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Abstract We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA
(Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that
incorporates chromatin, position, and sequence features to accurately predict highly effective
single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression
(CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale
CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for
essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We
also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with
CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential
genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish
CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general
strategy for identifying Cas9 target sites.

DOI: 10.7554/eLife.19760.001

Introduction

Highly multiplexed pooled genetic screening methodologies have emerged as powerful and broadly
accessible tools for systematically profiling gene function at the scale of mammalian genomes
(Paddison et al., 2004). Recently, a number of pooled screening platforms have been developed
that utilize the bacterial CRISPR (Clustered Regularly Interspaced Palindromic Repeats)-associated
nuclease Cas9 paired with libraries of single-guide RNAs (sgRNAs) to disrupt targeted genes
(reviewed in Shalem et al., 2015). We and others have developed tools based on nuclease-dead
Cas9 (dCas9) (Qi et al., 2013) to programmably interfere with (CRISPRi) or activate (CRISPRa) tran-
scription (Gilbert et al., 2014, 2013; Konermann et al., 2015; Maeder et al., 2013, Perez-
Pinera et al., 2013; Tanenbaum et al., 2014), and used these to systematically manipulate gene
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expression at genome scale (Gilbert et al., 2014; Konermann et al., 2015). Together, these screen-
ing platforms represent a powerful toolkit for unbiased forward gain-of-function and loss-of-function
genetic screens in mammalian cells.

A key step in implementing CRISPR genetic screens is selecting sgRNAs that mediate high Cas9
activity. We and others recently found that nucleosomes provide a direct and profound impediment
to Cas9 access to DNA (Hinz et al., 2015; Horlbeck et al., 2016; Isaac et al., 2016), an observation
we expected to be particularly important for applications such as CRISPRi and CRISPRa, which
require sustained binding of dCas9 to DNA. We found that nucleosome occupancy was predictive of
Cas9 activity complementary to and independent of previously described sgRNA sequence features
(Chari et al., 2015; Doench et al., 2014; Xu et al., 2015), adding an additional dimension to the set
of parameters expected to influence Cas9 activity. These observations, along with the strong nucleo-
some-dependent phasing observed downstream of the FANTOM consortium-annotated transcrip-
tion start site (TSS) (FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014,
Horlbeck et al., 2016), suggested that a quantitative model incorporating all of these features could
greatly enhance our ability to predict highly active sgRNAs for CRISPRi and CRISPRa.

To test this, we developed a comprehensive machine learning pipeline trained on data collected
from 30 CRISPRi and 9 CRISPRa screens. We found that the resulting models were highly predictive
of sgRNA efficacy and strongly weighted nucleosome positioning and specific sequence features.
We used these models to design and generate CRISPRi and CRISPRa version 2 (v2) libraries, target-
ing human and mouse genomes, which are greatly enriched for sgRNAs with high predicted activity.
These libraries include several additional improvements, including the option to screen with either
10 sgRNAs per gene or a compact half-library containing the top 5 predicted sgRNAs for each
gene. To benchmark this new algorithm, we validated the human CRISPRi v2 (hCRISPRi-v2) library
with a screen designed to identify genes essential for robust cell growth. In this experiment, essen-
tial genes represent a large class of expected positive controls. We identified over 2100 essential
genes with high statistical confidence, significantly improving upon our CRISPRi v1 library
(Gilbert et al., 2014), and precision-recall analysis showed increased discrimination of gold standard
essential and non-essential genes with both 10 sgRNA/gene and 5 sgRNA/gene hCRISPRi-v2 librar-
ies (Hart et al., 2014). A large majority of the hCRISPRi-v2 sgRNAs targeting known essential genes
produced robust growth phenotypes, a key advance over previous CRISPRi libraries (Evers et al.,
2016), and our algorithm can accurately predict sgRNA activity for data from screens performed
with an independently designed library and in different cell types. Furthermore, we observed that
CRISPRi lacked any detectable non-specific toxicity associated with genomic DNA breaks and repair,
enabling sensitive detection of genes with subtle growth phenotypes. We also conducted a screen
for genes that modify growth rates upon overexpression with our hCRISPRa-v2 and found this identi-
fied 60% more genes, with greater enrichment for previously established classes of hit genes, than
our version 1 CRISPRa screen. Our results suggest that the CRISPRi and CRISPRa v2 libraries have
numerous favorable properties relative to alternate approaches as a resource for targeted or
genome-scale loss-of-function and gain-of-function studies in mammalian cells.

Results

An integrated machine learning approach predicts highly active sgRNAs
for CRISPRi and CRISPRa

We sought to improve upon our first generation CRISPRi and CRISPRa libraries by taking a compre-
hensive approach that incorporated nucleosome positioning, sequence features, refinement of our
original sgRNA design rules, and other potentially informative factors. In order to quantitatively
model the contribution of these features to CRISPRi activity, we turned to our recently described
CRISPRI activity dataset (Horlbeck et al., 2016) in which we integrated data from 30 CRISPRi
screens to select 1,539 high-confidence hit genes, and normalized the phenotypes for sgRNAs tar-
geting each gene to the strongest sgRNAs for that gene, resulting in ‘activity scores’ for 18,380
sgRNAs. We used this set as training data for elastic net linear regression (Figure 1A) (Hui Zou,
2005). As many of the features included in the model were nonlinear with activity, we first adapted
each feature set according to its relationship with activity. Categorical and non-linear parameters
were binned prior to linear regression. Because the relationship between CRISPRi activity and target
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Figure 1. A machine learning approach for identifying highly active sgRNAs for CRISPRi. (A) Schematic of machine learning strategy and datasets. 808
features were calculated for each sgRNA, linearized as indicated, and z-standardized. A linear regression model was then generated using these
features to fit to the activity scores of the CRISPRI training set (Horlbeck et al., 2016). 20% of the genes in the training set were reserved to test the
predictive value of the resulting model. For display in Figures 1B,C, and Figure 1—figure supplement 2, five non-overlapping 20% datasets were
Figure 1 continued on next page
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Figure 1 continued

randomly selected and training was performed on the corresponding 80% sets. An orthogonal dataset, based on tiling of every possible sgRNA within
10 kb of the TSS of 49 genes known to modulate sensitivity to ricin (Bassik et al., 2013; Gilbert et al., 2014), was also used to assess the predictive
value of this model. (B) ROC analysis of the ability of the machine learning approach in (A) to predict highly active sgRNAs. For test set 1, sgRNAs with
an activity score greater than 0.75 were considered highly active. For test set 2, sgRNAs with a phenotype greater than 0.75 of the maximum phenotype
for each gene were considered highly active. (C) Relative contribution of feature categories to the sgRNA predicted scores. The individual weighting of
each feature assigned by the linear regression model (see Figure 2—figure supplement 2) was grouped by the indicated categories, and the summed
weights for each sgRNA within the 20% test datasets was calculated. The scores of the 95th and 5th percentile sgRNAs were subtracted to compute the
overall contribution of the feature category to the distribution of predicted activity scores. Bars indicate the mean of the contributions from five 20%
datasets (green circles). The target site position includes both the distance to the TSS and the periodic relationship as fit by SVR (Figure 1—figure
supplement 1). (D) Distribution of predicted activity scores in next-generation CRISPRi libraries. (Top) Predicted CRISPRi activity correlates with
empirical activity scores. For the 80%/20% division used to predict sgRNAs for the hCRISPRi-v2.1 library, predicted scores for the 20% test set were
plotted against the empirical activity score. Activity score percentiles are from all sgRNAs within 0.25 of the indicated activity score. Predicted activity
was highly correlated with activity, with a Pearson R of 0.56 (p<1O’2%). (Bottom) Distribution of predicted activity scores for CRISPRi v1, hCRISPRi-v2,
and hCRISPRi-v2.1, as calculated by the hCRISPRi-v2.1 regression model. (E) Composition of hCRISPRi-v2 and mCRISPRi-v2 sublibraries.

DOI: 10.7554/eLife.19760.002

The following figure supplements are available for figure 1:

Figure supplement 1. Relationship between CRISPRI activity and sgRNA position relative to the TSS as predicted by SVR.
DOI: 10.7554/elife.19760.003

Figure supplement 2. Individual sgRNA feature contributions to predicted CRISPRi activity.

DOI: 10.7554/¢Life.19760.004

site distance from the TSS was highly periodic and asymmetric, as we had recently shown
(Horlbeck et al., 2016), we fit sgRNA positioning features using support vector regression (SVR) to
predict a continuous function for any target site (Supplementary Figure 1). An important improve-
ment was the use of FANTOM consortium annotations instead of Ensembl/GENCODE to define the
TSS (Cunningham et al., 2015; FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al.,
2014; Harrow et al., 2012) (Supplementary file 2), a finding also recently reported by Radzisheus-
kaya and colleagues (Radzisheuskaya et al., 2016).

We first evaluated the performance of this algorithm using five-fold cross-validation. By perform-
ing regression on a training set of only 80% of the genes in the CRISPRi activity dataset, we found
that the model was highly predictive of activity in the test set comprising the remaining 20% of the
genes, with a receiver operating characteristic area under the curve (ROC-AUC) of 0.80 (Figure 1B).
Importantly, this high predictive value was consistent across randomly selected training and test
sets. As the sgRNAs in this dataset were pre-selected using our CRISPRi v1 design rules, we also
tested our ability to predict the performance of sgRNAs in our previously published data set in which
we tiled every target site around the TSS of 49 genes known to modulate resistance or sensitivity to
the toxin ricin (Gilbert et al., 2014) and obtained an ROC-AUC of 0.91 (Figure 1B), indicating that
we could identify active sgRNAs in the genome with high accuracy.

We next analyzed which features contributed most to CRISPRi activity in the predictive model
(Figure 1—figure supplement 2). Overall, the predicted scores were most influenced by the posi-
tion relative to the TSS, including both distance from the TSS and avoidance of canonical nucleo-
some-occupied regions (Figure 1C and Figure 1—figure supplement 1). In particular, the
nucleosome-deprived region immediately downstream of the TSS yielded the strongest predicted
activity by SVR, likely due in part to the contribution of dCas9 directly interfering with early transcrip-
tional initiation or elongation (Gilbert et al., 2013; Qi et al., 2013). Sequence features also repre-
sented a large contribution to the model, and salient relationships included the disfavoring of
guanine directly downstream of the protospacer adjacent motif (PAM) which recapitulated previous
findings (Doench et al., 2014; Xu et al., 2015). Additional parameters that contributed to the pre-
diction, included sgRNA secondary structure as predicted by ViennaRNA (Doench et al., 2016;
Lorenz et al., 2011), sgRNA protospacer length, and chromatin accessibility features not accounted
for by the nucleosome positioning relationship. The contribution of each individual parameter was
also remarkably consistent across 80%/20% divisions of the training dataset, suggesting that the
model was capturing underlying biological signal rather than overfitting the data.

Having established the robustness and accuracy of this approach, we used a version of our sgRNA
predictions to design a CRISPRi genome-scale library targeting the human protein-coding
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transcriptome (hCRISPRi-v2) (Supplementary file 3; an in silico library design based on the final ver-
sion of our predictions, hCRISPRi-v2.1, is also available in Supplementary file 3). While the pre-
dicted scores for sgRNAs in our v1 library were broadly distributed, many sgRNAs of higher
predicted activity were available in the genome, and by picking the top 10 predicted sgRNAs per
gene we expected that we could greatly enrich the library for guides of high activity (Figure 1D). In
constructing this library, we also incorporated empirical information for highly active sgRNAs where
available, revised off-target filtering, and implemented changes to the sgRNA expression vector to
facilitate the processing of screen samples for sequencing (see Materials and methods). In addition,
we cloned the library as separate pools for the top 5 and next-best 5 predicted sgRNAs per gene to
facilitate screens where a smaller library may be advantageous, and further divided the pools into 7
thematic sublibraries based on our previous divisions of shRNA libraries (Kampmann et al., 2015)
(Figure 1E).

We then used the same approach to design a next-generation CRISPRa library. Due to the
requirement for CRISPRa targeting to be upstream of the TSS for maximal activity (Gilbert et al.,
2014), we collected an activity score dataset of 2,898 sgRNAs from 9 CRISPRa screens (Y.C. and M.
K., personal communication) to train an independent predictive model (Figure 2A). While the input
set was significantly smaller than for CRISPRI, the resulting linear regression still had good predictive
value (ROC-AUC 0.70; Figure 2B) and generally shared features of the CRISPRi model (Figure 2C
and Figure 2—figure supplement 1-2). We observed that periodic relationship between distance
to the TSS and sgRNA activity was less pronounced for CRISPRa than for CRISPRi (Figure 2—figure
supplement 1; Figure 1—figure supplement 1), a difference we attributed to the reduced dynamic
range in the nucleosome-depleted region around the TSS, and the smaller number and relatively
lower expression of the genes targeted in the CRISPRa training dataset. We used the top 10 pre-
dicted sgRNAs for each gene to construct a next-generation library, which significantly increased the
predicted activity of the library over our v1 designs (Figure 2D). The hCRISPRa-v2 library was parti-
tioned into 14 sublibraries as described for the v2 CRISPRI library above (Figure 2E). Importantly,
while several strategies have been described for CRISPR-mediated activation (Chavez et al., 2015;
Gilbert et al., 2013; Hilton et al., 2015; Konermann et al., 2015; Maeder et al., 2013; Perez-
Pinera et al., 2013; Tanenbaum et al., 2014; Zalatan et al., 2015), a recent comparison of these
strategies observed that sgRNA activity generally correlated across all approaches (Chavez et al.,
2016). Our CRISPRa-v2 libraries are thus likely to serve as a valuable resource for effectively target-
ing most activator systems.

Finally, we applied the CRISPRi and CRISPRa models to predict highly active sgRNAs targeting
the mouse protein-coding transcriptome and generated corresponding genome-scale libraries
(mCRISRPi-v2 and mCRISPRa-v2) (Figures 1E, 2E). All four library designs are included as
Supplementary file 3-6, sgRNA prediction and library design scripts are available online
(see Materials and methods), and the cloned lentiviral libraries are available on Addgene.

The large majority of sgRNAs in the hCRISPRi-v2 library are effective

A central goal in developing the hCRISPRi-v2 library was to enrich for highly active sgRNAs, which
would improve statistical confidence in hits and enable high sensitivity even with a compact 5
sgRNA/gene library. Underscoring the importance of this goal, Evers et al. generated a small-scale
CRISPRI library targeting predetermined sets of essential and non-essential genes and conducted
screens for growth phenotypes in the bladder carcinoma cell line RT-112, and found that ~50% of
the CRISPRi sgRNAs targeting essential genes were inactive (Evers et al., 2016), similar to rates
observed using our CRISPRi v1 library. To test whether our next-generation sgRNA prediction algo-
rithms were able to identify these inactive sgRNAs, we evaluated the predicted activity of the
sgRNAs targeting known essential genes in this screen. Despite the screen being performed with an
independently designed library, using an sgRNA constant region we have found to underperform
our current design (Chen et al., 2013), and in a cell type not evaluated in any of our training or test
datasets, predicted activity correlated well with the sgRNA growth phenotypes observed in the
screen (Figure 3A; Pearson R = —0.58, p<10~%). Over 40% of the sgRNAs in this library had a pre-
dicted activity score less than 0.4, a regime in which the vast majority (over 87%) of sgRNAs were
inactive, as defined by z-score > —2 relative to non-essential gene-targeting sgRNAs, enabling a pri-
ori elimination of 60% of the inactive sgRNAs by simply applying this threshold. By contrast, of the
sgRNAs in that library with predicted activity scores >0.6, 77% are active. Use of the improved
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Figure 2. A machine learning approach for identifying highly active sgRNAs for CRISPRa. (A) Schematic of CRISPRa datasets. CRISPRa activity scores
were generated from screen data and subjected to 3-fold cross-validation due to the smaller sample size. Ricin tiling data was limited to 21 genes that
were previously shown to modulate sensitivity to ricin upon CRISPRa overexpression (Gilbert et al., 2014). (B) ROC analysis of machine learning
approach using CRISPRa datasets, conducted as in Figure 1B. (C) Relative contribution of feature categories for CRISPRa, calculated as in Figure 1C.
Figure 2 continued on next page
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(D) Distribution of predicted activity scores in next-generation CRISPRa libraries. (Top) Predicted CRISPRa activity correlates with empirical activity
scores. For the 67%/33% division used to predict sgRNAs for the hCRISPRa-v2 library, predicted scores for the 33% test set were plotted against the
empirical activity score. Activity score percentiles are from all sgRNAs within 0.25 of the indicated activity score. Predicted activity was highly correlated
with activity, with a Pearson R of 0.41 (p<10’38). (Bottom) Distribution of predicted activity scores for CRISPRa v1 and hCRISPRa-v2 as calculated by the
hCRISPRa-v2 regression model. (E) Composition of hCRISPRa-v2 and mCRISPRa-v2 sublibraries.

DOI: 10.7554/eLife.19760.005

The following figure supplements are available for figure 2:

Figure supplement 1. Relationship between CRISPRa activity and sgRNA position relative to the TSS as predicted by SVR.

DOI: 10.7554/elife.19760.006

Figure supplement 2. Individual sgRNA feature contributions to predicted CRISPRa activity.

DOI: 10.7554/eLife.19760.007

sgRNA constant region would be expected to further increase this fraction (Chen et al., 2013;
Dang et al., 2015).

In order to validate our hCRISPRi-v2 library design and directly compare its performance to our
published v1 library screens (Gilbert et al., 2014), we conducted a screen for genes essential for
robust growth in the chronic myeloid leukemia cell line K562. We calculated the growth phenotype
(y) for each sgRNA (Bassik et al., 2013; Kampmann et al., 2013) and averaged these values across
two screen replicates (Figure 3—figure supplement 1 and Supplementary file 7). We found that
the hCRISPRi-v2 sgRNA growth phenotypes targeting the Evers et al. essential gene sets correlated
with predicted activity as above (Figure 3A; Pearson R = —0.42, p<107"), and therefore designing
the libraries based on the top predicted scores selected for highly active sgRNAs. To quantify the
fraction of active sgRNAs in our genome-scale libraries, we performed sgRNA-level ROC analysis,
ranking sgRNAs by growth phenotype y and classifying them as true or false positives if they tar-
geted essential or non-essential genes, respectively (Evers et al., 2016). This analysis showed that
hCRISPRi-v2 was greatly enriched for active sgRNAs (Figure 3B), and in particular the top 5 sgRNA/
gene library contained 80% active sgRNAs at 5% false positives, comparable to the pilot nuclease
library tested by Evers et al. This improvement was due to the significant reduction in the number of
inactive sgRNAs rather than any difference in the noise as assessed by the background distribution
of non-essential gene-targeting sgRNAs (Figure 3—figure supplement 1B). In some instances, as
with the known essential gene VCP, the difference in sgRNA phenotypes between v1 and v2 libraries
was likely attributable to the transition from Ensembl to FANTOM as the TSS annotation source (Fig-
ure 3—figure supplement 1C) (Cunningham et al., 2015; FANTOM Consortium and the RIKEN
PMI and CLST (DGT) et al., 2014; Harrow et al., 2012). Taken together, the above observations
indicate the lower fraction of effective sgRNAs in previous libraries was a result of the algorithm and
the TSS annotation used rather than any intrinsic limitation of CRISPRI.

The hCRISPRi-v2 library robustly identifies essential genes in precision-
recall analysis

We next sought to evaluate whether the enrichment for active sgRNAs in hCRISPRi-v2 over CRISPRi
v1 resulted in improved accuracy and confidence for calling hit genes. We analyzed the screens with
a consistent pipeline, scoring genes both by assigning a phenotype based on the mean of the top 3
sgRNAs targeting the gene (by absolute value) and by calculating the Mann-Whitney p-value of all
10 sgRNAs compared to the negative control sgRNAs. We visualized these gene scores as a volcano
plot, with the phenotype effect size on the x-axis and p-value on the y-axis (Figure 3C and
Supplementary file 8). Many hit genes exhibited much stronger p-values, including a substantial
fraction that reached the optimal p-value obtainable in the Mann-Whitney test, indicating that the
phenotypes of all targeting sgRNAs for these genes were more pronounced than any of the 3,790
non-targeting control sgRNAs. We also modeled noise and off-target effects in the system by gener-
ating a large set of 'negative control genes’ composed of randomly selected sets of 10 non-target-
ing sgRNAs and scoring these genes as we did for true genes. In order to classify genes as hits in
the screen, we used a score that integrated effect size and statistical confidence and applied the
same threshold to both v1 and v2 screens. While in both screens fewer than 0.21% of these negative
control genes scored as hits by these criteria, representing a ~2% empirically estimated false
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Figure 3. hCRISPRi-v2 outperforms CRISPRi v1 in screens for essential genes in K562. (A) Distribution and predicted scores for sgRNAs targeting
essential genes. (Top) Predicted activity scores for sgRNAs from Evers et al., 2016 or hCRISPRi-v2 targeting essential genes as defined by Evers et al.
(Evers et al., 2016), binned in increments of 0.1. (Bottom) sgRNA growth phenotypes of the sgRNAs in the above bins, z-standardized to the
distribution of sgRNAs targeting Evers et al. non-essential genes. (B) ROC analysis of sgRNAs from CRISPRi v1 or hCRISPRi-v2 targeting essential and

Figure 3 continued on next page
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Figure 3 continued

non-essential genes. sgRNAs were ranked by v, and considered true or false positives if they targeted essential or non-essential genes, respectively, as
defined by Evers et al. (C) Volcano plots of gene phenotypes and p-values for growth screens performed with CRISPRi v1 (Gilbert et al., 2014) and
hCRISPRi-v2. For each screen, genes phenotypes were calculated by averaging the growth phenotype (y) of the 3 sgRNAs with the strongest y by
absolute value, and gene p-values were calculated by performing the Mann-Whitney test comparing all sgRNAs targeting the gene to the full set of
negative control sgRNAs. For genes with multiple TSSs targeted, sgRNAs were grouped by TSS and the TSS with the lowest p-value was used for
downstream analysis. A comparable number of negative control (NC) genes were generated by randomly sampling 10 non-targeting sgRNAs (with
replacement) and analyzed as true genes. Empirically derived thresholds (dashed lines) were calculated as shown, using the NC gene distribution to
derive the background standard deviation for z-score. (D) Precision-recall analysis of essential gene screens performed in K562. Statistical precision and
recall of essential and non-essential gene sets (Hart et al., 2014) were calculated for genes ranked by growth phenotype in K562. For both CRISPRi
and CRISPR nuclease screens (Wang et al., 2015), gene-level phenotypes were calculated as the average log; fold-change of all sgRNAs targeting the
gene (termed CRISPR Scores in ref. [Wang et al., 2015)). (E) Boxplots of CRISPRi and CRISPR nuclease sgRNA phenotypes for several gene sets.
sgRNA vy scores (CRISPRI) or log, enrichments (nuclease) were z-standardized to the corresponding negative control set. Boxplots display the
distribution of the negative control sgRNAs or sgRNAs targeting genes on Y chromosome (excluding pseudo-autosomal genes), within the BCR
amplicon, or in the gold standard essential sets used in (D). Individual phenotypes for sgRNAs targeting BCR are overlaid with the corresponding
boxplot.

DOI: 10.7554/eLife.19760.008

The following figure supplements are available for figure 3:

Figure supplement 1. sgRNA phenotypes from CRISPRi v1 and hCRISPRi-v2 growth screens.

DOI: 10.7554/eLife.19760.009

Figure supplement 2. Precision-recall analysis of second-generation CRISPR nuclease essential gene screens.

DOI: 10.7554/¢elife.19760.010

discovery rate overall, we could confidently identify 2,150 essential gene hits in the v2 screen while
our v1 screen identified 1,408 essential genes (Figure 3C).

In order to assess whether the stronger sgRNA- and gene-level growth phenotype y scores pro-
duced by the hCRISPRi-v2 library resulted in improved discrimination of essential genes, we turned
to precision-recall analysis of large ‘gold standard’ essential and non-essential gene sets introduced
by Hart and colleagues (Hart et al., 2014). We ranked genes by their growth phenotype (y) score
and calculated at each phenotype threshold the trade-off between the recall of true essential genes
and the avoidance of false positive non-essential genes, termed precision. In this analysis, the hCRIS-
PRi-v2 library recalled over 91.2% of the gold standard essential genes at 95% precision compared
to 81.5% in CRISPRi v1 (Figure 3D). We also found that the precision-recall of the top 5 sgRNA/
gene half library was essentially identical to the full 10 sgRNA per gene library. Therefore, the 5
sgRNA/gene CRISPRI library represents a compelling tool for applications such as cell sorting-based
screens (Liberali et al., 2015), or for in vivo screens where cell engraftment and library representa-
tion may represent a limiting factor (Braun et al., 2016; Chen et al., 2015).

Finally, we wanted to benchmark our hCRISPRi-v2 library against other recent genome-scale
growth screens performed with nuclease-active Cas? and novel second-generation libraries
(Doench et al., 2016; Hart et al., 2015; Wang et al., 2015). Although these screens were per-
formed in different labs and generally in different cell lines, precision-recall analysis offers a useful
metric to compare these screens in an unbiased fashion (Hart et al., 2014). We found that our
CRISPRi v2 library showed comparable or in many cases much greater discrimination (Figure 3—fig-
ure supplement 2). One published CRISPR nuclease screen was conducted in K562 (Wang et al.,
2015) with a ~10 sgRNA/gene library, allowing for more direct comparison albeit still tempered by
differences between labs and screening protocols. This screen recalled somewhat fewer (78.7% vs
90.8%) essential genes at 95% precision than our v2 library screen (Figure 3D). Together, these
results indicate that our hCRISPRi-v2 library has a low false negative rate with few false positives,
and the enrichment for highly active sgRNAs enables robust detection of phenotypes even with a
compact library.

CRISPRi does not induce non-specific toxicity at amplified genomic loci

We were also intrigued by the observation by Wang and colleagues of K562-specific essentiality of
many genes neighboring the BCR-ABL translocation, which they demonstrated to be mediated by
non-specific toxicity of CRISPR-induced double-stranded breaks in the amplified locus (Wang et al.,
2015; Wu et al., 1995). This toxicity appears to be pervasive as similar effects have been observed
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across a range of cancer cell lines (Aguirre et al., 2016; Munoz et al., 2016). To test whether this
toxicity could be caused by CRISPRi as well, we used our hCRISPRi-v2 screen as a representative
dataset. When we compared the phenotypes of CRISPRi sgRNAs to CRISPR nuclease at the BCR
amplicon, with all phenotypes standardized to the distribution of negative controls to facilitate com-
parison, we found that sgRNAs targeting BCR were strongly depleted in both screens, as expected
based on the critical role of the BCR-ABL fusion in this cancer cell line (Naumann et al., 2001), but
few other CRISPRi sgRNAs in the region elicited growth defects (Figure 3E). We also found that
CRISPR nuclease sgRNAs targeting the non-essential gene set were generally depleted relative to
negative controls or chromosome Y-targeting sgRNAs, which should have no targets in the female-
derived K562 cell line (Klein et al., 1976), suggesting that in a CRISPR screen Cas? nuclease activity
can lead to measurable toxicity not related to the function of individual genes but instead due to the
formation of on-target DNA double strand breaks, even with alleles present only at 2-3 copies
(Naumann et al., 2001). CRISPRi did not exhibit this generic toxicity at non-essential genes, allowing
for detection of genes with subtle phenotypes relative to negative controls. Importantly, however,
the vast majority of sgRNAs targeting essential genes showed a clear separation from the non-essen-
tial gene distribution (Figure 3E), demonstrating the high degree of sensitivity for detecting loss-of-
function phenotypes with both CRISPR nuclease and CRISPRi screens.

The hCRISPRa-v2 library identifies more genes that modify robust
growth rates upon overexpression

Finally, we sought to validate our hCRISPRa-v2 library design by conducting a screen for growth phe-
notypes in K562 cells expressing SunTag-VP64 constructs (Gilbert et al., 2014; Tanenbaum et al.,
2014). We conducted two replicate growth screens (Figure 4—figure supplement 1A and
Supplementary file 9) and analyzed the screen as with the hCRISPRi-v2 screen above to directly
compare the results to our published CRISPRa screens (Gilbert et al., 2014). Our hCRISPRa-v2
screen identified 540 genes to modify robust growth rates upon overexpression, 257 more than our
previous CRISPRa screen (Figure 4A and Supplementary file 10). Beyond these additional hits, the
v1 and v2 screens showed good agreement (Figure 4—figure supplement 1B), and the top catego-
ries in DAVID analysis of the v1 screen (Huang et al., 2009), enrichment for transcription factor
genes (in particular homeobox and forkhead box transcription factors), received ~3-fold greater
enrichment scores in the hCRISPRa-v2 hits (Figure 4—figure supplement 1C), indicating the strong
biological coherence of the additional genes. Analysis of the sgRNA growth phenotype (y) scores for
genes that were hits in both v1 and v2 screens showed that a greater fraction of sgRNAs were highly
active (69.3% in hCRISPRa-v2 with 5 sgRNAs/gene versus 45.1% in CRISPRa v1; Figure 4C and Fig-
ure 4—figure supplement 1D), further validating improvements in the library design. In addition, as
with our CRISPRi results, several genes identified in the hCRISPRi-v2 screen but not in v1, including
hematopoietically-expressed homeobox HHEX and forkhead box C1 FOXC1, could be attributed to
the use of the CAGE-based FANTOMb5 TSS annotation (Figure 4D and Figure 4—figure supple-
ment 1E). Finally, we compared the growth phenotypes from hCRISPRi-v2 to hCRISPRa-v2 and
found that the two methods identified non-overlapping sets of genes that modify robust growth
(Figure 4—figure supplement 1F), consistent with our previous results and highlighting the comple-
mentary information provided by these two approaches.

Discussion

Establishing design rules for effective reagents is critical to the implementation of genome-scale
screening technologies. Our previous work established genome-scale CRISPRi and CRISPRa libraries
as robust, specific, and complementary tools for dissecting biological pathways in human cells
(Gilbert et al., 2014). Here, we significantly improve upon this technology by developing a compre-
hensive predictive model to accurately identify highly active sgRNAs. This model includes both fea-
tures specific for CRISPRi and CRISPRa, such as positioning relative to the TSS, as well as features
like nucleosome occupancy that we expect to be generally important for most Cas9-mediated appli-
cations (Horlbeck et al., 2016), and was able to accurately predict sgRNA activity in screen per-
formed in a cell type it had not previously evaluated (Evers et al., 2016). We used this prediction
algorithm to design four new genome-scale libraries targeting human and mouse genomes. These
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Figure 4. hCRISPRa-v2 outperforms CRISPRa v1 in screens for genes that modify growth rates upon overexpression. (A) Volcano plots of gene
phenotypes and p-values for growth screens performed with CRISPRa v1 (Gilbert et al., 2014) and hCRISPRa-v2, presented as in Figure 3C. (B)
Cumulative distributions of fraction of highly active sgRNAs targeting strong hit genes shared between CRISPRa v1 and hCRISPRa-v2 screens. Highly
active sgRNAs for CRISPRa were defined as those with negative y scores more than two standard deviations from the mean of non-targeting control
sgRNAs (see Figure 4—figure supplement 1D). (C) UCSC Genome Browser tracks depicting TSS annotations and CRISPRa growth phenotypes for
example gene HHEX.

DOI: 10.7554/elife.19760.011

The following figure supplement is available for figure 4:

Figure supplement 1. sgRNA phenotypes and gene category enrichment scores from CRISPRa v1 and hCRISPRa-v2 growth screens.
DOI: 10.7554/eLife.19760.012
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libraries are available on Addgene and in silico to facilitate design of focused libraries or targeted
experiments (Supplementary file 3-6).

By performing CRISPRi and CRISPRa screens for genes that modify robust growth, we validate
our sgRNA predictions and find that our hCRISPRi-v2 and hCRISPRa-v2 libraries represent a signifi-
cant advance over our previous work in the fraction of highly active sgRNAs, the number of hits
detected, and the statistical confidence of these hits. For CRISPRi, these improvements result in the
accurate discrimination of essential genes by precision-recall analysis even with a compact 5 sgRNA/
gene library. We believe that the greatly improved sgRNA prediction and lack of non-specific toxic-
ity due to nuclease activity, combined with our previous findings that CRISPRi enables inducible,
reversible, and homogenous manipulation of gene expression (Gilbert et al., 2014;
Mandegar et al., 2016; Qi et al., 2013), make CRISPRi a state-of-the-art approach for loss-of-func-
tion studies.

While the libraries described here target genes annotated as protein-coding, CRISPRi and
CRISPRa have been shown to be effective for repressing and activating transcription of non-coding
genes as well (Gilbert et al., 2014; Luo et al., 2016; Zhao et al., 2014). Our v2 sgRNA prediction
algorithms may enable the design of libraries to systematically manipulate expression of these tran-
scripts as well. Furthermore, combining CRISPRi and CRISPRa with methods for robustly expressing
multiple sgRNAs (Kabadi et al., 2014; Wong et al., 2016; Zalatan et al., 2015) will allow for simul-
taneous control of several genes, facilitating dissection of cellular pathways and systematic mapping
of mammalian genetic interactions (Bassik et al., 2013; Costanzo et al., 2010; Schuldiner et al.,
2005). Broadly, increased quantitative understanding of the factors dictating (d)Cas9 activity and
specificity will greatly enhance the expanding set CRISPR-mediated technologies for controlling
gene expression (Hilton et al., 2015; Perez-Pinera et al., 2013; Vojta et al., 2016), imaging tar-
geted loci (Chen et al., 2013; Shao et al., 2016), or precisely editing the genome (Komor et al.,
2016; Tsai et al., 2014).

Materials and methods

Machine learning for CRISPRi and CRISPRa sgRNA activity

Training and test datasets

The CRISPRi activity score dataset was obtained from Horlbeck et al. (2016). CRISPRi and CRISPRa
ricin tiling data was obtained from Gilbert et al. (2014). CRISPRa activity scores were generated as
previously described for the CRISPRi activity dataset, using data from 9 published and unpublished
screening datasets. Hit genes were selected using the formula |effect size Z-score x logo p-value| >
20 in any screen, and the phenotypes for sgRNAs targeting each gene were extracted from the
screen in which the gene was a hit and normalized to the mean of the top 3 sgRNAs by absolute
value. All datasets are included here as Supplementary file 1.

Generating TSS annotations

In order to leverage the high accuracy of the FANTOM TSS annotations but remain compatible with
the comprehensive, systematic, and established Ensembl transcript models, a hybrid approach was
taken. First, the full set of protein-coding genes and transcripts were selected as previously
described (Gilbert et al., 2014), using Ensembl release 74 (corresponding to genome assemblies
hg19 for human and mm10 for mouse; RRID:SCR_002344) and the APPRIS pipeline to identify the
relevant functional transcripts and establish a preliminary set of TSS annotations (Cunningham et al.,
2015). FANTOM CAGE peak BED files (RRID:SCR_002678; Human: http://fantom.gsc.riken.jp/5/
datafiles/phase1.3/extra/TSS_classifier/TSS_human.bed.gz, accessed March 2, 2015; Mouse: http://
fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier/TSS_mouse.bed.gz, accessed June 28,
2015 and lifted over to mm10 coordinates with UCSC liftOver tool) were then used to refine this
annotation. Specifically, for each gene, the TSS was identified as the same-stranded peaks within
30 kb of any Ensembl TSS that matched the gene symbol and was labeled ‘p1@gene’ (here referred
to as 'primary TSS’) or ‘p2@gene’ ('secondary TSS'; included only where the peak passed the FAN-
TOM robust threshold for TSS), and the annotation support was labeled as ‘'CAGE, matched peaks.’
If multiple matches were found the closest TSS to a known Ensembl TSS was used. If no match was
found, the gene could then be matched with any same-stranded CAGE peak within 500 bp labeled
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as '‘p1’ or '‘p2," and annotation support was considered 'CAGE, primary peaks.’ In the above cases,
primary and secondary TSSs were targeted separately (i.e. by 10 sgRNAs each) if they were farther
than 1 kb apart, or together as one '‘P1P2" TSS. Where no matched or un-matched primary peaks
were found, TSS annotations could be refined by any robust peaks or permissive peaks within
200 bp of the annotation (labeled ‘CAGE, robust peak’ or ‘CAGE, permissive peak’) or simply use
the Ensembl/APPRIS annotation where no CAGE support was available ('Annotation’). This com-
bined annotation is included as Supplementary file 2.

Calculating features

Position relative to the primary and secondary TSSs was calculated from the genomic coordinate of
the 3'G of the PAM for each sgRNA to the upstream and downstream edge of each TSS range.
Sequence features of the sgRNA and target sites were determined using custom scripts written in
Python 2.7 (RRID:SCR_008394) with the Biopython module (RRID:SCR_007173) (Cock et al., 2009).
The hCRISPRi-v2.1 algorithm included a change in these scripts to fix how certain sequence homo-
polymers were scored. All other libraries were generated with this improvement incorporated, and
all analysis in this paper was performed with the v2.1 algorithm. RNA folding metrics were calculated
using the ViennaRNA package (RRID:SCR_008550; version 2.2.5) with default parameters
(Lorenz et al., 2011). Chromatin features at the target site were calculated as described previously
(Horlbeck et al., 2016), averaging the signal at each base of the target site including the PAM. Cus-
tom Python scripts with the module bxpython (v0.5.0, https://github.com/bxlab/bx-python) to
extract the processed continuous signal from the following BigWig files obtained from the ENCODE
consortium: MNase-seq https://www.encodeproject.org/files/ENCFFO00VNN/ (Michael Snyder lab,
Stanford University), DNase-seq https://www.encodeproject.org/files/ENCFFO00SVY/ (Gregory
Crawford lab, Duke University), and FAIRE-seq https://www.encodeproject.org/files/ENCFFO00TLU/
(Jason Lieb lab, University of North Carolina) (ENCODE Project Consortium, 2012). Beyond the
nucleosome positioning information incorporated in the sgRNA positioning learning models, no
chromatin data was used for predicting sgRNA activity for the mouse genome.

Machine learning

Training and test activity score sets were first divided into 80%/20% or 67%/33% sets of genes for
CRISPRi or CRISPRa, respectively, as described in the results section. The training set parameters
were then transformed according to their distribution as depicted in Figure 1A. For binning parame-
ters, a fixed width was chosen for each feature and applied over the range of values, with the upper-
most and lower-most bins collapsed with the neighboring bins if the number of data points at each
edge were sparse. Each feature was then split into individual parameters for each bin and sgRNAs
were assigned a 1 for the bin if the value fell within the bin or 0 if not. For linearizing sgRNA posi-
tioning parameters with continuous curves, sgRNA positions were fit to the activity score (individually
for the distance to each TSS coordinate) using SVR with a radial basis function kernel and hyperpara-
meters C and gamma determined using a grid search approach cross-validated within the training
set. The fit score at each position was then used as the transformed linear parameter. Binary param-
eters were assigned a 1 if true or a O if false. All linearized parameters were z-standardized and fit
with elastic net linear regression, with the 11/12 ratio set by cross-validated grid search. All machine
learning and downstream analysis was performed with custom Python scripts and the scikit-learn
suite, version 0.15.0 (RRID:SCR_002577) (Pedregosa et al., 2011).

Design of next-generation CRISPRi and CRISPRa libraries

Prediction of sgRNA activity scores

All sequences within —25 and 500 bp (for CRISPRi) or —550 and —25 bp (for CRISPRa) of the
upstream or the downstream edge of the primary or secondary TSS and containing 19 bp followed
by an NGG PAM were extracted as potential sgRNAs for downstream scoring of predicted activity.
All sequences were prepended with a 5° G to enable robust transcription from the Ué promoter,
whether or not this base was present in the genomic sequence. Parameters were calculated for all
sgRNAs as above, and transformed and scored using the CRISPRi or CRISPRa regression model
from an arbitrarily chosen training set (test set ROC-AUC corresponding to these sets reported in
results section).
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Off-target scoring

Prediction of sgRNA off-target effects was performed using weighted Bowtie (v1.0.0, RRID:SCR_
005476 [Ben Langmead et al., 2009]) alignment largely as previously described (Gilbert et al.,
2014) with several adjustments. The '~tryhard’ flag was added to the Bowtie command to increase
sensitivity for mismatched sgRNA target sites. The hg19 and mm10 genomes used for alignment
were masked at mitochondrial sequences and pseudoautosomal sequence to eliminate 'false posi-
tive’ multiple alignments. Most importantly, as CRISPRi and CRISPRa have maximal effects proximal
to the TSS, potential off-target alignments in these regions now were prioritized by creating a refer-
ence sequence corresponding to 1 kb windows around each TSS as defined above, along with the 5’
end of every Ensembl transcript annotation. Reference sequences were generated using bedtools
(v2.17.0, RRID:SCR_006646 [Quinlan and Hall, 2010]). In order to pass at the strictest threshold,
sgRNAs were required to have no more than 1 alignment (the sgRNA target site itself) with 'mis-
match score’ (Gilbert et al., 2014) less than 31 proximal to the TSS and under 21 in the genome.
(For hCRISPRi-v2, 96.6% of sgRNAs incorporated passed at this threshold.) In cases of difficult to tar-
get genes or close gene families, sgRNAs were allowed at relaxed thresholds. In descending order,
these were: 1 alignment under 31 proximal to the TSS (no genomic threshold), 1 alignment under 21
in the genome, 2 alignments under 31 proximal to the TSS, and 3 alignments under 31 proximal to
the TSS.

sgRNA selection
sgRNAs were chosen for inclusion into the genome-scale libraries based on predicted activity scores,
empirical activity scores where available, off-target filtering, overlap with other sgRNAs already
selected, and sequences with no restriction sites for enzymes used in cloning or sequencing sample
processing (BstXI, Blpl, and Sbfl). Empirical activity scores for CRISPRi/a v1 sgRNAs were generated
as for the training sets above at a lower discriminant threshold of 7, and the corresponding sgRNAs
were standardized to 19 bp with a 5' G preprended as above and subjected to the same revised off-
target scoring procedure. For each TSS targeted by the library, up to 2 sgRNAs with the strongest
empirical evidence were included first if the empirical activity score was at least 0.75, the sgRNA was
less that 5 kb from the revised v2 TSS, the sgRNA passed the most stringent off-target filter, the
sgRNA plus flanking cloning sequences did not contain extra restriction sites, and the sgRNA target
site was at least 3 bp shifted from any previously selected target sequence. Once 2 empirically vali-
dated v1 sgRNAs were included, further sgRNAs fitting these criteria were not included but their
predicted activity scores were increased by 0.2 to reflect the balance of information from the algo-
rithm and empirical activity. Predicted sgRNAs were then sorted by best predicted activity score and
included if the sgRNA passed the most stringent off-target filter, the sgRNA plus flanking cloning
sequences did not contain extra restriction sites, the sgRNA target site was at least 3 bp shifted
from any previously selected target sequence, and no more than 10 sgRNAs had been selected for
the TSS. If fewer than 10 sgRNAs were selected by this algorithm, off-target stringency was itera-
tively relaxed as above and selection was continued to attain 10 sgRNAs. If 10 sgRNAs passing the
most relaxed threshold could not be identified, the TSS was not targeted by the library.

sgRNA on-target and off-target prediction algorithms, library design scripts, and associated files
are available at https://github.com/mhorlbeck/CRISPRiaDesign.

Negative controls

For each library, the frequency of each DNA base at each position along the sgRNA protospacer
sequence was calculated. Random sgRNA protospacer sequences weighted by these base frequen-
cies were then generated to mirror the composition of the targeting sgRNAs. These were then fil-
tered for sgRNAs with O alignments with a mismatch score less than 31 proximal to the TSS and 0
alignments under 21 in the genome as above.

Library cloning

Protospacer sequences were appended with cloning sequences and then unique PCR adapters cor-
responding to the designated sublibrary. The half libraries were determined from the first 5 and sec-
ond 5 sgRNAs selected into the library for each TSS according to the algorithm above. Genes were
then partitioned into one of the 13 sublibraries defined by (Kampmann et al., 2015), compressed
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into the indicated 7 groupings. Each sgRNA was ordered as two oligonucleotide sequences to pro-
duce a narrower distribution of sgRNA representation. Overall, oligo sequences were 84 bp and had
the following format:

5’ pcr adapter BstXI protospacer BlpI 3’ pcr adapter

CACCTTGTTGGNNNNNNNNNNNNNNNNNNNGTTTAAGAGCTAAGCTG

PULEELETEEEE TRl
Genomic sequence: ............. NNNNNNNNNNNNNNNNNNNNNGG. . . ... .........

Oligonucleotides were synthesized by Agilent Technologies (RRID:SCR_013575; Santa Clara, CA)
on 244K oligo arrays, and cloned into the sgRNA expression vector as previously described
(Gilbert et al., 2014). The library sgRNA expression vector '‘pCRISPRia-v2’ was identical to the
CRISPRi/a v1 plasmid (pU6-sgRNA EF1Alpha-puro-T2A-BFP, Addgene #60955) with the addition of
two Sbfl restriction sites used for sequencing sample processing.

Genome-scale CRISPRi and CRISPRa screen for essential genes

The screens for genes required for robust growth were conducted essentially as previously
described (Gilbert et al., 2014). Briefly, plasmid libraries were packaged into lentivirus in HEK293T
cells (RRID:CVCL_0063) and infected into a previously established polyclonal K562 cell line stably
expressing dCas9-KRAB grown in 3L spinner flasks (Bellco, Vineland, NJ). After two days, infected
cells were selected with 0.75 ug/mL puromycin (Tocris, Bristol, UK) for two days, allowed to recover
for one day, and then cultured at a minimum of 750 x 10° cells in 1.5L standard media (RPMI-1640
with 10% Fetal Bovine Serum and 1x supplemental glutamine, penicillin, and streptomycin) from 'TO’
to ‘endpoint,’ determined by ~10 cell doublings after TO. CRISPRi screen cells were mock-treated
with 0.1% DMSO (Sigma-Aldrich, St. Louis, MO) but otherwise left untreated. Screens were per-
formed as independent replicates starting from the infection step. The K562 dCas9-KRAB and Sun-
Tag-VP64 cell lines were obtained from (Gilbert et al., 2014) and had been constructed from K562
cells originally obtained from ATCC (RRID:CVCL_0004). Cytogenetic profiling by array comparative
genomic hybridization (not shown) closely matched previous characterizations of the K562 cell line
(Naumann et al., 2001). All cell lines tested negative for mycoplasma contamination (MycoAlert Kit,
Lonza, Basel, Switzerland) in regular screenings.

Frozen samples of 250 x 10° cells collected at TO and endpoint were processed as previously
described (Gilbert et al., 2014), with the substitution of an Sbfl restriction digest (Sbfl-HF, New Eng-
land Biolabs, Ipswich, MA) in place of the Mfel digest in the genomic DNA fragmentation and enrich-
ment step. The sgRNA-encoding regions were sequenced on an Illumina HiSeq-4000 using custom
primers. Sequencing reads were aligned to the expected library sequences using Bowtie (v1.0.0,
[Ben Langmead et al., 2009)) and read counts were processed using custom Python scripts (avail-
able at https://github.com/mhorlbeck/ScreenProcessing) based on previously established shRNA
screen analysis pipelines (Bassik et al., 2013; Kampmann et al., 2013). sgRNAs represented with
fewer than 50 sequencing reads in both TO and Endpoint were excluded from analysis. sgRNA
growth phenotypes (y) were calculated by normalizing sgRNA log, enrichment from TO to endpoint
samples and normalizing by the number of cell doublings in this time period. CRISPRi v1 screen data
from Gilbert et al. (2014) was re-analyzed using this pipeline, and the hCRISPRi/a-v2 5 sgRNA/gene
libraries were evaluated by analyzing the sgRNA read counts corresponding to only the 5 sgRNA/
gene sublibraries. Gene ontology analysis was conducted using DAVID 6.7 (Huang et al., 2009) with
default search categories and with background lists representing the genes targeted by the CRISPRa
v1 or hCRISPRa-v2 libraries where appropriate. For Figure 4B and Figure 4—figure supplement
1D, 'shared hit" genes were 70 genes that scored as strong anti-growth hits (phenotype z-score x —
logo p-value < —10) in both CRISPRa v1 and hCRISPRa-v2.
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