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Abstract The fundamental metabolic decision of a cell, the balance between respiration and

fermentation, rests in part on expression of the mitochondrial genome (mtDNA) and coordination

with expression of the nuclear genome (nuDNA). Previously we described mtDNA copy number

depletion across many solid tumor types (Reznik et al., 2016). Here, we use orthogonal RNA-

sequencing data to quantify mtDNA expression (mtRNA), and report analogously lower expression

of mtRNA in tumors (relative to normal tissue) across a majority of cancer types. Several cancers

exhibit a trio of mutually consistent evidence suggesting a drop in respiratory activity: depletion of

mtDNA copy number, decreases in mtRNA levels, and decreases in expression of nuDNA-encoded

respiratory proteins. Intriguingly, a minority of cancer types exhibit a drop in mtDNA expression

but an increase in nuDNA expression of respiratory proteins, with unknown implications for

respiratory activity. Our results indicate suppression of respiratory gene expression across many

cancer types.

DOI: 10.7554/eLife.21592.001

Introduction
Are the mitochondria of tumors characteristically different from those in normal human tissues? Sev-

eral recent reports have described somatic changes to the mitochondrial genome (mtDNA) in

tumors, which have expanded our knowledge of cancer genetics as well as basic mitochondrial biol-

ogy (Davis et al., 2014; Joshi et al., 2015; Ju et al., 2014; Stewart et al., 2015). In our own work

(Reznik et al., 2016), we estimated mtDNA copy number for thousands of tumor samples

sequenced by The Cancer Genome Atlas (TCGA) consortium and found that several cancer types

appeared depleted of mtDNA relative to adjacent-normal tissue.

A drop in mtDNA copy number can decrease the expression of critical (and necessary) proteins of

the electron transport chain (ETC)/ATP synthase. Respirometry experiments indicate that cells typi-

cally harbor an excess of mitochondrial respiratory capacity, implying that a modest decrease in ETC

protein levels will not impact the basal respiration rate of the cell (Brand and Nicholls, 2011). How-

ever, a sufficiently large reduction in the levels of proteins encoded by mtDNA (e.g. large or com-

plete mtDNA depletion), will precipitate a drop in the rate of ATP generation via respiration. In

these cases, cancer cells can partially compensate for lower respiratory ATP generation by increasing

flux through glycolysis (i.e. the Warburg effect).

Thus, there remains a gap between the observation of mtDNA copy number changes and their

propagation to a drop in respiration. Linking measurements of mtDNA copy number directly with

respiratory flux remains difficult: flux studies of comparable sample size to contemporary genomic

investigations are not available. However, one can lay a partial bridge between respiration and

mtDNA ploidy by examination of mRNA expression of mtDNA (mtRNA). Mitochondrial DNA serves

as the template for the transcription of 13 protein-coding genes, each of which is a critical integral
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membrane subunit in the electron transport chain or ATP synthase. A synchronous change (increase

or decrease) in both mtDNA copy number and mtRNA expression in tumors compared to normal tis-

sue can therefore be used as complementary evidence for a change in respiratory flux, which can

then be evaluated experimentally.

Here, we use RNA-sequencing data of TCGA tumors to expand upon our prior study of mtDNA

copy number variation in cancer (Figure 1). In part, our aim is to determine if tumor-associated

changes in the levels of mtDNA-derived transcripts mirror changes in mtDNA copy number. More

broadly, we propose using trio measurements of mtDNA copy number, mRNA transcribed from

Figure 1. Summary of analysis. (A) RNA-sequencing reads from the TCGA are aligned, and reads mapping to the mitochondrial genome are retained.

(B) Changes in the expression of mtRNAs in tumors compared to adjacent-normal tissue are compared to analogous changes in mtDNA copy number.

(C) Quantitative estimates of the correlation between mtDNA copy number and mtRNA are determined. (D) A comparison is made between the tumor

vs. normal differential expression of OXPHOS subunits encoded in mtDNA and nuDNA.

DOI: 10.7554/eLife.21592.002

The following figure supplements are available for figure 1:

Figure supplement 1. For each sample, the log10 ratio of the expression of the 13 mtRNAs (calculated using the sum of their TPM) to the expression of

175 mtDNA pseudogenes (calculated using the sum of their TPMs) was calculated.

DOI: 10.7554/eLife.21592.003

Figure supplement 2. Estimates of mtRNA abundance and differential expression from RSEM and featureCounts are in good agreement.

DOI: 10.7554/eLife.21592.004

Figure supplement 3. Comparison of mtRNA expression across different tissues.

DOI: 10.7554/eLife.21592.005
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mtDNA, and mRNA transcribed from nuclear DNA (nuDNA)-encoded respiratory genes, to gauge

the likelihood that a cancer type down-regulates respiration compared to normal tissue. In parallel,

these data can be used to dissect the coordination of respiratory transcription, i.e. to compute the

correlation between mtDNA and mtRNA levels, and to assess coordination of expression of respira-

tory genes from the mitochondrial and nuclear genome. As reported in detail below, our results

using RNA-Seq data largely corroborate our earlier results using mtDNA copy number

(Reznik et al., 2016) (with some important exceptions), and additionally offer a lens onto patterns of

transcriptional coordination between the mitochondrial and nuclear genomes.

Results

Quantifying expression of mtRNAs across cancers
Many reports have examined changes in metabolic gene expression in cancer (e.g. Gaude and

Frezza, 2016), but no study to date has examined the expression of the 13 mRNAs encoded by the

mitochondrial genome. While estimates of gene expression in samples profiled by the TCGA are

publically available (e.g. through the Firehose data pipeline at the Broad Institute, http://firebrowse.

org), the abundance of the 13 proteins encoded in mtDNA are not reported there. Therefore, to

quantify expression from mtDNA, we re-aligned TCGA RNA sequencing data from thousands of the

same tumors analyzed in our prior study of mtDNA copy number, and retained for analysis sequenc-

ing reads aligning to the mitochondrial chromosome. Estimates of mtRNA expression (in transcripts-

per-million, TPM Wagner et al., 2012) across 6614 samples profiled is available in

Supplementary file 2.

As in our prior study, we tested whether mitochondrial pseudogenes in the nuclear genome, also

known as nuclear integrations of mitochondrial DNA (NUMTs), confounded our estimates of mito-

chondrial transcription. Previous work has shown that NUMTs are, in the vast majority of cases, inte-

grated into intergenic/intronic regions of the nuclear genome, and are unlikely to be transcribed

(Collura et al., 1996; Dayama et al., 2014). Nevertheless, to directly assess the contribution of

NUMT RNA to our estimates of mtDNA expression, we implemented two measures: (1) examination

of expression of mitochondrial pseudogenes annotated in Gencode (Harrow et al., 2012), and (2)

comparison of two methods (featureCounts [Liao et al., 2014] and RSEM [Li and Dewey, 2011]) for

quantifying expression levels, which treat differently those reads mapping to more than one genomic

region. Results from both analyses support the notion that NUMTs do not confound our estimates of

mtDNA expression (Materials and methods, Figure 1—figure supplement 1 and Figure 1—figure

supplement 2).

Across all tissues, mtRNAs were highly transcribed. However, we observed substantial differences

in the abundance of any given mitochondrial (MT) transcript from one tissue to the next (as evalu-

ated using TPM) (Figure 1—figure supplement 3). For example, compared to other tissues, samples

derived from the kidney (TCGA studies KICH, KIRC, and KIRP, see Materials and methods for TCGA

abbreviations) had exceptionally high levels of mtRNAs, while samples from lung adenocarcinoma

(LUAD) expressed comparatively low levels of mtRNAs. When comparing our results to a prior study

of MT protein abundances from the mouse (Pagliarini et al., 2008), we found good agreement

between protein and mtRNA levels with respect to their ordering across tissues, (i.e. mtRNA expres-

sion and protein levels of MT-ND6 were highest in kidney, at moderate levels in liver, colon, and

stomach, and lowest in lung).

Differential expression of mtRNA in tumors compared to normal tissue
In (Reznik et al., 2016), we observed widespread mtDNA copy number depletion in tumors com-

pared to matched adjacent normal tissue in a number of solid tumor types. Here, we first set out to

test if expression of mtRNAs in these tumor types also was correspondingly lower. To do so, we esti-

mated the differential expression of mtRNA transcripts in tumor vs. normal tissues for each of 13

cancer types with adequate numbers of tumor and normal samples (Figure 2). The majority of cancer

types have a tendency for lower levels of mtRNAs, and five cancer types (breast, esophageal, head

and neck, kidney clear cell, and liver) have lower levels of all 13 protein-coding mtRNAs. Among the

seven cancer types with statistically significant depletion of mtDNA content in our earlier report

(Reznik et al., 2016), all seven had lower mtRNA levels in at least 4/13 genes, with no mtRNAs
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showing over-expression in these tumor types. We also observed that LUAD (lung adenocarcinoma),

which we found to be the only cancer type with increased mtDNA copy number in Reznik et al.

(2016), had lower expression of 6/13 mtRNAs, suggesting that any increase in mtDNA copy number

in LUAD was compensated for at the transcriptional level. For one study, prostate cancer (PRAD),

results were removed from analysis because differential expression using counts from featureCounts

and RSEM produced differing results.
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Figure 2. Differential expression of mitochondrial genes across cancer types. Magnitude and statistical significance of differential expression evaluated

by limma voom (see Materials and methods). The majority of mtRNAs are strongly down-regulated in several cancer types, including esophageal,

breast, head and neck squamous, kidney clear cell, and liver cancers. One cancer type (kidney chromophobe), shows increases in the abundance of

mtRNAs. All tumor types showing mtDNA copy number depletion in tumors relative to adjacent normal tissue (bottom annotation) show analogous

depletion of mtRNAs. In contrast, mtDNA copy number changes in lung adenocarcinomas and kidney chromophobes are not reflected in differential

expression of mtRNAs.

DOI: 10.7554/eLife.21592.006
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Breaking the general trend, one cancer type, KICH (chromophobe renal cell carcinomas), had

higher levels of mtRNAs in tumors compared to normal tissues. The over-expression phenotype was

notably large: each of the 13 genes had greater than 2-fold over-expression in tumors compared to

normal tissue (Figure 2). Importantly, KICH did not have appreciable accumulation of mtDNA copies

in our prior study.

The role of mitochondrial dysfunction, and of a mitochondrial accumulation phenotype, in chro-

mophobe renal cell carcinomas has been appreciated for some time (Nagy et al., 2002). Two recent

publications have highlighted the role that mtDNA mutations have in the development of one sub-

stype of chromophobes, eosinophilic chromophobe renal cell carcinomas (Davis et al., 2014;

Joshi et al., 2015). Eosinophilic KICH tumors have been proposed to arise from oncocytomas, a can-

cer type characterized by cytoplasms swollen with respiration-deficient mitochondria. This pheno-

type arises from two critical dysfunctions: somatic mtDNA mutations that render mitochondrial

OXPHOS non-functional, and defective mitophagy that prevents clearance of dysfunctional mito-

chondria. Thus, it has been proposed that oncocytoma cells experience an energy crisis due to

defective mitochondria/OXPHOS (perhaps sensed through AMPK), and respond by further upregu-

lating the biogenesis of defective mitochondria (Zong et al., 2016). Thus, our observation of

increased mtRNA levels in KICH tumors is likely to counterintuitively reflect a drop in respiration. As

noted before, experimental respirometry measurements must be made to confirm this hypothesis.

Interestingly, we also found differences in the tendency for any one mtDNA-encoded gene to be

differentially expressed across cancer types, which likely arises from the molecular details of mito-

chondrial transcription. The mitochondrial genome is transcribed in a polycistronic fashion, with all

mRNAs and tRNAs on a strand transcribed simultaneously. Following transcription, tRNAs are

excised from the transcript, and the majority of the remaining mRNAs are polyadenylated

(Pagliarini et al., 2008; Mercer et al., 2011). Polycistronic transcription ensures that mtRNAs are

highly co-expressed, although it is clear from many studies that mtRNAs undergo a large degree of

post-transcriptional regulation, resulting in uneven steady-state abundances (Rorbach and Minczuk,

2012). With regard to differential expression, most of the genes encoding subunits of Complex I

were downregulated in the majority of cancer types. In contrast, genes encoding subunits of Com-

plex V (ATP6 and ATP8) and to a lesser extent Complex IV (MT-CO1,MT-CO2,MT-CO3) were gener-

ally under-expressed in only the strongly mtDNA- and mtRNA-depleted cancer types.

Association of mtRNA with clinical parameters
We also evaluated the extent to which mtRNA levels were associated with clinical features (e.g. the

age, pathological stage, and overall survival of patients), using available clinical data from the TCGA

consortium (Figure 3, full results available in Supplementary file 3). Among these, papillary renal

cell carcinoma (KIRP), esophageal carcinoma (ESCA), and thyroid cancer (THCA) showed an associa-

tion between high mtRNA expression and increased age. It is not clear whether this statistical associ-

ation is a secondary result of a correlation between age and other clinical/genomic features, (e.g. in

THCA, age is positively associated with increased mutational density), and merits further

investigation.

More interestingly, we identified five cancer types (ACC,KICH,LGG,PAAD, and LIHC) in which

higher mtRNA expression levels were associated with increased overall survival. Three of these can-

cer types (ACC,KICH, and LGG), showed similar associations in our prior analysis using mtDNA copy

number (i.e. high mtDNA copy number was associated with better overall survival (Reznik et al.,

2016). KIRP tumors also showed an association between higher mtRNA expression and less aggres-

sive disease, as assessed by pathological stage (Supplementary file 3). Interestingly, these results

echo similar findings by reported by Gaude and Frezza, who reported an association between

down-regulation of nuclear-DNA-encoded mitochondrial transcripts and poor clinical outcome

across many cancer types (Gaude and Frezza, 2016).

Correlation of mtDNA copy number and mRNA levels
Our simultaneous quantification of mtDNA copy number and mtRNA expression enabled us to

address a more basic biological question: what is the relationship between the number of copies of

mtDNA in a cell and the expression of mtDNA-encoded genes? A number of factors, including but

not limited to mtDNA copy number, ultimately determine the steady-state abundance of mtRNAs
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and derived proteins in a cell. At low mtDNA copy number, transcript expression of mitochondrial

genes may be limited by the number of DNA templates available for active transcription. Alterna-

tively, other proteins (e.g. mitochondrial transcription termination factors) can control the rate of

transcription, while yet others can modulate mtRNA stability and degradation (Clemente et al.,

2015). Thus, it remains unclear whether mtDNA copy number is correlated to, and may be used as a

surrogate for, the abundance of mtRNA.

To evaluate the association between mtDNA copy number and mtRNA abundance, we calculated

(separately for each mtRNA) the non-parametric Spearman correlation between mtDNA copy num-

ber and mtRNA levels (in RSEM counts), for all samples with available mtDNA copy number and

mtRNA expression estimates (18 tumor types analyzed in total, Figure 4 and Figure 4—figure sup-

plement 1). We found that the correlation between mtDNA copy number and mtRNA expression

was highly tissue-type-specific. Seven of eighteen tumor types (adrenocortical, breast, glioma, kid-

ney clear cell, kidney papillary, liver, and thyroid) had strong (BH-corrected p-value <10�5) positive

correlation across all or nearly all mtDNA-encoded genes (Figure 4—figure supplement 1). Seven
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DOI: 10.7554/eLife.21592.007
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Figure 4. Correlation between mtDNA copy number and mtRNA expression. Relative mtDNA copy number was correlated against mtRNA expression

(log2 normalized counts from limma voom). The expression of one gene, MT-ATP6, is depicted, although other mtDNA protein coding genes are

similar. Lines indicate best fit linear trend between mtDNA copy number and log2 MT-ATP6 expression. Cancer types titled with an asterisk indicate a

Figure 4 continued on next page
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cancer types (bladder, colon, glioblastoma, head and neck, kidney chromophobe, lung adenocarci-

noma, and stomach) had weak but still statistically significant correlation. The remaining four cancer

types (endometrial, esophagus, pancreatic, prostate) showed no statistically significant correlation.

Of the seven cancer types with mtDNA depletion in tumors relative to normal tissue, five (all but

esophageal and head and neck) showed positive correlation between mtDNA copy number and

expression. Some genes (e.g. MT-ND5 and MT-ND6) had recurrently weaker correlation with mtDNA

copy number, which may result from their lower (and thus potentially noiser) abundance compared

to other MT transcripts. Thus, the data support a plausible correlation between mtDNA copy num-

ber and ‘steady-state’ mtRNA abundance across many but not all tissues.

For one cancer type (kidney clear cell), the TCGA consortium (Creighton et al., 2013) used

reverse-phase protein arrays (RPPA) to measure the protein abundance of one mtDNA-encoded pro-

tein (MT-CO2) in tumors only (not normal tissue). This data enabled us to assess directly, in this one

case, whether variation in mtDNA copy number and mtRNA levels translates to changes in protein

levels. We found that MT-CO2 protein levels were strongly correlated with MT-CO2 mRNA (Spear-

man � 0.38, p-value <10�14), and to a lesser extent with mtDNA copy number (Spearman � 0.18,

p-value 0.003) (Figure 4—figure supplement 2).

Interestingly, correlations between mtDNA and mtRNA were not necessarily homogeneous

between tumor and normal samples from the same tissue. Upon closer examination of samples from

KICH (Figure 4—figure supplement 3), we found that tumor and normal samples had strong but

distinct patterns of correlation between mtDNA copy number and mtRNA levels. In particular,

because KICH tumors only had increased mtRNA levels compared to normals (and not an increase in

mtDNA copy number), the best-fit trend line between mtDNA and mtRNA appears shifted vertically

when comparing tumor to normal tissue samples. Put another way, it appears as if KICH tumors had

higher values of the steady-state mtRNA/mtDNA ratio. Given that many KICH tumors harbor mtDNA

mutations, these observations suggest that compensation for such mitochondrial dysfunction in

KICH may be via transcriptional mechanisms, rather than changes to mtDNA ploidy.

Patterns of nuOXPHOS and mtOXPHOS gene expression are not
redundant
The mitochondrial genome encodes 13 polypeptides which serve as integral membrane subunits for

3 components of the electron transport chain and ATP synthase (herein referred to as mtOXPHOS

proteins). The remaining ~ 80 OXPHOS subunits are encoded in the nuclear genome (herein referred

to as nuOXPHOS proteins) (Calvo and Mootha, 2010). The protein levels of these subunits must be

coordinated in order to maintain proper stoichoimetry of OXPHOS complexes (Cancer Genome

Atlas Research Network et al., 2013). Intriguingly, a study of the coordination of mtOXPHOS and

nuOXPHOS protein levels in S. cerevisae found that the primary mode of regulation was through

rapid translational, rather than transcriptional, synchronization (Couvillion et al., 2016). This leaves

open the possibility that patterns of transcriptional changes in mtOXPHOS and nuOXPHOS may be

asynchronous or even opposite.

To see if the nuclear and mitochondrial genome experience analogous changes in respiratory

gene expression in the course of tumorigenesis, we examined the differential expression of

Figure 4 continued

statistically significant correlation (Spearman, BH-adjusted p-value <0.05). Double asterisk indicates an especially strong correlation (BH-adjusted

p-value <10�5).

DOI: 10.7554/eLife.21592.008

The following figure supplements are available for figure 4:

Figure supplement 1. Correlation between mtDNA copy number and mtRNA expression is highly dependent on cancer type, as well as on mtRNA

gene.

DOI: 10.7554/eLife.21592.009

Figure supplement 2. Correlation of RPPA with (A) mtDNA copy number (Spearman � 0.18, p-value 0.003) and (b) MT-CO2 RNA expression (Spearman

�0.38, p-value <10�14) in KIRC.

DOI: 10.7554/eLife.21592.010

Figure supplement 3. Correlation of mtDNA copy number and mtRNA expression in KICH.

DOI: 10.7554/eLife.21592.011
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mtOXPHOS and nuOXPHOS subunits for all 13 cancer types with available expression data for both

tumor and normal tissues (Figure 5). We calculated a differential expression (DE) score for each can-

cer type, which captured the tendency for a set of genes to be down-regulated (corresponding to a

score of �1) or up-regulated (a score of +1) in tumors compared to normal tissue. In 9/13 cancer

types, we observed agreement in DE scores between mtOXPHOS and nuOXPHOS subunits (e.g. see

volcano plot of KIRC in (Figure 5). More interestingly, we found that four cancer types (BLCA, BRCA,

LUAD, and UCEC) have opposite patterns of differential expression in mtOXPHOS and nuOXPHOS

genes. For example, in BRCA, while nearly all mtOXPHOS genes are down-regulated in tumors com-

pared to normal tissue (mirroring the mtDNA copy number depletion in BRCA), nearly all nuOX-

PHOS genes actually had increased mRNA levels.

For a functional electron transport chain, subunits of each OXPHOS complex must assemble with

compatible stoichiometries in a process that requires coordination of individual subunit protein lev-

els (Mouchiroud et al., 2013). Taken together, the above findings speak to the potential shortcom-

ings of transcriptional data as surrogates for OXPHOS protein abundance and respiratory activity.

As mentioned above, several recent studies have reported on the critical role of translational pro-

cesses in the coordination of respiration. One report by Wagner, Kitami, and colleagues found that

treatment of differentiated C2C12 murine myotubes with certain drugs (including eukaryotic transla-

tion inhibitors) induced anti-correlated changes in nuOXPHOS and mtOXPHOS genes, respectively

(Wagner et al., 2008). Separately, Couvillion and colleagues reported that the sudden shift of S. cer-

evisae to a non-fermentable carbon source led to rapid induction of transcriptional changes in nuOX-

PHOS, but not mtOXPHOS. Instead, rapid redistribution of mitochondrial ribosomes supported fast

adapation to respiration (e.g. via an increase in translation efficiency of Complexes III and IV).

Together, these two studies suggest that the examination of translational activity (e.g. by ribosome

profiling) may be useful tools for examining an imbalance in mtOXPHOS and nuOXPHOS

transcription.

Questions and future directions
The purpose of this study was to compare cancer-associated changes in mitochondrial transcript lev-

els with changes in mtDNA copy number as reported in Reznik et al. (2016). An equally important

goal, for all scientific studies but perhaps more so for ‘replication’ studies of the sort here, is to lay

out the loose ends and unanswered questions, and to make explicit those findings which did not

agree with prior results. Below we offer a reflection on our findings, which may steer future investi-

gations towards interesting territory for future discovery.

In tandem with our prior study (Reznik et al., 2016), this work finds that several tumor types sup-

press the expression of genes involved in oxidative phosphorylation/respiration. Five cancer types

(kidney clear cell, kidney papillary, head and neck squamous cell, liver, and esophageal) were

mtDNA-depleted, under-expressed mtRNAs, and under-expressed nuOXPHOS genes, in compari-

son to normal tissue. Importantly, because cells harbor excess respiratory capacity, a drop in the

protein expression of mtDNA-encoded OXPHOS subunits will not necessarily precipitate a drop in

respiration unless it is sufficiently large. Experimental measurements, e.g. respirometry or measure-

ments of flux will be necessary to determine if drops in mtRNA expression translate to a drop in oxy-

gen consumption/respiration (Brand and Nicholls, 2011). A reasonable subset of cancer types to

initially investigate for such experiments would be the five listed above to suppress OXPHOS gene

expression.

While changes in mtDNA copy number and mtRNA expression cannot be used as surrogates for

changes in respiratory flux, several of the cancer types examined here are driven by genetic changes

affecting mitochondrial respiration, suggesting that changes in mtRNA levels may reflect bona fide

changes in respiration. For example, clear-cell renal cell carcinomas are driven by homozygous loss

of VHL, which leads to activation of hypoxia inducible factor (HIF), and subsequently increased tran-

scription of glycolytic enzymes (Creighton et al., 2013). The signature of HIF activation is evident

not only in gene expression data, but also in metabolomic measurements of KIRC tumors

(Hakimi et al., 2016), and suggests that KIRC tumors experience a drop in respiration. In particular,

KIRC tumors exhibit increased levels (compared to normal tissue) of metabolites upstream of SDH

(succinate dehydrogenase, Complex II), i.e. citrate, cis-aconitate, and succinate, and decreased levels

of metabolites downstream of SDH (fumarate and malate). This partitioning of changes in metabolite

levels could arise by a decrease in the activity of the electron transport chain and SDH, which would
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induce a metabolic bottleneck and the accumulation (depletion) of metabolites upstream (down-

stream) of SDH.

Furthermore, while our data suggests that several cancer types may decrease mitochondrial respi-

ration, mitochondrial metabolism provides several other important services to the cell. In some

cases, respiration may be critical to these processes; for example, aspartate biosynthesis is heavily

reliant on electron acceptors produced by mitochondrial respiration, and respiration-deficient cells

become limited by the availability of aspartate (Birsoy et al., 2015). Beyond the ETC, cytosolic ace-

tyl-CoA utilized for lipogenesis is produced from the action of ATP-citrate lyase on mitochondrial cit-

rate, and substantial evidence supports the critical role of mitochondrial metabolism in producing

adequate one-carbon precursors for nucleotide biosynthesis (Ahn and Metallo, 2015). Finally, it

should be noted that xenografted �
0 (depleted of mtDNA) breast cancer cells form tumors only after

re-acquiring mtDNA from the host, emphasizing that some basal level of mitochondrial respiration is

likely required for tumor viability and malignancy (Tan et al., 2015).

When comparing the differential expression of mtRNA (tumor vs. adjacent-normal tissue) to

changes in mtDNA copy number (tumor vs. adjacent-normal tissue), we found two cancer types

(LUAD and KICH) had opposite changes in the two measures. To highlight a single example, lung

adenocarcinomas were the only cancer type to accumulate mtDNA copies compared to normal tis-

sue. Using mtRNA data, however, these tumors had lower mtRNA levels of 6/13 MT genes. We can

speculate as to the source of this inconsistency: it may be that our inference from sequencing data

of mtDNA copy number or mtRNA expression was erroneous for these tumor types. While this is a

possibility, we would remind readers that the same analytical pipeline was applied to all cancer

types, the majority of which had features consistent with our expectations, e.g. correlation of whole-

exome and whole-genome estimates of mtDNA copy number in Reznik et al. (2016), correlation of

mtDNA copy number with expression of mitochondrially-localized genes in Reznik et al. (2016),

consistency of changes in mtDNA copy number and mtRNA expression across most cancer types in

Figure 2 of this study. Alternatively, if one takes our calculations to be reasonably accurate estimates

of mtDNA and mtRNA abundance, then the unexpected results become more intriguing. Regarding

the inconsistency between mtDNA ploidy and mtRNA abundance described above, it is known that

a number of proteins regulate mtDNA transcription, including transcription factors (TFAM,TFB1M),

transcriptional termination factors (MTERFs), as well as mitochondrial biogenesis in general (NRF-1

and NRF-2, PGC1a,ERRa) (Scarpulla, 2008; Rorbach and Minczuk, 2012). A more detailed investi-

gation of these proteins may reveal the factors driving inconsistency between changes in mtDNA

copy number and mtRNA.

The coordinated expression of mtDNA- and nuDNA-encoded subunits of the respiratory chain is

critical to efficient respiration. Prior studies of mitochondrial-nuclear (mitonuclear) protein imbalance

in C. elegans claimed that it promotes longevity via activation of the mitochondrial unfolded protein

response (UPRMT), a transcriptional response preserving mitochondrial function in the face of stress

(Cancer Genome Atlas Research Network et al., 2013). Intriguingly, two recent studies reported

activation of the UPRMT counterintuitively promoted tolerance of mutant mtDNA levels by activating

mitochondrial biogenesis in an effort to recover OXPHOS activity (Lin et al., 2016; Gitschlag et al.,

2016). If cancer cells indeed have substantial changes in mtDNA copy number and transcription

(and mtDNA mutations), then activation of the mammalian UPRMT may be critical in supporting their

proliferation in the face of increased mitochondrial stress.

Several of our findings discussed above allude to intriguing tissue-specific patterns of variation in

mtDNA and mtRNA. Both the accumulation/depletion of mitochondrial

transcripts (Figure 2,4,5) and their association with mtDNA ploidy were highly dependent on the

cancer type. It is well-appreciated that the physiology and molecular constitution (Fernández-

Vizarra et al., 2011; Calvo and Mootha, 2010) of mitochondria varies substantially from one tissue

to the next. Can some of the unexpected phenomena described here (e.g. inconsistent changes in

mtDNA copy number and mtRNA expression, decoupling of nuOXPHOS and mtOXPHOS) be

explained by the tissue-specific physiology of mitochondria? We expect that, in the pursuit of such

questions, tools for profiling the morphologic and proteomic composition of mitochondria, in paral-

lel with organelle-targeted transcriptomics and genomics, will yield valuable insights.
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Materials and methods

RNA sequencing alignment, quantification, and quality control
The input of our analysis pipeline is raw sequencing reads (in FASTQ format). The raw reads of the

RNA-seq samples were retrieved from the Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu,

Research Resource Identifier RRID:SCR_003193). When FASTQ files were not available, e.g. for

stomach adenocarcinoma, we downloaded aligned sequence reads (in BAM format) and extracted

reads from BAM files with the Java program ubu.jar (https://github.com/mozack/ubu) before
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Figure 5. Comparison of differential expression (tumor vs. adjacent-normal tissue) of mtDNA-encoded OXPHOS subunits (mtOXPHOS) and nuclear-

DNA-encoded OXPHOS subunits (nuOXPHOS). (A) Differential expression scores for mtOXPHOS and nuOXPHOS across cancers. Red dashed boxes

highlight cancer types with opposite trends in mtOXPHOS and nuOXPHOS differential expression. (B) Volcano plots highlighting differential expression

of mtOXPHOS (red) and nuOXPHOS (blue) genes in BRCA and KIRC.
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processing samples using our pipeline. All acronyms for cancer types conform to the TCGA nomen-

clature (ACC: adrenocortical; BRCA:breast; BLCA: bladder; COAD: colon; ESCA: esophageal; GBM:

glioblastoma; HNSC: head and neck squamous cell; KICH: kidney chromophobe; KIRC: kidney clear

cell; KIRP: kidney papillary; LGG: low grade glioma; LIHC: liver, LUAD:lung adenocarcinoma; PAAD:

pancreatic; PRAD: prostate; STAD: stomach; THCA: thyroid; UCEC: endometrial). Sample sizes for

each cancer type are reported in Supplementary file 1.

We employed STAR aligner (Dobin et al., 2013), a fast accurate alignment software used widely

in the NGS community, to map reads to UCSC human reference genome hg19 and reference tran-

scriptome GENCODE (v19), using recommended parameters, e.g. ’–outFilterType BySJout’ and ’–

outFilterMultimapNmax 20’, etc., which are also standard options of the ENCODE project for long

RNA-seq pipeline. Samples with alignment rates less than 40% were excluded from further analysis.

The software tools RseQC (Wang et al., 2012) and mRIN (Feng et al., 2015) were used to evalu-

ate sample quality. RNA degradation, as detected by mRIN (Feng et al., 2015), was present in

some TCGA samples. Since degradation can bias expression level measurements and cause data

misinterpretation, we excluded samples with evidence for degradation. Specifically, we used pros-

tate cancer samples from the TCGA project as test data to decide on a degradation cutoff for mRIN.

TCGA prostate samples had undergone extensive pathological, analytical, and quality control review

and had been shown to include a significant portion of degraded samples (Clemente et al., 2015).

We compared mRIN scores with RNA Integrity Numbers (RIN) calculated by TCGA for prostate sam-

ples and found they are highly negatively correlated (Pearson correlation <�0.93). To filter degraded

samples, TCGA used a cutoff 7.0 for RIN, which corresponds roughly to �0.11 for mRIN. We also

manually examined other tumor types including bladder urothelial carcinoma and breast invasive car-

cinoma and a mRIN cutoff �0.11 worked reasonably well for these studies as well. Hence, we used

�0.11 as the degradation threshold for mRIN throughout our study. Samples with mRIN <�0.11

were regarded as degraded and, thus, excluded from further analysis.

When running STAR, we specified an option ’–quantMode TranscriptomeSAM’ to make STAR

output a file, Aligned.toTranscriptome.out.bam, which contains alignments translated into transcript

coordinates. This file was then used with RSEM (Li and Dewey, 2011) to quantify mitochondrial

gene expression. The program ’rsem-calculate-expression’ in the RSEM package requires strand

specificity of the data, which is estimated using software RseQC (Wang et al., 2012).

To ensure that reads aligning to the mtDNA are not derived from NUMTs/mitochondrial pseudo-

genes in the nuclear DNA, we implemented two quality control measures. First, we examined the

expression (using RSEM, which handles multi-mapping reads, see next paragraph) of 175 regions

annotated as mtDNA pseudogenes in GENCODE v19. While these genes are a subsample of the

total number of NUMTs in the genome (on the order of 1000 [Dayama et al., 2014]), they are never-

theless useful for roughly estimating the genome-wide expression of NUMTs. Across all studies, we

failed to see substantial expression of NUMT transcripts. In general across all cancer types, the vast

majority of samples showed 100- to 1000-folder greater expression of bona fide mtDNA-encoded

genes than expression of mitochondrial pseudogenes (Figure 1—figure supplement 1).

As a second quality control measure, we compared estimates of expression counts produced

from two computational approaches, RSEM and featureCounts. These methods differ fundamentally

in the way that they count reads mapping to multiple regions in the genome (multi-mapping reads).

RSEM handles multi-mapping reads using an expectation-maximization procedure, while feature-

Counts by default simply discards multi-mapping reads. Thus, if a read maps ambiguously to both

mtDNA and a NUMT, then featureCounts will ignore this read while RSEM will not. For all 13

mtDNA-encoded mRNAs, we compared (1) the total expression (in counts) as reported by RSEM

and featureCounts (Figure 1—figure supplement 2A) and (2) the tumor vs. normal differential

expression estimate (Figure 1—figure supplement 2B). With the exception of a single study, we

found excellent agreement between RSEM and featureCounts by both measures. In the PRAD study,

we noted that the two approaches produced different results for differential expression of MT

genes, and we therefore removed PRAD from our differential expression analysis. These data sup-

port the hypothesis, as reported by in prior work by others (Dayama et al., 2014; Collura et al.,

1996), that NUMT expression is negligibly low and does not confound estimates of true mtDNA

expression.

Reznik et al. eLife 2017;6:e21592. DOI: 10.7554/eLife.21592 12 of 16

Research advance Cancer Biology Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.21592


Differential expression analysis
Differential expression analysis was completed using the limma voom package (Law et al., 2014).

TMM normalization was applied to counts before running differential expression analysis. Estimates

of differential expression were compared against analogous estimates using publicly available data

from the Broad Institute’s TCGA Firehose using the RTCGAToolbox R package (Samur, 2014), with

excellent agreement between the two (data not shown). Cancer types with fewer than five adjacent-

normal tissue samples profiled by RNA-Seq were discarded. As mentioned in the above section, the

TCGA cancer type PRAD was removed from differential expression analysis due to differences when

comparing results for mtDNA differential expression from RSEM and featureCounts.

Differential expression score is defined as

DE¼

# of Genes Overexpressed in Gene Set�# of Genes Underexpressed in Gene Set

# of Genes in Gene Set
(1)

A score of 1 indicates that all genes in the gene set are overexpressed in tumor compared to nor-

mal tissue, while a score of �1 indicates that all genes in the gene set are underexpressed.

Genes included in the nuDNA OXPHOS geneset were derived from the MSigDB Reactome gene-

set file (Liberzon et al., 2015).

mtDNA copy number analysis
All data for mtDNA copy number analysis was derived from Supplementary file 1 of (Reznik et al.,

2016).

Clinical association analysis
All data for clinical analysis was downloaded from the Broad Firehose. For survival calculations, Cox

regression was used to associate log2 TPM expression of each mtRNA with overall survival. For asso-

ciation with pathological stage or age, non-parametric Spearman correlations were calculated. For

each clinical variable, association was calculated with each of the 13 mtDNA-encoded mRNAs. Then,

p-values for the associations were corrected using the Benjamini-Hochberg procedure, and then

combined using Fisher’s method. Because Fisher’s method assumes independent p-values (which is

not the case in this analysis, as mtRNAs are transcribed polycistronically), we additionally report in

Figure 3 the number of mtRNAs significantly associated (BH-adjusted p-value<0.05) with the clinical

variable under examination.
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