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Abstract Macropinocytosis is a fundamental mechanism that allows cells to take up extracellular

liquid into large vesicles. It critically depends on the formation of a ring of protrusive actin beneath

the plasma membrane, which develops into the macropinocytic cup. We show that macropinocytic

cups in Dictyostelium are organised around coincident intense patches of PIP3, active Ras and

active Rac. These signalling patches are invariably associated with a ring of active SCAR/WAVE at

their periphery, as are all examined structures based on PIP3 patches, including phagocytic cups

and basal waves. Patch formation does not depend on the enclosing F-actin ring, and patches

become enlarged when the RasGAP NF1 is mutated, showing that Ras plays an instructive role.

New macropinocytic cups predominantly form by splitting from existing ones. We propose that

cup-shaped plasma membrane structures form from self-organizing patches of active Ras/PIP3,

which recruit a ring of actin nucleators to their periphery.

DOI: 10.7554/eLife.20085.001

Introduction
Macropinocytosis provides cells with an efficient way of taking up large volumes of medium into

intracellular vesicles, from which they can extract nutrients, antigens and other useful molecules

(Bloomfield and Kay, 2016; Egami et al., 2014; Maniak, 2001; Swanson, 2008; Swanson and

Watts, 1995). It is an ancient process, used for feeding by amoebae (Hacker et al., 1997; Thilo and

Vogel, 1980), but one that is important for a wide spectrum of human biology, including uptake of

drugs, and large-scale sampling of extracellular medium for antigens by immune cells. It has also

been hijacked by pathogens as a major route of entry (Mercer and Helenius, 2012). Recent data

suggest that macropinocytosis is a principal and widely used method for sustaining the excessive

metabolic demands of cancer cells (Commisso et al., 2013; Kamphorst et al., 2015) and may be

implicated in the spread of neurodegenerative disease within the brain (Münch et al., 2011).

Considering its biological importance, macropinocytosis is not well understood. Macropinosomes

form from cup-shaped extensions of the plasma membrane, often known as circular ruffles, which

are extended by actin polymerisation. The leading rims of these ruffles must be driven outwards to

enclose liquid – often for a very significant fraction of the cell’s diameter – but the base must be

held static. The resulting cups can be several microns in diameter, and eventually close by constric-

tion of their rim, with membrane fusion producing an endocytic vesicle. Here we address a critical

and mysterious question about this process - how do cells organize actin to polymerize in a ring and

so form the walls of the cup?

In the closely related process of phagocytosis, in which solid particles are taken up, it is proposed

that cup formation is guided by engaging receptors with the particle to be engulfed in a zippering

process (Freeman and Grinstein, 2014; Griffin et al., 1975). However, macropinosomes take up

fluid and so cannot use a particle as a template in this way. Nor is there any known equivalent in
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macropinocytosis of the coat that organises clathrin-mediated endocytosis. Thus it appears that mac-

ropinocytic cups must form by a self-organizing process within the actin polymerization machinery

and its regulators.

The dynamic actin that polymerises around macropinocytic cups is probably initiated by a number

of nucleators, including both formins, such as ForG, which is needed for the basal part of phagocytic

cups in Dictyostelium (Junemann et al., 2016), and the Arp2/3 complex (Insall et al., 2001), which

produces dendritic structures (Pollard and Borisy, 2003), like the actin that drives pseudopods.

Assembly of Arp2/3 based actin is controlled by the WASP family of nucleation promoting factors;

the two family members that act at the plasma membrane are WASP and SCAR/WAVE (hereafter

called SCAR). WASP is important for actin polymerisation during clathrin-mediated endocytosis

(Taylor et al., 2011), and SCAR, acting in a five-membered complex (Eden et al., 2002), for the for-

mation of pseudopods (Seastone et al., 2001; Veltman et al., 2012). It is not known which is

responsible for macropinocytosis.

Ras and phosphoinositide signalling help organize the cytoskeleton for macropinocytosis and

phagocytosis (Bar-Sagi and Feramisco, 1986; Bloomfield and Kay, 2016; Bohdanowicz and Grin-

stein, 2013; Rodriguez-Viciana et al., 1997; Swanson, 2014). There is evidence that Ras activity

stimulates macropinocytosis in both mammalian and Dictyostelium cells, and macropinocytic cups

are associated with an intense domain, or ‘patch’, of PIP3 (Araki et al., 2007; Parent et al., 1998;

Yoshida et al., 2009), which is essential for their function (Araki et al., 1996; Buczynski et al.,

1997; Hoeller et al., 2013; Zhou et al., 1998).

In macrophages, which often evolve macropinocytic cups from linear ruffles, it has been sug-

gested that ruffle circularisation creates a diffusion barrier in the membrane leading to intensified

PIP3 signalling and a domain of PIP3 in the centre of the circular ruffle (Welliver et al., 2011). This

domain then drives the further progression of the macropinocytic cup.

In axenic strains of Dictyostelium, which grow efficiently in liquid medium, macropinocytosis is

massively up-regulated due to mutation of the RasGAP neurofibromatosis-1 (NF1)

(Bloomfield et al., 2015; Hacker et al., 1997; Kayman and Clarke, 1983). These strains are thus an

excellent starting point for research into the organising principles behind macropinocytic cup forma-

tion. Here we examine macropinocytosis with unprecedented 3D detail using lattice light sheet

microscopy, and map the spatial and temporal control of actin regulators such as SCAR and WASP

eLife digest Cells can use a process known as macropinocytosis to take up fluid from their

surroundings. This process plays an important role in many situations. For example, it allows human

immune cells to sample their environment to search for harmful microbes and viruses and helps

cancer cells to collect more nutrients so that they can grow more rapidly. During macropinocytosis,

a protein called actin – which provides structural support to cells – drives the formation of cup-

shaped structures from the membrane that surrounds the cell. Several signaling molecules control

when and where the “cups” form, but it was not known exactly how the different types of molecules

work together.

Here Veltman et al. used a technique called lattice light sheet microscopy to investigate how the

macropinocytic cups form in a single-celled amoeba known as Dictyostelium. The experiments

revealed that to make a cup, the actin first arranges to form a ring. The ring copies a template in the

membrane, which consists of high concentrations of signaling molecules, and then extends outward

to form a hollow cup by which fluid is taken up. The most important signaling molecule identified in

these patches of membrane is a protein called Ras, which is mutated and hyperactive in many

different types of cancer. In Dictyostelium cells that have a genetic mutation that makes Ras more

active, the patches of signaling molecules and macropinocytic cups were larger than in normal cells.

The findings of Veltman et al. provide new details about how cells engulf fluids from their

surroundings. The next steps will be to investigate how the signaling molecules form patches in the

first place, and how they attract actin molecules. Also, more research is necessary to find out

whether all cells take up fluid in a similar way or if other methods have evolved in mammalian cells.

DOI: 10.7554/eLife.20085.002
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with respect to signalling molecules including PIP3 and active Ras. This leads us to propose a new

and general hypothesis for the formation of cups from the plasma membrane.

Results

The origins of macropinosomes in axenic strains of Dictyostelium
To determine whether macropinosomes form in Dictyostelium by circularization of linear ruffles, as

reported for macrophages (Welliver and Swanson, 2012), we used lattice light sheet microscopy

(Chen et al., 2014), which allows unparalleled high-resolution imaging of light-sensitive and dynamic

cells over prolonged periods. In axenic cells expressing an F-actin reporter, three types of large

F-actin structure are routinely detected: macropinocytic cups, which predominate, pseudopods and

basal waves.

3D movies show that the majority of macropinocytic cups initiate by splitting of existing ones

(62%; n = 152, Figure 1E). Splitting occurs by a variety of routes, including: simple division in the

middle; detachment of a small ruffle that grows into a new macropinocytic cup (Figure 1A, Video 1);

and abortive fragmentation of a parental macropinocytic cup into multiple daughter cups. We exam-

ined a reporter for active Rac in some of these movies and found that it is spatiotemporally associ-

ated tightly with F-actin in this morphological process (Figure 1B, Video 2).

The remaining macropinocytic cups form de novo, expanding from places where no previous

F-actin activity was detected. In more than 90% of cases the initiation is close to the base of the cell,

even though most mature macropinocytic cups are present on the top, and are commonly described

as ’crowns’. In the example illustrated in Figure 1C (Video 3), the parental ruffle first emerges close

to the substratum (t = 0, white arrow) and cannot unequivocally be classified as either pseudopod or

circular ruffle. The ruffle then quickly sweeps to the top of the cell, during which time it grows in size

and splits several times, to produce multiple full-grown macropinocytic cups. As with splitting macro-

pinocytic cups, the F-actin in de novo macropinosome cups is closely associated with signalling mol-

ecules, as illustrated by active Ras in Figure 1D (Video 4) and discussed later. Circular ruffles can

persist on the cell surface for prolonged periods before either closing successfully or regressing

back into the cell body. Closure of the cup can be quite abrupt and often appears to involve the

inward collapse of the rim (Figure 1F, Video 5) (Swanson et al., 1999).

The other large F-actin projections in growing Dictyostelium cells are pseudopods. These are dis-

tinguished from macropinocytic circular ruffles by their shape, which is convex instead of concave.

De novo pseudopods also initiate close to the substratum (Figure 1G, white arrow and Video 6) and

expand steadily to their full size. Pseudopods are surprisingly rare in growing axenic cells, account-

ing for less than 5% of all large F-actin structures.

Finally, we could follow the enigmatic actin waves that move across the basal surface of vegeta-

tive cells (Bretschneider et al., 2004, 2009; Gerisch, 2010). These waves also generally originate

from existing ruffles by splitting. When the splitting ruffle in Figure 1H (Video 7) contacts the sub-

stratum, it initiates an actin wave that spreads across the entire footprint of the cell, becoming so

dominant that other large F-actin structures are suppressed and flattening the cell into a smooth

bell-shape.

These observations show that the large macropinocytic cups of axenic Dictyostelium cells gener-

ally form by splitting or by expanding de novo from a small focus, as in fibroblasts (Bernitt et al.,

2015), rather than by circularization of linear ruffles (Welliver and Swanson, 2012). The smaller mac-

ropinocytic cups of wild-type cells (see later) also more normally form de novo or by splitting, rather

than by circularization.

PIP3, Ras and SCAR are required for normal fluid phase uptake
We tested the involvement of PIP3 and Ras signalling in macropinocytosis using an isogenic set of

mutants in which we measured both fluid uptake and growth in liquid medium (Supplementary mate-

rial, Table 1). Either increased or decreased PIP3 levels (PTEN and PI3-kinase mutants) are deleteri-

ous to fluid uptake and growth in liquid medium, as expected from earlier work (Clark et al., 2014;

Hoeller and Kay, 2007). Two independent RasG- mutants are substantially impaired in growth in liq-

uid medium, as previously described, but contrary to the earlier report (Khosla et al., 2000), both

are also defective in fluid uptake. Compensation by other Ras proteins and genetic background
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Figure 1. Life histories of macropinocytosis, pseudopods and basal waves. Vegetative axenic cells of strain Ax2 were followed in 3D time-lapse movies

made by lattice light sheet microscopy. Images show maximum intensity projections. Cells express a marker for F-actin (LimEDcoil-RFP) unless otherwise

indicated. Numbers indicate time in seconds. (A) A new macropinocytic cup formed by splitting (arrow marks nascent daughter macropinocytic cup). (B)

Close-up of a large macropinocytic cup, viewed en-face, that fragments and forms multiple smaller macropinocytic cups (arrowed). (C) Origin of a

Figure 1 continued on next page
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differences may account for the discrepancy (Bloomfield et al., 2008; Bolourani et al., 2010). RasC

null cells have no growth defect and a lesser defect in fluid uptake, while RasS (not tested here) may

also contribute to macropinocytosis (Chubb et al., 2000). Notably, we confirm that the Arp2/3 acti-

vator, SCAR, is required for efficient fluid uptake (Seastone et al., 2001).

A ring of active SCAR forms around PIP3 domains at the rim of
macropinocytic cups
The SCAR complex is mostly cytosolic and basally inactive, but when recruited to the plasma mem-

brane it causes actin polymerization through the Arp2/3 complex (Steffen et al., 2004; Ura et al.,

2012). A GFP reporter tagged at the HSPC300 subunit accumulates at sites of actin polymerization

(Veltman et al., 2012). To confirm that this accumulation signifies the presence of activated SCAR

complex, we correlated the signal with the expansion of pseudopods, using this as a proxy for actin

polymerization. The results clearly show that the reporter is recruited during expansion phases but

lost in stalls (Figure 2A,B). This correlation holds true globally: SCAR reporter intensity along the

membrane correlates well with the local membrane expansion speed (Figure 2C) as all pixels with

high SCAR reporter are associated with positive instantaneous membrane speed. Note that the

small set of pixels with very high membrane speeds and no SCAR (Figure 2C, red arrow) are due to

blebs (Zatulovskiy et al., 2014).

In images recorded in 3D, the reporter reveals a thin, sometimes broken ring of active SCAR

around the lip of macropinocytic cups (Figure 2D and Video 8). The presence of a ring could not be

predicted by imaging the actin cytoskeleton itself, as actin filaments are distributed rather uniformly

throughout the cup (Figure 2H). These circular SCAR structures are not seen in pseudopods, where

3D images show the same discrete blocks of SCAR as in 2D images (Figure 2E).

The discovery of these remarkable rings immediately raises the question of how individual SCAR

molecules are coordinated to maintain the ring

shape. We visualised PIP3 using a double reporter

that co-expresses the PH-domain of CRAC fused

to RFP (Insall et al., 1994). This revealed a

Figure 1 continued

cluster of macropinocytic cups from a small basal F-actin structure (arrow). (D) Detail of a cell initiating a de novo dorsal macropinocytic cup (ie not in

contact with substratum). (E) Table of macropinocytic cup origins. (F) Close-up of macropinocytic cup closure, viewed en face. (G) Growth of a

pseudopod from a small F-actin structure close to the substratum (arrow). (H) Growth of a basal F-actin wave from a small F-actin punctum (arrow), to

eventually encompass the entire basal surface of the cell. See also supplementary movie 1-7 for full movies of panel A, B, C, D, F, G and H respectively.

DOI: 10.7554/eLife.20085.003

Video 1. Macropinosomes are generated by splitting.

A vegetative Ax2 cell expressing an F-actin marker

imaged using lattice light sheet microscopy and viewed

from three perpendicular angles.

DOI: 10.7554/eLife.20085.004

Video 2. Macropinocytic cups are generated by

splitting. Detail of a vegetative Ax2 cell expressing

markers for active Rac and F-actin, imaged using lattice

light sheet microscopy and viewed from three

perpendicular angles.

DOI: 10.7554/eLife.20085.005
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second remarkable feature of SCAR rings: they

follow the edges of intensely stained domains, or

‘patches’ (Postma et al., 2004) of PIP3. In all

macropinocytic cups examined, of whatever size,

the concave cup contains a patch of PIP3 and

SCAR is present as a ring around this patch, with-

out detectable recruitment to its centre

(Figure 2F and G and Video 9).

This was confirmed in a larger sample by mea-

suring fluorescence intensity at the centre and

rim of 17 macropinocytic cups from nine cells ren-

dered in 3D (Figure 3A–B). All cup centres con-

tained high levels of PIP3, but SCAR consistently

followed the rim of the cup with the mean fluo-

rescence of the SCAR reporter significantly

higher than cytosolic background (p<0.01), while

signal at the centre of the PIP3 patch was not sta-

tistically different from the cytosolic background.

This is also clear in 2D images, but is easily over-

looked as the narrow SCAR ring appears only as

tiny puncta in the cross sections obtained from

confocal microscopy.

We further tested the spatial relation between

PIP3 and SCAR in two ways not requiring visual

recognition of macropinocytic cups. In the first, a

number of growing axenic cells was analysed as

follows. Membrane areas with fluorescence inten-

sity of the PIP3 reporter greater than cytosolic background plus one standard deviation were defined

as PIP3 patches, and the associated SCAR signal was measured. In all cases SCAR is consistently and

significantly enriched at patch edges (p<0.01), and never at their centres (Figure 3C–D). In the sec-

ond test, the fluorescence intensity of the SCAR and PIP3 reporters was extracted from the circum-

ference of a number of growing cells and the results plotted as a 2D histogram (Figure 3E). In pixels

with high PIP3 signal, the SCAR signal is low, and conversely in pixels with high SCAR, PIP3 is low.

This method cannot show whether high SCAR and PIP3 pixels are adjacent, but it does confirm that

SCAR and PIP3 do not co-localise but instead are anti-correlated.

SCAR is associated to the periphery of PIP3 patches throughout
macropinocytic cup lifetime
The complete lifetime of a de novo macropino-

cytic cup is shown in Figure 4A (Video 10 shows

another example). The PIP3 patch first becomes

visible at t = 1 and this sub-micron sized patch is

already flanked by puncta of SCAR. As the patch

of PIP3 grows the SCAR puncta remain dynami-

cally associated with its edge right up to closure

of the macropinocytic cup, after which the SCAR

signal quickly disappears and the vesicle is intern-

alised. The SCAR is not detected at the centres

of the patches above background.

This is also shown in a kymograph of the mem-

brane pixels of a single cell as it makes several

macropinosomes (Figure 4B). The SCAR signal,

though sometimes weak, can be traced along the

edge of the PIP3 patches from the start of a

patch to its abrupt loss at invagination. Combin-

ing the data from several macropinocytosis

Video 3. Macropinocytic ruffles often initiate on the

substratum. A vegetative Ax2 cell expressing an F-actin

marker imaged using lattice light sheet microscopy and

viewed from three perpendicular angles.

DOI: 10.7554/eLife.20085.006

Video 4. A small fraction of de novo macropinocytic

cups are initiated off- substratum. Detail of a vegetative

Ax2 cell expressing markers for active Ras and F-actin,

imaged using lattice light sheet microscopy and viewed

from three perpendicular angles.

DOI: 10.7554/eLife.20085.007
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events confirms this continuous association

(Figure 4C–E). Thus despite changes in size and

shape of PIP3 patches, SCAR remains associated

with their edges, and only their edges, through-

out the macropinocytic cup lifetime.

All PIP3 patches, whatever their
origin, recruit SCAR to their
periphery
It seemed possible that as a rule of cytoskeletal

organization in Dictyostelium, PIP3 patches

always recruit SCAR to their edges. Four other

examples of PIP3 patches support this: two from

growing cells, and two from starved cells, which

are highly migratory, chemotactically sensitive,

and morphologically very different from growing

cells:

During phagocytosis Dictyostelium cells make

a PIP3 patch where they contact the particle to

be ingested (Clarke et al., 2010; Marshall et al., 2001). In the yeast case shown in Figure 5A,

SCAR is recruited to the edges of the PIP3 patch, and not the centre, while a 3D view reveals a full

ring of SCAR around the rim of the phagocytic cup. Indeed, a clear ring of SCAR could be detected

in all such cases, provided expression of the SCAR reporter was low enough to avoid excessive back-

ground fluorescence.

Basal waves have a core of PIP3 surrounded by a ring of F-actin (Bretschneider et al., 2004,

2009; Gerhardt et al., 2014; Gerisch, 2010), and again, the basal PIP3 patches are invariably sur-

rounded by a ring of SCAR (Figure 5B). Basal waves are favourable for microscopy, and we found

that WASP is also excluded from PIP3 patches and forms a ring around them, though weaker and

less coherently than SCAR (Figure 5C). Similarly, WASP forms rings at the edges of PIP3 patches of

normal macropinocytic cups, again more weakly than SCAR (Figure 5D). The remaining Arp2/3 acti-

vator in Dictyostelium, WASH, does not associate with PIP3 patches (Figure 5—figure supplement

1).

Video 5. Closure of a macropinocytic cup. A vegetative

Ax2 cell expressing an F-actin marker imaged using

lattice light sheet microscopy and viewed from two

perpendicular angles.

DOI: 10.7554/eLife.20085.008

Video 6. Pseudopods are distinct from macropinocytic

ruffles. A vegetative Ax2 cell expressing an F-actin

marker imaged using lattice light sheet microscopy and

viewed from three perpendicular angles. A pseudopod

is initiated on the right hand side of the cell at t = 1

min.

DOI: 10.7554/eLife.20085.009
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During chemotactic aggregation, developing cells form small chains and streams with strong

head-to-tail adhesions between them and PIP3 patches in their front (Dormann et al., 2002). These

patches are invariably surrounded by a ring of SCAR. In the example shown in Figure 5E–G, a cell

strongly expressing reporters is situated between two poorly expressing cells. The strongly express-

ing cell forms a PIP3 contact patch, with SCAR present as a clear ring and excluded from the centre.

Cells respond to cyclic-AMP by making PIP3, initially homogenously and then, after about a min-

ute, in patches at the membrane (Postma et al., 2004). In the low light conditions required for time-

lapse imaging, the SCAR signal is weak, but where detected, it is clearly at the edges of the PIP3

patches (Figure 5H–J and Video 11). These patches have sometimes been regarded as new pseu-

dopods (for example [Chen et al., 2003]), but many become concave and close to engulf a drop of

medium, indicating that the cell is performing macropinocytosis, not a chemotactic response.

PIP3 patches are based on active Ras but do not require F-actin ruffles
PIP3 is largely made by Ras-activated PI3-kinases (Clark et al., 2014; Funamoto et al., 2002;

Hoeller and Kay, 2007). We confirmed that a patch of activated Ras exactly coincides with each

PIP3 patch (Figure 6A) (Sasaki et al., 2004;

2007). Similarly, plots of intensity, pixel-by-pixel,

show exceptional correlation between the Ras

and PIP3 signals (Figure 6B). Thus PIP3 patches

have a matching patch of activated Ras, which

could sustain them by activating PI3-kinase.

Video 7. Basal F-actin wave that originates by splitting

from a nascent macropinosome. A vegetative Ax2 cell

expressing an F-actin marker imaged using lattice light

sheet microscopy and viewed from three perpendicular

angles. Image jitter in this movie was due to technical

issues with the microscope’s Z-drive).

DOI: 10.7554/eLife.20085.010

Table 1. Growth and fluid uptake by mutants.

Strain Mutated protein Genotype MGT±SEM (hr) Fluid uptake ± SEM (nl/10̂six cells/h)

Ax2 parental 9.26 ± 0.26 (26) 114.7 ± 10.8 (9)

HM1505 RasC rasC- 9.27 ± 0.26 (7) 84.3 ± 6.3 (3)

HM1497 RasG rasG- 27.6 ± 2.9 (7) 55.3 ± 8.4 (3)

HM1514 RasG rasG- 19.1 ± 0.24 (3) 67.6 ± 1.9 (3)

HM1200 PI3K1-5 pikA-, pikB-, pikC-, pikF-, pikG- 103 ± 1.1 (3)* 9.0 ± 0.6 (3)

HM1289 PTEN ptenA- 19.0 ± 1.4 (9) 12.4 ± 0.6 (3)

HM1809 SCAR scrA- 27.8 ± 2.4 (6) 56.8 ± 9.7 (3)

HM1818 SCAR scrA- 38.4 ± 4.6 (10) 19.7 ± 5.0 (3)

* taken from Hoeller et al. (2013).

DOI: 10.7554/eLife.20085.011

Video 8. The rim of macropinocytic cups is traced by a

thin line of SCAR. Shown is a vegetative Ax2 cell

expressing the SCAR marker HSPC300. A Z-stack was

collected using a spinning disk microscope and

deconvolved using a calculated point spread function.

Left panel shows a surface render of the cell outline

and the right panel shows a 3D reconstruction of the

fluorescence signal using maximum intensity

projection.

DOI: 10.7554/eLife.20085.013
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Figure 2. Macropinocytic cups contain a central domain of PIP3 surrounded by a ring of SCAR. (A, B, C) Evidence that fluorescently tagged SCAR

complex faithfully marks regions of active actin polymerisation: (A) An aggregation-competent cell moving under an agarose overlay (optimal

conditions for visualising pseudopods) showing HSPC300-GFP recruited to the two pseudopods; (B) Kymograph of expansion of the pseudopod

arrowed in (A) showing that the SCAR reporter is present during periods of expansion, but absent in the plateaus when the pseudopod is not

expanding; (C) Membrane speed and SCAR complex accumulation are positively correlated. The HSPC300-GFP signal and local membrane speed was

measured at 100 points along the membrane of a motile cell. Data of eight independent cells was combined and plotted as a 2D histogram. Green

arrow indicates data points with high levels of SCAR and positive displacement. Red arrow indicates data points due to blebs, which are actin-free and

expand much faster than pseudopods (Zatulovskiy et al., 2014). (D) SCAR is recruited as a ring to the lip of macropinocytic cups. The upper panels

show top and side views of a surface rendering of a cell with three macropinocytic cups and the lower shows the same cell with a SCAR reporter. (E)

SCAR is recruited to pseudopods in distinct blocks, not as a ring. Pitted appearance of the 3D surface is a rendering artefact caused by small vesicles

that reside just underneath the cell membrane. (F) SCAR is recruited to the edge of an intense PIP3 patch in the macropinocytic cup. The white dotted

line in the left panel corresponds to the position of the vertical plane in the right panel. (G) 3D reconstruction of the cell in the previous panel. (H)

F-actin is nearly uniformly distributed in the macropinocytic cup and does not predict the localization of SCAR. Ax2 cells were used in all panels.

HSPC300 was used as a marker for the SCAR complex, PH-CRAC as a reporter for PI(3,4,5)P3 and Lifeact as a reporter for F-actin. 3D images were

reconstructed from Z-stacks taken on a spinning disk microscope.

DOI: 10.7554/eLife.20085.012
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Similarly, the Ras/PIP3 patch overlaps a patch of active Rac1, as detected by the CRIB domain

(Figure 6C) (Manser et al., 1994). Rac1 is an upstream regulator of SCAR, and has been implicated

in macropinocytosis (Dumontier et al., 2000; Palmieri et al., 2000). However, its broad distribution

cannot simply account for the much narrower SCAR ring. Alternatively, Rac1 may define a permissive

area where SCAR can be activated or other Rac isoforms may be involved, such as RacB, RacC or

RacG (Lee et al., 2003; Seastone et al., 1998). No specific markers exist for their activated state,

but the RacG molecule itself is modestly enriched at the rim of phagocytic cups (Somesh et al.,

2006).

A B

μ

C

μ
μ

D

μ

E

Figure 3. SCAR is present at the edge but not the centre of the macropinocytic cup. (A, B) Quantification of PIP3 and SCAR in macropinocytic cups

identified visually. (A) Method of analysis: Macropinocytic cups were identified morphologically from 3D rendered images and the position of their

center (blue arrow) and edge (orange arrows) was noted. Fluorescence intensity along the cell membrane of the boxed macropinocytic cup was plotted

and the intensity was measured at the marked center and edge. (B) PIP3 and SCAR fluorescence intensity at center and edge of 17 visually identified

macropinocytic cups. Bar indicates the mean, box indicates the second and third quartile. Whiskers indicate the range of the data. (C, D) Analysis of

SCAR in PIP3 patches. (C) Method of PIP3 patch analysis: Membrane-bound fluorescence intensity of the respective markers was measured for individual

cells. PIP3 patches were defined as those membrane regions where the fluorescence intensity is greater than mean cytosol plus one standard deviation

(dotted line) and these regions are marked in grey. (D) Quantification of fluorescence intensity at the centers and edges of 31 identified PIP3 patches.

Bar indicates the mean, box indicates the second and third quartile. Whiskers indicate the range of the data. (E) Anti-correlation between SCAR and

PIP3 reporter intensity. In this analysis the intensity of fluorescence in all membrane pixels was compared, irrespective of the morphological structure in

which they lay. The plot shows the combined data from 16 cells. Vegetative Ax2 cells expressing the SCAR complex reporter HSPC300-GFP and the PI

(3,4,5)P3 reporter PH-CRAC-mRFP were used in all experiments. The asterisk marks significant differences (p<0.01).
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It has been proposed that PIP3 patch formation requires a positive feedback loop where PIP3 acti-

vates Ras (Sasaki et al., 2007). We tested this by genetically manipulating PIP3 levels (Clark et al.,

2014; Hoeller and Kay, 2007). A mutant without Ras-activated PI3-kinases and producing only 10%

of wild-type PIP3 levels still forms patches of activated Ras at a similar frequency to parental cells

(Figure 6D). The SCAR signal in confocal cross sections of macropinocytic cups is too small for an

accurate comparison of SCAR ring formation between mutants and therefore we used basal waves

as a proxy for macropinocytic cups. Ras patches on the basal surface of PI3-kinase null cells still

exclude SCAR from their centre and recruit a peripheral ring of SCAR as normal, albeit more weakly

than in parental cells (Figure 6E–F). Conversely, when PIP3 levels are increased 10-fold by eliminat-

ing the PTEN phosphatase, the activated Ras domains do not expand correspondingly (Figure 6G)

and remain associated with rings of SCAR (Figure 6H). Thus Ras, rather than PIP3, is the primary

determinant of patches and SCAR rings.

It has also been proposed that PIP3 patch formation requires an enclosing circular ruffle to act as

a diffusion trap (Welliver and Swanson, 2012). We tested this by controlled use of the actin inhibi-

tor latrunculin-A to inhibit ruffle formation. Latrunculin-A at 1 mM leaves some actin polymerisation

intact, and at 5 mM abolishes all visible actin filaments, resulting in spherical cells (Figure 7A). Nei-

ther treatment abolishes the patches of PIP3, which become larger but less numerous, with a

μ

A B

μ

C

D

E

Figure 4. A SCAR ring encircles PIP3 patches throughout their lifetime. (A) Detail of a cell initiating a de novo macropinocytic cup. Puncta of SCAR flank

the PIP3 patch at all times. Time is indicated in seconds. (B) Kymograph of the fluorescence intensity along the membrane of a vegetative cell

completing several macropinocytosis events. SCAR is associated with the edge of PIP3 patches during their entire lifetime and never with their centers.

(C) Quantification of peripheral SCAR signal during macropinocytosis. A line was drawn through the edge of the macropinocytic cup and extending into

the cytosol for each frame of a time lapse of the lifetime of a complete macropinocytosis event. Line plots were concatenated resulting in kymographs

as shown in panel (D). Orange dotted line indicates the closure event. Numbers indicate independent macropinocytosis events. (E) The SCAR signal at

the edge of macropinocytic cups is present from start to finish. The fluorescence intensity at the macropinocytic cup edge was quantified and averaged

for all six analysed macropinocytic cups. Vegetative Ax2 cells expressing the SCAR complex reporter HSPC300-GFP and the PI(3,4,5)P3 reporter PH-

CRAC-mRFP were used in all experiments. Images are representative of typical macropinocytosis events.
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Figure 5. SCAR is recruited to the periphery of PIP3 patches, however they are formed. (A) Phagocytosis of a yeast cell. Arrows point to the narrow

accumulation of SCAR at the rim of the phagocytic cup. A full 3D render of the same cell is displayed on the right. The yeast cell is not labelled and

thus not visible in this image. (B) SCAR rings around basal actin waves visualised by TIRF microscopy. These waves consist of a patch of PIP3 surrounded

by a zone of actin polymerisation. PIP3 patches are invariably surrounded by a ring of SCAR. (C) WASP is excluded from the PIP3 patches of basal waves

Figure 5 continued on next page
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fluorescence intensity not significantly different from control cells (Figure 7B–E). We tested whether

the sharp boundaries of patches are affected by latrunculin-A by measuring the intensity across the

edges of more than 30 patches for each condition, (Figure 7F–H). It is clear that latrunculin-A has lit-

tle effect on the sharpness of the patch, suggesting that a diffusion barrier is not required to main-

tain its strong spatial coherence.

In summary, a circular ruffle is not essential to create signalling patches, which appear to largely

depend on Ras, with PIP3 playing a secondary though still important role.

The intensity of Ras signalling controls patch and macropinocytic cup
size
To test whether Ras plays an instructive role in macropinocytic cup morphogenesis, directly regulat-

ing their formation and size rather than acting as a remote trigger or passive participant, we exam-

ined the effect of genetically increasing Ras activity. The RasGAP NF1, encoded by the

Dictyostelium axeB gene, is present in the wild-isolate NC4 but inactivated in its axenic derivatives,

including the standard Ax2 used here. We found that macropinocytic cups in NC4 maintain exactly

the same organization as in Ax2, with a central

patch of PIP3 surround by a ring of SCAR, but are

much smaller and shorter-lived and often arise de

novo (Figure 7I,J and Videos 12, 13 and 14). To

confirm that macropinocytic cup size is controlled

Video 9. Macropinocytic cups are defined by a patch

of PIP3 that is circumscribed by a thin line of SCAR.

Shown is a vegetative Ax2 cell expressing the SCAR

marker HSPC300-GFP and the PIP3 marker PH-CRAC-

RFP. A Z-stack was collected using a spinning disk

microscope and deconvolved using a calculated point

spread function. Image shown is a 3D reconstruction of

the fluorescence signal using maximum intensity

projection.

DOI: 10.7554/eLife.20085.014

Video 10. SCAR remains dynamically associated to the

edge of PIP3 patches throughout macropinocytosis.

Vegetative Ax2 cell expressing the SCAR marker

HSPC300-GFP and the PIP3 marker PH-CRAC-RFP.

Images were taken on a spinning disk microscope.

DOI: 10.7554/eLife.20085.017

Figure 5 continued

and present as a ring around the patch, but less strongly than SCAR. (D) WASP is present at the edge of PIP3 patches in macropinocytic cups, albeit

more faintly than SCAR. Confocal cross sections are shown on the left panels and a full 3D render of the same cell is shown on the right. White arrow

indicates the faint rim of WASP around the PIP3 patch. (E–G) SCAR rings at cell-cell contacts. During chemotactic aggregation, streaming cells make

head-to-tail attachments and form a domain of PIP3 in their anterior attachment, which is surrounded by a strong SCAR ring; (F) A close-up of the

region indicated in the white box in (E); (G) A full 3D reconstruction of the same contact site. (H–J) Response to acute stimulation with the

chemoattractant cyclic-AMP. Aggregation-competent cells (equivalent to about 5 hr of starvation) were uniformly stimulated with a saturating dose of

cyclic-AMP (1 mM). They respond with a fast and spatially fairly uniform production of PIP3 at 4 s and later with a secondary response in which clear PIP3
patches are formed (panel H, t = 99s). SCAR is uniquely present at the edges of these patches (arrowed) as is most evident in the kymograph (I) and not

at the centre (J).

DOI: 10.7554/eLife.20085.018

The following figure supplement is available for figure 5:

Figure supplement 1. WASH is not recruited to PIP3 patches.

DOI: 10.7554/eLife.20085.019
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by NF1 we compared an isogenic NF1 knock-out

with its parent (DdB; also derived from NC4;

[Bloomfield et al., 2008]). Cells from each strain

were cultivated for 48 hr in axenic medium to

maximally induce the rate of macropinocytosis.

Under these conditions the axeB-null cells that

have lost NF1 make significantly larger macropi-

nocytic patches compared to cells from the parental strain (p<0.01, Figure 7K–L).

The effect of the loss of NF1 on basal PIP3 patches (basal actin waves) is equally striking. Basal

PIP3 patches are prevalent in axenic laboratory strains, especially during early starvation, but absent

from all wild-type strains tested (Figure 7—figure supplement 1 and compare Videos 15 and

16). axeB knockout cells that have lost NF1 form abundant basal PIP3 patches, but their wild-type

parent does not (Figure 7—figure supplement 1D). Thus the intensity of Ras signalling governs the

size and frequency of SCAR rings in macropinocytic cups and basal waves, showing that Ras must

play an instructive role.

We therefore propose that Ras patches, assisted by PI3-kinase and Rac, cause macropinocytic

cup formation by recruiting rings of SCAR/WAVE complex to their edge.

Discussion
Macropinosomes develop from cup-shaped projections of the plasma membrane, whose walls are

driven outwards by actin polymerization. They contain a central patch of activated Ras and PIP3
throughout their life and we find that in Dictyostelium, this patch is invariably associated with a ring

of active SCAR at its edge. We propose that this ring of active SCAR is recruited by the signalling

patch and drives a hollow ring of F-actin to extend the walls of the macropinocytic cup.

A possible alternative mechanism comes from immune cells, which make abundant linear ruffles.

These occasionally fold back to form circular ruffles, which have been described as diffusion traps

that can intensify signalling within them, leading to the formation of a patch of active Ras and PIP3,

(Welliver et al., 2011). In this model, PIP3 patches form as a consequence of circular ruffle forma-

tion, rather than as a cause of it. Despite the evidence that sharply curved membrane areas such as

those present at the leading edge of lamellipods can act as a diffusion barrier (Weisswange et al.,

2005), this idea does not easily extend to Dictyostelium, where linear ruffles are much less common,

and the central PIP3 patch of macropinocytic cups can still form when ruffle formation is inhibited.

However it remains possible that a diffusion barrier forms by a ruffle-independent mechanism, for

example by septin-like molecules (Golebiewska et al., 2011), or perhaps by cross-linking compo-

nents within the patch. Further, Dictyostelium patches become larger when Ras signalling is

increased by NF1 inactivation, showing that Ras plays an instructive part in their formation.

PIP3 patches are coincident with patches of activated Ras, which presumably support them by

activating PI3-kinase, and also of activated Rac. Previous work suggest that patches are self-organis-

ing structures, which can form independently of input from G-protein coupled receptors

(Sasaki et al., 2007) and are likely dependent on positive feedback loops between their components

Video 11. Chemoattractant-stimulated PIP3 patches

recruit SCAR to their edges, not to their centres. A

developed Ax2 cell expressing the PIP3 marker PH-

CRAC-RFP and the SCAR marker HSPC300-GFP was

stimulated at t = 0 with 1 mm cyclic AMP. Images were

collected using a spinning disk microscope.

DOI: 10.7554/eLife.20085.020

Video 12. Large circular ruffles are absent in vegetative

wild-type NC4 cells. Shown is a maximum intensity

projection of the fluorescence intensity of the F-actin

marker LimEDcoil. Images were taken on a lattice light

sheet microscope.

DOI: 10.7554/eLife.20085.024
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(Postma et al., 2003, 2004). Our results argue against an essential role for feedback from PIP3 to

Ras, because activated Ras patches can form independently of type-1 PI3-kinases and are still able

to recruit SCAR to their edges, albeit less efficiently than when PI3-kinases are present. Thus it
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Figure 6. PIP3 patches are supported by coincident patches of activated Ras, which can recruit weaker SCAR rings. (A, B) PIP3 and activated Ras

domains are essentially coincident in vegetative Ax2 cells: (A) dorsal patches (macropinocytic cups) and basal patches. Left and right panels show

different cells; (B) 2-D histogram showing strong correlation between PIP3 and activated Ras reporters. Fluorescence intensity values of the active Ras

reporter and PIP3 reporter along the perimeter of 35 cells are plotted against each other. (C) Macropinocytic signal patches additionally coincide with

patches of active Rac. Shown is a representative image of a macropinocytic cup in a vegetative Ax2 cell co-expressing a marker for active Ras (Raf1-

RBD) and active Rac (pakB-CRIB). (D, E) mutant lacking all Ras-activated PI3-kinases (strain HM1200) still forms Ras patches, both off the substratum (D)

and basally- see (E). (E, F) Basal patches of the PI3-kinase mutant recruit SCAR to their periphery, though less strongly than the wild-type, Ax2 (TIRF

images). Error bars indicate the standard deviation. Thus, loss of PI3K signalling does not allow SCAR to trespass on the Ras patch. (G, H) Ras patches

(indicated by white arrow) remain discrete, despite globally high levels of PIP3 in PTEN-null cells (strain HM1289) and these domains still invariably

recruit a complete SCAR ring to their edges.
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Figure 7. PIP3 patch formation does not require an encircling actin ruffle, but patch size is regulated by Ras activity. (A) The actin cytoskeleton is

depolymerized by treatment with latrunculin-A and ruffles suppressed. Vegetative cells expressing an F-actin marker (Lifeact) and a PIP3 marker (PH-

CRAC) were treated for 15 min with the indicated amounts of latrunculin-A. The F-actin marker is undetectable in the cortex when treated with 5 mM

latrunculin-A. (B) PIP3 patches remain after ruffles are suppressed by depolymerisation of the actin cytoskeleton. SCAR remains associated with the

Figure 7 continued on next page
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appears that the kinetics that lead to patch formation must lie largely within the compass of the

GEFs and GAPs activating and inactivating Ras.

We can only speculate on how SCAR is recruited to the periphery of Ras/PIP3 patches. One possi-

bility is that SCAR and Arp2/3 are preferentially recruited by newly synthesised F-actin

(Ichetovkin et al., 2002) produced by formins (Jasnin et al., 2016), which might therefore be the ini-

tial actin nucleator to be recruited. However, this seems unlikely in the light of recent work showing

that ForG contributes to the base of the macropinocytic cup, but seemingly not to the extending lip

(Junemann et al., 2016). Alternatively, SCAR might be moved to the periphery of Ras/PIP3 patches,

perhaps by myosin-1 motors. Early work showed that myosin-1 is genetically important for macropi-

nocytosis in Dictyostelium (Novak et al., 1995; Titus, 2000). In support of the genetic evidence,

myosin-1 isoforms are recruited to macropinocytic cups in both Dictyostelium and Acanthamoeba

Figure 7 continued

patch edge under 1 mM latrunculin-A, but is lost when treated with 5 mM latrunculin-A. (C–E) Ruffles are not essential for PIP3 patch formation.

Treatment with latrunculin-A does not significantly change PIP3 patch intensity, but leads to an increase in size and a decrease in number. (F–H) Patch

boundaries are sharply defined and this does not depend on an enclosing ruffle. (F) Membrane fluorescence intensity across the edge of PIP3 patches

was measured (G) Measured intensity profiles along the edge of 36 patches of both treated and untreated cells, with each line representing a single

patch. (H) Mean fluorescence intensity of the PIP3 reporter along the patch edges of treated and untreated cells, obtained by averaging the profiles in

the previous panel. (I) Macropinocytic cups in vegetative cells of wild-type cells are smaller than those of axenic strains. Shown is a maximum intensity

projection of the F-actin reporter LimEDcoil of a field of vegetative cells, recorded using lattice light sheet microscopy. (J) SCAR is still recruited to the

edges of the PIP3 patch of the small macropinocytic cups of wild-type cells. (K–L) Increased Ras activity leads to larger PIP3 patches and macropinocytic

cups. Ras activity was increased by knock-out of the RasGAP, NF1 (axeB is the gene encoding NF1). Parental DdB and knock-out cells were cultivated

for 48 hr in axenic medium to maximally up-regulate macropinocytosis. (K) Confocal image of macropinocytic patches in wild-type DdB and axeB null

cells; (L) Quantification of the patch size in both cell types. Loss of NF1 leads to a significant increase in macropinocytic patch size.

DOI: 10.7554/eLife.20085.022

The following figure supplement is available for figure 7:

Figure supplement 1. Basal PIP3 patches (actin waves) are absent from wild-type cells.

DOI: 10.7554/eLife.20085.023

Video 13. The morphology of vegetative cells from

axenic strains is dominated by large circular ruffles.

Shown is a maximum intensity projection of the

fluorescence intensity of the F-actin marker LimEDcoil

(Jitter in this movie was due to technical issues with the

microscope’s Z-drive). Images were taken on a lattice

light sheet microscope.

DOI: 10.7554/eLife.20085.025

Video 14. SCAR follows PIP3 patches in macropinocytic

cups of wild-type NC4 cells. Detail of a vegetative cell

from the wild strain NC4 expressing a marker for PIP3
and a marker for the SCAR complex. Macropinocytosis

is rapid and small but the cups still show SCAR puncta

on their edges. Images were taken on a spinning disk

microscope. It should be noted that due to the small

size of the macropinocytic cups, the top and bottom of

the cup are frequently in the focal plane, resulting in an

overlap in both signals.

DOI: 10.7554/eLife.20085.026
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(Brzeska et al., 2012; Ostap et al., 2003), most likely due to their affinity for PIP3 (Chen et al.,

2012). The PIP3-binding MyoE and MyoF are recruited in the centre and MyoB at the periphery of

macropinocytic cups, forming a striking ‘bull’s eye’ pattern (Brzeska et al., 2016; Dieckmann et al.,

2010). In such a scenario, CARMIL may provide the link between myosin-1 and SCAR (Jung et al.,

2001).

Our work also has implications more specific to Dictyostelium biology. First, the basal actin

waves, which give a valuable window into actin dynamics (Bretschneider et al., 2004, 2009; Ger-

isch, 2010), appear to be formed as a consequence of the loss of NF1 in standard laboratory axenic

strains. Knowing this should allow for better manipulation of these waves and for modelling to take

account of their underlying need for activated Ras (Arai et al., 2010; Khamviwath et al., 2013;

Sasaki et al., 2007; Taniguchi et al., 2013). Second, we consider that all patches of PIP3 and acti-

vated Ras are related by their common recruitment of SCAR to their periphery and are therefore

likely to organise circular rings of actin polymerization, rather than the solid blocks characteristic of

pseudopods. Therefore, the proposed role of these patches in chemotaxis, where they have been

mistaken for pseudopods, needs to be re-evaluated.

In summary, our work suggests a general hypothesis for the formation of cupped actin structures:

that these structures arise from a ring of actin polymerization formed by recruiting actin nucleators

to the periphery, but not the centre, of self-organizing patches of intense Ras and PIP3 signalling.

This hypothesis suggests many new lines of experimentation.

Materials and methods

Cell strains, cultivation and fluid uptake assay
The following Dictyostelium discoideum strains were used: Ax2 (R. Kay lab strain), NC4 (from K.

Raper, obtained via P. Schaap), DdB (from M. Sussman, obtained via D. Welker), NC66.2 (from D.

Francis), Ax3 (R. Chisholm laboratory strain, obtained via Stock Center) and Ax4 (W. Loomis

Video 15. Basal patches are dominant in axenic cells

during early starvation. Cells from the axenic strain Ax2

were washed free of nutrients and left to develop

autonomously under non-nutrient buffer. Time-lapse

images were taken using a confocal microscope.

Z-plane was set so that the basal membrane of the cell

was in focus. Shown is an overlay of the fluorescence

signal of a PIP3 marker with the trans-illuminated

image.

DOI: 10.7554/eLife.20085.027

Video 16. Basal patches are absent from non-axenic

wild type cells. Cells of the wild-type strain NC4 were

washed free of nutrients and left to develop

autonomously under non-nutrient buffer. Time-lapse

images were taken using a confocal microscope.

Z-plane was set so that the basal membrane of the cell

was in focus. Shown is an overlay of the fluorescence

signal of a PIP3 marker with the trans-illuminated

image.

DOI: 10.7554/eLife.20085.028
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laboratory strain, obtained via Stock Center). Axenic strains were cultured in Petri dishes under HL5

medium (Formedium, Hunstanton, UK) using standard methods. Non-axenic strains were cultivated

on SM agar plates with a lawn of live Klebsiella pneumoniae and where necessary washed free of

bacteria by repeated low-speed centrifugation from KK2 (20 mM KH2PO4/K2HPO4, 2 mM MgSO4,

0.1 mM CaCl2, pH 6.2) (for detailed protocols of these standard techniques, see (Kay, 1987) and

dictybase.org/techniques/). Mutant strains, all in the parental Ax2 (Kay) background, are listed in

Supplementary Material, Table 1.

Fluid uptake was measured using TRITC-dextran and flow cytometry. Cells were grown on bacte-

rial lawns, washed free of bacteria, resuspended in HL5 with antibiotics, 50 ml aliquots were distrib-

uted into 96 plates and allowed to adapt for about 18 hr, until macropinocytosis was maximally up-

regulated. TRITC-dextran was added to 0.5 mg/ml in HL5 to the wells and the cells incubated for

various times, after which the TRITC dextran was removed, the cells washed once and uptake termi-

nated with ice-cold, 5 mM NaN3, which also detaches the cells. Fluorescence in individual cells was

then measured by flow cytometry, and the rate determined while uptake was linear with time (first

45–60 min).

DNA constructs and transfection
Single and dual expression vectors were used for all experiments (Veltman et al., 2009). Specifically,

the following vectors were used: plasmid pDM1219 - expression of mCherry-LimEDcoil (residue 1–

145 of Dd LimE), pDM767 - dual expression of HSPC300-GFP and PH-CRAC-mRFPmars (residue 1–

126 of Dd DagA), pDM1492 - dual expression of mCherry-RBD-Raf1 (residue 1–134 of Hs Raf1) and

PH-PkgE-mCherry (residue 1–100 of Dd PkgE), pDM1383 - dual expression of HSPC300-GFP and

mCherry-RBD-Raf1 and pDM1424 - dual expression of HSPC300-GFP and PH-PkgE-mCherry.

The act6 promoter that drives the resistance marker on the expression vectors is not active when

cells are cultivated using bacteria as a food source. Therefore, this promoter was replaced by the

coaA promoter (bp �293 to bp �1 relative to the start codon of coaA) for those vectors that were

used to transfect non-axenic, wild-type cells.

Transfection of non-axenic cells was performed as follows: 5 � 106 cells were harvested from the

feeding front of an SM agar plate, washed once in H40 buffer (40 mM HEPES/KOH pH 7.0, 1 mM

MgCl2), and resuspended in 100 ml H40 buffer. Cells were mixed with 5 ml miniprep DNA (~0.5–1 mg

total) and put on ice. Cells were then electroporated with two square waves of 350 V, 8 ms, 1 s apart

using a Gene Pulser Xcell (Biorad) and immediately transferred to a Petri dish with SorMC buffer (15

mM KH2PO4, 2 mM Na2HPO4, 50 mM MgCl2, 50 mM CaCl2, pH 6.0) supplemented with live Klebsiella

pneumoniae at an OD600 of 2. Selection marker was added after 5 hr (10 mg/ml G418 or 100 mg/ml

hygromycin).

Image acquisition
Lattice light sheet microscopy 3D images were acquired as described (Chen et al., 2014), using a

massively parallel array of coherently interfering beams comprising a non-diffracting 2D optical lat-

tice as light sheet illumination focused by 0.65 NA objective for excitation (Special Optics). This cre-

ates a coherent structured light sheet that can be dithered to create uniform excitation in a 400 nm

thick plane across the entire field of view determined by the length of the light sheet. In order to

obtain the array of lattice light sheet, a binary spatial light modulator (SXGA-3DM, Forth Dimension

Displays) is placed conjugate to the sample plane, and a binarized version of the desired structured

pattern at the sample is projected on the display. In the time-lapse dithered mode, 3D stacks were

acquired either by moving the detection objective (Nikon, CFI Apo LWD 25XW, 1.1 NA, 2 mm WD),

which is synchronized with the scanning galvo mirror, or moving the sample by fast piezoelectric flex-

ure stage (Physik Instrumente, P-621.1CD) with 100 ~150 z planes, to have about 20 mm in z axis

with respect to the detection objective. Exposure time was 5 or 10 msec per plane, for a total expo-

sure time of ~1 s for one 3D stack and a 1 s pause was added between each time point to have time

series data. Raw data was deconvolved via a 3D iterative Lucy-Richardson algorithm in Matlab (The

Mathworks, Natick, MA) utilizing an experimentally measured point spread function.

Spinning disk microscopy was performed on an Andor Revolution system with a Yokogawa CSU

spinning disk confocal unit. The microscope was fitted with a 1.49 Plan Apo 100x oil immersion

objective and an additional 1.2x magnification lens. GFP and mCherry signals were separated by a
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Tucam beam splitter and detected using two Andor iXon Ultra backlit EMCCD cameras with 16 mm

pixel size. Z-scans were performed with the 1.5x optovar in place using 70 ms exposure per frame

and a Z-spacing of 0.19 mm. Typically, 80 frames were collected from each camera in a total of 8 s.

TIRF microscopy was performed using a Nikon N-STORM system fitted with a 1.49 Plan Apo 100x

oil immersion objective and the 1.5x optovar in place. GFP and mCherry fluorescence signals were

recorded sequentially on an Andor iXon Ultra backlit EMCCD camera.

Confocal microscopy was performed on a Leica SP8 system using a 1.4 NA plan apo oil immer-

sion objective and GFP/mCherry fluorescence was detected using two HyD detectors. All micros-

copy was performed at room temperature.

Image analysis
General image handling, such as brightness/contrast adjustments and generation of kymographs

was done using ImageJ (NIH). 3D cellular fluorescence images were generated as follows. A Z-stack

was recorded on a spinning disk microscope using previously indicated settings. The dataset was

deconvolved with Huygens Professional software (Scientific Volume Imaging) using a calculated point

spread function. The images presented are maximum intensity projections of the deconvolved

dataset.

Correlation between speed and membrane fluorescence intensity was analysed using Quimp11

(www.warwick.ac.uk/quimp). Identification of membrane pixels and measuring their fluorescence

intensity was done using a custom-written MATLAB (The MathWorks) script (Supplementary file 1

and Source code 1).

Image sets that were used for quantification were taken from at least two independent transfec-

tions. Only those cells with very low HSPC300-GFP expression were included for analysis, as overex-

pression dramatically reduces image contrast. For the quantification of SCAR fluorescence on the

edge and centre of macropinocytic cups a paired 2-tailed T-test was used in Figure 3B and D and a

2-tailed T-test was used in Figure 6F.

All lattice light sheet microscopy movies (1–7 and 12–13) show a maximum intensity projection of

the fluorescence intensity. The F-actin marker LimEDcoil is used in all images unless otherwise speci-

fied. Images were deconvolved using a custom-written Richardson-Lucy algorithm. The maximum

intensity projection was generated using Huygens software. Indicated time is in the min:sec format.
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Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Current Biology
14:1–10. doi: 10.1016/j.cub.2003.12.005, PMID: 14711408

Brzeska H, Guag J, Preston GM, Titus MA, Korn ED. 2012. Molecular basis of dynamic relocalization of
Dictyostelium myosin IB. Journal of Biological Chemistry 287:14923–14936. doi: 10.1074/jbc.M111.318667,
PMID: 22367211

Brzeska H, Koech H, Pridham KJ, Korn ED, Titus MA. 2016. Selective localization of myosin-I proteins in
macropinosomes and actin waves. Cytoskeleton 73:68–82. doi: 10.1002/cm.21275, PMID: 26801966

Buczynski G, Grove B, Nomura A, Kleve M, Bush J, Firtel RA, Cardelli J. 1997. Inactivation of two Dictyostelium
discoideum genes, DdPIK1 and DdPIK2, encoding proteins related to mammalian phosphatidylinositide 3-
kinases, results in defects in endocytosis, lysosome to postlysosome transport, and actin cytoskeleton
organization. The Journal of Cell Biology 136:1271–1286. doi: 10.1083/jcb.136.6.1271, PMID: 9087443

Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA, Liu Z,
English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell
DM, Bembenek JN, Reymann AC, et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at
high spatiotemporal resolution. Science 346:1257998. In press. doi: 10.1126/science.1257998, PMID: 25342811

Chen CL, Wang Y, Sesaki H, Iijima M. 2012. Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton
in chemotaxis. Science Signaling 5:ra10. doi: 10.1126/scisignal.2002446, PMID: 22296834

Chen L, Janetopoulos C, Huang YE, Iijima M, Borleis J, Devreotes PN. 2003. Two phases of actin polymerization
display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis.
Molecular Biology of the Cell 14:5028–5037. doi: 10.1091/mbc.E03-05-0339, PMID: 14595116

Veltman et al. eLife 2016;5:e20085. DOI: 10.7554/eLife.20085 21 of 24

Research article Cell Biology

http://orcid.org/0000-0002-9512-3235
http://dx.doi.org/10.7554/eLife.20085.029
http://dx.doi.org/10.7554/eLife.20085.030
http://dx.doi.org/10.1073/pnas.0908278107
http://www.ncbi.nlm.nih.gov/pubmed/20562345
http://dx.doi.org/10.1016/j.yexcr.2007.02.012
http://dx.doi.org/10.1016/j.yexcr.2007.02.012
http://www.ncbi.nlm.nih.gov/pubmed/17368443
http://dx.doi.org/10.1083/jcb.135.5.1249
http://dx.doi.org/10.1083/jcb.135.5.1249
http://www.ncbi.nlm.nih.gov/pubmed/8947549
http://dx.doi.org/10.1126/science.3090687
http://www.ncbi.nlm.nih.gov/pubmed/3090687
http://dx.doi.org/10.1371/journal.pone.0115857
http://www.ncbi.nlm.nih.gov/pubmed/25574668
http://dx.doi.org/10.1242/jcs.176149
http://www.ncbi.nlm.nih.gov/pubmed/27352861
http://dx.doi.org/10.1186/gb-2008-9-4-r75
http://www.ncbi.nlm.nih.gov/pubmed/18430225
http://dx.doi.org/10.7554/eLife.04940
http://www.ncbi.nlm.nih.gov/pubmed/25815683
http://www.ncbi.nlm.nih.gov/pubmed/25815683
http://dx.doi.org/10.1152/physrev.00002.2012
http://www.ncbi.nlm.nih.gov/pubmed/23303906
http://dx.doi.org/10.1128/EC.00141-10
http://www.ncbi.nlm.nih.gov/pubmed/20833893
http://dx.doi.org/10.1016/j.bpj.2008.12.3942
http://www.ncbi.nlm.nih.gov/pubmed/19348770
http://dx.doi.org/10.1016/j.cub.2003.12.005
http://www.ncbi.nlm.nih.gov/pubmed/14711408
http://dx.doi.org/10.1074/jbc.M111.318667
http://www.ncbi.nlm.nih.gov/pubmed/22367211
http://dx.doi.org/10.1002/cm.21275
http://www.ncbi.nlm.nih.gov/pubmed/26801966
http://dx.doi.org/10.1083/jcb.136.6.1271
http://www.ncbi.nlm.nih.gov/pubmed/9087443
http://dx.doi.org/10.1126/science.1257998
http://www.ncbi.nlm.nih.gov/pubmed/25342811
http://dx.doi.org/10.1126/scisignal.2002446
http://www.ncbi.nlm.nih.gov/pubmed/22296834
http://dx.doi.org/10.1091/mbc.E03-05-0339
http://www.ncbi.nlm.nih.gov/pubmed/14595116
http://dx.doi.org/10.7554/eLife.20085


Chubb JR, Wilkins A, Thomas GM, Insall RH. 2000. The Dictyostelium RasS protein is required for
macropinocytosis, phagocytosis and the control of cell movement. Journal of Cell Science 113:709–719.
PMID: 10652263

Clark J, Kay RR, Kielkowska A, Niewczas I, Fets L, Oxley D, Stephens LR, Hawkins PT. 2014. Dictyostelium uses
ether-linked inositol phospholipids for intracellular signalling. The EMBO Journal 33:2188–2200. doi: 10.15252/
embj.201488677, PMID: 25180230

Clarke M, Engel U, Giorgione J, Müller-Taubenberger A, Prassler J, Veltman D, Gerisch G. 2010. Curvature
recognition and force generation in phagocytosis. BMC Biology 8:154. doi: 10.1186/1741-7007-8-154,
PMID: 21190565

Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M,
Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D. 2013. Macropinocytosis
of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637. doi: 10.1038/
nature12138, PMID: 23665962

Dieckmann R, von Heyden Y, Kistler C, Gopaldass N, Hausherr S, Crawley SW, Schwarz EC, Diensthuber RP,
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