurons (84/105) in compari-

son to a model with only the position/locomotor variables (p<10–4, likelihood ratio test comparing

models with and without time from delay period as predictor). This demonstrates that the time-

dependent changes in firing rates during the delay period cannot be accounted for by position or

the other variables we tested. Note that sequences were not specific to the delay period, as we

observed similar sequential activation of neurons when time-locking to other task events (Figure 4—

figure supplement 2F, Figure 4—figure supplement 1C).

Transient encoding of the sample stimulus
To determine how firing rate sequences during the delay period relates to the sample lever selectiv-

ity of the neurons, we compared neural activity for trials when the sample lever was in the right ver-

sus the left location, excluding error trials and omission trial. Individual neurons exhibited different

patterns of sample selectivity (Figure 5A). One example neuron displayed no choice-selective modu-

lation (left panels, Figure 5A), another neuron was only activated during right sample trials (middle
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panels, Figure 5A), and finally a neuron displayed different patterns of activation for left and right

sample lever trials (right panels, Figure 5A).

Given the diversity of responses in individual neurons, we turned to mutual information as a

method to quantify the amount of information about the sample stimulus encoded in the firing rate

as a function of time (Borst and Theunissen, 1999; Dayan and Abbott, 2001; Rieke et al., 1999).

We calculated the time-varying mutual information between the sample stimulus and the spike trains

of individual neurons (within a 0.5 s sliding window), by assuming that spiking of each neuron is a

Poisson point process with a time varying rate determined by the sample stimulus and time from the

delay onset (see Materials and methods for details). We found many neurons showed transient infor-

mation peaks (e.g. example neurons 2 and 3 in Figure 5A). To determine if these peaks were statisti-

cally significant, we calculated the distribution of the maximum information across the entire delay
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of sample information as a function of time for the 53 neurons that had significant information peaks within the 10 s delay period (p<0.01; one-tailed

test using shuffled data for null distribution of peak information within the 10 s delay period). Right: Heat-map showing z-scored firing rates of the same

neurons depicted in the left plot. Neurons in both the left and right panels are sorted by the peak firing rate in the delay period, such that a neuron on

the left plot appears in the same row in the right plot. (C) Time of peak sample information plotted against the time of peak firing rate for 53 sample

encoding neurons (where 0 corresponds to the onset of the delay period). The data reveals sample information peaks times occur earlier than firing rate

peak times (p<0.001; Wilcoxon signed rank test), and a lack of correlation between the time of peak firing rate and time of peak sample information

(r=0.06, p=0.69; Pearson correlation test). All panels are calculated using 10 s-delay correct trials only.

DOI: 10.7554/eLife.19507.010
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period that would be expected by chance for each neuron by repeatedly shuffling the labels specify-

ing whether a trial had a left or a right sample and recalculating the mutual information. A neuron

was considered to significantly encode the sample stimulus during the delay period if its peak sam-

ple information was larger than the 99th percentile of that distribution (green shaded area in the

bottom panels of Figure 5A). By this criteria, 53 of the 105 neurons showed significant encoding of

the sample stimulus at some point during the delay period (p<0.01) with peak information values

ranging between 0.07 to 0.69 bits (average peak information was 0.34 bits).

To compare firing rate sequences to stimulus encoding across the recorded population, we com-

pared the time-varying firing rate alongside the sample information for the subset of neurons that

encoded the stimulus significantly at some point in the delay period (Figure 5B). Surprisingly, the

sample information peaks did not display a sequential organization to match the peak firing rate

sequence. In fact, the time of the peak sample information did not correlate significantly with the

peak firing rate time (Figure 5C, Pearson correlation test; r=0.06, p=0.69). In fact, sample informa-

tion most often peaked towards the onset of the delay period, with more than 80% of the stimulus

encoding neurons (45/53) displaying peak information within the first 2 s of the delay period. On

average, peak sample information was significantly earlier than peak activity (p<0.001; Wilcoxon

signed rank test. Only neurons with significant information peaks were considered for this analysis).

We found that individual neurons encode the sample stimulus at specific times in the delay

period, and that for many neurons sample encoding was strongest towards the beginning of the

delay period (Figure 5). To quantify how sample encoding in the DMS changes throughout the

course of the trial we constructed a population decoder that takes spiking activity of all the recorded

neurons within a 500 ms sliding window and evaluated its performance using leave-one-out cross val-

idation (Brown et al., 2004; Gerwinn et al., 2009; Ma et al., 2006; Pouget et al., 2003;

Quian Quiroga and Panzeri, 2009). (In order to combine neurons across rats, we create pseudo-tri-

als; see Materials and methods). This provided us with a time varying sample decoding accuracy rep-

resenting how well DMS neurons encode the sample stimulus at different parts of the delay period

(Figure 6). In agreement with our findings from Figure 5, sample decoding was highest at the onset

of the delay period (at the time of sample lever press) and declined over the course of the delay

period (Figure 6A).

In order to compare the neural code in DMS for correct and error trials, we calculated the output

of the decoder on error trials (after the decoder was trained on correct trials). This allowed us to

determine when in the trial neural activity encoded the identity of the sample versus the identity of

the choice. This distinction is difficult to make without analysis of error trials, because in correct trials

the sample and choice levers perfectly predict one another. Given that the decoder for error trials is

trained on correct trials only, a significantly lower than chance level decoding accuracy for error trials

means higher than chance level encoding of the choice lever. The accuracy of decoding error trials

was high towards the beginning of the delay period, quickly dropped and stayed at chance level

throughout most of the delay period, and fell below chance near the choice lever press time

(Figure 6B). This means that neural activity around the time of the sample lever press encodes the

sample lever identity, as opposed to the rat’s future choice. In contrast, at the time of the choice

lever press, neural activity encoded the identity of the choice lever, as opposed to the sample

identity.

Given that rats are allowed to move freely during the delay period, we considered the possibility

that sample encoding early in the delay period (Figure 5B and Figure 6) may simply be a result of

encoding of different positions/motor actions across left and right sample trials. To address this, we

examined a time point during the delay period during which the movement trajectories converge for

left and right sample trials. Following the sample press, rats typically move to the opposite wall and

wait in front of the nose port for the delay period to end (Figure 1—figure supplement 1A). Instead

of aligning trials to the beginning of the delay period (i.e. the sample lever press), we aligned trials

to the moment the rats first arrived at the nose port, and excluded the small subset of trials in which

they left the nose port within 1.5 s of the nose port arrival. We show that head position is very similar

across left and right sample trials following nose port arrival (Figure 6—figure supplement 1A), yet

our population decoder was able to decode the sample stimulus with high accuracy, even during the

first 1.5 s when the rat strictly maintains its head position in front of the nose port (Figure 6—figure

supplement 1B). This is important as it provides evidence of memory encoding within striatal neu-

rons during the delay period while controlling for the rats’ position on left versus right sample trials.
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In an alternative approach to determine if the sample memory is present in DMS activity in a form

beyond encoding of position/locomotion, we sought to test how well the sample stimulus can

improve predictions of firing patterns when including other variables as predictors. Towards this

end, we modeled each neuron’s spiking activity using two generalized linear models (GLMs), one

with position/locomotion related predictors only and the other with both task-related and position/

locomotion related predictors. The position/locomotion predictors we used were head position,

head direction, and head velocity and the task-related variables were time from delay period onset,

sample stimulus of current trial, and the interaction between time and sample stimulus. We per-

formed a nested model likelihood ratio test for each neuron to compare the two models, to deter-

mine if the addition of the sample memory related variables improved the model (see Materials and

methods for details). For more than 90% of neurons (95/105), the model significantly improved when

including the sample memory related variables (p<0.0001; Pearson’s chi-squared test). These neu-

rons included 51 of the 53 sample encoding neurons identified through the mutual information anal-

ysis (Figure 5B–C).

As a final approach to address position differences between left and right sample trials, we con-

sidered the possibility that differences between the left-sample and right-sample spiking patterns

may be due to the fact that the rat is simply in different locations or performing different actions in

the two conditions. In order to determine if neurons are encoding the identity of the sample lever

rather than motor actions or location in the chamber, we took advantage of the task design in that

the rats performed the same lever pressing action at the same location but in different contexts of

the task, i.e. either in the sample phase or the choice phase. More specifically, if striatal neurons only

encode the action or the location, we would not to expect to see differences in the neural coding

for sample lever presses and choice lever presses. Note that the rats’ head position is very similar at

the time of sample and choice lever presses (Figure 7A).
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Figure 6. Performance of population decoder for sample lever identity. (A) Accuracy of decoding sample lever

from population spiking data within a 0.5 s-wide sliding window in 10 s-delay correct trials. Decoder was trained

on 10 s-delay correct trials and evaluated using leave-one-out cross validation. (B) Same as A but decoding 10 s-

delay error trials. Decoder was trained on all 10 s-delay correct trials. In both panels, the dotted lines marked

with’nose-poke’ marks the median time of nose-poke, and the dotted line marked as ’choice press’ marks the

median time of choice press. Shaded area represents ± 1 SEM.

DOI: 10.7554/eLife.19507.011

The following figure supplement is available for figure 6:

Figure supplement 1. Encoding of sample lever when controling for head position.

DOI: 10.7554/eLife.19507.012
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We found that many neurons differentiate between sample and choice presses in their encoding

of lever identity. For instance, the example neuron in Figure 7B responds to right sample presses

but not right choice presses. Such a dramatic difference cannot be explained merely as a result of

encoding of motor actions, location, or body position since the rat performs the same action at a

similar location but we observe very different neural responses. Much like the example neuron in

Figure 7B, across the population of recorded neurons, some neurons preferentially encoded lever

identity during the sample press while others encoded the lever identity during the choice press

(Figure 7C). There was significantly more dispersion in the difference between sample and choice

information than expected by chance (inset in Figure 7C, p<10–5; two sample F-test for equality of

variance for (sample information – choice information) in shuffled versus non-shuffled data). This

analysis supports the conclusion that DMS firing patterns are not merely reflecting position or motor

actions.

Discussion
We characterized neural dynamics in the DMS during spatial working memory and found that neu-

rons were sequentially activated throughout the course of the delay period. The sequential activity

was dissociated from memory-encoding activity, which was present in the same neurons, but tended

to occur earlier in the delay period. In other words, the time that a neuron most strongly encoded

the sample stimulus during the delay period was not predictive of the time that it was most active.

Insights into the striatal dynamics underlying working memory
We employed two different methods to quantify the encoding of the sample stimulus during the

delay period. The first method was to quantify the mutual information between the sample stimulus
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an obvious difference in its encoding of lever side between the sample and choice presses. (C) Neurons differentiate between sample and choice
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and the firing patterns for each individual neuron (Figure 5B), which revealed strong sample stimulus

encoding at the onset of the delay period and less encoding during the delay period. The second

method (Figure 6A) was to measure our ability to decode the sample stimulus from the entire neural

population as a function of time during the delay period. The second method revealed perfect

decoding accuracy at the onset of the delay period and greater than chance level accuracy during

most of the delay period. Both approaches demonstrated that the sample stimulus is encoded

strongly at the onset of the delay period and that stimulus encoding declines noticeably with either

measure by 2 s into the delay period. Stronger stimulus encoding toward the onset of the delay

period has been reported in studies of primate cortical regions, although those studies did not com-

pare sample stimulus encoding to sequential firing activity (Brody et al., 2003; Bruce et al., 1985;

Clark et al., 2012; Colby et al., 1996; Gregoriou et al., 2012; Romo et al., 1999).

Our experiments differed from most previous work in that we employed relatively long delay peri-

ods (up to 10 s). Considering that sample information in the DMS decreased substantially within sev-

eral seconds (Figure 5B and Figure 6A), the transient nature of stimulus encoding would have been

less obvious if our task had only employed substantially shorter delay periods. Instead, the activity

would have been better described as sustained memory-encoding activity. Indeed, previous record-

ings in primates have reported sustained delay period activity that encodes short-term memory in a

subset of caudate neurons with delay periods of 2–4 s (Hikosaka et al., 1989; Kawagoe et al.,

1998; Schultz and Romo, 1988; Schultz et al., 1994). In our study, we observed some neurons with

stimulus encoding during the delay period that persisted for several seconds, in agreement with

prior work. However, no single neuron was found to encode the sample stimulus for the entire dura-

tion of the delay period (Figure 5B).

A strength of our task design is that it allowed us to compare the same motor action (i.e. lever

pressing) in different contexts within the trial (Figure 7). This revealed that striatal neurons differen-

tially encode the sample press and the choice press, and that encoding of the same action is depen-

dent on the context of the action within the task. This supports the idea that the striatum is involved

in encoding memories of task-related variables, and not merely encoding the rats’ position or move-

ment during the task.

Unlike most prior work performed in head-fixed primates, our rats were freely moving. Thus, we

performed several analyses to control for the possibility that our conclusions of sequential firing rate

activity or transient stimulus encoding was a result of motor or position confounds. This included

analyzing data from times that the rat was in the nose port (Figure 4—figure supplement 2A–D

and Figure 6—figure supplement 1), as well as showing that task-relevant variables remained a sig-

nificant predictor of neural activity in the vast majority of neurons, even when accounting for move-

ment or position with a generalized linear model (GLM). However, motor and position confounds

may have been even more strongly excluded had we instead used a task design that restricts move-

ment of the rat during the delay period. Additionally, in our task design the correct choice of a trial

can be determined from the onset of the delay period, making it difficult to distinguish encoding of

the memory of the sample stimulus from encoding of future motor actions (’retrospective’ versus

’prospective’ memory). A more sophisticated task design that enabled dissociation of stimulus

encoding and pre-motor activity could have allowed us to make even stronger conclusions about

memory encoding.

Relevance to theoretical models of the striatal contribution to working
memory
Different theories have been proposed to explain how the striatum contributes to working memory.

For example, it has been suggested that the striatum may be involved in initiating the storage of

new memories in cortical networks, an idea often referred to as ’gating’ (Baier et al., 2010;

Frank et al., 2001; Gruber et al., 2006; O’Reilly and Frank, 2006; Braver and Cohen 2000).

According to this idea, the striatum plays a role in selecting cortical memory buffers that are to be

updated and determines the time memory updating occurs, similar to the role the striatum is

thought to play in initiating and selecting motor actions (Bailey and Mair, 2006; Bhutani et al.,

2013; Grillner et al., 2005; Kropotov and Etlinger, 1999; Mink, 1996). The gating model ascribes

a crucial role to the striatum at the onset of the delay period, when new information must be stored

in short-term memory buffers (Baier et al., 2010; Frank et al., 2001; Gruber et al., 2006;

O’Reilly and Frank, 2006; Braver and Cohen 2000). Interestingly, our data emphasizes the

Akhlaghpour et al. eLife 2016;5:e19507. DOI: 10.7554/eLife.19507 11 of 20

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.19507


importance of the striatum at the beginning of the delay period, as the stimulus is most strongly

encoded during that period.

However, another possibility is that DMS is contributing to maintaining the short-term memory.

Although the accuracy of our population decoder decreases substantially during the course of the

delay period, the decoding accuracy near the end of the delay period is roughly comparable to

behavioral performance even at the 10 s delays (Figure 1C and Figure 6A), indicating that activity in

the DMS might be sufficient to support the animal’s behavior. As another possibility, the DMS could

assist cortical areas in maintaining the memory throughout the delay period, irrespective of holding

the content of the memory. Memory encoding activity in cortex often appears as persistent elevated

activity or sequential activations of neurons (Baeg et al., 2003; Cromer et al., 2011; Fujisawa et al.,

2008; Fuster and Alexander, 1971; Hanks et al., 2015; Harvey et al., 2012; Horst and Laubach,

2012; Kojima and Goldman-Rakic, 1982; MacDonald et al., 2013; Pastalkova et al., 2008;

Powell and Redish, 2014; Schoenbaum and Eichenbaum, 1995), which may be implemented using

positive feedback through distributed cortico-striato-thalamic loops (Alexander et al., 1986;

Houk and Wise, 1995; Middleton and Strick, 2000, 2002; Wang, 2001). In this view, the sequen-

tial activity that spans the delay period in DMS could play a role in exciting cortical memory buffers

and enabling memory encoding activity there. As yet another possibility, the stimulus memory may

be stored in the striatum in a form that would not be fully detectable in the spiking activity, perhaps

in short-term synaptic plasticity, as suggested by recent theoretical models (Lundqvist et al., 2010;

Mongillo et al., 2008; Stokes, 2015). Future experiments employing transient perturbations of the

striatum at sub-trial temporal precision will help address the question of whether the DMS is more

important for initiating versus maintaining memories.

Relationship to neural dynamics reported in other tasks
Sequential neural activity dynamics have been reported in the striatum in tasks that do not involve

spatial working memory (Lustig et al., 2005; Matell and Meck, 2000, 2004; Mello et al., 2015).

These studies, taken together with our finding that firing rate sequences we observed here were dis-

sociated from stimulus encoding activity (Figure 5B,C), suggests that the delay-period spanning

sequences in DMS support a general role for the striatum in time keeping, rather than a specific role

in working memory.

On a related note, the neural dynamics we observed in the DMS underlying spatial working mem-

ory provide an interesting contrast with previous observations of sequential activity dynamics in

other regions during spatial working memory. In particular, cortical (Astrand et al., 2015;

Cromer et al., 2011; Crowe et al., 2010; Fujisawa et al., 2008; Harvey et al., 2012; Horst and

Laubach, 2012) and hippocampal (MacDonald et al., 2013; Pastalkova et al., 2008) areas display

stimulus encoding sequences that span the delay period. This suggests a different role for the stria-

tum in working memory relative to these other regions. Specifically, cortex and hippocampus may

be involved in maintaining the memory throughout the delay period, whereas the striatum may be

involved in initiating memory storage.

Conclusions
We employed information theoretic analysis and population decoding to reveal that sequential activ-

ity and stimulus encoding are dissociated in the neural dynamics of the striatum during spatial work-

ing memory. Specifically, neurons transiently encoded the stimulus during the onset of the delay

period, whereas the same neurons encoded time with sequential activity throughout the delay

period.

Materials and methods

Behavioral task
Male Long Evans rats (7 for infusion experiments and 9 for recordings) were trained on a delayed

non-match to position (DNMP) spatial working memory task in operant chambers (Figure 1A,B).

There were two retractable levers on the operant chamber front wall (right side of schematic and

heat-maps, Figure 1B). At the beginning of each trial, a sample lever extends out of the wall, (either

on the left or the right side – randomly interleaved). The rat is then required to press that lever, after
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which the lever retracts back into the wall. The rat has to remember the sample lever side for the

duration of the delay period (1 s, 5 s, or 10 s – randomly interleaved). The end of the delay period is

signaled by the illumination of the nose port on the back wall of the chamber (left side of schematic

and heat-maps, Figure 1B). The rat must then poke his nose into the illuminated nose port for both

levers to extend from the front wall of the chamber, and then choose one of the two levers. Follow-

ing a correct lever press, i.e. a choice lever press that does not match the initial sample lever, the rat

is rewarded with 40 ml of milk in the reward receptacle (Figure 1A,B). The rats were given 30 s to

respond to the sample lever, 5 s to respond to the activated at the end of the delay period, and 5 s

to respond to the choice lever. An incorrect lever press or a failure to respond within the time limit,

resulted in a 5 s time-out penalty, during which the house-light is turned off. Trials were followed by

10 s long inter-trial interval (ITI). The task was designed to encourage the rats to spend the delay

period at the nose port. Tracking of head-position confirmed that rats spent the majority of the

delay period in the nose port (Figure 1B center panel and Figure 1—figure supplement 1A). The

rats were kept on a limited food diet to motivate behavior.

Surgical procedure
All procedures were performed in accordance with the university-approved IACUC protocol.

For the cannula implantations, 12 adult Long Evans rats (>300 g) that were previously trained in

the DNMP task were deeply anesthetized and a double guide cannula was implanted bilaterally

above the dorsomedial striatum (DMS) (A/P: 1.2 mm, M/L: ± 1.9 mm, D/V: �5.25 mm, taking into

account the 1.25 mm or 2.75 mm projections of internal cannulas used during injections).

For the electrode implantation, 9 adult Long-Evans rats (>300 g) that had previously undergone

training in the DNMP task were deeply anesthetized and electrode arrays were implanted either uni-

laterally or bilaterally over the DMS. The implants were omnetics based TDT micro-wire arrays, com-

posed of 1–2 rows of 8 polymide insulated tungsten wires (50 mm diameter, with 175 mm spacing

within a row and 500 mm spacing between rows). The DMS was targeted stereotactically (A/P:

1.2 mm, M/L: ± 2.0 mm, D/V: �4.0 to �5.0 mm) and electrodes were oriented so that the length of

the rows went along the anterior/posterior axis. A ground screw was implanted in a posterior loca-

tion on the skull and connected to the ground wire from the array.

Muscimol infusions
After a week of recovery time post-surgery, the rats were retrained on the DNMP task until behavior

re-stabilized. Before each testing session, rats were anesthetized in an induction chamber and were

then moved to a nose cone to maintain anesthesia (with 2% isoflurane) for a total duration of 20–25

min. During this period the cap and dummy cannulae were removed and internal cannulae with

appropriate projection length were inserted into the guide cannula. 600 nl of saline or muscimol

solution was infused at a rate of 200 nl/min. The internal cannula was removed and dummy cannulae

were inserted 4 min after each infusion, to allow the solution to diffuse. Rats were given 20–25 min

of recovery time after the infusion and anesthesia, before being placed in the operant chamber to

begin behavioral testing. To identify the muscimol concentration that was used for testing each rat,

a range of muscimol infusion concentrations (37.5–75 ng) was tested on different days, and the larg-

est concentration for which each rat performed a sufficient number of trials during a session was

identified (at least 50 trials per session). Once the concentration was identified, the rats underwent

two days of additional infusion sessions. On the first day they received an infusion of saline, and on

the second day they received an infusion of the muscimol concentration selected as described

above. Concentration and volume were similar to values used in previous studies (Spencer et al.,

2012; Yin et al., 2005).

Of the 10 implanted rats, 3 rats were not included in the final data set. One rat became sick over

the course of the study. One rat did not perform the task under the range of muscimol concentra-

tions that we infused. And one rat had a brain infection that was evident in the post-mortem histol-

ogy analysis.

In vivo electrophysiological recordings
After a week of recovery time, the rats were retrained on the DNMP task while simultaneously being

habituated to having wires connecting the implant arrays to the TDT 32 channel recording system
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through a motorized commutator. After two weeks of retraining and habituation, each rat underwent

a single recording session of 1.5–3.5 hr in, in which 200–520 trials were recorded.

Head tracking
All head tracking data was obtained by using the TDT RV2 system, linked to a camera directly above

the chamber. The RV2 system was trained to detect two LEDs mounted on top of the rat head stage

(one green and one red). Linear interpolation was used to fill in the gaps for the periods when the

signal was lost for either of the LEDs. To determine when a rat was ’at the nose port’ (Figure 4—fig-

ure supplements 1–2 and Figure 6—figure supplement 1) we first found the median head position

coordinates for when the rat made nose pokes. Whenever a rat was within 2.5” of that position, that

rat was considered to be ’at the nose port’. First nose port arrival time was calculated accordingly.

Histological analysis
After the recording experiments, under deep anesthesia, electrolytic lesions were generated at each

electrode tip to enable the locations of the electrode tips to be visualized. Immediately after the

lesions were generated, the rats received a transcardial perfusion of PBS followed immediately by

perfusion of 4% PFA in PBS. Brains were place in 4% PFA in PBS solution for 24 hr. Then they were

transferred to a solution of 30% sucrose in PBS. 40um thick sections were generated with a micro-

tome. The relevant DMS slices were stained with DAPI and the lesions were visualized with a stereo-

microscope (Leica).

Data analysis
Spikes were detected online with amplitude thresholding. Clustering was performed manually using

Plexon Offline Sorter. Any cluster that was clearly distinct from the noise cluster with reasonable

spike amplitude/waveform and inter-spike interval histograms was identified as a single unit.

The firing rate heat-maps (Figure 4B, Figure 5B, and Figure 4—figure supplement 2) were gen-

erated by fist binning spike times relative to the specified event marker and calculating average fir-

ing rate in each time bin (calculated by averaging the histograms for left and right sample trials). The

z-scored firing rate was calculated based on the mean and standard deviation of the firing rate from

50 s before to 50 s after the event.

To statistically test the presence of sequences in firing activity, we use the ridge-to-background

ratio, an approach previously introduced by (Harvey et al., 2012). For each neuron, we first calcu-

late the average firing rates for each time bin relative to delay onset (using 0.1 s time bins). Ridge

activity is the mean firing rate of the 11 bins (a 1.1 s-wide window) centered at the peak activity

time. Background activity is defined to be mean firing rate of all the other time bins. We used a large

window for calculating background activity, i.e. from 50 s before to 50 s after the aligning point. In

Figure 4—figure supplement 1B those time bins that were masked were not included in the back-

ground activity calculation or ridge activity calculation. We tested the statistical significance with a

one tailed test comparing the ridge-to-background ratio against the null distribution of ratios

expected by chance. The null distribution was calculated by repeatedly circularly shifting spike times

by random values.

In Figures 4B,C, and Figure 4—figure supplement 2E, firing activity peaks were selected from

1 s before the onset of the delay period to 1 s after the end of the delay period. In Figure 4—figure

supplement 2F firing activity peaks were chosen from 5 s before to 15 s after the desired event.

Likewise, the ridge-to-background analysis in Figure 4—figure supplement 1C was carried out on a

time window spanning 5 s before to 15 s after the desired event. For all other heat-maps (Figure 5B

and Figure 4—figure supplement 2A), scatter plots (Figure 5C and Figure 4—figure supplement

2B), and ridge-to-background ratio analyses (Figure 4—figure supplement 1B) firing activity peaks

were chosen from the onset to the end of the delay period.

To calculate mutual information as described below, as well as to display time-varying firing rates

for example neurons (Figure 4A and Figure 5A), the firing rates (calculated with bins of 50ms) were

smoothed by convolving with a Gaussian kernel (s = 1/6 s).
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Mutual information
Information about the sample stimulus identity in neural data was quantified by calculating the

mutual information between spike trains and the sample side (Borst and Theunissen, 1999;

Dayan and Abbott, 2001; Quian Quiroga and Panzeri, 2009; Rieke et al., 1999). We first made

the two following simplifying assumptions: (1) the spiking of each neuron is a Poisson process (i.e.

spiking at different time bins across neurons are independent of one-another) and, (2) the only fac-

tors involved in determining the spike rate is the sample stimulus of the current trial and time relative

to the delay onset. Our calculations make use of the firing rates for left and right sample trials only,

which are estimated as described above. The estimated firing rates are then used to generate 500

random spike trains. the average pointwise mutual information with the sample stimulus for each

randomly generated spike train is calculated to obtain the mutual information. Spike trains are gen-

erated by assuming a sample stimulus x (randomly chosen to be left or right) and determining the

number of spikes in every 50 ms time bin of the desired time segment from the estimated firing

rates when <sample> = x. A 500 ms wide sequence s = s1, s2, . . . sk of spike counts from the spike

train is then analyzed. The pointwise mutual information between that sequence and the sample

stimulus is derived as follows:

log
Prð<sample>¼x&<spike train>¼s1s2 ...skÞ
Prð<sample>¼xÞPrð<spike train>¼s1s2...skÞ

� �

¼ log
Prð<spike train>¼s1s2...sk j<sample>¼xÞ

Prð<spike train>¼s1s2...skÞ

� �

¼ log
Prð<spike train>¼s1s2...sk j<sample>¼xÞ

P

L2fleft;rightg
Prð<spike train>¼s1s2 ...sk j<sample>¼LÞ

� �

From independence between bins, we have:

Pr <spike train>¼ s1s2 . . . skj<sample>¼ xð Þ

¼
Q

k

i¼1

Pr <spikes in bin i>¼ sij<sample>¼ xð Þ

And the term on the right can be calculated from the estimated firing rates in the case <sample> =

x.

To determine if mutual information peaks are statistically significant, we compared mutual infor-

mation peaks from the data to that obtained with shuffled data (Panzeri et al., 2007). Towards this

end, we randomly shuffled the left sample and right sample trials and recalculated time-varying sam-

ple information using the approach explained above. For each neuron, this process was repeated

200 times and the maximum value of sample information within the delay period was taken each

time, to obtain a distribution of the sample information peak value expected by chance. The peak

information of the non-shuffled data was compared to that distribution to test for significance

(p<0.01, one-tailed test). All neurons with peaks larger than the 99th percentile of the shuffled distri-

bution were considered to be significantly encoding the sample stimulus (Figure 5B). The green

shadings on the bottom panels of Figure 5A are the thresholds for significance of the peak value

across the entire delay period interval, obtained by taking the 99th percentile of distribution for sam-

ple information peak expected by chance. Information about lever identity for choice and sample

presses was calculated in a similar fashion, with the modification that we did not use a sliding win-

dow, but rather calculated for the entire 500 ms window centered at a lever press (Figure 7C).

Population decoder
We used a maximum likelihood estimator to decode the sample stimulus from population data

(Brown et al., 2004; Gerwinn et al., 2009; Ma et al., 2006; Pouget et al., 2003). Our decoder was

constructed based on the assumption that spiking of each neuron is a Poisson process with a time-

varying spike rate function. To obtain a time-dependent evaluation of the decoder, we use a 500 ms

wide sliding window. For each neuron the desired 500 ms segment of the spike train is binned into

50 ms bins. The decoder is given an N�k matrix S, where Si,j is the spike count of neuron i for bin j

of that segment (N denotes the number of neurons, and k is the number of bins). The decoder then

finds x to maximize Pr <sample> ¼ x j <spike data> ¼ Sð Þ. Assuming equal probability for left vs. right

lever we have:

Assuming a uniform prior over the possible values for x, we have:
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Pr <sample>¼ x j <spike data>¼ Sð Þ /Pr <spike train>¼ S j <sample>¼ xð Þ

with the right term being the likelihood function. From independence between bins across neurons

we know the likelihood function can be calculated as follows:

Pr <spike train>¼ S j <sample>¼ xð Þ

¼
Q

N

i¼1

Q

k

j¼1

Pr <spikes in bin i of neuron j>¼ si;jj<sample>¼ x
� �

The term on the right can be calculated using the Poisson probability mass function and the spike

rate of the corresponding bin under condition <sample>¼ x. We train the sample decoder by calcu-

lating time-varying firing rates for left sample and right sample trials separately, from the training

data set. The sample decoder knows what time segment of the trial the spike train belongs to and

uses firing rate estimates from that segment. Decoder is trained using correct trials only (i.e. trials in

which the rat responded by choosing the correct lever).

Since the neurons were not all recorded simultaneously from the same rat, we randomly com-

bined different trials from each neuron with one another into pseudo-trials. Trials were drawn with

replacement, within a determined condition of the four trial conditions (i.e. [left sample, right sam-

ple] � [correct, incorrect]). 500 pseudo-trials were generated. The error bars in Figure 6 are the

SEM determined by the number of pseudo-trials if trials were drawn without replacement (i.e. the

minimum number of trials for a specific condition across neurons), which is an upperbound on the

SEM.

Generalized linear models of spiking activity
Generalized linear models (GLMs) were constructed to predict the number of spikes of each neuron

in each 10 ms time bin using various predictors related to the task and the animal’s behavior. The

GLMs modeled number of spikes with a Poisson distribution and a log link function). Positional pre-

dictors included: 9 binary predictors for head position, 8 binary predictors for head direction, and 3

numerical predictors for velocity (x component, y component, and magnitude of velocity vector). For

the head position predictors, the chamber was divided into nine tiles (3 equal segments along each

axis) and each binary predictor represented whether the head position was located in the corre-

sponding tile. For the head direction predictors, the range of possible head directions (0–360

degrees) was divided into 8 equal segments and binary predictors for head direction represented

which segment the head direction was in. For the task related predictors, the 10 binary predictors

denoted time within the delay period and one binary predictor denoted the identity of the sample

stimulus. For the time related predictors, time from delay onset was divided into 1 s long time bins

and each of the 10 binary predictors signified whether the current time was in the corresponding 1 s

time bin. Nested Model Comparison of GLMs were performed by first fitting the GLM to the data

using R function glm() and then performing a likelihood ratio test using the R function

anova (model1, model2, test = ’Chisq’).
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