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Abstract Diagnosis and treatment of circadian rhythm sleep-wake disorders both require

assessment of circadian phase of the brain’s circadian pacemaker. The gold-standard univariate

method is based on collection of a 24-hr time series of plasma melatonin, a suprachiasmatic

nucleus-driven pineal hormone. We developed and validated a multivariate whole-blood mRNA-

based predictor of melatonin phase which requires few samples. Transcriptome data were

collected under normal, sleep-deprivation and abnormal sleep-timing conditions to assess

robustness of the predictor. Partial least square regression (PLSR), applied to the transcriptome,

identified a set of 100 biomarkers primarily related to glucocorticoid signaling and immune

function. Validation showed that PLSR-based predictors outperform published blood-derived

circadian phase predictors. When given one sample as input, the R2 of predicted vs observed phase

was 0.74, whereas for two samples taken 12 hr apart, R2 was 0.90. This blood transcriptome-based

model enables assessment of circadian phase from a few samples.

DOI: 10.7554/eLife.20214.001

Introduction
Many physiological and molecular variables exhibit 24 hr rhythmicity generated by central and

peripheral circadian oscillators, as well as environmental and behavioral influences (Morris et al.,

2012; Mohawk et al., 2012). The master circadian pacemaker located in the suprachiasmatic

nucleus (SCN) of the hypothalamus drives 24 hr rhythmicity in endocrine and neural factors such as

cortisol, melatonin and the autonomic nervous system (Brancaccio et al., 2014; Kalsbeek and Fli-

ers, 2013). Under normal conditions, the SCN is synchronized to the 24 hr light-dark (L-D) cycle by a

light-input pathway (Lucas et al., 2014). The effects of light on the SCN depend on the timing,

that is, the circadian phase of the SCN, at which light is administered (St Hilaire et al., 2012). The

SCN is also sensitive to feedback from the pineal melatonin rhythm which impinges on the SCN

through its melatonin receptors (Pevet and Challet, 2011). Exogenous melatonin can phase-shift

and entrain the SCN, but its effects depend on the circadian phase of melatonin administration

(Lewy et al., 2005).

Synchronization of the SCN to the L-D cycle and synchronization of the sleep-wake cycle to the

SCN are disrupted during shift work and jet lag and in circadian rhythm sleep-wake disorders

(CRSWDs). Examples of CRSWDs are delayed sleep-wake phase disorder, which is prevalent in ado-

lescents (Micic et al., 2016), and non-24-hr sleep-wake disorder, such as occurs in blind individuals

(Sack et al., 1992; Sack and Lewy, 2001). Treatment of these circadian disorders by melatonin or

Laing et al. eLife 2017;6:e20214. DOI: 10.7554/eLife.20214 1 of 26

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.20214.001
http://dx.doi.org/10.7554/eLife.20214
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


light exploits the circadian phase-dependent response of the SCN to these stimuli (Auger et al.,

2015). Optimal treatment requires that the circadian phase of the SCN is known and is thereby one

example of chronotherapy, an increasingly important field in drug development and medicine

(Dallmann et al., 2016). Knowledge of the circadian phase of the SCN is also informative for the

diagnosis of CRSWDs, assessment of adaptation to new time zones, adaptation to shift work

(Mullington et al., 2016) and identification of circadian rhythm disturbances in psychiatric condi-

tions. Conventionally, circadian phase of the SCN is assessed through long-term collection of bio-

markers in the field or in the clinic. Examples are repeated urinary 6-sulfatoxy melatonin assessments

(Flynn-Evans et al., 2014; Lockley et al., 2015), long-term core body temperature recordings

(Klein et al., 1993), or frequent blood or saliva sampling in dim light, for the assessment of melato-

nin rhythm (Klerman et al., 2002; Danilenko et al., 2014). The plasma rhythm of melatonin is driven

by rhythmic melatonin synthesis in the pineal and under control of the SCN (Arendt, 2005). In

human clinical research, melatonin is therefore considered a gold-standard proxy for SCN phase.

However, circadian phase assessments based on the plasma melatonin rhythm are time consuming,

burdensome and costly. This would be greatly reduced if circadian phase could be assessed from

only one or few blood samples.

At the molecular level, circadian oscillators consist of a network of genes that, through a tran-

scriptional-translational feedback loop, generates tissue-specific circadian rhythmicity in transcription

and translation (Partch et al., 2014; Koike et al., 2012). In human blood, 6.4–8.8% of the transcrip-

tome exhibits circadian rhythmicity when sleep occurs in phase with the melatonin cycle and in the

absence of a sleep-wake cycle (Archer et al., 2014; Möller-Levet et al., 2013). This peripheral circa-

dian rhythmicity is, however, markedly disrupted when sleep occurs out of phase with the melatonin

rhythm. Under these conditions, only 1% of transcripts are rhythmic (Archer et al., 2014). The

human blood transcriptome is also affected by both chronic sleep restriction and acute total sleep

deprivation (Möller-Levet et al., 2013). This sensitivity of the peripheral circadian transcriptome to

factors such as sleep timing and sleep restriction poses a significant challenge for the assessment of

circadian phase from the blood transcriptome. In many target conditions and patient populations,

for example, shift work and non-24-hr sleep-wake disorder, sleep timing and duration are altered.

Nevertheless, one or two blood transcriptome mRNA abundance profiles could potentially contain

information about the circadian phase at which these samples were taken under all these conditions.

Phase prediction methods based on omics data from a few samples of blood or other tissues

have been developed. Some methods selected the transcripts (features) to be used as predictors

based on existing knowledge of their rhythmic expression and/or involvement in circadian processes

(Lech et al., 2016), that is, a transcriptome wide search was not performed. Other methods required

predictors to be rhythmic. These methods first fitted a rhythmic function (e.g. cosine-wave

[Ueda et al., 2004; Minami et al., 2009] or rhythmic spline [Hughey et al., 2016]) to time-series of

transcriptomic or metabolomic data to identify (24 hr) rhythmically expressed features, which were

then used as predictors. None of these methods, either applied to the transcriptomic profiles of dif-

ferent mouse organs (Ueda et al., 2004; Minami et al., 2009), or the metabolomic (Minami et al.,

2009) or transcriptomic profiles (Lech et al., 2016) of human blood, specifically aimed to predict the

phase of the melatonin rhythm. Moreover, the performance of these methods was not assessed in

conditions of desynchrony of the sleep-wake cycle and the melatonin rhythm.

Here, our aims are (1) to develop and validate a circadian phase prediction method by a transcrip-

tome wide search for a set of features that is capable of predicting the circadian phase of the plasma

melatonin rhythm, regardless of sleep history and timing, using a few blood samples; (2) to compare

the performance of this method to published approaches; and (3) identify the processes associated

with the set of identified biomarkers.

Results

Overview of development and validation of models for predicting
circadian phase
mRNA abundance features and melatonin concentrations were assessed in blood samples collected

under four sleep timing conditions (Archer et al., 2014; Möller-Levet et al., 2013) (Figure 1d,h): (i)

Sleep in phase with melatonin; (ii) Sleep out of phase with melatonin; (iii) total sleep deprivation, no

Laing et al. eLife 2017;6:e20214. DOI: 10.7554/eLife.20214 2 of 26

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20214


prior sleep debt and (iv) total sleep deprivation, with prior sleep debt. The melatonin rhythm persists

in the absence of sleep and when sleep occurs during the daytime provided that light levels are low,

as was the case in these experiments (Figure 1d,h). Each of 678 genome-wide mRNA abundance

profiles were assigned a circadian melatonin phase by referencing it to the onset of melatonin secre-

tion (0 degrees) in the corresponding individual time series (Archer et al., 2014; Möller-

Levet et al., 2013). Melatonin phases of mRNA samples spanned the entire circadian cycle

(Figure 1c,g). To develop practical models, we divided our data set into a training set comprising

329 samples and a validation set comprising 349 samples (see Materials and methods).

Mapping of x on to y using 

n features via: 

1. Molecular timetable

2. Zeitzeiger

3.  Partial Least 

Squares Regression

with n

parameters optimised 

via cross-validation

a b c d

e f g h

Application of models to 

predict y from x

Validation: Model testing

Training: Model building

y : Melatonin phase of a 

sample to be mapped

y : Melatonin phase of a 

sample to be predicted

Figure 1. Development and validation of models for predicting melatonin phase from transcriptomic samples. mRNA abundance and melatonin data

from 53 participants collected in four conditions (panels c, d, g and h) were partitioned into two groups: a training set (329 mRNA samples from 26

participants) to build the model and a validation set (349 mRNA samples from 27 participant). For each participant in each condition, hourly melatonin

samples (closed circles in plots represent the average melatonin profile of participant in a given experimental condition) and multiple transcriptomic

samples (colored triangles) separated by 3 (conditions i and ii) or 4 hr (conditions ii and iv) were collected. Based on a participants’ melatonin profile,

each transcriptomic sample for that participant was assigned a circadian phase and plotted separately for each of the conditions (panels c, g). The

coloring of circadian bars in panels c and g correspond to the coloring of the transcriptomic sampling time-point triangles in panels d, h. For example,

the third mRNA sample (blue triangle) in condition iv was on average taken just before the onset of melatonin (dark green melatonin profile) and the

blue horizontal bars in condition iv panel of panel c therefore are located around 300 degrees. This shows the distribution of circadian phases obtained

at each sampling point across participants in the training and validation set. These data were used to construct and evaluate the Molecular timetable,

Zeitzeiger and Partial Least Square Regression (PLSR) based models. We mapped the melatonin phase y (panels c, g) onto the transcriptomic profile

comprising x features in the training set (panels a, e). Parameters to build the model were selected by performing leave-one-participant-out cross-

validation of the training set (panel b). The final trained model was applied to the validation set for assessing the overall performance of the model

(panel f).

DOI: 10.7554/eLife.20214.002
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Rhythmicity of the blood transcriptome across conditions
Existing methods, such as the molecular timetable method (Ueda et al., 2004) rely on identifying

features that correlate well with a 24 hr cosine wave. We estimated rhythmicity of the transcriptome

by computing the correlation between a cosine wave and the time series of all features in each of

our four data sets and across all four data sets separately for the training and validation set (see

Materials and methods). Plotting the r2 value against the rank of the correlation shows that overall

24 hr rhythmicity in the transcriptome is most prominent in the ‘sleep in phase with melatonin’ condi-

tion and smallest in the ‘sleep out of phase with melatonin’ condition (Figure 2a,d).

Molecular timetable and Zeitzeiger methods
To test the performance of the timetable method (Ueda et al., 2004), we identified features that

were robustly rhythmic across all conditions in the training set. Seventy-three features satisfied the

criterion of a minimum correlation of 0.3 in each condition and across all four conditions (see

Materials and methods and Figure 2—figure supplement 1 for threshold derivation; Figure 2—fig-

ure supplement 2 for temporal profiles of genes comprising the timetable model derived from our

data). The ‘rhythmicity’ of these 73 features was compared to the ‘rhythmicity’ of previously pub-

lished phase marker gene sets of (Lech et al., 2016; Hughey et al., 2016) by rank ordering their cor-

relation coefficients. The ‘rhythmicity’ of the 73 identified features is in general, more robust than

the rhythmicity of the genes used in previous approaches (Figure 2b,e). In particular, it is the condi-

tion ‘sleeping out of phase with melatonin’ (condition ii in Figure 1) (Figure 2b,c,e,f) that appears to

exclude many of the previously published phase marker genes as good candidates for features to be

included in a timetable model (see Figure 2—figure supplement 3, Figure 2—figure supplement

4, for temporal profiles of genes in the previously reported phase marker gene sets;

Supplementary file 1A for their corresponding correlation r coefficients). Indeed, the set of 73 fea-

tures does not significantly overlap with previously reported sets of phase predictors

(Supplementary file 1B for comparison of models’ gene lists). Gene ontology (GO) functional

enrichment analysis of the 73 features showed that they were significantly (Benjamini and Hochberg

adjusted p-value<0.05) associated with the following biological processes: T cell receptor V(D)J

recombination, somatic diversification of T cell receptor genes and somatic recombination of T cell

receptor gene segments (Supplementary file 2).

The performance of our one-sample timetable model based on the 73 identified features is sum-

marized and compared to other models in Table 1, Figure 3 and Figure 3—figure supplement 1.

The timetable model using these 73 features identified in the training set predicts the circadian

phase of samples in the validation set on average within 9 min of the observed melatonin phase

which is comparable to the 15 min and �2 min bias when the original gene lists of (Lech et al.,

2016) and (Hughey et al., 2016) were used, respectively (Table 1, Figure 3c,f,i). Any identified sys-

tematic error in a model can be corrected for when optimizing a final model for future applications

and the relevant measure of performance is the standard deviation of the error. The molecular time-

table model comprising the 73 features we identified had the least variation of prediction error. The

errors of the 73-feature model varied across the circadian cycle (Table 1, Figure 3, Figure 3—figure

supplement 1b,e,h). Our one-sample molecular timetable model outperformed the models con-

structed from published gene sets of Lech et al. (2016) and Hughey et al. (2016), when considering

the ‘proportion of samples with �2 hr error’ (Table 1, Figure 3j) and the R2 (Table 1, Figure 3—fig-

ure supplement 1a,d,g). Nevertheless, it is clear that each of these one-sample molecular timetable

models perform poorly when applied to our human transcriptome data.

We next used ‘Zeitzeiger’ (Hughey et al., 2016), which can be considered a machine learning

approach to the molecular timetable method, to identify circadian phase biomarkers in our data

sets. In Zeitzeiger, a high-dimensional transcriptomic profile sample is first projected into a low-

dimensional space using the maximum likelihood principle before assigning the circadian time to

that sample. Our implementation of Zeitzeiger identified 107 features as the optimal number with

which to predict the circadian phase of one sample (see Materials and methods and Figure 3—fig-

ure supplement 2). Only three genes, PER1, NR1D1 and NR1D2, from the original Zeitzeiger gene

list identified in animal tissues (Hughey et al., 2016) were also identified as predictors when applied

to our human blood transcriptome data. Of the 107 features we identified using Zeitzeiger, 23 were

in common with the molecular timetable method (see Supplementary file 1B). The 107 features

Laing et al. eLife 2017;6:e20214. DOI: 10.7554/eLife.20214 4 of 26

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20214


Figure 2. Rhythmicity in the conditions and identification of molecular timetable genes. (a, d) Square of correlation value (r2) vs. rank of correlation as a

measure of overall 24 hr rhythmicity in the transcriptome, separately and across conditions. For each transcript, the correlation with a cosine wave was

computed, squared and the entire transcriptome was then rank-ordered separately for each conditions and across conditions. (b, e) Rank of the

correlation of phase marker genes from different phase marker lists across conditions (indicated by color panel to the left) for participants in the

Figure 2 continued on next page

Laing et al. eLife 2017;6:e20214. DOI: 10.7554/eLife.20214 5 of 26

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20214


identified by the Zeitzeiger model did not show any significant functional GO enrichment

(Supplementary file 2). The performance of the Zeitzeiger model, when applied to our validation

set, is somewhat similar to that of the molecular timetable model across all but two of the perfor-

mance metrics (Table 1, Figure 3a–f and j). Both methods are similar in their approach, constructing

a model based on features identified as being rhythmic within a data set, so this is perhaps

Figure 2 continued

training (b) and validation set (e). First, correlations of all ~26K features were ranked separately for conditions and training and validation set and then

the rank of identified phase marker genes was identified and plotted. (c,f) Heatmap of r values of correlation between a 24 hr cosine wave and mRNA

abundance profiles of a feature(s) targeting a gene identified as a phase marker by our molecular timetable, and the circadian phase marker genes

published in Lech et al. (2016) and Hughey et al. (2016). Correlations were computed separately for each of the four conditions (indicated by the

color panel at the top of the heatmap) and all conditions combined for the training (c) or validation set (f). Rows in the heatmap are ordered based on

the correlation column for the ‘all conditions’ dataset, that is, the column indicated with black. Data source files: Figure 2—source data 1.

DOI: 10.7554/eLife.20214.003

The following source data and figure supplements are available for figure 2:

Source data 1. Source data file for generating panels in Figure 2.

DOI: 10.7554/eLife.20214.004

Figure supplement 1. Identification of correlation cutoff threshold for the construction of a molecular timetable.

DOI: 10.7554/eLife.20214.005

Figure supplement 2. mRNA abundance profiles for genes belonging to the phase marker gene list generated by our implementation of the

molecular timetable model.

DOI: 10.7554/eLife.20214.006

Figure supplement 3. mRNA abundance profiles for genes belonging to the phase marker gene list published in (Lech et al., 2016).

DOI: 10.7554/eLife.20214.007

Figure supplement 4. mRNA abundance profiles for genes belonging to the phase marker gene list published in (Hughey et al., 2016).

DOI: 10.7554/eLife.20214.008

Table 1. Performance of trained models when used to predict the circadian phase of samples in the validation set. NS indicates not

significant.

Average
error

(minutes)

Standard
Deviation of
Error (hours:
minutes)

Circadian
variation of
error (P-value
of ANOVA)

Proportion of
samples with
�2 hr error

R2 of
predicted

vs observed
phase

Genes-from (Lech et al., 2016) - one sample 15 5:32 NS 28% 0.28

Genes-from (Hughey et al., 2016) - one sample �2 5:23 <0.01 30% 0.32

Timetable - one sample 9 4:38 <0.01 40% 0.49

Zeitzeiger - one sample �0.4 4:44 NS 36% 0.47

Partial Least Square Regression - one sample �18 3:17 NS 54% 0.74

Genes-from (Lech et al., 2016) - two samples 20 4:05 0.05 35% 0.60

Genes-from (Hughey et al., 2016) - two samples �0.65 3:58 0.03 41% 0.63

Timtable - two samples 11 3:38 <0.01 43% 0.69

Zeitzeiger - two samples -2 3:36 NS 47% 0.69

Partial Least Square Regression - two samples �16 2:39 NS 62% 0.83

Genes-from (Lech et al., 2016) - three samples 24 3:21 0.05 45% 0.73

Genes-from (Hughey et al., 2016) - three samples 8 3:19 NS 47% 0.74

Timetable - three samples -3 2:46 <0.01 51% 0.82

Zeitzeiger - three samples 4 3:03 NS 49% 0.78

Partial Least Square Regression - three samples �11 2:15 NS 71% 0.88

Timetable - Differential two samples �33 2:28 NS 71% 0.78

Partial Least Square Regression-Differential two samples �18 1:41 NS 82% 0.90

DOI: 10.7554/eLife.20214.016
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Figure 3. Performance of one-sample models derived from the training set when used to predict circadian phase in the validation set. (a, d and g)

Predicted circadian phase of a blood sample vs. the observed melatonin phase for each sample in the validation set for the one-sample molecular

timetable model (a), the one-sample Zeitzeiger model (d) and the one-sample PLSR-based model (g). Circadian phase 0 corresponds to the onset of

the melatonin rhythm, which across conditions occurred on average at 23:30 ± 15 min (across all conditions and the training and validation data sets).

Figure 3 continued on next page
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expected. Unlike the molecular timetable, errors did not vary significantly across circadian bins. The

reduced error of the Zeitzeiger model may be due to inclusion of a greater number of features, their

maxima phases providing greater coverage of 360 degrees with which to more accurately predict

circadian time (see Figure 3—figure supplement 3).

Partial least square regression method
In view of the suboptimal performance of the approaches described above, we applied another

method taking into account the following considerations. We have a much larger number of varia-

bles (each of our transcriptomic profiles comprises N (~26 K) quantitative features) than available

observations (melatonin phases, one per transcriptomic profile). Furthermore, the variables are not

necessarily independent, for example, co-expression of transcripts and/or some features targeting

the same gene (transcript). In this instance, a suitable approach to developing a predictive model is

to use Partial Least Squares Regression (PLSR) (Boulesteix and Strimmer, 2007). In PLSR, the

dimensionality of the predictor set (transcriptome profile x) is reduced by projecting both the predic-

tor set and response variable (melatonin phase y) into orthogonal latent (hidden) spaces, referenced

by latent factors, that are relevant for predicting the response variable, without directly prioritizing

any underlying time-dependency within the data set (see Materials and methods). Factor loadings,

the correlation between each feature and each factor, can then be used to select features a posteri-

ori to produce the circadian phase prediction method. Features with the most weight (loading)

across latent factors are of interest and/or the better predictors.

One-sample circadian phase PLSR-based prediction model
For predictions based on one blood sample, the optimal PLSR model parameters were a combina-

tion of five latent factors and 100 mRNA abundance features (see Figure 3—figure supplement 4a

and b and Materials and methods; see Supplementary file 1C for the list of features and

Supplementary file 1B for the list of 80 corresponding genes). The representation of a given tran-

scriptomic sample in a given latent factor (space) is provided by the latent factor score of that sam-

ple, a linear combination of feature values multiplied by the corresponding latent factor loadings.

The pseudo time-course of factor scores of the five latent factors (presented in Figure 3—figure

supplement 4b) are rhythmic in nature (R2 of fit to a cosine wave range of 0.44–0.51), with phases of

Figure 3 continued

Please note that the data are double-plotted. The line of unity represents perfect prediction. (b, e and h) Average (mean) error and 95% confidence

intervals of the mean error per 30o, that is 120 min, for each 30˚ circadian phase bins across the circadian cycle, for each of the models. The grey area

plot represents the average melatonin profile. Panels (c, f and i) frequency distribution of errors. Errors were sorted into 15o, that is, 60 min bins for

each model. For each of the models, the mode of the distribution is near 0, but the width of the distribution varies across models. (j) Proportion of

predictions based on one sample vs. cumulative error as a measure of overall performance. (k) Proportion of predictions based on two consecutive

samples vs. cumulative two sample average error as a measure of overall performance. (l) Proportion of predictions based on three consecutive samples

vs. cumulative three sample average error as a measure of overall performance. Data source file Figure 3—source data 1.

DOI: 10.7554/eLife.20214.009

The following source data and figure supplements are available for figure 3:

Source data 1. Source data file for generating panels in Figure 3.

DOI: 10.7554/eLife.20214.010

Figure supplement 1. Performance of one-sample molecular timetable models when used to predict the circadian phase of samples in the validation

set.

DOI: 10.7554/eLife.20214.011

Figure supplement 2. Parameter selection for constructing a Zeitzeiger based model.

DOI: 10.7554/eLife.20214.012

Figure supplement 3. Phase profiles of genes in the phase marker lists for the molecular timetable and Zeitzeiger models.

DOI: 10.7554/eLife.20214.013

Figure supplement 4. Selection of number of abundance features and latent factors and pseudo time-course of latent factor scores for Partial Least

Squares Regression (PLSR)-based models.

DOI: 10.7554/eLife.20214.014

Figure supplement 5. Comparison of the number of samples used as input vs, accuracy for each circadian phase prediction method.

DOI: 10.7554/eLife.20214.015
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Figure 4. Performance of two-sample differential mRNA abundance-based models when used to predict the circadian phase in the validation set. (a

and d) Predicted circadian phase of a blood sample vs. the observed circadian melatonin phase for each sample in the validation set for the two-

sample differential molecular timetable model (a) and the two-sample differential PLSR-based model (d). Data are double-plotted. (b and e) Average

(mean) error and 95% confidence intervals of the mean error per 30o, that is, 120 min, for each 30˚ circadian phase bins across the circadian cycle, for

each of the models. The grey area plot represents the average melatonin profile. (c and f) Frequency distribution of errors. Errors were sorted into 15o,

Figure 4 continued on next page
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the maxima covering 360 degrees (58˚, 250˚, 56˚, 310˚ and 280˚, respectively) and all have a similar

amplitude (range of 0.016–0.018). Each latent factor was characterized via functional enrichment

analysis of the 200 most weighted features (see Supplementary file 2 for lists).

Latent factor 1, the factor that has the greatest covariation of x and y, gives greatest weight to

features significantly enriched for biological processes linked to immune and inflammatory response

(e.g. TCF7, LEF1, NFAM1, TFE3, GIMAP5, PRKCA, GAB2, CD28), muscle hypertrophy and cytokine

production (e.g. IL13RA1, IL11RA, CCR7, IL1RAP, IL6ST).

Latent factor 2: not significantly enriched for any biological processes.

Latent factor 3: regulation of phosphatidylinositol 3-kinase (ERBB2, KIT, F2R, FLT3, PDGFRB), reg-

ulation of interleukin 4 and 6 (GFI1, IL6ST, TCF7, LEF1, XCL1), cell activation (e.g. TTN, SH2D1B,

NCR1, PTPN22, PRKCA), and T cell activation (e.g. LEF1, IL6ST, TBX21, VSIG4).

Latent factor 4: circadian rhythm (most significant enrichment and includes TIMELESS, ID2,

PROK2, GHRL, PER1, PER2, PER3), response to estrogen (CITED4, GHRL, SOCS1, SOCS3, BGLAP,

LDLR, IL1B, DUSP1), response to growth hormone (IRS2, GHRL, SOCS1, SOCS3) and response to

corticosteroid stimulus (ANXA3, IL1RN, IL1B, BGLAP, DUSP1, SOCS3). In addition to being enriched

for genes involved in circadian rhythmicity, latent factor 4 also contains the temperature-sensitive

RNA binding proteins CIRBP and RBM3, which are known to regulate the translation of circadian

transcripts (Liu et al., 2013).

Latent factor 5: regulation of plasma lipoprotein clearance (HNRNPK, CD36, LDLR, APOM), regu-

lation of interleukin-12 production (TLR2, TNFSF4, CD36, TIGIT), and regulation of immune effector

process (TLR2, CADM1, SHSD1B, TNFSF4, CD36, CLCF1).

Functional enrichment analysis of the 80 genes targeted by the 100 mRNA abundance features

identified significantly enriched biological processes associated with leukocyte activation (HSPH1,

SH2D1B, IL6ST, CCND3, CD1C, NCR1, TNFSF4, FLT3, IL1B, TXK) and inflammatory response (TLR2,

TNFSF4, GHRL, IL1B).

The one-sample PLSR-based model outperformed all other models discussed so far, for most per-

formance metrics (Table 1, Figure 3). The average error is comparable to other models but the dis-

tribution of error is narrower and the errors did not vary significantly across circadian bins. Fifty-four

percent of samples fell within �2 hr of the true circadian phase and the R2 of 0.74 also compares

well to other models. Finally, the prediction error of the one-sample PLSR model did not differ signif-

icantly across the four conditions. Nevertheless, we aimed to produce a better performing model.

Using more than one sample
One expects the accuracy of a prediction model to increase as the number of input samples

increases. We thus applied the one-sample models to pairs and triplets of consecutive samples.

Two-samples performed better than one-sample, and three-samples performed better than two

(Table 1, Figure 3j,k and l, Figure 3—figure supplement 5). The PLSR-based model gave the best

performance with 71% of samples having a prediction error of �2 hr and a R2 of 0.88 using three

consecutive samples. However, when taking three consecutive samples as input, the model per-

formed significantly worse for samples derived from the condition ‘sleeping out of phase with mela-

tonin’ (Tukey HSD post-hoc test, p-value<0.05).

A differential mRNA abundance two-sample circadian phase PLSR-
based prediction model
An alternative approach is to develop a model which takes multiple samples as input and utilizes the

difference in mRNA abundance between input samples to predict the phases instead of averaging

Figure 4 continued

that is, 60 min bins, for each model. For each of the models, the mode of the distribution is near 0, but the width of the distribution varies across

models. (g) Performance of the differential PLSR (orange), and the differential molecular timetable method (black) quantified by proportion of samples

vs. cumulative error. Data source file Figure 4—source data 1.

DOI: 10.7554/eLife.20214.017

The following source data is available for figure 4:

Source data 1. Source data file for generating panels in Figure 4.

DOI: 10.7554/eLife.20214.018
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independent predictions. Thus, it is the difference in the ‘state’ of the transcriptome, without the sig-

nificant ‘trait-like’ characteristic of the transcriptome (De Boever et al., 2014) that predicts the

phase of an individual. Here, we developed a two-sample based model that takes two-samples taken

12 hr apart in the same participant during the same condition as input. We did this for both the

molecular timetable and PLSR approaches (see Materials and methods).

Our trained two-sample differential PLSR model comprises 5 latent factors and 100 features (see

Supplementary file 1D for the list of features and Supplementary file 1B for the list of correspond-

ing genes). The pseudo time-course of factor scores of the five latent factors (Figure 3—figure sup-

plement 4d) shows that all are rhythmic (R2 of fit to a cosine wave range of 0.71–0.8), with similar

amplitude (range of 0.021–0.022) and maxima phases spanning 360 degrees (250˚, 310˚, 330˚, 320˚,
44˚, respectively). Functional enrichment analyses of the top 200 features that carry the most weight

in each latent factor identified significantly enriched biological processes (see Supplementary file 2)

including:

Latent factor 1: no significant enrichment.

Latent factor 2: regulation of metabolic process (e.g. HSPH1, ANXA3, PPARGC1B, LDLR, FOSL2,

CTNNBIP1, BCL6, PIK3IP1), regulation of acute inflammatory response (PTGS2, IL1B, IL6ST, OSM),

response to glucocorticoid stimulus (ANXA3, PTGS2, IL1RN, IL1B, PPARGC1B, JUNB, SOCS3) and

circadian rhythm (NR1D1, ARNTL, PER1, PER2, PER3).

Latent factor 3: negative regulation of cellular and metabolic processes (e.g. DYNLL1, ID2,

NEDD4L, DHCR24, DUSP1, NR2F1, AVIL, TLR2), lymphocyte activation (IRS2, CXCR5, HSPH1,

KIF13B, CCND3, ID2, BCL3, NDFIP1, FLT3, IL1B, TXK, CD83), rhythmic process (GHRL, TEF, ID2,

TIMELESS, ADAMTS1, PROK2, PER1, PER3) and apoptotic signaling in response to DNA damage

(HIC1, FNIP2, BCL3, DDIT4).

Latent factor 4: positive regulation of cellular processes (e.g. CLEC4E, INSL3, SLC1A3, ARG1,

RBM14, RBM3, TRAF4), developmental process (e.g. CLIC5, SSH2, SPIB, RHBDD1, KLF9, FKBP4,

KCNE3, SPATA6), response to lipid (FADS1, TLR2, SLC30A4, CITED4, GHRL, BGLAP, NFKBIA,

IRAK3, LDLR, GATA3, IL1RN, REST, ARG1, IL1B, DUSP1) and circadian rhythm (TIMELESS, GHRL,

PTEN, PER1, PER2, PER3).

Latent factor 5: regulation of response to stimulus (e.g. CDKN1C, INPP5B, OPA1, MLC1, DVL2,

APCDD1, VSIG4, CACNG4), regulation of immune system process (KLRD1, KIR2DL2, SH2D1B, A2M,

CMKLR1, NCR1, PDE5A, KIR2DS2, ADA, CCL4, ADORA2A, TBX21, VSIG4, KLRG1, RELA, NR1D1,

APOBEC3G, FCN2), rhythmic process (ADAMTS1, FANCG, NR1D1, NPAS2, BHLHE41, PER1, ADA)

and calcium-mediated signaling (NMUR1, CHPS, CCL4, ADA, CMKLR1).

For the two-sample differential PLSR, four of the five latent factors contained genes enriched for

circadian rhythm or rhythmic process. Each factor contained at least three clock genes, with factor

two containing six genes (ARNTL, NR1D1, NR1D2, PER1, PER2, PER3) together with CIRBP and

RBM3. Aspects of immune function are also common to the factors, but factor five in particular

showed enrichment for immune-cell-specific genes (e.g. immune killer cell genes KIR2DL2, KIR2-

DL5A, KIR2DS2, KIR2DS4, KLRD1, KLRF1, KLRG1), in addition to the interesting inclusion of adeno-

sine deaminase (ADA) and the adenosine A2a receptor (ADORA2A).

Forty-seven (62%) of the 76 unique genes targeted by the features identified using the two-sam-

ple approach also appear in the set of 80 unique genes identified by our one-sample approach

(Supplementary file 1B). Functional enrichment analysis of the 76 genes identified significantly

enriched biological processes including; immune response, circadian and rhythmic processes and

regulation of cellular processes. Unlike the one-sample method, the 76-gene list comprising the two-

sample differential PLSR model contained all three PER genes (together with NR1D2), and several

genes with immune-cell-specific functions (e.g. KLRF1, KLRD1, CD83, IL1RN) .

Both two-sample differential models outperform their preceding one-sample models and multiple

consecutive-sample applications (Figure 4, Figure 3—figure supplement 5, Table 1). The PLSR-

based model performs well, now able to predict within 20 min on average, with an SD of 1 hr 41

min, without any significant difference in error distribution across circadian phase bins. Significantly,

the two-sample differential model is able to correctly predict 82% of samples within 2 hr, with an R2

of 0.9. Similar to the one-sample model, we find that the two-sample differential model is able to

predict baseline conditions with higher accuracy than the molecular timetable equivalent. However,

unlike the one-sample PLSR model, we find a significant difference in error distribution between con-

ditions, where ‘Sleep out of phase with melatonin’ has a significantly larger mean error than the
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other three conditions (Tukey-HSD post-hoc test p-value<0.05). Nevertheless, the difference in mean

error between conditions for our two-sample differential model is less than that observed for the

one-sample PLSR model when applied to two or three consecutive samples.

Discussion
The human blood transcriptome is in part under circadian control and potentially contains informa-

tion about the phase of circadian rhythmicity in many organs. The analyses presented here show that

a few transcriptome samples contain enough information to predict the phase of the melatonin

rhythm. This remains true even under conditions in which the sleep-wake cycle, which also influences

the blood transcriptome, is desynchronized from the melatonin rhythm. Melatonin phase and shifts

in melatonin phase correlate well with other variables driven by the SCN, for example, cortisol

(Dijk et al., 2012). In clinical practice, it is therefore assumed that the melatonin phase reflects the

status of the SCN with minimal error, although the actual error in SCN phase measurement by mela-

tonin is not known. The methods developed here may aid the routine assessment of circadian mela-

tonin phase in clinical practice and benefit the diagnosis and treatment of sleep and circadian

disorders (Mullington et al., 2016).

PLSR compared to other approaches
We consider our PLSR-based approach the first method for developing a melatonin phase predictor

without a priori selection of features or feature characteristics: no a priori information is used to

supervise model development. We do not select for 24 hr rhythmically expressed genes that are

either known in the literature (Lech et al., 2016) or specifically identified within the data

(Ueda et al., 2004; Hughey et al., 2016). The validation analyses show that our model comprising

features selected a posteriori outperforms ‘a priori’ approaches. Directly comparing our ‘a posteriori’

method with ‘a priori’ methods (Ueda et al., 2004; Hughey et al., 2016), by deploying and testing

each using the same training and validation data, shows that our method is valid and capable of gen-

erating superior circadian phase prediction models. It should be noted that many of the genes iden-

tified by PLSR are not classical clock genes or clock-controlled genes (see Supplementary file 1B).

Nevertheless, 68% of the genes forming the one-sample, and 63% genes forming the two-sample

differential PLSR-based model, we have previously identified as being rhythmically expressed in at

least one of the four conditions we have analyzed (Archer et al., 2014; Möller-Levet et al., 2013;

Laing et al., 2015). Only 18% and 12% of the one and two sample(s)’ genes (respectively) were

found to be rhythmically expressed in the condition ‘sleep out of phase with melatonin’. In our previ-

ous analyses, we used a prevalence-based classification which is a fundamentally different method to

the rhythmic detection strategies of the molecular timetable and Zeitzeiger methods (Ueda et al.,

2004; Hughey et al., 2016). However, comparing across prediction models it is clear that >30%

(34% and 31% for the one-sample and two-sample differential models, respectively) of the gene lists

forming the PLSR-based models are unique to the approach (compared to the molecular timetable

and Zeitzeiger approaches applied to the same training data set) (Figure 5).

Molecular process associated with the current feature sets
We used OmicCircos (Hu et al., 2014) to visualize and compare the overlap of gene features that

were identified by each of the four models trained on the same data (Figure 5). Six genes were iden-

tified in all four models: PER1 (circadian clock gene, induced by glucocorticoid [Cuesta et al.,

2015]), SMAP2 (involved in vesicle trafficking in the trans-golgi network [Funaki et al., 2013]),

DDIT4 (part of mTOR signaling pathway [Polman et al., 2012]), NCR1 (natural killer cell receptor

[Lai and Mager, 2012]), ZBTB16 (transcription factor that regulates glucocorticoid-induced gene

expression [Wasim et al., 2010]) and FKBP5 (chaperone that plays a key role in the regulation of glu-

cocorticoid receptor signaling [Binder, 2009]). Apart from SMAP2 and NCR1, all these genes are

involved in glucocorticoid signaling or are regulated by glucocorticoid. Immune function and gluco-

corticoid signaling are themes that link all four models. More than one third of all the genes in the

four models are associated with glucocorticoid signaling (molecular timetable 44%, Zeitzeiger 36%,

one-sample PLSR 36%, two-sample differential PLSR 38%) (Nehmé et al., 2009).

The gene lists of the molecular timetable and Zeitzeiger models show little overlap with those of

the PLSR models, which have a high level of similarity (62%). Fifteen of the top-25 genes (by
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Figure 5. Circos plot for visual comparison of lists of biomarkers forming the generated circadian phase prediction models. Circular tracks from outside

in; (1) Name of model being compared (Molecular timetable, Zeitzeiger, PLSR one-sample, PLSR two-sample differential), where all models are

constructed from the same training set. The color of the model name corresponds to the color of the bar in track 3. (2) Unique HGNC Gene symbols or

probe identifiers for features from which the specified model (adjacent track 1 and 3) are created; (3) Color bar indicating the model (Black= Molecular

Figure 5 continued on next page
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weighting) in the PLSR gene lists are common to both models (PER1, DDIT4, FKBP5, ZNF397,

TSPAN4, C20orf112, MIA, AVIL, ZBTB16, SPATA6, A_24_P178167, BQ706262, SMAP2, FLT3,

HSPH1). Several of these genes have related functions: MIA and TSPAN4 bind integrin and regulate

cell motility (Bosserhoff, 2005; Kashef et al., 2013), while AVIL binds actin and regulates cell out-

growth (Tümer et al., 2002). Twelve of the genes in the top-25 lists are associated with glucocorti-

coid signaling and form part of a linked glucocorticoid signaling network (Figure 5—figure

supplement 1). The top four features in the PLSR two-sample differential model gene list are pres-

ent in all four models (DDIT4, PER1, FKBP5 and ZBTB16).

As discussed, the PSLR approach does not pre-select features with respect to rhythmicity, and

indeed cannot be used to detect rhythmicity. Only the feature lists identified by the two sample dif-

ferential PSLR model appear enriched for rhythmic, circadian processes. This may be because in the

differential two-sample approach individual differences in average levels of expression (i.e. trait like

characteristics of the transcriptome [De Boever et al., 2014]) are removed. This apparently empha-

sizes features with a 24 hr variation around a baseline.

Both the cortisol and the melatonin rhythm are driven by the SCN. The prominence of glucocorti-

coid signaling in the lists may reflect a more extensive influence of cortisol on the peripheral tran-

scriptome. Overall the features of the PLSR models seem to focus more on genes with functions

specifically related to blood such as glucocorticoid signaling and immune cell-specific roles. Thus,

the features within the blood transcriptome that are most predictive of the melatonin phase are

closely related to blood-cell-specific functions. We have previously shown that the influence of the

sleep-wake cycle and circadian rhythmicity varies across the transcriptome transcripts in blood

(Archer et al., 2014). Whether and how these blood-cell-specific functions remain in phase with the

SCN, even when the sleep-wake cycle is shifted, remains unclear. It may be that those that predict

SCN phase are regulated by local circadian clocks, which in turn are synchronized by systemic cues

from the central circadian clock, such as cortisol. Alternatively, these SCN phase predictors in blood

may be directly driven by systemic cues such as cortisol or melatonin. As far as melatonin is con-

cerned, only very few melatonin-related genes appeared in any of the models. The circadian expres-

sion of pineal HNRNP proteins regulates the expression of the rate-limiting melatonin synthesis

enzyme AANAT (Kim et al., 2005). In this study, HNRPDL is a feature of each model except the

PLSR two-sample differential model and was previously identified as remaining rhythmic in all four of

the sleep conditions that have contributed data to this study (Laing et al., 2015). Thus, while gluco-

corticoid signaling features strongly in the models developed here, it is also possible that melatonin

signaling contributes to phase entrainment in whole blood, possibly also locally within blood cells.

Limitations of the current study
The enhanced power of our PLSR-based models compared to others cannot be due to the unique

combination of experimental conditions that we have included in our training and validation sets

because all models were tested on the same data sets. Our training and validation data are limited;

all samples were collected in darkness and dim light and from young healthy individuals. Comparing

the performance of the various models across conditions emphasizes the importance of inclusion of

conditions in which synchrony between various organs is challenged. Several models that performed

well under normal conditions performed less well under desynchronized conditions. Indeed, we

expect the conditional dependency of performance for the two-sample differential models to be

due to the significant temporal disruption evoked by sleeping out of phase with melatonin, where

the difference in mRNA abundance between two samples taken 12 hr apart may not be so well pre-

served as in baseline and/or sleep deprivation conditions. Thus, inclusion of similar conditions will be

Figure 5 continued

timetable, Orange = PLSR one-sample, Dark orange = PLSR two-sample differential, Blue = Zeitzeiger). Inner arcs represent the overlap between

models. Genes present in two models are linked by yellow arcs; genes present in three models are linked by blue arcs; and genes present in all models

are linked by red arcs. Figure generated using the R package OmicCircos (Hu et al., 2014).

DOI: 10.7554/eLife.20214.019

The following figure supplement is available for figure 5:

Figure supplement 1. A glucocorticoid-driven network links many of the top-ranked PLSR genes.

DOI: 10.7554/eLife.20214.020
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important for the validation for any blood-based biomarker of organ-specific rhythmicity and the

generation of clinically relevant applications in ‘real-world’ scenarios. Patients may be suffering from

sleep deprivation or sleep and food-intake desynchronized from the circadian system, conditions in

which rhythmic molecular profiles are disrupted. A ‘final’ model to be applied in the clinic should

also be trained on real conditions in which light exposure and food availability are not controlled to

ensure its validity to other sections of the population. This could include not only circadian rhythm

sleep-wake disorder patients but also other populations in which melatonin phase and or cortisol

phase are disrupted, such as in Smith-Magenis syndrome (De Leersnyder, 2013) or in Addison’s dis-

ease (Oster et al., 2016).

Outlook
Several non-omics-based methods to assess circadian phase are currently in use. In the Dim-Light-

Melatonin Onset (DLMO) Protocol, many samples (6–18) are collected during an approximately 6–12

hr period timed to be close to the expected onset of melatonin secretion (Burgess et al., 2016).

Thus, unlike the method presented here, the DLMO protocol requires prior knowledge of the

approximate circadian phase of the pacemaker to identify the phase of the SCN (with unknown

error). In fact, one immediate application of the current model is to use it to identify the time win-

dow during which a DLMO assessment should be scheduled. Alternative assessments of SCN circa-

dian phase, when there is no prior knowledge about the likely circadian phase, requires

measurements covering at least one circadian cycle. In field situations, this can be accomplished by

the scheduled collection of urine for determination of 6-sulfatoxy-melatonin, where the 95% CIs of

such assessment are thought to be ±1 hr 30 min (Lushington et al., 1996). Yet, even when urine

samples are collected very frequently (e.g. every 4 hr), the correlation between the urine-based

phase marker 6-sulfatoxy-melatonin and the gold-standard plasma-based phase marker melatonin is

only 0.75 (Gunn et al., 2016). Similarly, accurate assessment of circadian phase from core body tem-

perature in the presence of a sleep-wake cycle is problematic because sleep and wakefulness have a

direct effect on core body temperature, which depends on circadian phase. Therefore, extraction of

phase of the circadian pacemaker from core body temperature requires either recordings over sev-

eral days or weeks, or 24–40 hr T recordings in specialized laboratory conditions.

From a practical perspective, a circadian phase predictor that requires only one sample is ideal,

minimizing the total time in the clinic and overall cost. However, the marked increase in performance

offered by taking multiple samples, either two or three consecutive samples 3 or 4 hr apart, or two-

samples 12 hr apart for differential analysis, should also be considered. Certainly, the multiple-sam-

ple models/applications we tested here rely on far fewer samples than 6-sulfatoxy-melatonin and/or

core body temperature, even plasma melatonin assessments, and can be completed during one

‘out-patient’ clinic visit. Our PLSR-based models and applications can predict more than 80% of cir-

cadian phases within 2 hr of the observed phase when using the differential analysis of two-samples

as input.

The current models are based on whole-blood transcriptomic profiles comprising mRNA abun-

dance features measured by microarrays. However, the methodology we present can be readily

applied to map any high-dimensional molecular abundance ‘feature’ profile, such as those generated

by microarray, RNA sequencing and metabolomics technologies, to any specified measure of circa-

dian phase. Although we used melatonin/SCN phase as an example with obvious applications in cir-

cadian rhythm sleep-wake disorders, one can imagine in the era of precision medicine the

development of specific PLSR-based circadian phase prediction models for the liver and/or other

specific tissues and organs. All these organs may be targeted by chronotherapy (Zhang et al.,

2014). All that is required is the identification of specific phase markers for the tissue/organ of clini-

cal interest.

Transcriptome-based measures appear to suffer from less noise than other ‘-omes’ (Su et al.,

2011; Tachibana, 2014). The 100 transcriptomic features we have identified as predictors of SCN

circadian phase using whole-blood can be simultaneously measured by a cost-effective low-resolu-

tion molecular technique. Therefore, the PLSR-based models we present here offer a viable solution

for a clinical platform (Mullington et al., 2016); even more so when redundant features that target

the same gene/transcript, are removed.
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Materials and methods

Source of data
Data were collected during two large-scale circadian experiments to investigate the effects of mis-

timed sleep and total and repeated partial sleep deprivation on the temporal organization of the

human blood transcriptome (Archer et al., 2014; Möller-Levet et al., 2013). The protocols received

a favorable opinion from the University of Surrey’s Ethics committee and all participants provided

written informed consent. In each experiment, we obtained from the same participant, blood sam-

ples (every 3 or 4 hr) covering at least one circadian cycle to measure mRNA abundance and hourly

blood samples for measuring melatonin rhythms. This allowed assignment of a circadian melatonin

phase to each mRNA sample. Melatonin concentrations were determined with a radioimmunoassay

(Stockgrand Ltd, Guildford, UK [Fraser et al., 1983]). Circadian phase was defined as the time when

melatonin levels reached 25% of the melatonin amplitude and is referred to as the Dim Light Melato-

nin Onset (DLMO). DLMO = (((melatonin amplitude - baseline melatonin level)*25)/100) + baseline

melatonin level (Hasan et al., 2012; Lo et al., 2012).

We collected 678 samples for which we have both the melatonin phase and mRNA abundance

profile from 53 participants. Fifty-nine percent (397) of these samples are from male participants

(see Supplementary file 3 for demographics, including ethnicity). The participant population was

stratified according to the PER3 rs57875989 genotype (38% PER34/4; 35% PER35/5; 27% PER34/5).

The complete time-series of samples from homozygote participants were hybridized to microarrays

(i.e. 14–20 samples per participant; 7–10 samples per sleep condition). Select RNA samples (one to

three samples per sleep condition) from the complete time-series of samples for heterozygote indi-

viduals were hybridized to microarrays. All transcriptomic data are accessible from the Gene Expres-

sion Omnibus (Barrett et al., 2013) (RRID:SCR_007303, via the Accession numbers: GSE48113

[PER3 homozygote, PER34/4 and PER35/5] and GSE82113 [PER3 heterozygote, PER34/5] data for mis-

timed sleep, and GSE39445 (homozygote) and GSE82114 (heterozygote) data for sleep deprivation

and training) and the data sources at http://sleep-sysbio.fhms.surrey.ac.uk/PLSR_16/.

Creation of training and validation data sets
Samples were split into a training set to develop the models, and a validation set to test the predic-

tive performance of the models. Factors that were balanced between the training and validations

sets were: the experimental protocol (mistimed sleep or sleep deprivation), PER3 genotype, sex and

circadian phase (as indicated in Supplementary file 3). All samples pertaining to a participant were

assigned to the same data set. Data of 26 participants, comprising 329 samples were randomly

assigned to the training set and the data of 27 participants, comprising 349 samples to the validation

set. To facilitate the development and benchmarking of future models, the data matrices for the

training and validation data sets are provided at: http://sleep-sysbio.fhms.surrey.ac.uk/PLSR_16/.

For models developed and tested for a ‘one sample’ application, including the prediction of con-

secutive samples requiring the application of a one-sample model multiple times, all 329 and 349

samples of the training and validation sets were used. For ‘two-sample differential’ models the

mRNA abundance values for a pair of samples from the same participant during the same condition,

separated by 12 hr, were reduced to a single observation. The single observation represents the dif-

ference in the mRNA abundance, that is, a vector obtained as a result of computing Sample one

minus Sample 2 (taken 12 hr later than Sample 1). In total, the ‘two sample differential’ training and

validation data sets comprised 163 and 180 mRNA abundance difference ‘samples’, respectively.

The data matrices for the training and validation data sets are provided at: http://sleep-sysbio.fhms.

surrey.ac.uk/PLSR_16/. Note that the two-sample differential molecular timetable model is based on

the one-sample molecular timetable. For this two-sample model, the difference in the timetable tem-

plates with a 12 hr time lapse is used to predict the difference in mRNA abundance between two

samples taken 12 hr apart.

Data processing
For the training set the Log2 mRNA abundance values were processed by applying quantile-normali-

zation using the R Bioconductor package limma (Gentleman et al., 2004; Smyth, 2005) (RRID:SCR_

010943) followed by batch correction using the ComBat function of the R package sva (Leek et al.,
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2012; Johnson et al., 2007) (RRID:SCR_012836). For the validation set, the Log2 mRNA abundance

values were quantile-normalized using the same reference array of empirical quantiles used to nor-

malize the samples included in the training set. No batch correction was applied to the validation

data set to reflect the type of data that would be provided in a clinical setting (i.e. one or two sam-

ples processed in different batches to the original training data used to build the model). Non-con-

trol technically replicated probes (mRNA abundance features), along with their corresponding

Agilent feature flags (Agilent Feature Extraction Software [v10.7], Reference Guide, publication num-

ber G4460-90036) were averaged. Individual samples with more than 30% of features flagged were

excluded and features (probes) flagged in more than 10% of the samples were filtered out.

Directional mean
Assuming angles lay on a unit circle (radius = 1), an angle � can be converted to Cartesian coordi-

nates ðx; yÞ using the trigonometric functions of y ¼ sin� and x ¼ cos�. The Cartesian coordinates

ðx; yÞ can be converted back to an angle � using the arctan function � ¼ tan�1ðy=xÞ for ðx; yÞ in quad-

rant I of the coordinate plane, � ¼ tan�1ðy=xÞ þ p for ðx; yÞ in quadrant II or III, and

� ¼ tan�1ðy=xÞ þ 2p for ðx; yÞ in quadrant IV of the coordinate plane. In this way, the mean value (��) of

a set of n angles (�) can be calculated as

��¼ tan
�1ð�y=�xÞ 180=pþ q (1)

where �y¼
Pn

i¼1
sinð�i p=180Þ=n; �x¼

Pn
i¼1

cosð�i p=180Þ=n; and q¼ 0 if �x;�yð Þ is in quadrant I of the coor-

dinate plane, q¼ 180 if �x;�yð Þ is in quadrant II or III and q¼ 360 if �x;�yð Þ is in quadrant IV.

Difference between two angles
The difference d between angles � and b can be calculated using

d�b ¼ ��b if �180 < ��bð Þ < 180;
d�b ¼�ð360�ð��bÞÞ if 180 < ð��bÞ
d�b ¼ ð��bÞþ 360 if ð��bÞ < � 180:

Measuring model performance
For all operations, angles � were converted to Cartesian coordinates (cosine �, sine � ) to perform

arithmetic operations.

To assess the overall performance and clinical relevance of our models, we used several metrics:

1. The frequency distribution of error between the predicted circadian phase ŷ and the experi-
mentally observed circadian phase y, when binned in 15˚ (60 min) circadian phase bins. The
distribution is summarized by the mean and standard deviation.

2. The fit of predicted phases to the observed phase via R2. If yi is the observed circadian phase
and ŷi the predicted circadian phase of the i

th sample, R2 is defined as:

R2 ¼ 1�
RSS

TSS
¼ 1�

Pn
i¼1

yi� ŷið Þ2
Pn

i¼1
yi ��yð Þ2

(2)

where �y is the directional mean of the observed circadian phases, RSS: regression sum of
squares; TSS: total sum of squares. Thus, R2 compares the variance in prediction error to the
variance in the observed circadian phases, giving a fraction of unexplained variance. When
subtracted from 1, the R2 value represents the variance that can be explained by the model.
Where RSS (variance in prediction error) is greater than TSS, the resultant R2 will have a nega-
tive value, corresponding to a model that performs worse than fitting a horizontal line.

3. The error distribution across the sampling period of 24 hr (360 degrees), where a better per-
forming model is one that exhibits no (or least) dependency on the time at which the sample is
taken. Differences in error across time was assessed by ANOVA (Analysis of Variance) analysis
for the factor of ‘sampling time bin’ using the lm and anova functions in R (RRID:SCR_001905);
a p-value<0.05 suggests that the prediction accuracy of the model is dependent on the circa-
dian phase at which the sample is taken.

4. The cumulative frequency distribution of absolute error, to identify the proportion of samples
that can be predicted within a given error range, where the highest proportion combined with
smallest error range denotes the better prediction model.
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To identify parameters and/or thresholds with which to build a model and/or assess the overall

performance of the final model, we used the performance metric R2. The exception to this is the

Zeitzeiger model which relies on the Mean Average Error to identify parameters (see below).

Assessing circadian phase prediction performance across conditions
Differences in circadian phase prediction errors across the four conditions were assessed using the

‘aov’ function of R followed by Tukey Honest Significant Difference (HSD) post-hoc test (R function

TukeyHSD) (RRID:SCR_001905).

Cross validation
To avoid over-fitting during model development, we performed leave-one-participant-out cross-vali-

dation. For p participants in the original one or two-sample training set, all samples associated with

p-1 participant were used for initial training of the model, and the phase of all samples associated

with the excluded participant were used to test the model. Once all p-1 sets were used to create

and test the model the predicted phases were used to determine the predictive power of the cross-

validated model, as described above.

Model development and implementation
All code used to build and test the models, calculate the given statistics and generate the provided

figures, along with a description on their usage can be found at: http://sleep-sysbio.fhms.surrey.ac.

uk/PLSR_16/.

Molecular timetable
We implemented the molecular timetable method described in Ueda et al. (2004). Instead of using

a summary metric (e.g. mean or median) or model to represent time-series across participants, we

used each individual sample within the four experimental conditions in the training set to generate a

single, densely-sampled time-series per mRNA abundance feature per experimental condition. We

then created a fifth, ‘all conditions’ time-series, by using each individual sample in the training set

irrespective of experimental condition. Subsequently, we selected the mRNA abundance features

with correlation values to the cosine templates above the cutoff correlation value of 0.3 for all five

time-series. The value of 0.3 was identified as the optimal threshold as it produced the highest R2

value following leave-one-participant-out cross-validation using different correlation thresholds. Fig-

ure 2—figure supplement 1 depicts the change in model performance (R2 values) at different corre-

lation thresholds. It was not necessary to use the coefficient of variation to further filter the time-

indicating features given that only a small fraction of all features have a detectable circadian oscilla-

tion under all experimental conditions included in our analyses. Where multiple mRNA features tar-

geting the same gene met our correlation threshold, the best performing (most correlated to a

cosine) mRNA feature was selected to represent a gene. Subsequently, the method identified 73

mRNA abundance features, which target 73 unique genes, as time-indicating features.

The timetable model is essentially a look-up table. To predict the phase of a single sample, the

set of mean-centred mRNA abundance values for the 73 features comprising the model are

extracted and compared to the expected set of values at different phases within the molecular time-

table model (look-up table). The phase producing the highest correlation is the sample’s predicted

melatonin phase. In a similar approach, the resulting molecular timetable was further used to con-

struct a ‘two-sample’ molecular timetable, where the difference in mRNA abundance of two samples

taken 12 hr apart is compared to the difference in the timetable templates with the same time lapse.

Zeitzeiger
We used the Zeitzeiger method of (Hughey et al., 2016) implemented in the zeitzeiger R package,

downloaded from https://github.com/jakejh/zeitzeiger (zeitzeiger_0.0.0.9000, RRID:SCR_014791).

To build a Zeitzeiger predictor, given a training data set, there are two parameters that need to be

optimized: ‘sumabsv’, which controls for the overfitting of the model by controlling the number of

features (probes measuring mRNA abundance) to be used to form principal components, and

‘nSPC’, which controls the number of principal components that describe how the features change

Laing et al. eLife 2017;6:e20214. DOI: 10.7554/eLife.20214 18 of 26

Research article Computational and Systems Biology Neuroscience

https://scicrunch.org/resolver/SCR_001905
http://sleep-sysbio.fhms.surrey.ac.uk/PLSR_16/.
http://sleep-sysbio.fhms.surrey.ac.uk/PLSR_16/.
https://github.com/jakejh/zeitzeiger
https://scicrunch.org/resolver/SCR_014791
http://dx.doi.org/10.7554/eLife.20214


over time. To identify the best parameters for training the predictor, we ran leave-one-participant-

out cross-validation of the training set. The cross-validation was run over seven values of sumabsv (1,

1.5, 2, 2.5, 3, 3.5 and 4) and five values of nSPC (1, 2, 3, 4 and 5). To compare the performance of

the predictors generated from each set of parameter values, we calculated the Mean Average Error

(MAE). As seen in Figure 3—figure supplement 2, the smallest MAE is produced by the combina-

tion of sumabsv = 4 and nSpc = 3. These optimal values were then used to produce a Zeitzeiger

based model to predict the circadian phase of samples in the validation set, with which we could

assess the overall performance of the model and directly compare with other models. The 107

mRNA abundance features (probes) that can predict circadian phase based on the Zeitzeiger

approach were identified as those carrying weight in at least one of the three principal components

used to construct the model.

Partial least squares regression
In this work, X 2 Rmxn is a matrix of m samples by n mRNA abundance features and the vectors

Yx; Yy
� �

2 Rm are the corresponding observed melatonin phase of each sample represented in Carte-

sian coordinates. Partial Least Squares Regression (PLSR) is a linear regression model that

regresses ðYx; YyÞ on to X by projecting both ðYx; YyÞ and X into a reduced-dimensional space (so

called latent factor space) that maximizes their covariance before performing a least squares regres-

sion. This projection to a latent space enables PLSR to handle the observed co-linearity between

mRNA abundance features derived from the same gene, that is, multiple probes targeting the same

transcript and/or co-expressed ‘modules’. To build a PLSR model, given a training data set, there

are two parameters that need to be optimized: (1) the number of latent factors, that is

dimensions, T ð1<T<NÞ and (2) the number of mRNA abundance features n ð1<n<NÞ. If the values of

these parameters are set too high (e.g. maximum value), there is a danger of over-fitting the model

to the training set, and if the parameters are set too low, the model would not be sensitive nor spe-

cific enough to provide high accuracy. Similar to the training in the molecular timetable and Zeit-

zeiger methods, above, we used leave-one-participant-out cross-validation of the training set to

identify the best combination of model parameters, in this case the number of latent factors and

number of mRNA abundance features. For our one-sample PLSR approach, we compared the cross-

validated performance of 136 combinations of 5 to 40 latent factors (in increments of 5) and 100 to

5000 features with which to build a model (see Figure 3—figure supplement 4a). For our two-sam-

ple PLSR approach, we compared the cross-validated performance of 100 combinations of four to

eight latent factors and 50 to 1000 features (Figure 3—figure supplement 4c). To generate each

model, the plsregress function of Matlab (8.2.0.701 [R2013b]) was invoked twice. The first call to the

plsregress function generates a PLSR-based model given the z-scored mRNA abundance feature val-

ues (for all features) of the training set (where samples for a single-participant have been removed),

the corresponding melatonin phase values represented in Cartesian coordinates, and the number of

specified latent factors as input. The absolute loadings (weights) of this model are then used to iden-

tify the top n features to create a subset of the training set comprising the n features. This subset of

the training set used in the first call is then used as input to the subsequent second call of the plsre-

gress function given the same (as the preceding call to the function) melatonin phase values repre-

sented in Cartesian coordinates, and the number of specified latent factors as input. The model

derived from the second call to the plsregress function is then used to predict the melatonin phase

of the left out (cross-validation) samples. Note that each p-trained model during cross-validation

may have a different set of ‘top’ (most weighted) features as feature order was not fixed in the

cross-validation. The performance of a combination of latent factors T and features n is then

assessed by R2 between the predicted and true melatonin phase values across all ‘leave-one-out’

predictions from models comprising latent factors and features. The overall optimal combination of

parameters was defined as the combination that produced an R2 >= 70% using the least number of

features and latent factors. Figure 3—figure supplement 4 depicts the changes in performance (R2)

of the model as the number of features and latent factors change when using one sample (Figure 3—

figure supplement 4a) or two samples (Figure 3—figure supplement 4c) as input. As can be seen

in Figure 3—figure supplement 4a, when predicting circadian phase using one transcriptomic sam-

ple one of the highest R2 values, at 73%, occurs when using 100 mRNA features and five latent fac-

tors. The maximum R2 value of 76% is obtained by increasing the features to 2000 and 10 latent
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factors. However, given that this number of features could induce overfitting and affect clinical appli-

cations (e.g. too many features to measure in a single platform) without a significant increase in R2

we chose the combination of 100 mRNA features and five latent factors as an acceptable combina-

tion of parameters with which to build the final model. Using the same approach, for two samples

(see Figure 3—figure supplement 4c), we identified 100 features and five latent factors (R2 value of

93%) as acceptable parameter values with which to train the final predictive model.

Future deployment of our PLSR-based models
Provided that a future user has blood transcriptome mRNA abundance values from the same micro-

array platform (GEO [Barrett et al., 2013; RRID:SCR_007303] accession number GPL15331) and/or

features, our models can be used to predict the circadian phase of the participant from which the

sample(s) were taken. The raw Log2 mRNA abundance values of the test sample(s) will need to be

quantile-normalized using the same reference array of empirical quantiles used to normalize the

samples included in our training set (see data at http://sleep-sysbio.fhms.surrey.ac.uk/PLSR_16/).

The PLSR method projects both the predicted and the observed variables onto a new space to

find a linear regression model. The linear regression model is used to predict circadian phase (ŷ)

from a set of n mRNA abundance values (x), where ŷ is calculated from the predicted Cartesian coor-

dinates of (ŷc; ŷs). Thus, the model parameters are the n regression coefficients (wc) and the intercept

value (wc0) for the cosine of the predicted phase (ŷc), such that ŷc ¼
Pn

i¼1
wcixi þ wc0, and the n

regression coefficients (ws) and the intercept value (ws0) for the sine of the predicted phase (ŷs), such

that ŷs ¼
Pn

i¼1
wsixi þ ws0: The predicted phase is then ŷ ¼ tan�1 ŷs=ŷcð Þ 180=p þ A, where A ¼ 0 if

(ŷc; ŷs) is in quadrant I of the coordinate plane, A ¼ 180 if (ŷc; ŷs) is in quadrant II or III and A ¼ 360

if (ŷc; ŷs) is in quadrant IV.

A circadian phase prediction can therefore be obtained by computing the sum of the products of

the n normalized z-scored mRNA abundance values and their corresponding regression coefficients

and adding the intercept values (see data at http://sleep-sysbio.fhms.surrey.ac.uk/PLSR_16/).

Repeated use of one-sample based models
The mean true circadian phase of two or three consecutive samples was directly compared with the

mean predicted circadian phase of two or three consecutive samples, as calculated using a one-sam-

ple model, for example, molecular timetable, Zeitzeiger and PLSR.

Functional enrichment analysis
Functional enrichment analysis was performed using the online tool Webgestalt (Wang et al., 2013)

(RRID:SCR_006786). Here, a given mRNA abundance feature list was converted to a list of unique

HGNC gene symbols and uploaded to the Webgestalt tool. Gene Ontology (GO) enrichment analy-

sis was performed using the reference human genome as the background and selecting for signifi-

cant (Benjamini and Hochberg adjusted p-value<0.05) GO biological processes and GO molecular

functions.
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Möller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Lo JC, Santhi N, von Schantz M, Smith CP,
Dijk DJ. 2013. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human
blood transcriptome. PNAS 110:E1132–E1141. doi: 10.1073/pnas.1217154110, PMID: 23440187

Naito M, Ohashi A, Takahashi T. 2015. Dexamethasone inhibits chondrocyte differentiation by suppression of
wnt/b-catenin signaling in the chondrogenic cell line ATDC5. Histochemistry and Cell Biology 144:261–272.
doi: 10.1007/s00418-015-1334-2, PMID: 26105025

Nehmé A, Lobenhofer EK, Stamer WD, Edelman JL. 2009. Glucocorticoids with different chemical structures but
similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular
meshwork cells. BMC Medical Genomics 2:58. doi: 10.1186/1755-8794-2-58, PMID: 19744340

Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. 2016. The
functional and clinical significance of the 24-h rhythm of circulating glucocorticoids. Endocrine Reviews:er.2015-
1080. doi: 10.1210/er.2015-1080, PMID: 27749086

Park J, Kim M, Na G, Jeon I, Kwon YK, Kim JH, Youn H, Koo Y. 2007. Glucocorticoids modulate NF-kappaB-
dependent gene expression by up-regulating FKBP51 expression in Newcastle disease virus-infected chickens.
Molecular and Cellular Endocrinology 278:7–17. doi: 10.1016/j.mce.2007.08.002, PMID: 17870233

Partch CL, Green CB, Takahashi JS. 2014. Molecular architecture of the mammalian circadian clock. Trends in
Cell Biology 24:90–99. doi: 10.1016/j.tcb.2013.07.002, PMID: 23916625

Petrillo MG, Fettucciari K, Montuschi P, Ronchetti S, Cari L, Migliorati G, Mazzon E, Bereshchenko O, Bruscoli S,
Nocentini G, Riccardi C. 2014. Transcriptional regulation of kinases downstream of the T cell receptor: another
immunomodulatory mechanism of glucocorticoids. BMC Pharmacology and Toxicology 15:35. doi: 10.1186/
2050-6511-15-35, PMID: 24993777

Pevet P, Challet E. 2011. Melatonin: both master clock output and internal time-giver in the circadian clocks
network. Journal of Physiology-Paris 105:170–182. doi: 10.1016/j.jphysparis.2011.07.001, PMID: 21914478

Polman JA, Hunter RG, Speksnijder N, van den Oever JM, Korobko OB, McEwen BS, de Kloet ER, Datson NA.
2012. Glucocorticoids modulate the mTOR pathway in the hippocampus: differential effects depending on
stress history. Endocrinology 153:4317–4327. doi: 10.1210/en.2012-1255, PMID: 22778218

Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H. 1992. Circadian rhythm abnormalities in totally blind
people: incidence and clinical significance. The Journal of clinical endocrinology and metabolism 75:127–134.
doi: 10.1210/jcem.75.1.1619000, PMID: 1619000

Sack RL, Lewy AJ. 2001. Circadian rhythm sleep disorders: lessons from the blind. Sleep Medicine Reviews 5:
189–206. doi: 10.1053/smrv.2000.0147, PMID: 12530986

Shah S, King EM, Chandrasekhar A, Newton R. 2014. Roles for the mitogen-activated protein kinase (MAPK)
phosphatase, DUSP1, in feedback control of inflammatory gene expression and repression by dexamethasone.
Journal of Biological Chemistry 289:13667–13679. doi: 10.1074/jbc.M113.540799, PMID: 24692548

Smyth G. 2005. Bioinformatics and Computational Biology Solutions Using R and Bioconductor (Statistics for
Biology and Health). Springer.

So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ. 2009. Glucocorticoid regulation of the circadian
clock modulates glucose homeostasis. PNAS 106:17582–17587. doi: 10.1073/pnas.0909733106, PMID: 1
9805059

St Hilaire MA, Gooley JJ, Khalsa SB, Kronauer RE, Czeisler CA, Lockley SW. 2012. Human phase response curve
to a 1 H pulse of bright white light. The Journal of Physiology 590:3035–3045. doi: 10.1113/jphysiol.2012.
227892, PMID: 22547633

Su G, Burant CF, Beecher CW, Athey BD, Meng F. 2011. Integrated metabolome and transcriptome analysis of
the NCI60 dataset. BMC Bioinformatics 12 Suppl 1:S36. doi: 10.1186/1471-2105-12-S1-S36, PMID: 21342567

Tachibana C. 2014. What’s next in ’omics: The metabolome. Science 345:1519–1521. doi: 10.1126/science.345.
6203.1519
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