
*For correspondence:

mattnolan@ed.ac.uk

†These authors contributed

equally to this work

Present address: ‡Gatsby

Computational Neuroscience

Unit, Sainsbury Wellcome

Centre, University College

London, London, United

Kingdom

Competing interest: See

page 26

Funding: See page 26

Received: 09 August 2016

Accepted: 07 December 2016

Published: 08 December 2016

Reviewing editor: Frances K

Skinner, University Health

Network, Canada

Copyright Chadwick et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Flexible theta sequence compression
mediated via phase precessing
interneurons
Angus Chadwick1,2‡, Mark CW van Rossum1†, Matthew F Nolan3*†

1Institute for Adaptive and Neural Computation, School of Informatics, University of
Edinburgh, Scotland, United Kingdom; 2Neuroinformatics Doctoral Training Centre,
School of Informatics, University of Edinburgh, Edinburgh, United Kingdom; 3Centre
for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom

Abstract Encoding of behavioral episodes as spike sequences during hippocampal theta

oscillations provides a neural substrate for computations on events extended across time and

space. However, the mechanisms underlying the numerous and diverse experimentally observed

properties of theta sequences remain poorly understood. Here we account for theta sequences

using a novel model constrained by the septo-hippocampal circuitry. We show that when

spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs,

they generate phase precessing action potentials that can coordinate theta sequences in place cell

populations. We reveal novel constraints on sequence generation, predict cellular properties and

neural dynamics that characterize sequence compression, identify circuit organization principles for

high capacity sequential representation, and show that theta sequences can be used as substrates

for association of conditioned stimuli with recent and upcoming events. Our results suggest

mechanisms for flexible sequence compression that are suited to associative learning across an

animal’s lifespan.

DOI: 10.7554/eLife.20349.001

Introduction
Whereas many behaviorally important events take place on timescales of seconds, neuronal mem-

brane dynamics operate at a millisecond timescale. The discovery that during movement hippocam-

pal place cells fire action potentials with timing that precesses relative to the hippocampal theta

rhythm (O’Keefe and Recce, 1993), and that time-compressed representations of behavioral

sequences occur as spike sequences within each theta cycle (Skaggs et al., 1996; Dragoi and Buz-

sáki, 2006; Foster and Wilson, 2007), suggests that hippocampal activity is organized so that com-

putations on a millisecond neural timescale can address events on behavioral timescales. Thus, spike

sequences within theta cycles may form a neuronal substrate for episodic and spatial memory

(Pastalkova et al., 2008; Lisman and Redish, 2009; Buzsáki and Moser, 2013; Wikenheiser and

Redish, 2015). Nevertheless, the circuit mechanisms through which theta sequences are generated

are unclear and the mechanisms by which they may contribute to learning have received relatively lit-

tle attention.

Several features of theta sequences that may be important for their computational functions pose

challenges to models attempting to explain their generation through biophysically constrained

mechanisms. First, the rate at which action potentials precess relative to the theta rhythm depends

on an animal’s speed of movement (Geisler et al., 2007). Second, phase precession occurs along

arbitrary two-dimensional trajectories (Huxter et al., 2008; Climer et al., 2013; Jeewajee et al.,

2014). Third, theta sequences emerge within theta waves that propagate along the dorsoventral
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axis of the hippocampus (Lubenov and Siapas, 2009; Patel et al., 2012). Fourth, while place cells

across the dorsoventral axis have field sizes that vary over an order of magnitude, spike phase never-

theless usually advances by a maximum of a single theta cycle across their place field indicating that

the rate of phase precession varies dorsoventrally (Kjelstrup et al., 2008). Finally, to successfully dis-

tinguish behavioral episodes, distinct theta sequences must be generated for experiences over an

animal’s lifetime, implying that sequence generation must be both flexible and have a high capacity

(Chadwick et al., 2015). We previously introduced a phenomenological model which demonstrates

that experimentally observed theta sequences can be accounted for by phase precession in indepen-

dent place cells (Chadwick et al., 2015). This is in contrast to suggestions that synaptic coordination

within and between cell assemblies is required to explain theta sequences (Tsodyks et al., 1996;

Harris et al., 2003; Harris, 2005; Maurer and McNaughton, 2007; Geisler et al., 2010;

Lisman and Redish, 2009; Wikenheiser and Redish, 2015; Wang et al., 2015). Several cellular

mechanisms for independent phase precession have been proposed (O’Keefe and Recce, 1993;

Mehta et al., 2002; Harris et al., 2002; Lengyel et al., 2003; Burgess et al., 2007; Leung, 2011;

Chance, 2012), but none appear able to account for the challenges above while maintaining consis-

tency with the hippocampal circuitry (see Figure 1—source data 1 and Discussion). Thus, the bio-

physical mechanisms through which an independent phase coding scheme could be implemented

within the CA1 circuitry while accounting for known computationally important properties of theta

sequences are not clear.

The possible mechanisms underlying phase precession in CA1 are heavily constrained by the

architecture of the CA1 circuit. CA1 pyramidal cells make few direct connections with one another

(Anderson et al., 2007) (but see Yang et al., 2014), suggesting that phase precession in CA1 arises

through some combination of intrinsic cellular properties, external inputs to the circuit and local

interactions between pyramidal cells and interneurons. Major sources of input to CA1 include spa-

tially modulated signals from CA3 and from the entorhinal cortex, and temporally patterned

GABAergic inputs from the medial septum, which target hippocampal interneurons and act as a

pacemaker to entrain theta oscillations in the circuit (Freund and Antal, 1988). Previously proposed

mechanisms for independent phase precession focus on integration of signals by place cells

eLife digest Nerve cells in the brain exchange information via electrical impulses. In a given

brain area, the electrical impulses at any particular moment can be thought of as forming a code

that represents an aspect of the outside world. For example, groups of nerve cells in the

hippocampus generate a type of code called a theta sequence, which represents a series of recent

and upcoming events. The specific timing of electrical impulses within a theta sequence is crucial in

creating certain types of memory.

There are two major classes of nerve cell in the brain: excitatory cells activate impulses in

neighbouring cells, while inhibitory cells act to temporarily block impulses from other nerve cells.

Many groups, or “circuits”, of nerve cells contain combinations of both cell types to control how and

when they communicate. Previous studies show that both types of cell are active within theta

sequences, but it is not known precisely how they contribute to creating the sequences.

Chadwick et al. developed a new mathematical model that simulates how theta sequences can

emerge from circuits of both excitatory and inhibitory nerve cells. The connections between these

simulated cells are based on experimental data from real nerve cells in the hippocampus. The model

predicts that inhibitory cells play an important role in generating theta sequences by interacting with

groups of excitatory cells to coordinate the timing of electrical impulses. Furthermore, the model

shows how memory capacity depends on these connections.

The next step following on from this work is to carry out experiments to test the model’s

predictions. This will include monitoring the same group of nerve cells in multiple different situations

to find out how their theta sequences change, and recording electrical events in individual nerve

cells during theta sequences. If the theory’s predictions are confirmed this would lead to a deeper

understanding of how our brains remember sequences of events.

DOI: 10.7554/eLife.20349.002

Chadwick et al. eLife 2016;5:e20349. DOI: 10.7554/eLife.20349 2 of 30

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20349.002
http://dx.doi.org/10.7554/eLife.20349


(O’Keefe and Recce, 1993; Mehta et al., 2002; Harris et al., 2002; Lengyel et al., 2003;

Burgess et al., 2007; Leung, 2011; Chance, 2012). However, many interneurons also fire spikes

that precess in phase against the theta rhythm, with interneuron phase precession exhibiting strong

functional coupling to individual pyramidal cells (Maurer et al., 2006; Geisler et al., 2007; Ego-

Stengel and Wilson, 2007). Thus, we asked whether phase precession underlying sequence genera-

tion could originate from interneuron dynamics. To address this possibility we introduce a minimal

circuit model in which phase precession and theta sequences are generated through interactions

between place cells and interneurons driven by pacemaker inputs. In contrast to the view that phase

precession in interneurons is inherited synaptically from phase precessing place cell assemblies

(Maurer et al., 2006; Geisler et al., 2007), interneuron phase precession in our model is crucial for

the coordination of spike timing in place cells and for the generation of theta sequences. Due to the

transient functional coupling between place cells and interneurons, phase precession occurs dynami-

cally whenever a place cell is driven by external inputs. Consequently, phase precession and theta

sequences are generated de novo within the network, and slow input sequences are automatically

compressed into theta sequences in networks of interacting pyramidal cells and interneurons.

Our model suggests that CA1 can function as a flexible compressor of its inputs to maintain a

representation of temporal order occurring on a behavioral timescale within a faster timescale suit-

able for synaptic processing in downstream brain areas. The model enables predictions of pace-

maker dynamics which account for velocity-dependence of network activity and dorsoventral

organization of sequence generation, and predicts network configurations that may underlie the dis-

sociation of phase precession and theta sequences (Feng et al., 2015; Middleton and McHugh,

2016). The proposed mechanism not only generates sequences encoding spatial trajectories, but

can also function as a general purpose circuit with a remarkably high capacity for encoding tempo-

rally extended sequences of events. We show how such a compression of ongoing experience into

theta cycles enables flexible learning of behavioral associations through spike timing dependent

plasticity (STDP). Thus, CA1 may compress ongoing experiences during theta states into fast neural

activity patterns suitable for online learning and decision making.

Results

Phase precession emerges in coupled interneuron-pyramidal cell pairs
Since theta phase precession in independent neurons is sufficient to account for experimentally

observed theta sequences (Chadwick et al., 2015), we first aimed to identify circuit mechanisms

that account for experimentally observed features of phase precession in single neurons. Whereas in

many previous models precession is assumed to arise from oscillatory drive targeting place cells, the

frequency of theta is established by septal GABAergic projections to hippocampal interneurons

(Freund and Antal, 1988), which in turn coordinate the spiking activity of local CA1 pyramidal cells

(Royer et al., 2012). We therefore reasoned that phase precession could emerge from the dynamics

of interneurons driven by pacemaker inputs and interacting with pyramidal cells. To explore this pos-

sibility we constructed a minimal network model containing a single interneuron and pyramidal cell,

with synaptic connectivity based on this architecture (Figure 1A). The interneuron is driven to fire

tonically by a constant depolarizing current, while pacemaker drive from the medial septum to the

interneuron is simulated by an 8 Hz oscillatory current, which is sufficient to fully entrain spiking activ-

ity of the interneuron when the pyramidal cell is inactive (Figure 1B–C). In this case, output from the

interneuron drives rhythmic subthreshold theta frequency inhibitory synaptic potentials in the pyra-

midal cell (Figure 1B). When spatial input to the pyramidal cell is simulated by a suprathreshold

external drive, the resulting synaptic drive to the interneuron initiates phase precession in the cou-

pled pair of cells, causing their firing frequency to elevate above that of the pacemaker theta and

their firing phase to advance continuously over the place field (Figure 1D–E). When the pyramidal

cell is transiently driven by slow depolarizing current, the phase of spikes fired by the interneuron

and by the pyramidal cell advances through a full 360 degrees relative to the 8 Hz pacemaker input.

Hence, whenever pyramidal cells are activated by slow depolarizing drives, the basic architecture of

the CA1 circuit, along with pacing inputs from the medial septum, is sufficient to generate phase

precession in pyramidal cells and interneurons.
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To better understand the emergence of these phase precession dynamics, we developed a

reduced model in which an interneuron is driven by weak pacemaker input and a slow depolarizing

drive, and for which analytical solutions can be obtained (Figure 2A, see Materials and methods for

details of model). During injection of a constant input current the model generates either stable

phase locking or phase precession at a constant rate against the pacemaker drive (‘frequency pull-

ing’) depending on the strength of depolarizing drive relative to the strength of pacemaker input

(Figure 2B,C). Phase locking occurs for weak drives, where the interneuron becomes entrained to a

fixed phase of the pacemaker input. Frequency pulling occurs for strong drives, in which case, for a

given constant input current, the interneuron oscillates with a fixed frequency difference from the

pacemaker, causing its phase to advance continuously relative to the pacemaker input. In the phase

locking region, because the locking phase varies as a function of the input current, variation in the

input current can be used to achieve variation through a maximum of 180 degrees of theta phases

(�90 to 90 degrees, see Figure 2B). In contrast, in the frequency pulling region, phase precession

continues indefinitely at a fixed rate for a constant input current.

Previous models that focus on place cells also generate phase precession by integration of theta

drives and slow depolarizing drives, achieving variable phase locking through a range of 180

degrees (Mehta et al., 2002; Harris et al., 2002). However, the underlying dynamics and mecha-

nisms in our model are distinct from these schemes in several ways. First, the excitation-dependent

locking of spike phase observed in our model for weak depolarizing drives (the phase locking

regime) is the result of the active entrainment of an ongoing intrinsic cellular rhythm to a pacemaker

drive, rather than a passive summation and thresholding of inputs to a silent pyramidal cell as in pre-

vious models. Moreover, the frequency pulling regime in our model, in which the external drive
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Figure 1. A minimal CA1 circuit model for theta phase precession. (A) An interneuron (red) is driven by a pacemaker theta oscillation from the medial

septum. The interneuron synapses reciprocally onto a pyramidal cell (blue). The pyramidal cell is driven by slower external inputs occurring over

behavioral timescales. (B–E) A simulation of this network as the animal crosses the place field of the pyramidal cell. (B) Interneuron spiking activity (red

lines) and pyramidal cell spikes (blue lines) and membrane potential (blue trace). (C) A sample of the interneuron spike train when the pyramidal cell is

inactive (i.e., outside of the place field), with the pacemaker rhythm overlaid for reference. In this case, the interneuron locks to the pacemaker input. (D)

A sample of the interneuron and pyramidal cell spike trains inside the place field. In this case, the interneuron precesses in phase against the

pacemaker input and the pyramidal cell fires in bursts which also precess in phase. (E) The membrane frequency in the theta band and the spike phases

of the interneuron (red) and pyramidal cell (blue) corresponding to the data shown in parts (A)-(D). Phases are replicated over two cycles for clarity.

Note that the pyramidal cell fires up to two spikes per theta cycle in this simulation.

DOI: 10.7554/eLife.20349.003

The following source data is available for figure 1:

Source data 1. Table comparing the proposed model to previous models of phase precession.

DOI: 10.7554/eLife.20349.004

Chadwick et al. eLife 2016;5:e20349. DOI: 10.7554/eLife.20349 4 of 30

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.20349.003
http://dx.doi.org/10.7554/eLife.20349.004
http://dx.doi.org/10.7554/eLife.20349


determines the rate of phase precession (Figure 2C), is not generated by previous models. The

dynamics inside the place field in our model take place almost entirely within this novel frequency

pulling regime, with the phase locking regime instead governing the dynamics outside of the place

field and therefore the alignment of spike phase at place field entry. Because our model relies on

the frequency pulling rather than the phase locking regime to produce phase precession, continuous

phase precession can be generated for arbitrary input profiles of sufficient strength, and does not

require a monotonically increasing ramp input as in previous models (Figure 2—figure supplement

1). Second, for symmetrical place fields previous schemes predict a phase advance towards the cen-

ter of a place field, but a phase reversal as the input current is reduced on leaving the place field

(Melamed et al., 2004). In contrast, when input currents are sufficient to drive the neuron into the

frequency pulling domain in our model, then phase advances continuously throughout the input field

(Figure 2D,E). Provided that inputs are sufficiently strong and sustained, the phase of interneuron

firing advances through a full 360 degrees, with the rate of phase precession determined by the

strength of the injected current (Figure 2D,E). Hence, this reduced model explains the dynamics

observed in the network simulation of Figure 1. Specifically, the interneuron remains in a stable

phase locking regime while the pyramidal cell is inactive, but enters the frequency pulling regime

whenever the pyramidal cell provides sufficient synaptic input, producing phase precession. Phase

precessing synaptic inputs from the interneuron coordinate the spike timing of the pyramidal cell

and confer phase precession, but phase precession in the interneuron is relatively insensitive to the

timing of pyramidal cell inputs, instead requiring only a sufficient increase in excitatory drive.

Figure 2. Phase precession and phase locking in a reduced model of an interneuron driven by depolarizing current and weak pacemaker drive. (A)

Schematic of the model. (B–C) Steady state dynamics for a constant depolarizing drive, assuming a linear f-I curve. (B) Phase locking as a function of

input current. (C) Precession frequency as a function of input current. For sufficiently strong currents, the interneuron oscillates with a frequency above

that of the pacemaker (phase precession). For sufficiently weak currents, the interneuron oscillates more slowly than the pacemaker (phase regression).

Note that for more biophysical f-I curves the phase regression regime may be absent. (D–E) Evolution of interneuron phase during a transient, slowly

varying current injection. (D) Input currents with Gaussian profiles and a range of amplitudes. (E) Interneuron phase as a function of time, for each

current profile shown in (D), showing a total of one cycle of phase precession for stronger drives and only transient phase precession before reversing in

phase for weaker drives (purple).

DOI: 10.7554/eLife.20349.005

The following figure supplement is available for figure 2:

Figure supplement 1. Phase precession is robust to the temporal profile of excitatory drive.

DOI: 10.7554/eLife.20349.006
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Velocity-modulated precession frequencies are achievable through
speed-dependence of synaptic currents
Experimentally the rate of phase precession in both place cells and interneurons increases with run-

ning speed, so that a constant relationship is maintained between spike phase and location

(Geisler et al., 2007). Because phase precession in our reduced model depends on pacemaker

amplitude and excitatory drive, the precession frequency can be flexibly modulated by varying either

parameter without needing to adjust the frequency of the pacemaker oscillation (Figure 2C, Materi-

als and methods). We therefore used the minimal circuit model of Figure 1 to test whether variation

of these inputs to the interneuron can account for the experimentally observed speed-dependence

of phase precession in pyramidal cells and interneurons. The reduced model predicts that either a

decrease in pacemaker amplitude or an increase in depolarizing drive to interneurons with running

speed would generate an increase in the rate of phase precession with running speed. However, for

stability the pacemaker amplitude must be small for low running speeds (see Materials and Meth-

ods). In this case the precession frequency can nevertheless be controlled independently through

changes in the depolarizing drive with running speed. Indeed, we found that in the minimal circuit

model a linear increase in pacemaker amplitude with running speed, combined with a linear increase

in depolarizing current to interneurons with running speed, can generate an approximately linear

increase in precession frequency while maintaining stable precession dynamics across running

speeds (Figure 3). Hence, the dynamics required to maintain a fixed relationship between spike

phase and place field position can be generated de novo in the local circuitry with inputs at a fixed

theta frequency. Importantly, the predicted dependence on running speed of current input to the

interneuron is consistent with findings of a velocity-dependent depolarizing current from glutamater-

gic circuits in the medial septum to interneurons in CA1 (Fuhrmann et al., 2015). Similarly, the pre-

dicted dependence of the pacemaker amplitude on running speed is consistent with the

dependence on running speed of both the LFP theta amplitude in CA1 (McFarland et al., 1975;

Figure 3. Running speed dependence of phase precession. (A) Illustration of the model circuit. To account for running speed dependence, pacemaker

amplitude and depolarizing current amplitude are increased linearly with running speed. (B) Examples of phase precession at a slow and fast running

speed, where the pacemaker amplitude and depolarizing current to interneurons are varied. (C) Phase precession frequency as a function of running

speed. Individual dots illustrate the estimated precession frequency on a single lap.

DOI: 10.7554/eLife.20349.007
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Maurer et al., 2005; Patel et al., 2012) and the activity of inhibitory circuitry in the medial septum

(King et al., 1998).

Dorsoventral traveling waves and phase precession gradients can
emerge from a common pacemaker drive
The phase of theta activity varies systematically across the dorsoventral axis of the hippocampus

(Lubenov and Siapas, 2009), spanning a range of 180 degrees (Patel et al., 2012) and creating the

appearance of a dorsoventral traveling wave. This variation is difficult to account for by temporal

delays in a common pacemaker drive, which has led to the suggestion that entorhinal-hippocampal

or intrahippocampal interactions are required to account for dorsoventral phase offsets (Patel et al.,

2012; Long et al., 2015). We asked if the present model can account for these observations without

the necessity for additional circuit components. In the reduced interneuron model, the range of

phases that stably lock to pacemaker input is precisely 180 degrees, with locking phase depending

on the strength of the excitatory current and pacemaker amplitude (Figure 2B). All other spike

phases are unstable. This suggests that a gradient in excitatory inputs to interneurons (or alterna-

tively a gradient in input resistance or some intrinsic membrane current) along the dorsoventral axis

might be sufficient to generate the observed dorsoventral phase gradient, despite a coherent pace-

maker input.

To test this hypothesis using more biologically plausible neuronal dynamics we simulated inte-

grate and fire interneurons driven by the same pacemaker inputs, but different levels of depolarizing

Figure 4. Theta dynamics across the dorsoventral axis. (A) Inputs to interneurons across the dorsoventral axis hypothesized to produce a gradient in

theta phase. (B) Interneuron spike phases for three simulations with different depolarizing currents. (C) Interneuron locking phase vs depolarizing

current (cf. Figure 2B). (D) A circuit model, and its dependence on dorsoventral location, which could produce simultaneous traveling theta waves and

gradients in precession slope. (E) Phase precession in a ventral place cell/interneuron pair (place field size 10 meters). (F) Phase precession in a dorsal

place cell/interneuron pair (place field size 0.3 meters). Note the change in both locking phase and precession slope from dorsal to ventral.

DOI: 10.7554/eLife.20349.008
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input currents (Figure 4A–C). This is equivalent to the full circuit model while the animal is outside of

the place field and therefore the pyramidal cell is inactive. Figure 4B shows three examples of these

simulations. In each case, the interneuron is attracted towards a stable locking phase of the pace-

maker input, but the precise locking phase depends on the strength of depolarizing current. In

Figure 4C we systematically analyzed how this locking phase depends on the strength of depolariz-

ing current, finding a relationship remarkably similar to that predicted by the reduced model, includ-

ing a range of 180 degrees of locking phases. Hence, in addition to explaining the change in

precession frequency with running speed, the interplay between excitatory currents and pacemaker

inputs can explain the phase gradient across the dorsoventral axis of the hippocampus, allowing the

emergence of traveling theta waves based on variable locking to a single, common pacemaker

input.

Place field size also varies along the dorsoventral axis of the hippocampus, ranging from less than

one meter dorsally to approximately 10 meters ventrally (Kjelstrup et al., 2008). This gradient is

associated with a concomitant gradient in the slope of phase precession, such that phase precesses

through approximately one cycle both dorsally and ventrally (Kjelstrup et al., 2008). To test whether

our minimal circuit model could account for these observations in addition to the traveling wave

dynamics, we simulated place cell/interneuron pairs at the ventral and dorsal pole of CA1, with place

field sizes of approximately 10 meters and 0.3 meters respectively, and interneuron locking phases

separated by approximately 180 degrees (Figure 4D–F). We found that the gradient in both phase

precession and theta phase along the dorsoventral axis could be accounted for simultaneously by a

combination of a dorsoventral gradient in the amplitude of pacemaker drive, the depolarizing cur-

rent to the interneuron and the strength of excitatory synaptic connections (Figure 4E,F). Thus, our

proposed mechanism predicts that depolarizing current input to interneurons (or their excitability),

the strength of excitatory synaptic connections from pyramidal cells to interneurons and the ampli-

tude of the septal pacemaker drive all decrease from the dorsal pole to the ventral pole of the hip-

pocampus (Figure 4D). In line with these predictions, theta power is observed to decrease from

dorsal to ventral hippocampus (Royer et al., 2010).

Robust phase precession is generated along two-dimensional
trajectories
As a further test of the model we asked if in addition to accounting for phase precession on linear

tracks, it can account for the properties of phase precession in open environments. In open environ-

ments, spikes always precess from late to early phases of theta, regardless of running direction

(Huxter et al., 2008; Climer et al., 2013; Jeewajee et al., 2014). These dynamics arise naturally

from the depolarizing current envelope in the present model if the animal passes in a straight line

through the center of a place field at a constant speed (Figure 1). No additional inputs such as from

head direction cells are required. Experimentally, a more complex feature of phase precession in

open environments is observed on passes through the edge of the place field, in which case the fir-

ing phase advances through around 180 degrees before reversing through 180 degrees over the

second half of the field (Supplementary Figure S2b in Huxter et al., 2008). In the present model,

similar dynamics occur when the interneuron is not driven sufficiently strongly to pass through to the

next cycle and is instead attracted back towards the initial phase (Figure 2D–E and Figure 5A). Our

model is also consistent with sequences observed during backwards travel, in which theta sequences

reflect the ordering at which locations are visited rather than heading direction (Cei et al., 2014;

Maurer et al., 2014).

The phase advance and then reversal on passing through the edge of a place field results from

failure of the weak synaptic depolarization to drive the model into the frequency pulling domain indi-

cated in Figure 2. What happens when the synaptic drive is instead very large? We found that with

strong and sustained inputs to place cells precession continues over multiple theta cycles

(Figure 5B). However, the pacemaker drive to the interneuron confers robustness against this effect,

as the interneuron can only precess through a discrete number of theta cycles and requires consider-

able additional input to precess through two cycles of theta rather than one. Figure 5C shows how

the number of theta cycles precessed by the interneuron varies with the amplitude of the slow enve-

lope. Over a broad range of input currents (Figure 5C), or more directly, a broad range of pyramidal

cell spike counts (Figure 5D,E), the interneuron will precess exactly one cycle over the place field.

For the choice of parameters used here, robust phase precession through one cycle in the
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interneuron occurs provided the place cell fires between 10 and 25 spikes in its place field. Thus,

phase precession is sufficiently robust to allow considerable rate remapping, but the mechanism nev-

ertheless places constraints on the coexistence of phase precession and rate remapping within place

cells (Allen et al., 2012).

Theta phase precession has also been shown to exhibit considerable robustness against experi-

mentally induced circuit perturbations. For example, when CA1 is transiently silenced (for ~ 200 ms)

and the theta rhythm is simultaneously reset, phase precession resumes in CA1 unperturbed upon

recovery (Zugaro et al., 2005). We tested whether the model would exhibit similar robustness under

such a perturbation by injecting a negative current into both place cells and interneurons to induce

silencing while simultaneously resetting the phase of the external pacemaker drive. Indeed, we

found that phase precession resumes upon recovery from this perturbation, as observed experimen-

tally (Figure 5—figure supplement 1). Further robustness has been observed under optogenetic

perturbations of the CA1 circuitry. Specifically, transient (1 s) silencing of somatostatin-positive

Figure 5. Robustness of phase precession to changes in the strength of place field drive. (A) Failure to precess through one full cycle. In this case, the

external inputs were not strong enough to drive the interneuron past the threshold to be pulled into the next theta cycle, and instead it is pulled back

towards the phase it started at. This is also seen in an initial increase followed by a decrease in frequency as the cell advances before reversing in phase

against the pacemaker. (B) Precession through two full cycles. In this simulation, the amplitude of the slow envelope current was increased. This results

in an increased firing rate of the pyramidal cell and hence an increased excitatory input to the interneuron. As a result, the interneuron received enough

drive to pass through two cycles of pacemaker input. (C) The probability of an interneuron precessing through one, two, or three cycles of pacemaker

theta phase as a function of the amplitude of the depolarizing envelope current onto the place cell. (D) The number of spikes fired by the place cell

(with standard deviation shown as error bars) as a function of the amplitude of depolarizing envelope current. (E) The probability of the interneuron

precessing through one, two, or three cycles of pacemaker theta phase replotted as a function of the number of spikes fired by the place cell.

DOI: 10.7554/eLife.20349.009

The following figure supplements are available for figure 5:

Figure supplement 1. Phase precession is robust to transient intrahippocampal perturbation.

DOI: 10.7554/eLife.20349.010

Figure supplement 2. Perturbation of spike phase during interneuron silencing.

DOI: 10.7554/eLife.20349.011
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(SOM) interneurons has almost no effect on spike phase, altering mainly the burst firing of place

cells, while silencing of parvalbumin-positive (PV) interneurons appears to introduce a small shift in

average spike phase without compromising phase precession overall (Royer et al., 2012). We repli-

cated this experimental protocol by injecting a 1 s negative current pulse into the interneuron as the

animal crossed the place field. When analyzing the resulting data using the methods of Royer and

colleagues, we found a shift in spike phase of a similar magnitude and direction to that reported in

experimental data (Figure 5—figure supplement 2A,B). These findings can be explained as follows.

The interneuron coordinates the pyramidal cell’s theta activity until place field entry so that pyrami-

dal cell spike phase is correctly aligned at the start of the place field. Upon interneuron silencing,

the pyramidal cell’s activity becomes independent of the theta rhythm, and depends only on the

slow depolarizing drive. Nevertheless, because the pyramidal cell continues to spike tonically at a

frequency higher than the theta rhythm during interneuron silencing, its spikes shift in phase continu-

ously (i.e., precess) against the theta rhythm over the place field. This precession within the place

field, combined with the phase alignment at place field entry provided by the interneuron before

the onset of optogenetic silencing, generates the apparent phase shift of Royer et al. (2012) in the

trial-averaged data. In contrast to this transient manipulation, we expect that phase precession

would be severely disrupted in experiments where phase precessing interneurons are silenced over

an entire lap, so that the phase at place field entry is not correctly aligned.

In summary, the model we outline here provides a robust mechanism for phase precession consis-

tent with the circuitry in CA1. The model accounts for the key features of phase precession observed

in CA1, including the dependence on running speed, place field size and dorsoventral location,

phase precession along two-dimensional trajectories, the coupling of phase precession between

place cells and interneurons, dorsoventral traveling theta waves and robustness to circuit

perturbations.

Efficient and flexible sequence compression depends on network
configuration
While the model that we propose in Figure 1 generates phase precession using only an isolated

place cell and interneuron, CA1 place cells are embedded into much larger networks in which only

7–11% of neurons are interneurons (Woodson et al., 1989; Aika et al., 1994; Bezaire and Soltesz,

2013). The large disparity between the number of place cells and interneurons demands that a sin-

gle interneuron in the model must couple to multiple pyramidal cells and generate phase precession

in each one. To test if this is possible, we first simulated a single interneuron coupled synaptically to

two pyramidal cells. We find that, when each pyramidal cell receives a depolarizing drive at a differ-

ent time, the interneuron can be recruited for phase precession independently by each pyramidal

cell (Figure 6). In this case, the interneuron shows two phase precession fields. As a direct conse-

quence, and in contrast to the case in which there is just one active pyramidal cell per interneuron,

the model predicts that outside of their suprathreshold firing fields place cells have subthreshold

phase precession fields, characterized by transient increases in the frequency of their theta-modu-

lated inhibitory input when the other place cell is active (Figure 6B). However, if the pyramidal cells

have overlapping place fields, these dynamics may be disrupted. In this case, the stronger synaptic

input to the interneuron from two active place cells may increase its precession frequency

(Figure 2C), causing it to precess over multiple cycles (Figure 5B). Moreover, as synaptic output

from the same interneuron coordinates the theta activity of both place cells, their spiking may

become synchronized. Thus, a single interneuron can support phase precession by more than one

place cell, but overlap between the firing fields of place cells coupled to the same interneuron may

disrupt precession-based codes by shifting the phase of coding relative to position and by causing

multiple cycles of phase precession within a single firing field.

Given this potential sensitivity of the circuit to overlap between place fields of cells connected to

the same interneuron, it is unclear whether our proposed mechanism can be extended to large net-

works with realistic numbers of interneurons and pyramidal cells. To address this we quantify the

performance of larger networks while varying the density of active place cells per interneuron, and

the spatial arrangement of the firing fields of place cells connected to the same interneuron

(Figure 7A–B). In these networks each pyramidal cell couples to only one interneuron, and these

connections are bidirectional, so that each interneuron couples to multiple pyramidal cells (see Mate-

rials and methods). This can be viewed as a simplified description of the interactions underlying
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phase precession, with other circuit interactions removed. These larger networks successfully com-

press slow input sequences into fast theta sequences when place field maps are sparse with low

overlap (Figure 7A top). In contrast, such sequences do not emerge when place field maps are

dense and have high overlap (Figure 7A bottom).

To more systematically quantify factors affecting sequence compression within the network, we

introduced two distinct metrics which measure the extent to which spiking within theta cycles faith-

fully recapitulates the slow sequence of place field inputs. We call these the single-cycle theta

sequence metric and the population phase precession metric (see Materials and methods for

details). The single-cycle theta sequence metric measures the similarity between slow input sequen-

ces and individual theta sequences (Figure 7C, solid red line). The population phase precession met-

ric measures the robustness and coherence of phase precession in a population of cells, and

therefore serves as an averaged measure of sequence compression over a dataset (Figure 7C, solid

blue line). For these metrics, correlations close to zero imply a lack of sequential organization and
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Figure 6. Recruitment of an interneuron for phase precession by multiple pyramidal cells. (A) Circuit diagram showing two pyramidal cells connected to

the same interneuron and receiving slow envelope currents at different points in time. (B) Simulation of this circuit showing the intrinsic theta frequency,

spike phases and membrane potentials. When the blue cell recruits the interneuron for phase precession as the animal crosses its place field, this is

also reflected in phase precession of the membrane potential oscillation of the green cell while the animal is outside of its firing field (and vice versa).

DOI: 10.7554/eLife.20349.012
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Figure 7. Compression of slow input sequences in CA1 networks. (A) Network simulations at low and high mapping densities. For sparse, random

place field maps, input sequences are compressed into robust theta sequences. For dense, random place field maps, no such sequence compression is

observed. (B) Top: Examples of optimal maps given two different place field densities. A set of place cells attached to the same interneuron are

mapped onto a linear track. In an optimal map, their place field centers are organized such that their overlap is minimized. For a certain number of

place cells per interneuron (here, four) overlap occurs even for an optimal map. Bottom: Example of random maps. The location of each place field on

the track is drawn from a uniform probability distribution. In this case, a larger number of place cells per interneuron causes an increase in the

probability that place fields will overlap. (C) Network performance vs number of active place cells per interneuron. As more place cells become active

(or the number of interneurons is decreased), the compression of inputs into theta sequences is degraded (red and blue traces). This is caused by a

drop in the coherence of phase precession in the population, despite a relatively constant phase-position correlation in individual place cells on single

laps (blue trace vs gray trace).

DOI: 10.7554/eLife.20349.013

The following figure supplements are available for figure 7:

Figure supplement 1. Three examples of random place field maps with a density of one active place cell per interneuron per meter, for which

disruption of sequence compression occurs (Figure 7C).

DOI: 10.7554/eLife.20349.014

Figure supplement 2. Robustness of phase precession under extraneous noise.

DOI: 10.7554/eLife.20349.015

Figure 7 continued on next page
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therefore poor performance, while strong (positive or negative) correlations signify the presence of

sequential representations within theta cycles. Using these metrics, we tested how sequence com-

pression varies depending on the properties of the place field map within the network. We observed

decreases in the strength of both individual theta sequences and population phase precession with

increasing place field density on the track (Figure 7C). Strikingly, this quantitative analysis also

revealed that with random place field mappings network performance degrades continuously with

increasing place field density, whereas with optimal place field mappings designed to minimize over-

lap in the place fields of cells coupled to the same interneuron (Figure 7B), high performance is

maintained over a wider range of place field densities (Figure 7C, dashed red and blue lines).

In summary, both the number of active place cells in an environment and the spatial organization

of their place fields influence the quality of sequence compression. In general, network performance

is high when the spatial maps are sparse, but high levels of performance can also be maintained in

denser spatial maps provided that the place fields of cells coupled to the same interneuron are well

separated.

Network reconfiguration can dissociate single-trial phase precession
and theta sequences
Recent evidence suggests that theta sequences and phase precession on single laps may be dissoci-

ated under some circumstances, such that single-cell precession can occur without spatially ordered

theta sequences. For example, on the first lap of a novel linear track place cells exhibit phase preces-

sion, in that their spikes advance continuously in phase against the theta rhythm, but the phase lags

between cells are initially uncoordinated and do not generate population theta sequences until after

further experience (Feng et al., 2015). Similarly, when input from CA3 is permanently absent, robust

phase precession is observed in each cell while spatially organized theta sequences fail to emerge

(Middleton and McHugh, 2016). To test whether such a dissociation of phase precession and theta

sequences is consistent with our model, we asked whether the changes in sequence compression

observed in the simulations of Figure 7 are caused by changes in the robustness of phase precession

in individual place cells, or whether they result from changes in the timing relationships between

groups of place cells (i.e., a decoherence of phase precession in neuronal populations). When we

quantified the fidelity of phase precession for individual cells on single laps (see Materials and meth-

ods) we found that robust single-unit phase precession persists as place field overlap is increased

(Figure 7C, gray line), despite the disruption of single-cycle theta sequences and population phase

precession. Thus, sequence disruption is caused by a decoherence of phase precession within the

population. This decoherence is caused by indirect interactions amongst place cells with overlapping

place fields and shared interneurons (e.g. see Figure 7—figure supplement 1).

Given this network configuration-dependent disruption of population activity in our model, we

wondered if extraneous noise impacts phase precession and population sequences, and whether

interneuron and pyramidal cell noise have similar or dissociable effects on circuit function. We found

that with increasing amplitude noise injected into pyramidal cells, single-cell phase precession and

population sequences were impaired in parallel (Figure 7—figure supplement 2A–C). This is distinct

from increasing place field overlap, which disrupts population sequences but not single-cell phase

precession. In contrast, increasing noise injected into interneurons disrupts population sequences

while leaving phase precession intact at the single trial level, revealing an additional mechanism for

dissociating phase precession from population sequences (Figure 7—figure supplement 2D). These

results underscore the distinct roles of interneurons and pyramidal cells for generating phase preces-

sion and population sequences in the model.

We next sought to establish how the experience dependent reorganization of network activity

observed by Feng and colleagues might occur. Our model suggests two potential mechanisms. First,

Figure 7 continued

Figure supplement 3. Putative mechanisms for removing disruption from network theta sequences.

DOI: 10.7554/eLife.20349.016

Figure supplement 4. Distributions of single-cell phase precession strengths in random maps with varying degrees of disruptive place field overlap.

DOI: 10.7554/eLife.20349.017
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plasticity between place cells and interneurons could adjust synaptic weights such that place cells

with overlapping place fields no longer couple strongly to the same interneurons (Figure 7—figure

supplement 3A). Second, the slow envelope inputs to place cells could rapidly reorganize in order

to minimize the overlap of place fields of cells coupled to the same interneurons (Figure 7—figure

supplement 3B). If a plasticity mechanism were in place, synaptic changes which allow sequential

activity in a new environment would cause disruption in previously stored maps. In contrast, place

field reorganization could enable multiple stable maps to be formed without disruption or interfer-

ence between different representations. Experimental evidence suggests that place field activity is

indeed reorganized upon exposure to a novel environment, including a sparsification of the CA1

place code and a decrease in the number of active place cells (Frank et al., 2004; Karlsson and

Frank, 2008). Whether such a reorganization mediates removal of unwanted place field overlap as

we predict here is yet to be determined. Further evidence suggests that such a mechanism may

depend crucially on plasticity in CA3 to CA1 connections (Dragoi and Tonegawa, 2013). Hence,

permanent silencing of CA3 would be expected to disrupt CA1 theta sequences without affecting

phase precession in our model, as observed by Middleton and McHugh (2016).

Theta sequences can be generated in a large number of spatial maps
What constraints does this sensitivity of sequence generation to connectivity impose on spatial map-

ping? Intuitively, as more place cells are connected to a given interneuron, the fraction of place cells

that can be active in a given environment without interfering with sequence generation becomes

smaller. This intuition can be formalized by adopting a simplified model in which place cells can map

to different locations on a linear track, under the constraint that place cells which functionally couple

to the same interneuron cannot map to locations within a certain distance of each other, which we

termed the exclusion zone (see Materials and methods). With this model, we find the maximum frac-

tion of pyramidal cells, F, which can express place fields in a given map is:

F <
NI

NP

L

D
(1)

where NI , NP are the number of interneurons and pyramidal cells respectively, L is the length of the

track and D is the size of the exclusion zone (approximately the size of a place field). The above

inequality gives a bound on the density of the spatial representation. It implies that spatial maps

generated by this network must be sparse and that the required sparsity depends on the ratio of

pyramidal cells to interneurons, and on the size of the place fields. If the network is close to this

upper bound, there will be a high density of subthreshold phase precession fields in place cells and

interneurons will phase precess over most of the environment. If instead the network is operating

well below this upper bound, so that the representation is sparser than the minimum requirement,

there will be only occasional interneuron and subthreshold phase precession fields. While subthresh-

old phase precession fields have not yet been investigated, the density of reported interneuron

phase precession fields can be high (see Figure 2 of Maurer et al., 2006), suggesting that CA1 net-

works may operate close to this bound.

Does the non-overlap constraint limit the capacity of the network for the representation of dis-

tinct environments and contexts? When we quantify the capacity of the network under the non-over-

lap constraint (see Experimental Procedures), we find that the number of distinct spatial maps, cell

assemblies and sequences that can be generated by the network are each considerably larger than

the number of environments, events or behavioral episodes that an animal could encounter within its

lifetime. For example, assuming a population of 10,000 pyramidal cells of which 20% are active in

each map, 1000 interneurons, an exclusion zone between place fields of 1 meter, a linear track of

length five meters and that place field locations can be distinguished with a spatial resolution

of 10 cm (a conservative estimate), the number of spatial maps in which coherent theta sequences

are generated is greater than 10
5000. For the same population of cells, assuming each cell assembly

consists of 100 pyramidal cells, there over 10
500 possible cell assemblies, and assuming a phase

sequence consists of 7 cell assemblies (Lisman and Idiart, 1995) there are over 10
1500 possible

sequences. Hence, despite the constraints imposed by the coupling between groups of pyramidal

cells and interneurons, the capacity of the network to encode distinct environments, contexts and

episodes can be considered to be unlimited from an ethological perspective.
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The above analysis quantifies the number of maps under which all pyramidal cells exhibit robust

phase precession. However, experimental data show a distribution of phase precession strengths in

simultaneously recorded pyramidal cell populations in CA1 (e.g., Skaggs et al., 1996;

Schmidt et al., 2009). We therefore asked whether randomly organized place field maps in our

model might be sufficient to account for typical distributions of single-cell phase precession

strengths in CA1 populations, despite disruptive place field overlap. In random maps, we found that

pyramidal cells exhibit a broad range of phase-position correlations (Figure 7—figure supplement

4). Even for very dense random maps, in which phase precession is severely disrupted on average, a

substantial proportion of the population continued to exhibit robust phase precession. Thus, even

randomly organized place field maps may be sufficient to account for experimentally observed

phase precession statistics in individual place cells.

In summary, we find that overlap between the place fields of pyramidal cells which functionally

couple to the same interneuron can disrupt sequence compression in the network. The level of dis-

ruption increases with the number of active place cells per interneuron. For random place field map-

pings, maintaining coherent sequence compression requires that place field maps are sparse. By

introducing mechanisms to organize place field maps in order to avoid interference, coherent

sequence compression can be maintained with much larger numbers of active place cells. While such

mechanisms reduce the number of spatial maps available to the network, we find that even under

these constraints, there is a practically unlimited capacity for generating distinct spatial maps, cell

assemblies and theta sequences in the network.

Flexible compression of arbitrary input sequences allows learning
through STDP
How might downstream neurons receiving synaptic input from place cells use compressed sequen-

ces for computation? A longstanding hypothesis is that sequence compression enables

the association of events through spike timing dependent plasticity (STDP) (Skaggs et al., 1996).

Because STDP acts on events correlated on a timescale of tens of milliseconds it is not well suited to

directly associating behavioral events (Levy and Steward, 1983; Markram et al., 1997; Magee and

Johnston, 1997; Bi and Poo, 1998), but it may act on compressed theta sequences representing

several seconds of recent and upcoming experiences (Figure 8A,B). Theta sequence compression in

conjunction with STDP has been suggested to lead to asymmetry in the firing fields of place cells

receiving place cell input (Mehta et al., 2002), but the use of compressed event sequences as condi-

tioned stimuli in classical associative learning has not been evaluated.

We consider a population of CA1 pyramidal cells performing sequence compression on its inputs

and projecting to a downstream neuron which receives a second strong input encoding some partic-

ular outcome or event of behavioral relevance, termed the unconditioned stimulus (US) (Figure 8B).

When the US occurs, the downstream cell signals that event by firing action potentials. Importantly,

because behavioral events extending up to several seconds into the past are represented in an

orderly fashion along the descending phase of the theta cycle and events occurring up to several

seconds into the future are ordered along the ascending phase, sequence compression using theta

oscillations generates an absolute temporal reference frame in neural time for past, present and

future events in real time on which STDP can act (Figure 8C).

The absolute temporal reference frame provided by the theta cycle enables the timing of the

downstream US-driven action potential to determine the association made. If these downstream

action potentials lock to the trough of the theta rhythm, a standard STDP rule will cause inputs from

place cells centered on locations before the place where the US was experienced to undergo an

increase in synaptic strength (Figure 8C). This circuit therefore implements associative learning,

forming an association between the conditioned and unconditioned stimuli. In contrast, if the down-

stream cell were to lock to a theta phase other than the trough, this would introduce a temporal shift

to behavioral time lags at which potentiation and depression of synapses occurs. For example, a

downstream neuron which fires at the peak of the theta oscillation will cause a decrease in synaptic

strength from neurons representing past locations and an increase in synaptic strength from CA1

pyramidal cells representing the future locations (Figure 8D). Thus, sequence compression with

theta oscillations allows locations, or events, occurring in the past or future to be flexibly and selec-

tively associated with a particular outcome by varying the spike phase of the downstream cell. The
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Figure 8. A proposed function of sequence compression for associative learning. (A) The animal explores an environment, activating different cells in

CA1 in a particular temporal order on a behavioral timescale. (B) A population of CA1 place cells performs sequence compression on the slow Gaussian

envelope inputs. These cells project onto a downstream neuron which signals some event of interest (the unconditioned stimulus). When this event

occurs, this cell fires tonically at the trough of the theta cycle. Synapses from CA1 place cells to the event cell are modifiable via STDP. (C) During each

cycle of the theta rhythm, CA1 cell assemblies representing past, present and future events in behavioral time are activated sequentially. At the trough

of the theta cycle, place cells representing the animal’s current location are active, whereas during the descending and ascending phases cells

representing past and future locations respectively are active. If the downstream cell signaling the unconditioned stimulus fires an action potential at

the trough of the theta cycle, STDP between pre- and post-synaptic spikes establishes an association between cells representing recently visited

locations and the event. (D) If instead the downstream cell encoding spikes at the peak of the theta rhythm, an association between cells representing

upcoming locations and this cell is formed, whereas cells representing recently visited locations and these cells have their synapses weakened (i.e., the

temporal associations are reversed relative to those in C).

DOI: 10.7554/eLife.20349.018
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high capacity of the sequence compression mechanism that we propose here enables STDP to act

on a practically unlimited set of potential behavioral experiences.

Discussion
We show that compression of behavioral sequences into spike sequences on a timescale suitable for

synaptic learning mechanisms can be achieved using a minimal network architecture based on CA1

and its inputs from the medial septum. This network architecture implements a novel mechanism for

phase precession based on the dynamic integration of pacemaker and spatial signals by spontane-

ously active interneurons. Our model accounts for phase precession along arbitrary two-dimensional

trajectories and across the dorsoventral axis of the hippocampus, and predicts tuning required to

maintain phase precession with variation in running speed and spatial scale. It reveals that the phase

precession of interneurons, previously assumed to be an epiphenomenon resulting from synaptic

inputs from phase precessing place cell assemblies, may instead coordinate phase precession in

pyramidal cells. A striking feature of this network is its large capacity for sequence generation. We

also show how STDP mechanisms can implement classical conditioning of sequences encoding future

or recent trajectories. Thus, the flexible sequence compression mechanism that we identify here may

be a substrate for forms of associative learning that store relationships between conditioning stimuli

and previous or future experiences. Our analysis indicates that sequence generation through single-

cell phase precession would endow these learning mechanisms with sufficient capacity to operate

across an animal’s lifetime.

Comparison to previous models for phase precession and theta
sequence generation
In the model we propose here the dynamics of signal integration by interneurons are critical to

phase precession and sequence generation. This is in contrast to previous models for phase preces-

sion which focus on place cells. A key difference is that interneurons generally exhibit ongoing rhyth-

mic spiking activity throughout an environment, whereas place cells are typically silent across most

of an environment, showing sustained firing activity only within spatially localized place fields. In our

model phase precession requires entrainment of spontaneous spiking by a pacemaker input and

acceleration of spiking due to further excitatory spatial input. The dynamics of our proposed model

account for phase precession through a full 360 degrees, and suggest mechanisms for speed tuning

and dorsoventral organization of phase that are consistent with experimental observations. We dis-

cuss below how the distinct dynamics of pyramidal cells lead to models of phase precession with dif-

ferent properties.

Previous models for phase precession face challenges in fully accounting for experimentally

observed features of theta phase precession and sequence generation (see Figure 1—source data

1). An initial model for phase precession was based on interference between oscillations with differ-

ent frequencies (O’Keefe and Recce, 1993). This model can account for phase precession observed

through the full 360 degrees of a theta cycle. However, because it generates repeated spatial firing

fields its predictions map more closely onto the properties of entorhinal grid cells than place cells in

the hippocampus (O’Keefe and Burgess, 2005). Moreover, to account for phase precession in two

dimensions interference models require heading modulated speed-dependent oscillatory signals,

but experimental evidence for signals with the required properties is so far quite limited

(Harvey et al., 2009; but see Welday et al., 2011). Other models rely on interactions between slow

depolarizing inputs to place cells and oscillatory inputs to their soma and / or dendrites. These mod-

els generate a unidirectional phase advance over the place field using either an asymmetric ramp

drive (Mehta et al., 2002; Losonczy et al., 2010; Magee, 2001) or using spike train adaptation so

that firing ceases at the peak of a symmetric place field drive (Harris et al., 2002). However, these

models appear able to achieve phase advances over the place field of only 180 degrees. Moreover,

to avoid phase reversal in later parts of the firing field these models rely on sustained depolarization

and elevated firing of place cells to maintain an advanced phase, whereas for many place cells phase

continues to advance after the center of their firing field while firing rate and membrane potential

depolarization drop (Huxter et al., 2003; Harvey et al., 2009). In contrast to these previous models,

the network architecture we propose here is able to account for phase precession through 360

degrees, does not require sustained depolarization following the place field center, is compatible
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with single rather than regularly repeating firing fields and does not rely on tuning of upstream

velocity controlled oscillators.

Observations following experimental manipulations of phase precession also constrain models of

the underlying circuit and cellular mechanisms. Intrahippocampal administration of cannabinoids dis-

rupts the temporal organization of CA1 activity during theta cycles without altering firing rates

(Robbe and Buzsáki, 2009), consistent with the scenario in our model when place field maps are rel-

atively dense and unorganized (Figure 7) or when high levels of extraneous noise are injected into

interneurons (Figure 7—figure supplement 2). Optogenetic inactivation of parvalbumin-positive

interneurons (PV), but not somatostatin-positive interneurons (SOM), disrupts phase precession by

shifting the firing phase of pyramidal cells towards the trough of the theta cycle (Royer et al.,

2012), which is consistent with our model if phase precessing interneurons are generally PV-positive

(Figure 5—figure supplement 2). Following a transient silencing of CA1 activity and resetting of the

hippocampal theta rhythm, phase precession is relatively unperturbed (Zugaro et al., 2005), a find-

ing which is also replicated by our model (Figure 5—figure supplement 1).

Predictions for cellular and synaptic organization of CA1 circuits
Our proposed model for theta sequence compression makes a number of experimentally testable

predictions. These can be grouped into core predictions of the model, and ancillary predictions that

follow from constraining the model parameters to account for experimentally observed features of

phase precession and to maximize the quality of sequence compression performed by the network.

The core predictions are as follows. (1) Silent or inactive pyramidal cells should demonstrate sub-

threshold phase precession fields resulting from inhibitory input when their primary interneuron is

activated by another place cell. This prediction should be testable through patch clamp recordings

in awake animals (Harvey et al., 2009; Epsztein et al., 2011). (2) Groups of pyramidal cells which

precess in tandem with a particular interneuron should have non-overlapping place fields, and if not

will exhibit disrupted theta compression. This prediction may be testable with high density electrical

recordings or advanced imaging methods. (3) Artificially depolarizing a place cell to generate a firing

rate field should automatically produce phase precession. This requires that the interneuron driving

phase precession is active, but otherwise should also be testable through awake patch-clamp

recordings. (4) Phase precession in place cells should be accompanied by the presence of strong,

phase precessing inhibitory synaptic inputs. (5) Entrainment of septal GABAergic inputs should set

the basal theta frequency, but precession of CA1 interneurons and place cells against this basal

theta should remain intact over a range of frequencies. (6) Phase precessing interneurons should

show reciprocal synaptic connections onto pyramidal cells, and the interneuron to pyramidal cell syn-

apse should be sufficiently strong to synchronize theta activity. (7) Sustained inactivation (e.g., over

an entire lap) of phase precessing interneurons should abolish pyramidal cell phase precession.

Tuning of our model to account for experimentally observed features of phase precession leads

to further predictions about expected properties of the network components. (1) Stable phase pre-

cession across different running speeds emerges when phase precessing interneurons receive a

velocity-modulated excitatory drive and a pacemaker drive with velocity-dependent amplitude. (2) A

dorsoventral gradient in excitation to phase precessing interneurons, alongside a gradient in pace-

maker amplitude and excitatory synaptic strength, simultaneously generates dorsoventral traveling

theta waves and changes in precession slope across the dorsoventral axis. We note that these ancil-

lary predictions pertain only to the specific implementations that we have considered, and that alter-

native mechanisms are possible within the model circuitry. For example, dorsoventral traveling

waves could equally emerge from a gradient in the phase of pacemaker input within our model, and

alternative mechanisms for generating velocity-dependence of phase precession may also be possi-

ble within the circuit.

Because there is a greater number of pyramidal cells than interneurons in CA1, our model requires

that each phase precessing interneuron couples to several pyramidal cells. For successful sequence

generation pyramidal cells which couple to the same interneuron must have largely non-overlapping

place fields. This constraint leads to predictions for network topographies that support and determine

the quality of sequence compression. (1) For randomly organized place field maps, reducing the den-

sity of firing rate fields in the pyramidal cell population increases the quality of the sequence-com-

pressed representation of behavioral events. (2) Sequence compression can be maintained with

maximal performance at far greater place field densities when these place fields are organized so as to
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minimize coactivity of pyramidal cells which precess with the same interneuron. Interestingly, this

implies that CA1 does not exhibit topographically organized place field maps. This is consistent with

an apparent lack of anatomical organization of place cells (Redish et al., 2001; Dombeck et al.,

2010). (3) Because the maximum place field density is determined by the ratio of phase precessing

interneurons to pyramidal cells, and because experimentally observed coding densities appear to

increase along the dorsoventral axis, either: there are more phase precessing interneurons per pyrami-

dal cell in the ventral hippocampus, the fraction of silent pyramidal cells in the ventral hippocampus is

higher, or sequences are disrupted in the ventral hippocampus. When the constraint underlying these

predictions is violated population theta sequences can be disrupted despite the presence of single-

cell phase precession on individual laps. This may explain the dissociation of phase precession and

theta sequences during exploration of novel environments (Feng et al., 2015) and when CA3 is

silenced (Middleton and McHugh, 2016). In order to avoid such disruption of sequential activity, our

model requires that CA1 networks can learn to decorrelate spatial maps following global remapping,

most likely via a reorganization of firing rate fields in order to remove disruptive place field overlap.

Understanding the learning rules and circuit mechanisms underlying such a decorrelation poses an

interesting challenge, and points towards the importance of investigating the initial reorganization

and stabilization of place field maps in novel environments (Frank et al., 2004; Karlsson and Frank,

2008), with a particular focus on the emergence of spatiotemporally structured representations within

theta cycles (Dragoi and Tonegawa, 2013; Feng et al., 2015).

The model that we propose automatically compresses slow sequences of inputs occurring on

timescales of seconds into fast sequences of spiking activity within each cycle of the network theta

rhythm. This mechanism could in principle be implemented in parallel with some previously pro-

posed mechanisms for phase precession. For example, in addition to inputs from local interneurons

considered here, dendritic and somatic interference in pyramidal cells might also contribute to the

phase advance over the first half of the place field (Magee, 2001; Losonczy et al., 2010), and oscil-

latory or phase precessing inputs from CA3 and entorhinal cortex might contribute to membrane

phase in CA1 place cells (Chance, 2012; Jaramillo et al., 2014). Moreover, additional architectures

could extend our proposed model. For example, in brain areas such as CA3 and entorhinal cortex,

attractor mechanisms may generate the firing rate fields through local circuit interactions

(Samsonovich and McNaughton, 1997), such that the circuit mechanism proposed here generates

theta phase precession when excitatory neurons are driven by slow depolarizing inputs arising from

within the local circuitry.

Roles for sequence compression in memory functions of the
hippocampus
How might theta sequences generated by pyramidal-interneuron interactions contribute to hippo-

campal-dependent learning and memory? Our analysis suggests a scenario in which, during theta

oscillations, CA1 provides a time-compressed ongoing narrative of behavioral episodes (Figures 1–

7). This enables downstream STDP mechanisms to form associations between ongoing behavioral

events and specific outcomes such as reward or punishment (Figure 8). During sharp wave ripple

events the CA1 network can then explore its state space and thereby test outcomes of different

behavioral choices based on associations stored during theta activity (e.g., Singer et al., 2013;

Gomperts et al., 2015). This allows a form of mental exploration in which possible behavioral

sequences can be simulated and the likely outcomes determined based on associations learned dur-

ing theta states (Hopfield, 2010). The model that we suggest here provides a mechanism for real-

time generation of theta sequences with capacity for storing novel associations experienced across

an animal’s lifetime.

This proposed framework makes several additional experimentally testable predictions for neu-

rons downstream from CA1. First, we predict that, during theta states, the spiking of downstream

neurons encoding unconditioned stimuli is locked to the theta rhythm, but is not strongly influenced

by the activation of specific cell assemblies in CA1. During sharp wave ripple events that take place

following learning, we predict that activation of these same downstream neurons can be driven by

cell assemblies in CA1 whose outputs were previously associated with the conditioned stimulus. In

line with these predictions, reward responsive neurons in the VTA lock more strongly to the hippo-

campal theta rhythm than non-reward responsive neurons, and VTA neurons that lock more strongly

to the hippocampal theta rhythm exhibit greater coordination with CA1 cell assemblies representing
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reward locations during awake sharp wave ripple events (Gomperts et al., 2015). Second, to form

associations between conditioned stimuli and rewards occurring in the future, present or past on

behavioral timescales, the proposed learning mechanism predicts that the timing of downstream

reward-encoding neurons relative to the theta rhythm should shift, firing near the peak for future

rewards and near the trough when rewards have been obtained. This behavior has been observed in

reward-encoding neurons in the ventral striatum, which precess in phase relative to the hippocampal

theta rhythm as the animal approaches a reward site (van der Meer and Redish, 2011). Hence, dur-

ing theta states a primary function of interneurons in CA1 and other hippocampal structures may be

to support compression of ongoing events into neuronal sequences in order to store associations in

synaptic projections to downstream brain areas, which may then be utilized during sharp wave ripple

events for mental exploration, planning and decision making.

Materials and methods

Reduced model of interneuron phase dynamics
To understand how phase precession emerges in the circuit of Figure 1, we developed a reduced

model of an isolated interneuron driven by a constant excitatory current and a pacemaker current

(Figure 2A). In this simplified description, we treat the interneuron as an oscillator whose baseline

frequency !ðIÞ is determined by the amplitude of the depolarizing current I through its f-I curve

(note that we do not make any explicit assumptions about the form of this f-I curve in the reduced

model, although in Figure 2 we assumed a linear f-I curve). We consider the pacemaker input as a

weak perturbation to this oscillator, which allows a reduced description of the interneuron in which

only its phase is considered (e.g., Ermentrout, 1986). We show below that under some general

assumptions the following equation is obtained (Adler, 1946):

dDfðtÞ
dt

¼ D!�A sinðDfðtÞÞ (2)

where: Df¼f� � is the instantaneous phase difference between the interneuron and the pacemaker

input; the detuning D!ðIÞ ¼ !ðIÞ�!� is the frequency difference between the pacemaker input and

the intrinsic frequency of the interneuron in the absence of pacemaker input; A is the synchronization

factor, which depends on the amplitude of pacemaker input and on the intrinsic properties of the

interneuron (we describe this dependence in the derivation below). This equation approximates the

phase relationship of the interneuron to the pacemaker input for different strengths of pacemaker

drive and excitatory drive.

For a constant input current, Equation (2) generates two distinct dynamical states depending on

the relative values of A and D! (i.e., depending on the amplitude of pacemaker input and excitatory

input to the interneuron). The first is stable phase locking and the second is phase precession. Phase

locking occurs when jD!=Aj<1, with a stable locking phase of Dflock ¼ arcsin D!
A

� �
(Figure 2B). Phase

precession occurs when jD!=Aj>1, where there are no stable phases and the interneuron precesses

continuously, but nonlinearly, in phase against the pacemaker input (Figure 2C).

To derive Equation (2) and the dynamics described above, we assume that the pacemaker input

is weak so that we may introduce an approximation based on its infinitesimal phase response curve

zðfÞ. Specifically, the dynamics of an oscillator with frequency ! driven weakly by an external pertur-

bation QðtÞ can be approximated by the reduced phase model:

df

dt
¼ !þ zðfÞQðtÞ (3)

where amplitude variations have been neglected. To model the case of an oscillator driven by a

weak pacemaker (i.e., an interneuron driven by the septal theta rhythm) we consider a perturbation

of the form QðtÞ ¼Q0 cosð�ðtÞÞ. Equation (3) can then be expressed as:

dDf

dt
¼ D!þ zð�þDfÞQ0 cosð�ðtÞÞ (4)

where Df¼f� � and D!¼ !�!�. If z is also sinusoidal, the above equation can be further
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approximated by averaging out fast fluctuations to obtain Equation (2). To see this, we define the

theta-average of a variable X as:

Xh i�¼
1

2p

Z
2p

0

Xd� (5)

Averaging out fluctuations on a sub-theta cycle timescale then gives:

dDf

dt

� �

�

¼ D!þQ0 zð�þDfÞcosð�Þh i� (6)

which for sinusoidal phase response curves of the form zðfÞ ¼ z0 � z1 sinðfÞ is:

dDf

dt

� �

�

¼ D!þQ0 cosð�Þ z0 � z1 sinð�þDfÞð Þh i� (7)

¼ D!�Q0z1 cosð�Þ sinð�þDfÞh i� (8)

¼ D!� 1

2
Q0z1 sinð2�þDfÞþ sinðDfÞh i� (9)

»D!� 1

2
Q0z1 sinðDfÞ (10)

where in the last line it was assumed that Df does not change over a single theta cycle. This recovers

Equation (2) and provides an explicit formula for the synchronization factor in terms of the phase

response curve and pacemaker drive A¼Q0z1=2. In other words, the synchronization factor depends

on the amplitude of pacemaker drive and the sinusoidal component of the phase response curve of

the interneuron.

The general solution to Equation (2) is given by:

DfðtÞ ¼ 2arctan

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD!Þ2�A2

q
tan 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD!Þ2 �A2

q
ðc� tÞ

� �

D!

2
664

3
775 (11)

where c is a constant determined by the initial conditions. This equation is valid for both the phase

locking and phase precession regimes. In the case of phase precession, where jD!=Aj>1, this gives

the following precession frequency:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD!Þ2 �A2

q
=2p (12)

which is obtained by noting that tan is a p-periodic function, while arctan is a monotonic function.

Assuming that the phase precession frequency scales with running speed v and field size as

f ¼ v=ð2RÞ, where R is the radius of the place field (Chadwick et al., 2015), we obtain a constraint on

the detuning and synchronization factor:

ðD!Þ2 ¼ A2 þðpv=RÞ2 (13)

which shows how the phase precession frequency can be controlled across running speeds and dor-

soventral locations by changing the strength of pacemaker input and excitatory drive to

interneurons.

For the stable phase locking case, where jD!=Aj<1, the expression for the precession frequency

yields complex values. To recover the steady state locking dynamics shown in Figure 2B, note that

for complex arguments the tan function in Equation (11) becomes a tanh, and in the limit t ! ¥ this

tanh term tends to 1 so that DfðtÞ becomes independent of t and the initial condition c. The rate at

which the decay to steady state occurs will therefore vary with jD!=Aj.

Numerical simulations
Simulations were performed using the Brian simulator (Goodman and Brette, 2009).
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Neuron model
We modeled the network using leaky integrate and fire neurons with conductance based synapses.

For example, excitatory neurons were modeled by the following equation:

dVmðtÞ
dt

¼� VmðtÞ�E0ð Þ=tm�
XNI

j¼1

gI;jðtÞ VmðtÞ�EIð Þ=Cmþ IExt=CmþsnhðtÞ=
ffiffiffiffiffi
tm

p
(14)

where Vm is the membrane potential, E0 is the resting potential, tm is the membrane time constant,

gI;j is the conductance of the synapse from presynaptic interneuron j, EI is the inhibitory reversal

potential, IExt is an external current input, sn is the noise amplitude and h is a random variable drawn

from a standard normal distribution at each timestep. When the membrane potential Vm reaches the

threshold V�, a spike occurs and the membrane potential is reset to Vr.

The synaptic conductances were exponentially decaying and governed by:

dgI;jðtÞ
dt

¼�gI;j=tI þ
X

i

wjd t� t
ðjÞ
i

� �
(15)

where t
ðjÞ
i is ith spike of cell j and wj the synaptic weight. Inhibitory neurons were modeled in the

same way, but receiving excitatory rather than inhibitory synaptic conductances.

External inputs
For interneurons, the external current was of the form:

IIExt ¼ II
0
� I� cos !�tð Þ (16)

where I� is the amplitude of the pacemaker current. To simulate a trajectory through a place field,

the external current injected into the place cell was of the form:

IEExtðtÞ ¼ IE exp �jxðtÞ�xcj2
2s2

 !
(17)

where xðtÞ ¼ x0 þvt is the trajectory of the animal through the place field. For simulations through

the edge of the place field (Figure 5A) the trajectory was a straight line offset from the place field

center xc by 14 cm, otherwise the trajectory passed through the center.

Synaptic connectivity
To simulate large scale networks in Figure 7, synaptic weights from pyramidal cell i to interneuron j

were defined as:

wE
ij ¼Cijw

E (18)

where Cij is a connectivity matrix with binary entries Cij 2 0;1f g and wE is the strength of excitatory

synapses in the network. The connectivity matrix satisfies the following conditions:
P

jCij ¼ 1 for all i

and
P

iCij ¼Np=NI for all j. This ensures that each pyramidal cell connects to exactly one interneuron

and that each interneuron receives connections from the same number of pyramidal cells. Similarly,

synaptic weights from interneuron j to pyramidal cell i were defined as:

wji ¼Cijw
I (19)

where the inhibitory connectivity matrix is simply the transpose of the excitatory connectivity matrix.

This ensures that interneurons project to the same pyramidal cells from which they receive connec-

tions. There were no synaptic connections between neurons of the same type.

Model parameters
The following parameters were fixed, independent of running speed:
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t
I
m ¼ 40 ms, tEm ¼ 20 ms, V� ¼ �50 mV, Vr ¼ �70 mV, V0 ¼ �65 mV, CI

m ¼ 200 pF, CE
m = 155 pF, tI ¼

10 ms, tE ¼ 2 ms, EI ¼ �70 mV, EE ¼ 0 mV, f� ¼ 8 Hz, wE ¼ 0:5 nS, wI ¼ 25 nS, s ¼ 40 cm and a simu-

lation time step of 0:1 ms.

Running speed dependence
We varied several parameters to model the changes with running speed. First, the injected current

into the place cell depends on running speed according to Equation (17), where the width of the

Gaussian in time varies with running speed. In addition to the temporal duration of current injection

(as determined by the trajectory xðtÞ), the amplitude of current input IE was varied with running

speed. In addition, the noise to the place cell was varied with running speed. The amplitude and

noise term were varied so that the width of the place field (measured as the distance from first to

last spike on a single lap) and the number of spikes fired during a pass through a place field were

constant across running speeds. Increasing noise tends to spread out the place field, whereas

increasing the input current amplitude tends to increase both the number of spikes fired and the

width.

The inputs to the interneuron were also running speed dependent. Specifically, the pacemaker

amplitude I� and the baseline current II
0
were varied with running speed. By lowering the pacemaker

amplitude, the range of input currents over which phase locking occurs is reduced, but the nonlinear

transition from phase locking to phase precession is less severe. This effectively allows a wider range

of currents over which slow phase precession can be achieved and increases the stability of phase

precession within this range. For these reasons, we reduced the pacemaker amplitude at lower run-

ning speeds and also reduced the baseline current so as to allow a slow precession frequency.

The depolarizing current input (in pA) to the interneuron as a function of velocity (in cm/s) was set

as:

II
0
¼ 79:5þ 0:027v (20)

The septal pacemaker input was:

I� ¼ 0:065v (21)

The amplitude of current injection into the place cell was:

IE ¼ 110þ 0:5v (22)

The noise to the place cell (in mV) was varied with running speed as:

sE
n ¼ 1:75� 0:025v (23)

Simulation of transient intrahippocampal perturbation
To model to experimental protocol of Zugaro et al. (2005), we repeated the simulation with param-

eters as described above (with running speed v ¼ 40 cm/s) and in addition injected a negative cur-

rent of amplitude 50 pA into the pyramidal cell and 20 pA to the interneuron for a duration of 200

ms, centered on the peak of the place field input, while simultaneously resetting the phase of the

pacemaker drive. These parameters were sufficient to generate silencing for around 200–250 ms in

both cells.

Simulation of interneuron silencing experiment
To model the experimental protocol of Royer et al. (2012), we again repeated the simulation with

parameters as described above (v ¼ 40 cm/s), but in this case delivered a negative current of ampli-

tude 10 pA to the interneuron for a duration of 1 s. This was sufficient to silence the interneuron for

the duration of the current injection. In the first simulation, silencing was centered on the peak of

the place field input. 1050 laps were simulated, and the data were then pooled and averaged to

generate Figure 5—figure supplement 2A,B (see Royer et al. (2012) for details of data analysis). In

the second simulation , silencing was centered on a random location within 20 cm of the peak of the

place field input. We performed this additional simulation to account for the fact that the silencing

was centered on a fixed portion of the track in the protocol of Royer and colleagues, so that the
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place cells analyzed typically were only silenced over part of their place field. We again simulated

1050 laps, with silencing centered on a different location in each lap, and then pooled and averaged

the resulting data (Figure 5—figure supplement 2C,D).

Dorsoventral changes
To model changes in theta dynamics along the dorsoventral axis, we simultaneously varied the place

field width s, noise sE
n , excitatory synaptic weight wE, depolarizing current to interneurons II

0
and the

pacemaker drive I�. For Figure 4A,B, only II
0
was varied and all other parameters were as above. For

Figure 4C,D, we chose two parameter sets representing the dorsal and ventral poles. For the dorsal

pole, the parameters were: s ¼ 45 cm; sE
n ¼ 0:7 mV; II

0
¼ 80:455 pA; I� ¼ 1:95 pA; wE ¼ 0:53 nS. For

the ventral pole, the parameters were: s ¼ 600 cm; sE
n ¼ 3 mV; II

0
¼ 79:525 pA; I� ¼ 0:12 pA; wE ¼

0:081 nS. In both cases, the running speed was set to v ¼ 30 cm/s.

Calculation of precession frequency
To estimate the theta frequency of the simulated neurons, the membrane potential was bandpass fil-

tered at 6:25� 10 Hz and the instantaneous phase was calculated via a Hilbert transform. The phase

was unwrapped and then smoothed using a moving average of width 250 ms. The gradient was cal-

culated at each time point to obtain the instantaneous frequency.

To determine the precession frequency at different running speeds, we calculated the average

membrane frequency within a radius of 15 cm around the place field center on each pass through

the place field. To remove artefactual frequency estimates arising due to the bursting dynamics

within theta cycles, we excluded individual runs based on the variability of the instantaneous place

cell frequency within this 15 cm radius. Specifically, we excluded runs on which the standard devia-

tion was greater than 1:75 times the mean standard deviation over all runs at that speed. This

excludes cases in which the estimated frequency fluctuated rapidly on a short timescale.

Analysis of phase precession statistics
To estimate the strength of phase precession in each pyramidal cell (the single-cell phase precession

metric), we calculated the Pearson correlation between the vector of spike phases F and the vector

of the animal’s location X at the time of each spike on a single lap. The phase offset was chosen in

order to minimize this correlation, i.e. to obtain the most negative possible (strongest) correlation

between spike phase and the animal’s location (Foster and Wilson, 2007; Feng et al., 2015). Spe-

cifically, given the vectors X and F, we calculated the correlation �ðX;Fþ efÞ, where

ef ¼ argminfð�ðX;Fþ fÞÞ. This metric was also used to measure single-cell phase precession pooled

over multiple laps (Figure 7—figure supplement 4).

To obtain the measure of population phase precession (the population phase precession met-

ric), we pooled the spikes of all pyramidal cells on a single lap. We again calculated the correla-

tion between the vector of pooled spike phases Fpop and the vector whose entries are given by

the distance of the animal from the place field center of the corresponding cell in the pooled

spike phase vector at the time of that spike Xpop. As for the single cell case, the phase offset

was chosen in order to minimize this correlation by calculating �ðXpop;Fpop þ efpopÞ, where

efpop ¼ argminfpop
ð�ðXpop;Fpop þ fpopÞÞ.

To measure the strength of sequential activity in the population (the single-cycle theta sequence

metric), we analyzed the data on a cycle-by-cycle basis. For each cycle, we calculated the Pearson

correlation between the vector of spike times in the population and the vector whose entries are

given by the place field center corresponding to each spike in this first vector. Theta windows for

this method had a temporal width equal to the period of the pacemaker input to the network. The

offset of theta windows was given by the phase offset efpop which maximized the population phase

precession measure for that lap. This allows for the possibility of an offset between the simulated

CA1 network theta activity and the septal input oscillation.

Place field mapping
For network simulations, the number of simulated pyramidal cells was held constant (Np ¼ 1000) and

the number of interneurons was varied. This choice was made to avoid changes in correlation values
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introduced by changes in sample size. The number of interneurons was always chosen to be a divisor

of the number of pyramidal cells so that there was an equal number of place cells for each interneu-

ron. Each simulated place cell was given exactly one place field. For random place field mapping,

place field locations were generated by a uniform distribution over a linear track. For optimal place

field mapping, place field locations were defined so that the place cells associated with a single

interneuron were equally spaced along the track and so that the entire population of place cells uni-

formly covered the track.

Reduced model of remapping with non-overlap constraint
Here we quantify the capacity of the network under the assumption that pyramidal cells which cou-

ple to the same interneuron cannot have overlapping place fields. We use three distinct measures of

the network capacity: the number of spatial maps at a given spatial acuity; the number of cell assem-

blies; the number of phase sequences. These derivations were used to provide the capacity esti-

mates stated in the main text.

Number of distinct spatial maps
To determine the number of spatial maps available to the network, we considered a simplified

model in which each place cell can map to a set of discrete locations on a linear track of length L.

Specifically, the track is divided into equal bins of size xres ¼ L=Nbins, where Nbins is the number of

bins and xres determines the spatial resolution of the place map. To avoid finite size effects, we

assume periodic boundary conditions (i.e., a circular track). The number of place fields to be mapped

onto the track depends on both the number of place cells Np and the average number of place fields

per place cell F (which can be greater or less than one). Given a number of interneurons NI , the pop-

ulation of Np place cells is divided into NI equal subsets, so that each interneuron is associated with

the same number of place cells. We assume that there is an exclusion zone of size D which sets the

minimum distance for which place cells associated with the same interneuron can be mapped, so

that Nd ¼ D=xres is the minimum separation in terms of the number of bins. In general, multiple cells

may map to the same bin, or no cells may map onto a given bin, provided that the non-overlap con-

straint is obeyed.

We can then consider the number of ways in which FNp place fields can be mapped onto the

track without violating this constraint. We can calculate this number by counting the number of pos-

sible choices for each for each place field i, where 1 � i � FNp. For the first place field i ¼ 1, there

are NpNbins possible choices, since we can choose from Np place cells and Nbins spatial locations. For

the next choice i ¼ 2, there are NpNbins � NdNp=NI choices, due to the exclusion zone about the first

cell, which excludes Np=NI cells from being mapped onto Nd of the possible bins. In general, there

are NpNbins � ði� 1ÞNdNp=NI for the ith choice. Hence, the total number of combinations is:

N ¼
YFNp

i¼1

NpNbins�ði� 1ÞNp

NI

Nd

� �
(24)

which can be simplified by noting that Nd ¼NbinsD=L so that:

N ¼ NpNbins

� �FNp
YFNp

i¼1

1�ði� 1Þ D

LNI

� �
(25)

The above analysis gives the number of ordered choices of place cells and spatial bins, but over-

counts the number of distinct maps by allowing the same map to be obtained through multiple

choice sequences. This can be corrected by a factor of ðFNpÞ! to obtain the number of distinct maps:

Nmaps ¼
NpNbins

� �FNp

FNp

� �
!

YFNp

i¼1

1�ði� 1Þ D

LNI

� �
(26)

Taking the logarithm and applying Stirling’s approximation gives:

logNmaps »FNp 1þ logL� logxres� logFð Þþ
XFNp

i¼1

log 1�ði� 1Þ D

LNI

� �
(27)
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This equation was used to determine the number of spatial maps under which coherent theta

sequences can be generated, as stated in the main text.

Number of cell assemblies
In addition to analyzing the number of spatial maps available to the network, we also considered the

number of distinct cell assemblies which can be generated by the network without causing disrup-

tion. We define a cell assembly to be a set of coactive cells. We now calculate the number of cell

assemblies which contain n place cells under the non-overlap constraint. To construct a cell assembly

satisfying the constraint, it is sufficient to simply select n distinct interneurons and then select a place

cell associated with each interneuron. The number of possible cell assemblies NCA is therefore:

NCA ¼ NI

n

� �
NP

NI

� �n

; n�NI (28)

As before, we can simplify this using Stirling’s approximation:

log NCAð Þ»NI logNI � NI � nð Þ log NI � nð Þþ n logNp � logNI � logn
� �

(29)

We used this equation to estimate the number of cell assemblies that can be expressed in the

network under the parameter assumptions stated in the main text.

Number of phase sequences
Finally, we considered how many phase sequences the network can generate without introducing

disruption. A phase sequence is defined as an ordered set of cell assemblies (Hebb, 1949). We

assume that a phase sequence is a discrete sequence of m cell assemblies, and that no two cells in a

phase sequence can couple to the same interneuron. A phase sequence can then be constructed by

repeatedly constructing cell assemblies as above, where the available interneurons for each subse-

quent cell assembly are given by those not already selected in previous assemblies within the

sequence. The number of phase sequences NPS is then:

NPS ¼
Ym

i¼1

NI �ði� 1Þn
n

� �
NP

NI

� �n

; n�NI

m
(30)

which can be approximated as:

logNPS »

Xm

i¼1

NI �ði� 1Þnð Þ log NI �ði� 1Þnð Þ� NI � inð Þ log NI � inð Þþ n logNp� logNI � logn
� �� �

(31)

Again, this equation was used to estimate the capacity of the network to generate distinct sequen-

ces as stated in the main text.
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