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Abstract Mammalian cortex is a laminar structure, with each layer composed of a characteristic

set of cell types with different morphological, electrophysiological, and connectional properties.

Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of

neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for

Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a

large number of layer-specific accessible sites, and significant association with genes that are

expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic

profiles and transcription factor binding motifs enabled us to construct a regulatory network

revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb.

This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in

adult mouse cortex.

DOI: 10.7554/eLife.21883.001

Introduction
Many complex functions carried out by mammalian brains arise through the concerted efforts of dif-

ferent cell types in the neocortex. The cortex is organized during development into a laminar struc-

ture, with each layer composed of a distinct set of cell types with different morphological,

electrophysiological, and connectional properties. These diverse cellular phenotypes are established

and maintained by complex interactions of sequence-specific transcription factors (TFs), and they are

reinforced by chromatin modifiers. Defining cell-type specific chromatin signatures will provide an

understanding of the regulatory landscapes that influence transcription, as well as identification of

putative cell type-specific cis-regulatory elements. Most variation associated with phenotypic differ-

ences in humans identified through genome-wide association studies is located in non-coding

regions of the genome (Albert and Kruglyak, 2015; Tak and Farnham, 2015). However, the exact

function of these polymorphisms and the cell types that they affect is established only in a minority

of cases (Soldner et al., 2016). Assigning regulatory elements to cell types provides insight into

their potential function (Corces et al., 2016). In addition, specific regulatory elements could be used

to build cell-type specific genetic tools similar to those created by careful selection of well-studied

regulatory regions near genes (Bou-Gharios et al., 1996; Pinkert et al., 1987) or by large genomic

screens (Shima et al., 2016).

Until recently, two major hurdles have restricted access to epigenetic landscapes of specific pri-

mary cell types: selective access to those types, and the large numbers of cells required as an input

for epigenomic characterization using ChIP-seq, DNAse-seq, or FAIRE-seq. Recent development of

a number of Cre-recombinase transgenic lines allowed access to specific cortical cell types

(Harris et al., 2014), and has enabled transcriptomic characterization and classification of cells from

the visual cortex using single-cell RNA-seq (scRNA-seq) (Tasic et al., 2016). Though these transgenic
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lines have differing degrees of cell type heterogeneity, they provide a platform for accessing popula-

tions of related cell types from different layers of the cortex. New techniques, including ATAC-seq

(Buenrostro et al., 2013) and THS-seq (Sos et al., 2016), enable measurement of chromatin accessi-

bility from a few hundred or even single cells (Buenrostro et al., 2015; Corces et al., 2016;

Cusanovich et al., 2015; Lara-Astiaso et al., 2014).

Recent studies have started to probe the correspondence between transcription and epigenetics

in cortical cell types labelled by the expression of somatostatin (Sst), parvalbumin (Pvalb), and cal-

cium/calmodulin-dependent protein kinase II alpha (Camk2a) from whole mouse cortex (Mo et al.,

2015), rod and cone photoreceptor cells in retina (Mo et al., 2016), and in the developing and adult

cerebellum (Frank et al., 2015). These studies have profiled the chromatin accessibility landscapes

of broad cell classes, but did not examine layer-specific differences in the neocortex. Here, we take

advantage of pan-GABAergic and layer-specific glutamatergic Cre-driver lines, low-input ATAC-seq,

and fluorescence-activated cell sorting (FACS) to investigate chromatin accessibility landscapes in a

specific cortical region, the adult mouse visual cortex (VISp).

Each layer of VISp contains distinct populations of glutamatergic cells with different transcrip-

tional, functional, and connectional properties: layer 4 cells are the primary recipients of the visual

signals from the dorsal portion of the lateral geniculate nucleus (LGd); layer 2/3 cells receive signals

from L4, and communicate with L5 cells within the same cortical region and other cortical regions;

layer 5 cells are highly diverse, and include cells that project to many other cortical and subcortical

regions; and the layer 6 cells we examine in this study project to the thalamus (Bortone et al., 2014;

Sorensen et al., 2015). Thus, within even a small region of the cortex, there is great diversity of cell

types, each of which carries out a distinct transcriptional program (Tasic et al., 2016). However, the

regulatory programs that produce these different transcriptional and cellular phenotypes are not

known. In order to define potential regulatory elements and corresponding transcriptional regula-

tors, we examined chromatin landscapes of these cell classes.

We found broad differences between GABAergic and glutamatergic cell types, as well as layer-

specific differential chromatin accessibility in glutamatergic cell types that correlated with differential

gene expression. Putative regulatory elements were identified through TF motif searches and com-

parisons to existing ChIP-seq datasets for each cell class. With these components, we built a putative

regulatory network of TF binding sites near layer-specific TF genes that may govern layer-specific

transcriptomic states. This network suggests that Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb are key reg-

ulators for the maintenance of molecular identity of deep layer and upper-layer cortical cells.

Results

Layer-specific chromatin accessibility profiling by ATAC-seq
To access layer-specific glutamatergic cells in the mouse visual cortex, we used four previously char-

acterized Cre lines crossed to the Ai14 reporter line (Madisen et al., 2010), which expresses tdTo-

mato (tdT) after Cre-mediated recombination (Figure 1A,B). Although these lines mostly label cells

in specific cortical layers, we note that each contains at least two closely related cell types based on

scRNA-seq (Figure 1C, Tasic et al., 2016). As a control, we profiled GABAergic cell types using

Gad2-IRES-Cre. Because each of these Cre line-derived populations contains more than one tran-

scriptomic cell type (Tasic et al., 2016), we will refer to these populations as cell classes. We tried to

minimize other potential sources of heterogeneity that may be caused by age, sex, or cortical region

by restricting our analysis to eight week-old male mice, and cells microdissected only from the visual

cortex (Figure 1A). After protease treatment and trituration, cells were isolated by FACS (Materials

and methods). We collected triplicates of 500 cell populations from each Cre line and from at least

two mice per line.

The low-input assay for transposase-accessible chromatin (ATAC) was adapted from a previous

study (Lara-Astiaso et al., 2014) (Materials and methods). As a control for the ATAC-seq assay, we

profiled chromatin accesibility landscapes of 500-cell populations of mouse ES (mES) cells. Low-

depth sequencing was performed to identify libraries that have high read diversity within mouse

genome-aligned reads, indicating that the library did not consist of many PCR duplicates, as well as

a characteristic fragment size pattern that demonstrates protection of DNA by nucleosomes. High-

quality libraries were then sequenced using Illumina HiSeq or MiSeq (min: 13.2 M, median: 83 M,
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Figure 1. Overview of 500 cell ATAC-seq. (a) Mouse visual cortex was isolated from transgenic mice by brain sectioning and microdissection, and

dissociated into single-cell suspension. 500 fluorescently labeled cells were isolated from the suspension by FACS, tagmented by Tn5, indexed

and amplified by PCR, and sequenced on an Illumina platform. (b) Chromogenic RNA in situ hybridization (ISH) for tdTomato mRNA in Cre lines used

for this study. Scale bar below Layer 6 applies to all panels. (c) Cell-type specificity of the glutamatergic Cre lines based on scRNA-seq profiling. Each

Cre line labels at least two related transcriptomic types, with minimal overlap between Cre lines. Disc sizes are scaled by area to represent the percent

of cells from each Cre line that were identified as each transcriptomic cell type. (d) Insert size frequency of ATAC-seq fragments from primary neurons

reveals protection of DNA by individual nucleosomes and nucleosome multimers that is absent from purified genomic DNA sample (black line).

DOI: 10.7554/eLife.21883.002

The following source data and figure supplement are available for figure 1:

Source data 1. Cre-line cell type composition table, as plotted in Figure 1C.

DOI: 10.7554/eLife.21883.003

Source data 2. Fragment size frequencies for single replicates of each cell class.

DOI: 10.7554/eLife.21883.004

Figure supplement 1. Quality control plots for ATAC-seq libraries.

DOI: 10.7554/eLife.21883.005
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max: 241 M, Supplementary file 1A), yielding >3 million unique, unambiguous fragments per repli-

cate (min: 3.29 M, median: 6.9 M, max: 16.1 M, Supplementary file 1A). Each sample showed frag-

ment size patterns characteristic of open chromatin and mono-, di-, and tri-nucleosomal fragments

(Figure 1D, Figure 1—figure supplement 1), as well as a clear accessibility footprint around motifs

for the ubiquitously-expressed transcription factor ATF2 throughout the genome (Figure 1—figure

supplement 1). In comparison, data obtained from Tn5 tagmentation of purified genomic DNA from

500 mES cells do not display these characteristic signatures (Figure 1D, Figure 1—figure supple-

ment 1).

We next identified accessible sites throughout the genome (Supplementary file 1B, Materials

and methods), and then assigned each ATAC-seq peak to the nearest gene based on annotated

transcription start sites (TSS). We call these peaks positionally associated with the nearby gene. This

simple peak-gene association rule based on the gene nearest to the peak may not be accurate in all

cases. Chromatin assumes cell-type specific conformation in the nucleus that may bring elements

that are distant in linear DNA sequence or even on separate chromosomes together in space

(Dekker et al., 2013). Therefore, our approach may misassign some peaks to genes that are closest

to them based on the linear sequence of the genome. To assess if there are common patterns of

peak positioning relative to TSS, we analyzed the distribution of ATAC-seq peak positions relative to

genome-wide transcription start site (TSS) annotations (Figure 2A, Figure 2—figure supplement 1).

The distribution of accessible sites revealed six peak populations: distal upstream (> 2 kb upstream

of TSS; abbreviated �3), upstream (< 2 kb upstream, > 200 bp upstream; �2), proximal upstream

(< 200 bp from TSS; �1), proximal downstream (< 200 bp; +1), downstream (200 bp to 2 kb; +2),

and distal downstream (> 2 kb; +3). We found very similar distributions of peak locations in different

cell classes, and found our distribution to be very similar to the one derived from previously pub-

lished neuronal ATAC-seq data (Camk2a-Cre, [Mo et al., 2015]), Figure 2A, Figure 2—figure sup-

plement 1). In addition, this comparison shows that our data, derived from 500 cells per sample,

compare well with ATAC-seq data obtained from more than 1 million Camk2a-Cre-labeled nuclei

per sample (Mo et al., 2015).

To assign putative function to ATAC-seq peaks, we compared our peak locations to the locations

of histone modifications defined by ChIP-seq on Camk2a-Cre-labeled glutamatergic cells from the

same study (Mo et al., 2015). In this study, four histone modifications were used to define pro-

moters (H3K4me3), enhancers (H3K4me1 and H3K27ac), and polycomb-repressed chromatin

(H3K27me3; Figure 2B). We found that most proximal peaks overlapped with promoter marks in all

cell classes including mES cells, suggesting that these are indeed promoters, and that promoter

accessibility is frequently not cell class-specific. In contrast, distal peaks had stronger class-specific

biases, as distal glutamatergic peaks more frequently overlapped with enhancer marks than distal

peaks from interneuron cell classes (Mo et al., 2015). This observation is in agreement with the

specificity of Camk2a-Cre, which broadly labels pyramidal cells in the adult cortex (Mo et al., 2015;

Tsien et al., 1996). ATAC-seq peaks from GABAergic and mES cells more frequently overlapped

with polycomb-repressed regions from Camk2a-Cre-labeled glutamatergic cells. In summary, these

results suggest that enhancer accessibility corresponds to specific cell classes, whereas many pro-

moters may have similar accessibility across all classes.

Chromatin accessibility is correlated with cell class-specific transcription
We performed hierarchical clustering of ATAC-seq peak data to define overall similarities in chroma-

tin accesibility landscapes among our Cre-driver defined cell classes. ATAC-seq peak sets obtained

from replicates of each cell class were most strongly correlated with each other (Figure 3A, Materi-

als and methods). In addition, peak sets from these cell classes clustered according to previous tran-

scriptomic findings (Tasic et al., 2016): GABAergic cells differed strongly from glutamatergic cell

classes, and layer six was most distinct among glutamatergic cell classes (Figure 3A).

When clustering was performed separately on TSS-proximal and TSS-distal peaks, we found that dis-

tal sites more cleanly delineated cell classes (Figure 3—figure supplement 1), as has been shown

previously for hematopoeietic cell types (Corces et al., 2016). We identified differentially accessible

peaks from each pairwise comparison between cell classes (Supplementary file 1C). Hierarchical

clustering of these peaks showed diverse combinatorial accessibility patterns between different neu-

ronal classes (Figure 3B, Figure 3—figure supplement 2), and examination of accessibility near

known marker genes corresponded with expected class-specific chromatin state (Figure 3C).
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To place our data within the context of previously published datasets, we compared our peak

sets to DNase I hypersensitivity (DHS) peaks from 14 tissues and ES cells in the Mouse ENCODE

database (Yue et al., 2014). We found that our neuron-derived data clustered with ‘Whole Brain’

and ‘Telencephalon’ datasets, while our mES cell data clustered with ‘ES-E14’ datasets (Yue et al.,

2014, Figure 3—figure supplement 3). We also compared our data to ENCODE Whole Brain DHS

data and to the cortical ATAC-seq data from glutamatergic (Camk2a-Cre) and GABAergic (Pvalb-

IRES-Cre and Vip-IRES-Cre) cells (Mo et al., 2015, Figure 3—figure supplement 4). Again, our data

clustered as expected: our GABAergic datasets clustered with GABAergic whole cortex data,

whereas our glutamatergic datasets clustered with the previously-published Camk2a–Cre datasets

(Figure 3—figure supplement 4). We also find that a high fraction of our reads fall within HotSpot

peaks (Figure 3—figure supplements 5; 18–32%; similar to 24-37% for the previously published cor-

tical ATAC-seq data).

Previous ATAC-seq and transcriptomic studies of neural tissue have shown that differential chro-

matin accessibility corresponds to differential gene expression (Mo et al., 2016, 2015). We have

previously catalogued the transcriptomic types of cells in VISp by scRNA-seq, including cells from

Cre lines used in this study (Tasic et al., 2016). To examine the correspondence between chromatin

accessibility and gene expression, we assessed the correlation between differentially accessible

peaks and differentially expressed genes for each pair of Cre lines (Figure 4A). For example, in the

comparison between GABAergic and L2/3 cells, we selected all genes that were differentially
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Figure 2. Peak locations relative to TSS and histone modifications. (a) Histogram of peak positions relative to the nearest TSS location. Distance to

nearest TSS was used to group peaks into three upstream categories (�3, –2, and �1) and three downstream categories (+1, +2, and +3). (b)

Fractions of ATAC-seq peaks in each distance category that overlap ChIP-seq peaks derived from Camk2a-Cre neurons show similar patterns of

enrichment in excitatory types (Camk2a and L2/3), but reduced enhancer overlaps and increased polycomb-repressed region overlaps in mES and

GABAergic cells. *, Camk2a data were from a previous study (Mo et al., 2015).

DOI: 10.7554/eLife.21883.006

The following source data and figure supplement are available for figure 2:

Source data 1. Distributions of peak locations relative to TSS, used for Figure 2A.

DOI: 10.7554/eLife.21883.007

Source data 2. Histone modification frequencies for peaks by cell class and distance bin, used for Figure 2B.

DOI: 10.7554/eLife.21883.008

Figure supplement 1. Comparisons of ATAC-seq peaks to TSS locations and Camk2a-Cre-derived histone ChIP-seq data.

DOI: 10.7554/eLife.21883.009
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DOI: 10.7554/eLife.21883.010

The following figure supplements are available for figure 3:

Figure supplement 1. Hierarchical clustering of samples based on TSS-proximal or TSS-distal HotSpot results.

DOI: 10.7554/eLife.21883.011

Figure supplement 2. Intersections among peak sets derived from different cell classes.

DOI: 10.7554/eLife.21883.012

Figure supplement 3. Correlation of HotSpot peak sets from this study and ENCODE tissue DNase-seq.

Figure 3 continued on next page
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expressed between this pair of cell classes, then separated this gene set into those with higher

expression in GABAergic cells, and those with higher expression in L2/3. We then surveyed the

accessibility scores of all peaks that were positionally associated with these two gene sets in both

GABAergic and L2/3 cells (box plots, Figure 4A). We found that overall peak accessibility corre-

sponded to differential gene expression (Figure 4A): 83–94% of differentially accessible peaks,

which were associated with differentially expressed genes, were positively correlated with gene

expression (Figure 4—figure supplement 1).

The general pattern of higher chromatin accessibility corresponding to higher gene expression

holds true for individual marker genes that distinguished transcriptomic cell classes. For example,

genes that are more highly expressed in GABAergic cells than in L4 cells, including Gad1, Slc6a1,

and Dlx5, display prominent peaks of chromatin accessibility in GABAergic cells and not in L4 cells.

Likewise, Slc17a7, Bdnf, and Nrn1, which are more highly expressed in L4 than in GABAergic cells,

are associated with more accessible chromatin peaks specifically in L4 cells (Figure 4B). Similarly, we

find regions near differentially expressed genes that are associated with layer-specific gene expres-

sion, such as Calb1, Pou3f2, and Rorb, which are expressed in L4, and Bcl11b, Nfia, and Nos1ap,

which are expressed in L6 (Figure 4C). In a minority of the cases, we also detect strongly differen-

tially-accessible sites that are anti-correlated with gene expression. Such is the case for Hkdc1, which

is more highly expressed in L4, but the highlighted peak in Figure 4C is significantly more accessible

in L6 cells. These sites are potentially associated with binding of transcriptional repressors, as has

been shown for NRSF/REST (Thurman et al., 2012). Alternatively, these peaks may be misassigned

due to the nearest-TSS peak-gene association rule used in our analysis. We find that negatively cor-

related peaks make up 6–13% of the differentially accessible peaks that are associated with differen-

tially accessible genes (Figure 4—figure supplement 1).

Layer-specific transcription factor motifs are enriched in ATAC-seq peak
clusters
We identified modules of peaks with shared patterns of accessibility across the four glutamatergic

cell classes using K-means clustering of differentially accessible peaks and differentially expressed

genes (Figure 5A). Briefly, we first clustered peaks and genes separately, then selected common

patterns to generate a merged set of binary cluster centers that were used to build modules of com-

mon accessibility and gene expression (Materials and methods, Figure 5—figure supplement 1,

Supplementary file 1C). We found modules that are specific to each layer, but also sets of layers:

Upper+, L2/3 and L4; Lower+, L5 and L6; L4-absent; and L6�absent.

After building peak and gene modules, we tested if the peak locations in each module were sta-

tistically significantly associated with genes in gene expression modules. We found that each peak

module contained a significantly higher number of peaks positionally associated with gene modules

with similar patterns of layer specificity (along the diagonal of Figure 5B, Figure 5—figure supple-

ment 2). We also found associations between peak modules and gene modules that had similar but

non-identical patterns. For example, the Lower+ peak module was significantly associated with

genes that are highly expressed only in L6 (Figure 5B).

We next looked for TFs that may be responsible for layer-specific transcription by searching for

differentially-enriched motifs between our peak modules using Analysis of Motif Enrichment (AME,

Figure 6A). For this analysis, we relied on a JASPAR TF motif database (Materials and methods),

and thus our motif searches carry the biases of database-driven TF motif search analyses – databases

may be incomplete, and depend on previous studies. Despite this caveat, we were able to distin-

guish many differentially enriched motifs by comparing each of the peak accessibility modules to

peak modules with dissimilar patterns of accessibility. For example, peaks in the L2/3+ module were

Figure 3 continued

DOI: 10.7554/eLife.21883.013

Figure supplement 4. Correlation of brain-derived DNase-seq and ATAC-seq datasets.

DOI: 10.7554/eLife.21883.014

Figure supplement 5. Fraction of Reads in Peaks.

DOI: 10.7554/eLife.21883.015
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Figure 4. Chromatin accessibility corresponds to cell class-specific transcription. (a) For each pair of cell classes, we identified differentially

expressed genes (adjusted p-value < 0.05 and fold change > 2), then separated genes into two groups based on the class with higher expression. We

then asked if the peaks that are positionally associated with each group of genes had higher accessibility in the class with higher gene expression. For

each peak set, box plots show the median accessibility (black bar), quartiles (boxes), 1.5 � interquartile range (whiskers), and outliers (points). The

two distributions of peak accessibility scores for each gene set were compared using a Mann-Whitney U test (MW test). Adjusted p-values are displayed

using heatmap boxes above each gene set. (b, c) Two example volcano plots for pairwise comparisons between GABAergic and L4 cells (b) and L4 and

L6 cells (c) showing all peaks associated with differentially-expressed genes (adjusted p-value < 1�10–6) . Peaks associated with select marker genes are

labeled, and the corresponding average gene expression for these genes from single-cell RNA-seq data for each cell class is shown below. *, Hkdc1-

associated peak is more accessible in L6 cell class, although expression of Hkdc1 is greater in L4 class.
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contrasted with peaks from L4+, L5+, L6+ and Lower+ modules, but not Upper+, L4�, or L6�,

which include many peaks that show high accessibility in L2/3 (Materials and methods, Figure 6—fig-

ure supplement 1). This analysis yielded a set of enriched TF binding site motif families that we

used for downstream analysis: CUX, DLX, EGR1, FOS, FOXP, MEF2, MEIS, NEUROD, NFIA, POU3F,

RFX3, RORB, and TBR1. For each module, we were able to identify at least one significantly enriched

motif family. In layer 2/3 cells, we detect high enrichment of CUX, EGR1, FOXP, MEF2, POU3F, and

RFX. In L4, we found enrichment of RORB and NEUROD motifs. Layers 4 and 5 both show enrich-

ment of FOS motifs. L6 cells have a very different profile of enriched TF motifs, with depletion of

many of the factors listed above, but enrichment of CUX, MEIS, NFIA and TBR1 motifs.

To identify specific transcription factors that may be driving accessibility at these sites, we exam-

ined the average gene expression of candidate TFs in each glutamatergic cell class. We used the

TreeFam database (Ruan et al., 2008) to identify closely related TFs which may bind similar motifs.

We then removed genes with low expression in the single cell RNA-seq dataset, and those previ-

ously found not to bind the motifs in our motif sets (Figure 6B, Figure 6—figure supplement 2,

Materials and methods). For most of the motifs differentially enriched in the peak modules, we find

at least one corresponding TF family member with correlated or anticorrelated differential gene

expression. For example, enrichment of accessible ROR motifs is positively correlated with Rorb

expression in L4. In L2/3, we see strong enrichment of RFX3 motifs, which corresponds to high Rfx3

and Rfx7 expression in L2/3. Conversely, open FOXP motifs are enriched in upper layers (enriched in

L2/3+, Upper+ and L6� modules; depleted in L6+ and Lower+), while Foxp2 is most highly

expressed in L6. This is in agreement with the previously reported repressive function of FOXP2,

which has been shown to recruit histone deacetylase complexes (Chokas et al., 2010). Similarly,

CUX motif enrichment is inversely correlated with Cux1 and Cux2 expression, consistent with the

role of these TFs as repressors (Li et al., 2010).

We also examined the accessibility of the motifs with a single base-pair resolution (TF footprint-

ing) using Tn5 transposase insertion sites, as has been done previously with ATAC-seq (Mo et al.,

2015) and similarly with DNase-seq (Vierstra and Stamatoyannopoulos, 2016). The FOXP, NEU-

ROD, and RFX motifs found in all peaks in our dataset displayed expected patterns of accessibility

that corresponded to the enrichment of motifs within layer-specific modules (Figure 6C): FOXP

motifs are most accessible on L2/3, L4, and L5, with the least insertions in L6, where Foxp2 may

repress chromatin accessibility at FOXP motifs. In L4, NEUROD motifs were significantly more acces-

sible than in L2/3, L5, or L6, which may be driven by coexpression of Neurod1 and Neurod6

(Figure 6B). For RFX motifs, we see the most Tn5 insertion sites in L2/3 cells than in other layers,

possibly due to expression of Rfx1 and Rfx3 in L2/3 (Figure 6B).

Figure 4 continued

The following source data and figure supplements are available for figure 4:

Source data 1. Peak accessibility scores (TMM) for peaks associated with gene sets in Figure 4A.

DOI: 10.7554/eLife.21883.017

Source data 2. Mann-Whitney test results for each comparison in Figure 4A.

DOI: 10.7554/eLife.21883.018

Source data 3. Gene expression data for the heatmap at the bottom of Figure 4B.

DOI: 10.7554/eLife.21883.019

Source data 4. Differential accessibility and –log10(pvalue) scores used to generate the volcano plot in Figure 4B.

DOI: 10.7554/eLife.21883.020

Source data 5. Gene expression data for the heatmap at the bottom of Figure 4C.

DOI: 10.7554/eLife.21883.021

Source data 6. Differential accessibility and –log10(pvalue) scores used to generate the volcano plot in Figure 4C.

DOI: 10.7554/eLife.21883.022

Figure supplement 1. Pairwise comparisons of peak accessibility for peaks associated with differentially-expressed genes.

DOI: 10.7554/eLife.21883.023

Figure supplement 2. Permutation of peak-gene associations.

DOI: 10.7554/eLife.21883.024

Gray et al. eLife 2017;6:e21883. DOI: 10.7554/eLife.21883 9 of 30

Tools and resources Genomics and Evolutionary Biology Neuroscience

http://dx.doi.org/10.7554/eLife.21883.017
http://dx.doi.org/10.7554/eLife.21883.018
http://dx.doi.org/10.7554/eLife.21883.019
http://dx.doi.org/10.7554/eLife.21883.020
http://dx.doi.org/10.7554/eLife.21883.021
http://dx.doi.org/10.7554/eLife.21883.022
http://dx.doi.org/10.7554/eLife.21883.023
http://dx.doi.org/10.7554/eLife.21883.024
http://dx.doi.org/10.7554/eLife.21883


Transcription factor networks underlying layer-specific transcriptomes
We next sought to identify interactions between key TFs that may underlie layer-specific transcrip-

tomes (Figure 7). For this analysis, we focused on the targets of 12 highly differentially expressed

TFs: Cux1, Egr1, Fos, Mef2c, Neurod6, Pou3f2, Rfx3, and Rorb, which are highly expressed in upper

layers; and Foxp2, Meis2, Nfia, and Tbr1, which are highly expressed in lower layers (Figure 6B). We

then designated each TF as a likely activator (Egr1, Fos, Mef2c, Nfia, Neurod6, Pou3f2, Rfx3, Rorb,

Meis2, and Tbr1) or repressor (Foxp2 and Cux1). A full schematic for the selection of these putative

key regulators is provided in Figure 7—figure supplement 1. Next, we searched our peaks for dif-

ferentially enriched motifs that are putative targets of these TFs. For each motif, we applied filtering
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Figure 5. Clustering of peaks and genes reveals common patterns of chromatin accessibility and gene expression. (a) Scaled module profiles derived

from k-means clustering of peaks and genes (Materials and methods). Points represent median values, and shaded areas represent percentiles as

shown in the legend. (b) We calculated how frequently peaks in each peak module were positionally-associated with genes in each gene module, then

computed enrichment or depletion using Fisher’s exact tests for enrichment. The heatmap represents the log-transformed, adjusted p-values from

Fisher’s exact tests, with enrichment (odds ratio > 1) in red and depletion (odds ratio < 1) in blue. Black indicates non-significant enrichment or

depletion (adjusted p-value > 0.01).

DOI: 10.7554/eLife.21883.025

The following source data and figure supplements are available for figure 5:

Source data 1. Fisher’s exact test result values presented in Figure 5B.

DOI: 10.7554/eLife.21883.026

Source data 2. Quantile values for gene clusters presented in Figure 5A.

DOI: 10.7554/eLife.21883.027

Source data 3. Quantile values for peak clusters presented in Figure 5A.

DOI: 10.7554/eLife.21883.028

Figure supplement 1. Example instance of initial k-means clustering of differentially accessible peaks and differentially expressed genes.

DOI: 10.7554/eLife.21883.029

Figure supplement 2. Log-odds ratios for tests of Peak-Gene module association.

DOI: 10.7554/eLife.21883.030
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Figure 6. Peak module analysis reveals layer-specific enrichment of transcription factor motifs. (a) Select TF motif families are significantly enriched or

depleted in specific peak modules. Enrichment and depletion were calculated relative to unrelated modules (Figure 6—figure supplement 1) using

AME. (b) Expression of genes belonging to TF families identified by Treefam and other criteria (Materials and methods). Heatmap shows mean gene

expression counts within each cell class based on single-cell RNA-seq data (Materials and methods). For each gene, the most strongly correlated gene

module is listed to the right of the heatmap. (c) Tn5 footprinting for select motif families in each glutamatergic cell class and mES cells. The cut site

frequency was calculated at each base position relative to the center of each corresponding motif . Frequencies are shown as the number of Tn5

insertions (locations of 5’ ends of fragments) per million reads.

DOI: 10.7554/eLife.21883.031

The following source data and figure supplements are available for figure 6:

Source data 1. AME result p-values, as plotted in Figure 6A.

DOI: 10.7554/eLife.21883.032

Source data 2. Gene expression values used for Figure 6B.

DOI: 10.7554/eLife.21883.033

Source data 3. FOXP motif Tn5 insertion frequency data.

DOI: 10.7554/eLife.21883.034

Source data 4. NEUROD motif Tn5 insertion frequency data.

DOI: 10.7554/eLife.21883.035

Source data 5. RFX motif Tn5 insertion frequency data.

DOI: 10.7554/eLife.21883.036

Figure supplement 1. Background set selection for AME and top significant AME results for each peak module.

Figure 6 continued on next page
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criteria to find putative regulatory targets based on motif enrichment in peak modules, association

of peak module with a gene module, differential accessibility of the peak, differential expression of

the nearest gene, and correlation with expression of the associated TF (Materials and methods and

Figure 7—figure supplement 1). We then built a network using our 12 key regulators as nodes, and

linked the nodes using their putative target motifs as directional edges (from the regulating factor

Figure 6 continued

DOI: 10.7554/eLife.21883.037

Figure supplement 2. Transcription factor gene expression in individual cells arranged by cell class.

DOI: 10.7554/eLife.21883.038
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DOI: 10.7554/eLife.21883.039

The following source data and figure supplement are available for figure 7:

Source data 1. Data used to build the network presented in Figure 7B and Figure 8.

DOI: 10.7554/eLife.21883.040

Figure supplement 1. Flowcharts for selecting TFs and TF targets to construct a network of regulatory interactions.

DOI: 10.7554/eLife.21883.041
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to its target motif, Figure 7A). Expanding the network to include additional targets that are TF

genes outside of the set of 12 key regulators reveals additional regulatory interactions that may be

important for maintenance of layer-specific transcriptomes (Figure 7B). These networks show only

interactions that were strongly coherent with our peak and gene module analysis (Materials and

methods). The relative transcription levels of each of the genes in the resulting network show a sharp

division between upper (L2-3 and L4) and lower (L5 and L6) layers (Figure 8).

Central to the upper/lower network division is the Forkhead-box TF Foxp2, which targets many of

the upper-layer transcription factor genes, including Rorb and Pou3f2. Foxp2 is an important gene

for development of speech in humans (Becker et al., 2015), and vocalization in mouse

(Castellucci et al., 2016) and songbirds (Chen et al., 2013; Murugan et al., 2013). Foxp2 also plays

key roles in neural differentiation (Chiu et al., 2014; Tsui et al., 2013) and neurite outgrowth during

development (Vernes et al., 2011). Both FOXP1 and FOXP2 have been shown to interact with the

NuRD chromatin remodeling complex, which includes the histone deacetylases HDAC1 and HDAC2

(Chokas et al., 2010). Recruitment of NuRD to FOXP target motifs by FOXP1 or FOXP2 is thought

to create a repressed chromatin state through deacetylation of histones. Although we observe

expression of Foxp1 across upper layers (L2/3-L5, Figure 6B), we see a significant decrease of FOXP

motif accessibility in L6, which specifically expresses Foxp2 (Figure 6A,B). Thus, we have assigned

the FOXP motifs that are less accessible in L6 as putative FOXP2 targets in our network.

The repressor CUX1 has several targets among lower-layer transcription factors, and may play a

similar repressive role in upper-layer cell classes as FOXP2 in lower-layer cell classes. Cux1 encodes

a member of the Cut-like homeobox family of transcriptional repressors, which also includes Cux2

(Quaggin et al., 1996). In the network diagram, we attributed CUX motif targets to CUX1 due to

higher average expression of Cux1 mRNA compared to Cux2 mRNA in upper layers (Figure 6B)

although CUX2 may also regulate some of these targets, especially in L2/3, where Cux2 expression

is highest. Cux1 and Cux2 expression is most strongly correlated with the Upper+ gene expression

module in this study, and both of these TFs have been shown to regulate dendritic branching and

morphology in upper cortical layers (Cubelos et al., 2010; Li et al., 2010). We see a depletion of

CUX motifs where Cux1 is most highly expressed (L4+ and Upper+ peak clusters, Figure 6A), so

have assigned inversely-correlated CUX-containing peaks to Cux1. Cux1 targets include Nfib, Fezf2,

Pou6f2, and Sox5, all of which are transcriptional regulators that are highly expressed in lower layers

(Figure 6—figure supplement 2). Intriguingly, we find a FOXP binding site in a peak associated

L2/3 L4 L5 L6

-2 0 2
expression Z-score

Figure 8. Gene expression patterns of layer-specific transcription factors. The location and identity of each node is the same as in the regulatory

network presented in Figure 7. The color of each node represents the normalized, average gene expression across all cells in each cell class.

DOI: 10.7554/eLife.21883.042
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with the Cux1 gene. FOXP2 binding to this site may repress Cux1, and relieve CUX1-mediated

repression of its targets in lower cortical layers (Figure 7B).

We also find several key transcriptional activators that may be responsible for differential expres-

sion of layer-specific genes. T-box brain gene 1 (Tbr1) and nuclear factor I/A (Nfia) have many tar-

gets among other transcription factors that are expressed in lower layers, including Foxp2, Fezf2,

Zfpm2, Bcl11b, and Pdlim1 (Figure 7B). Loss of Nfia in humans and mice has been shown to disrupt

corpus callosum development (das Neves et al., 1999; Lu et al., 2007). Nfia is important for balanc-

ing gliogenesis of oligodendrocytes and astrocytes (Glasgow et al., 2014), and is a key factor for

the onset of spinal cord gliogenesis (Deneen et al., 2006). Other NFI transcription factors are also

expressed in visual cortex. However, Nfic and Nfix expression is not correlated with NFIA motif

enrichment, and Nfib is more broadly expressed in L2/3 and L5 than Nfia (Figure 6B, Figure 6—fig-

ure supplement 2). Thus, we have assigned NFIA motifs to Nfia. TBR1 binding sites are found near

Nfia, suggesting that TBR1 may regulate Nfia in addition to other target TFs. Tbr1 has been associ-

ated with autism spectrum disorders (Huang and Hsueh, 2015), regulates corticofugal cell identities

during development (McKenna et al., 2011), and represses target genes including Fezf2 during

development of the corticospinal tract (Han et al., 2011). However, previously published scRNA-seq

data show that Tbr1 and Fezf2 are co-expressed in some L5 and L6a transcriptomic cell types

(Tasic et al., 2016), and our network analysis suggests that TBR1 may activate Fezf2 in adult neurons

in lower cortical layers (Figure 7B, Figure 6—figure supplement 1).

In the upper layers, POU3F2, RORB, and RFX3 appear to play central roles in regulation of many

other TFs that are expressed in L2/3 and L4 classes. Regulatory factor X3 (Rfx3) is a key gene for

guidance of thalamocortical axons to L2/3 and L4 (Magnani et al., 2015), as well as for development

of the corpus callosum (Benadiba et al., 2012). POU domain, class 3, transcription factor 2 (Pou3f2),

also known as Brn2, is essential for correct migration of upper-layer neurons in the developing cortex

(McEvilly et al., 2002; Oishi et al., 2016). Retinoic acid-related orphan receptor B (Rorb), which is

highly expressed in L4 of the visual cortex is important for barrel cluster development

(Jabaudon et al., 2012) and L2/3 and L4 specification during cortical development (Oishi et al.,

2016). Heterozygous deletion or loss of function of RORB in humans has been associated with epi-

lepsy (Baglietto et al., 2014; Rudolf et al., 2016) and genetic variants associated with Rorb are

associated with bipolar disorder (Geoffroy et al., 2015; Lai et al., 2015).

In our network, we also observe several NEUROD motifs in peaks that are positionally associated

with Rorb (Figure 7A). Neurogenic differentiation 1 and 6 (Neurod1 and Neurod6) are basic helix-

loop-helix (bHLH) TFs, which form homo- and heterodimers. Thus, co-expression of Neurod1 and

Neurod6 may be responsible for enrichment of NEUROD motifs in the L4+ peak module

(Figure 6A).

Putative class-specific regulatory sites near Nfia and Cux1 may
establish differential expression of L6 genes
To understand key interactions that control the differential transcription state of Layer 6 cells com-

pared to upper layers, we examined the differential accessibility landscapes of Nfia and Cux1. Nfia is

expressed almost exclusively in L6 cells (Figure 9A). We found 55 peaks that were positionally asso-

ciated with Nfia, 14 of which were both significantly more accessible (DiffBind adjusted

p-value < 0.01) and displayed more than 2-fold higher accessibility in L6 cells compared to L4

(Figure 9B). These peaks were present near a TSS specific to two Nfia isoforms (red arrow in

Figure 9C), and in many downstream sites (Figure 9C). Examination of individual peaks shows acces-

sible motifs in L6 that are not accessible in L4, (Figure 9D) including TBR motifs (numbered peaks 1,

2 and 4), NFIA motifs (peaks 3 and 4), and an RFX motif (peak 3), which overlaps the NFIA motif.

Cux1 encodes a cut-like homeobox-family repressor that is strongly expressed in glutamatergic

cells in upper, but not lower, cortical layers (Figure 10A). To define regulatory elements of Cux1, we

examined differential accessibility of 18 Cux1-associated ATAC-seq peaks in the comparison

between L4 and L6 classes (Figure 10B). We found five peaks that were differentially accessible

between the two cell classes (p-value < 0.01), all of which were more accessible in L4 cells. These

five sites are distal to the Cux1 TSS, located in a region surrounding the second Cux1 exon. In agree-

ment with our general observations (Figure 3—figure supplement 1), the Cux1 TSS appears acces-

sible across all five Cre lines (Figure 10C). This suggests that the Cux1 TSS is poised for

transcription across all neural cell types, but Cux1 expression is only achieved through the function
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of these downstream, distal enhancers. In agreement with Cux1 expression, L2/3 and L4 show the

same accessibility pattern near Cux1. Individual peaks that are highly accessible in L4 but not L6

reveal interactions that may drive class-specific expression of Cux1 in upper layers. Close examina-

tion of 4 of the 5 Cux1 peaks reveal NEUROD motifs are found in all 4 of the highlighted peaks; sev-

eral FOS motifs (highlighted peaks 2 and 4); and single EGR (peak 2), FOXP (Peak 3), MEF2 (peak 4),

and MEIS (peak 3) motifs near Cux1 are also accessible in L4 neurons. The FOXP motif may recruit

FOXP2 and NuRD complexes to repress Cux1 transcription in lower layers, while EGR1/EGR3,

MEF2C, and NEUROD may regulate expression in upper layers.
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Figure 9. The Layer-specific regulatory landscape of Nfia. (a) Nfia gene expression distributions based on scRNA-seq in each neuronal cell class. (b)

Volcano plot showing all peaks that are positionally associated with Nfia in L6 and L4. Significantly differentially accessible peaks (adjusted

p-values < 0.01 and > 2-fold change in accessibility score) are highlighted as L6-specific (green box) or L4-specific (purple box). (c) Chromatin

accessibility near the Nfia gene in each cell class (547 kb window; mm10 chr4:97,576,942–98,123,876). Vertical lines below the tracks represent

the locations of peaks that are significantly more accessible in L6 compared to L4. (d) 1 kb windows centered on four numbered peaks that contain

putative TF binding sites. TF motif locations within each peak are marked by black bars. CPM, counts of overlapping sequenced fragments at each

position per million mapped reads for each cell class. All fragment overlap panels are plotted on the same scale (0 to 4 CPM).

DOI: 10.7554/eLife.21883.043

The following source data is available for figure 9:

Source data 1. Nfia expression values used to generate the plot in Figure 9A.

DOI: 10.7554/eLife.21883.044

Source data 2. Peak statistics for peaks positionally associated with Nfia, used to generate Figure 9B.

DOI: 10.7554/eLife.21883.045
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Discussion
In the mouse visual cortex, at least 49 transcriptomic cell types have been defined by single cell

RNA-seq (Tasic et al., 2016). As a first step in uncovering layer-specific regulatory networks, includ-

ing regulatory transcription factors and their targets, we performed ATAC-seq on small populations

of cells derived from layer-specific transgenic lines (Figure 1). Comparisons of our data to previously

published ChIP-seq (Figure 2) and scRNA-seq (Figures 4 and 5) enabled identification of potentially

significant regulatory sites. By restricting our analysis to a single cortical region, the mouse visual

cortex, and through the use of layer-specific Cre lines, our data provide examination of the chroma-

tin accessibility state at the resolution of layer-specific cortical cell classes (Figures 9 and 10). Previ-

ous studies have examined the state of cells across whole brain (Yue et al., 2014), in the whole
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DOI: 10.7554/eLife.21883.046

The following source data is available for figure 10:

Source data 1. Cux1 expression values used to generate the plot in Figure 10A.

DOI: 10.7554/eLife.21883.047

Source data 2. Peak statistics for peaks positionally associated with Cux1, used to generate Figure 10B.

DOI: 10.7554/eLife.21883.048
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cerebellum (Frank et al., 2015), or in pooled GABAergic or glutamatergic cells across all layers in

the entire mouse cortex (Mo et al., 2015). The cell class resolution of our study allowed us to iden-

tify open chromatin sites that are unique to each layer-specific cell class, and assign accessible sites

from previous studies on more heterogeneous populations to more specific cell classes (Figure 3—

figure supplements 3 and 4). In doing so, we were also able to build a network of transcription fac-

tor interactions that may be responsible for maintaining the identity of layer-specific cell classes

(Figure 7).

Analysis of TF motif enrichment and accessible motif targets were used to identify putative regu-

latory TFs for cell classes from L2/3, L4, and L6 (Figure 6). However, distinct transcription factor fam-

ilies for L5 were not clearly identified by our analysis. This result may be due to the heterogeneity of

cell types that are present in the L5 cell class defined by the Rbp4-Cre line. Rbp4-Cre labels at least

nine transcriptomic cell types, including Layer 5a cells, which show some similarity to L4 cell types,

and L5b types, which share some transcriptomic patterns with L6 cell types (Tasic et al., 2016). This

heterogeneity may mask detection of distinct networks that regulate the cell types within L5, which

could be uncovered in future studies that will require new Cre-driver lines or other labeling strate-

gies to access L5 subtypes. We also note that L6 includes several transcriptomic cell types that were

not surveyed in the current study: only corticothalamic L6a cells are labeled by the Ntsr1-Cre driver

line (Tasic et al., 2016).

Development of laminar cell type identities occurs through several waves of differentiation driven

by sequential changes in chromatin and transcriptional landscapes (Telley et al., 2016). In our analy-

sis, we see largely distinct networks of interactions that define upper and lower layers of the cortex.

Previous studies have shown that layer-specific populations arise at distinct times in development.

Several of the TFs we predict to be key regulators of layer-specific transcription have been examined

for their function in cortical development. Loss of Tbr1, which is a key lower-layer regulator

expressed by lower-layer neurons, results in gross abnormalities in cortex. Curiously, in rostral corti-

cal regions, Tbr1 knockouts appear to lack L6, while other layers appear normal, whereas in

caudal regions, Tbr1 knockouts present a generally disorganized cortical structure (Hevner et al.,

2001). These findings suggest that independent networks may be involved in upper versus lower

laminar development in these regions. Double knockout of Pou3f2 and Pou3f1, which we predict are

key regulators in upper cortical layers, results in incorrect migration of upper cortical neurons (layers

2/3 and 4), but not lower layer neurons (McEvilly et al., 2002; Sugitani et al., 2002). Loss of key

TFs can also affect layer-specific cortical projection patterns: knockdown of Cux1 ablates ipsilateral

cortico-cortical projections of upper-layer neurons (Rodrı́guez-Tornos et al., 2016), and loss of Tbr1

results in truncated corticothalamic projections by L6 neurons (Hevner et al., 2001).

While these broad phenotypes show the importance of these factors in the development of corti-

cal structure and function, specific interactions previously studied in development are frequently not

found in our accessibility data from adult cortex. For example, a previously described regulatory

interaction between RORB and its biding site near Pou3f2, which results in down-regulation of

Pou3f2 during laminar development of L2/3 and L4 (Oishi et al., 2016), is not part of our putative

regulatory network (Figure 7). In single-cell RNA-seq of adult visual cortex, we often see simulta-

neous expression of Rorb and Pou3f2 in Layer 2/3 and Layer 4 cells (Tasic et al., 2016, Figure 6—

figure supplement 2), suggesting that this interaction may not be present in the adult visual cortex.

We investigated this discrepancy between adult and developmental states by examining the RORB

target sites that were previously described near the Pou3f2 gene (Figure 11). We found very little

chromatin accessibility at or around these RORB-binding sites, which suggests that the chromatin

state in adult cells prevents this interaction, thus allowing coexpression of Rorb and Pou3f2 after dif-

ferentiation (Figure 6—figure supplement 2). Our network also lacks a previously reported interac-

tion between POU3F2 and Foxp2 through a highly conserved POU3F2-binding site in the Foxp2

gene that is mutated in human compared to most other species (Maricic et al., 2013). In reporter

assays, the conserved POU3F2 motif, which is present in mouse, acts as a cis-regulatory enhancer

element (Maricic et al., 2013). In adult visual cortex, the chromatin is inaccessible near this POU3F2

motif (Figure 11), suggesting that POU3F2 does not bind to this site to regulate Foxp2 expression.

This is consistent with gene expression data from adult cortex, where we see no expression of

Foxp2 in cell classes that express Pou3f2 (layers 2–5, Figure 6—figure supplement 2). Further chro-

matin accessibility experiments would be needed to determine if this regulatory element is accessi-

ble during development or other cell types in visual cortex, or in other brain regions.
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A recent publication has shown that FOXP2 directly suppresses Mef2c expression in the striatum,

where knockout of Foxp2 allows higher Mef2c expression, which, in turn, suppresses synaptogenesis

(Chen et al., 2016). Our network analysis suggests that FOXP2 binding may also repress Mef2c in

lower layers of the adult visual cortex (Figure 7). We examined the FOXP motifs near Mef2c exon

three that were identified in this recent study (Figure 12B). In adult cortex, we observe only a mod-

est and statistically insignificant decrease in their accessibility in lower layers. Thus, we expanded our

search to all FOXP motif-containing peaks near Mef2c in the cortex (Figure 12A). We found two

peaks upstream of the Mef2c TSS that are less accessible in L6 than in upper layers. Therefore,

FOXP2 may regulate Mef2c by binding different sites in these different tissues: sites upstream of

TSS in the cortex, and sites near exon three in the striatum. This hypothesis could be tested by
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Figure 11. Previously published TF-binding sites near Pou3f2 and Foxp2 observed during development are not accessible in adult mouse cortex. (a)

Previously described RORB-binding sites (BS1 and BS2) near the Pou3f2 TSS are not accessible in any of the adult cell classes we examined. (b) Same as

in (a), but for a POU3F2 binding site in the Foxp2 gene. CPM, counts of overlapping sequenced fragments at each position per million mapped reads
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future experiments that measure the chromatin accessibility landscape of the striatum, and genome-

wide interaction sites of FOXP2 by ChIP-seq in striatum and cortex, as well as the effect of decreas-

ing FOXP2 levels through cell-type specific knockout or knockdown on these chromatin landscapes.

These comparisons emphasize the importance of developmental, anatomical, and cell type con-

text in studies of chromatin accessibility and transcriptomic regulation. We note that several tran-

scription factors identified in our network are known to be expressed in development. Some of their

target sites in development may be retained in adulthood, while others may be different due to

changes in accessibility. Future studies performed on layer-specific cell classes in development will

be needed to determine how changes to the epigenetic landscape affect transcription during

development.

Our sampling strategy utilized only Cre lines that yielded at least 500 tdTomato-positive FACS-

isolated cells per animal. This limited our genetic access to relatively abundant cell classes in the

visual cortex, all of which label multiple cell types that can be distinguished by single-cell RNA-seq

(Figure 1C). Because GABAergic cell types are much less abundant in the neocortex than glutama-

tergic cells, we sampled only a single, pan-GABAergic cell line, Gad2-IRES-Cre. A previous study

was able to examine Pvalb+ and Vip+ (but not Sst+ or Ndnf+) GABAergic cell type classes using the

whole mouse cortex (Mo et al., 2015) by utilizing the INTACT nuclear labelling technique. The

higher spatial resolution of our glutamatergic data, but lower cell-type resolution among GABAergic

types makes our study complementary to this work. Further advances in low-input chromatin accessi-

bility assays, low input ChIP-seq methods, and improvements in Cre-driver specificity will increase

our ability to analyze the epigenomic state of specific neural cell types.

Our integrated analysis of chromatin accessibility, gene expression, and TF motif enrichment pro-

vides an unprecedented look at the key interactions that underlie layer-specific transcriptomes. We

were able to identify layer-wide patterns of TF accessibility from analysis of the entire set of peaks

from each layer, and found interactions that may drive expression of key transcriptomic regulators

Nfia and Cux1 by looking at coordinated TF expression and motif accessibility. Further research into

the roles that these and other TFs play in development and maintenance of layer-specific cell classes
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will enhance our understanding of the functional consequences of these transcriptomic programs.

Conditional loss-of-function experiments in specific cell classes at specific times in development or

adulthood would help to disentangle the specific roles from more global roles of these TFs. For

instance, constitutive, homozygous loss-of-function of Foxp2 is lethal by postnatal day 21, and

causes developmental delays and motor dysfunction that may interfere with studies of adult brain

function (French et al., 2007), whereas heterozygous Foxp2 knockout mice display few differences

in cortical structure (Fujita et al., 2008). Our network suggests that Foxp2 could be a key regulator

of L6-specific transcriptional program in VISp. Investigation of this role of Foxp2 would require gen-

eration of a conditional knockout in specific cortical cell populations, and perhaps at specific times in

development or adulthood (for example, through conditional alleles combined with Cre/CreER

lines). Another area that would greatly benefit from further study is assessing the correspondence

between chromatin modifications and chromatin accessibility. New techniques for ChIP-seq enable

enrichment of modified histones from as few as 500 cells (Lara-Astiaso et al., 2014), which may

allow the correspondence between accessibility and chromatin modifications in specific cell classes

to be studied directly. The synthesis of these data modalities will further our understading of the

mechanisms of cell type-specific transcriptional regulation. This new knowledge will be useful for

building new cell-type specific genetic tools, and for testing the reprogramming potential of layer-

specific cell classes (De la Rossa et al., 2013).

Materials and methods

Mouse breeding and husbandry
All mice were housed at the Allen Institute for Brain Science under Institutional Care and Use Com-

mittee protocols 0703, 1208, and 1508. No more than five animals per cage were maintained on a

regular 12 hr day/night cycle, with water and food provided ad libitum. Animals were maintained on

the C57BL/6J background, as described previously (Tasic et al., 2016). We used only heterozygous

animals that were positive for both Cre-recombinase drivers and tdTomato reporter transgenes (we

used only the Ai14 Cre reporter transgene, (Madisen et al., 2010). Parental mouse strains used:

Ai14 (RRID:IMSR_JAX:007914), Cux2-CreERT2 (RRID:MMRRC_032779-MU), Gad2-IRES-Cre (RRID:

IMSR_JAX:010802), Ntsr1-Cre_GN220 (RRID:MMRRC_030648-UCD), Rbp4-Cre_KL100 (RRID:

MMRRC_031125-UCD), and Scnn1a-Tg3-Cre (RRID:MGI:3850203). Cux2-CreERT2 mice were treated

with tamoxifen using a single dose of 40 mL of 50 mg/mL tamoxifen dissolved in corn oil and admin-

istered by oral gavage at postnatal day (P)10–14. Animals with anophthalmia or microphthalmia

were excluded from experiments. Expression patterns for the five Cre lines used in this study were

previously characterized as part of the Allen Institute Connectivity Atlas Transgenic Characterization

pipeline (Harris et al., 2014). These results are openly available online at http://connectivity.brain-

map.org/transgenic.

Isolation of 500 cell populations
We generated single-cell suspensions of fluorescently labeled neurons as described previously

(Tasic et al., 2016). Briefly, we used an isoflurane chamber to anesthetize adult male mice (P56 ± 3),

decapitated them, removed the brains, and transferred them immediately to freshly prepared, ice-

cold artificial cerebrospinal fluid (ACSF: 126 mM NaCl, 20 mM NaHCO3, 20 mM dextrose, 3 mM

KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 2 mM mgCL2, 50 mM DL-AP5 sodium salt, 20 mM DNQX,

and 0.1 mM tetrodotoxin, mixed then bubbled with 95% O2/5% CO2 carbogen gas). We sectioned

the brains to generate 400 mm–thick sections using a Leica VT1000S vibratome with a chilled cham-

ber, and immediately transferred the slices to a bubbled ACSF-containing chamber at room temper-

ature. Individual slices of interest were microdissected in a Petri dish while submerged in ACSF

under a fluorescence dissecting microscope. Dissected tissue was transferred to a microcentrifuge

tube containing ACSF with 1 mg/mL pronase (Sigma, Cat#P6911) for 70 min at room temperature.

After incubation, with tissue pieces settled at the bottom of the tubes, ACSF with pronase was

exchanged twice with ACSF containing 1% fetal bovine serum (FBS). We next dissociated the tissue

into a single-cell suspension by trituration through Pasteur pipettes with polished openings of 600

mm-, 300 mm-, and 150 mm-diameter. 500 cells were sorted into a well of an 8-well PCR strip contain-

ing 2 mL ACSF on a BD FACSAriaII SORP with a 130 mm nozzle at 10 psi sheath pressure, and in the
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single-cell sorting mode. We excluded dead cells by labelling with DAPI (DAPI*2HCl, Life Technolo-

gies Cat#D1306) added to the single-cell suspension at 2 ng/mL. We retained only cells that had

high tdTomato fluorescence and low DAPI labeling.

For mES cell populations, G4 ES cells (RRID:CVCL_E222, Lunenfeld-Tanenbaum Research Insti-

tute, Mount Sinai Hospital) grown on mouse embryonic fibroblast (MEF) feeders were passaged

onto gelatin plates to dilute/remove feeder cells, and they were made into single-cell suspensions

by treatment with Trypsin-EDTA (Thermo Fisher Scientific, Cat#25300054). Cells were washed twice

in PBS containing 1% FBS, and were then resuspended in PBS containing 1% FBS and 2 ng/mL

DAPI. 500-cell populations of DAPI-negative ES cells were sorted into individual wells of an 8-well

PCR strip containing 2 mL of PBS.

In total, we used 23 animals, with at least two animals per Cre line, which yielded 32 samples of

500 cells each. Of these, 25 libraries were successfully amplified, 17 libraries passed sequencing

quality control checks after MiSeq (Illumina), and 14 of these 17 were sent for sequencing on HiSeq

(Illumina). One library (Rbp4 sample 3) was sequenced using an entire flow-cell on a MiSeq instead

of HiSeq. The HiSeq samples and the Rbp4 sample 3 were used for downstream analysis.

ATAC-seq of cortical cell populations and mES cells
For low-input ATAC-seq, we utilized a previously published protocol (Lara-Astiaso et al., 2014).

Immediately after cell collection by FACS, cells were lysed with 25 mL Lysis Buffer (10 mM Tris-HCl

pH 7.4, 10 mM NaCl, 3 mM MgCl2, and 0.1% IGEPAL CA-630). Nuclei were pelleted by centrifuga-

tion at 500 x g for 30 min at 4˚C in a refrigerated microcentrifuge. After pelleting, the supernatant

was removed and nuclei were resuspended by repeated pipetting in 25 mL Reaction Mix (12.5 mL

Nextera TD Buffer, 2 mL Nextera TD Enzyme, and 10.5 mL water). Samples were then tagmented by

incubation at 37˚C for 1 hr in a heat block. After tagmentation, the reactions were stopped with

addition of 5 mL Cleanup Buffer (900 mM NaCl, 300 mM EDTA), 2 mL 5% SDS, and 2 mL Proteinase K

and incubation at 40˚C for 30 min. Tagmented DNA was purified using AMPure XP beads (Beckman

Coulter) at a ratio of 1.8:1 beads to reaction volume, with a final resuspension in 11 mL TE. For index-

ing and amplification, we added 15 mL KAPA HotStart Ready mix (Kapa Biosystems, Cat# KK2602)

and 2 mL each of Nextera i5 and i7 indexed amplification primers (Illumina). These samples were

incubated at 72˚C for 3 min, then PCR amplified as follows: 95˚C for 3 min; 9 cycles of 98˚C for 20 s,

65˚C for 15 s, and 72˚C for 15 s; final extension 72˚C for 1 min. Samples were then purified using

AMPure XP as above, reamplified for nine additional cycles under the same conditions, and then

purified once more as before using Ampure XP beads to produce 11 mL final volume. Library quality

and quantity were assessed using 1 mL of the final, purified DNA on a BioAnalyzer High Sensitivity

DNA chip (Agilent Technologies).

Sequence alignment and peak analysis
High-quality libraries were sequenced on an Illumina HiSeq or MiSeq to obtain 50 bp paired-end

reads. Sequencing results are available in GEO with accession number GSE87548. Reads in FASTQ

format were aligned to GRCm38 (mm10) using Bowtie v1.1.0 (RRID:SCR_005476) (Langmead et al.,

2009) with settings –m 1 –X 2000 –chunkmbs 256 in paired-end mode. Unaligned reads were proc-

essed with the Trim galore wrapper for Cutadapt (RRID:SCR_011841) (Martin, 2011) to remove

Nextera primer sequences (settings: –nextera –paired –three_prime_clip_R1 1 –three_prime_clip_R2

1), and were then aligned again using Bowtie (settings –m 1 –X 2000 �3 1 –chunkmbs 256). The

Samtools collection (RRID:SCR_002105) (Li et al., 2009) was used to sort, remove PCR duplicates

(rmdup), index BAM files (index), and calculate library statistics (flagstat). We used CollectInsertSize-

Metrics.jar from Picard v1.110 (RRID:SCR_006525) (BroadInstitute, 2015) to analyze fragment size

statistics, and preseq v0.1.0 (Daley and Smith, 2013) to analyze library sequencing saturation. The

CENTIPEDE package for R (Pique-Regi et al., 2011) was used to analyze insertions near ATF2 motif

locations obtained from the SwissRegulon database (RRID:SCR_005333) (Pachkov et al., 2013,

2007). To downsample BAM files, the data were sorted by name instead of location using Samtools

sort in SAM format, then the R sample function was used to select random read pairs without

replacement, and a custom Perl script filtered the selected reads. Samtools view was then used to

convert files back to BAM format. After downsampling, aligned reads were analyzed for peak and

region enrichment of open chromatin using HotSpot v4.1 (John et al., 2011) with default settings.
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For differential binding analysis and to cluster samples based on ATAC-seq enrichment, we used

DiffBind v1.16.3 (RRID:SCR_012918) (Ross-Innes et al., 2012; Stark and Brown, 2011) for overlap

analysis (dba) and weighted overlap analysis (dba.count). DESeq2 v1.10.1 (Love et al., 2014) was

used for contrast analysis between pairwise groups of Cre line samples using DiffBind functions

(dba.analyze) with settings to use DESeq2 (method = DBA_DESEQ2). DiffBind was also used to cal-

culate merged peak locations, based on the outer boundaries of overlapping peaks from all cell lines

analyzed, and peak accessibility scores for each replicate were calculated using DiffBind with the

default setting DBA_SCORE_TMM_MINUS_EFFECTIVE, which uses trimmed mean of M-values

(TMM) normalization (Robinson and Oshlack, 2010) built into the edgeR package (Robinson et al.,

2010) using read counts minus control (genomic) read counts and full library size. Peak TMM scores

for each cell class and all DiffBind pairwise comparison p-values are reported in Supplementary file

1B. Clustering of raw peak data was performed using the R function hclust and the ‘complete’

method using DiffBind scores from neural cell types from the 7,500 most highly differentially accessi-

ble peaks among neural cell types, as ranked by adjusted p-values.

Comparisons to previously published chromatin accessibility and ChIP-
seq data
For comparisons between our datasets and whole cortex INTACT-ATAC-seq from Camk2a-Cre,

Pvalb-Cre, and Vip-Cre labeled cells (Mo et al., 2015), we retrieved paired-end, raw read data from

GEO Series GSE63137 in FASTQ format. These datasets were aligned and downsampled to 3.2 M

read pairs as described above, and HotSpot was used to call peaks as for our samples. For compari-

sons to ChIP-seq results from Camk2a, we downloaded SICER peak calls from GEO Series

GSE63137 in BED format. For comparison to ENCODE DNase-seq data, we downloaded HotSpot

peak datasets in BED format from the Mouse ENCODE data portal (www.mouseencode.org/data),

and selected up to three replicates for each adult tissue available, as well as for ES-E14 cells. Whole-

dataset comparisons were performed using DiffBind with peak overlaps only (dba; no weighted

overlap analysis). Overlap frequency counts were calculated using the GenomicRanges R package

(Lawrence et al., 2013), after pooling and using GenomicRanges to merge overlapping peaks

among all replicates for ENCODE Whole Brain DNase-seq peaks, Camk2a-Cre ATAC-seq peaks, or

combined ATAC-seq Pvalb-IRES-Cre and Vip-IRES-Cre peak datasets.

scRNA-seq datasets and peak assigments to genes
To compare chromatin accessibility with gene expression, we used single cell RNA-seq data from a

previous study (Tasic et al., 2016; GEO accession GSE71585). In that study, we characterized tran-

scriptomes of cells isolated from the same Cre lines used in this study. To generate ‘average’ gene

expression patterns for cells from these Cre lines (i.e., cell-class transcriptomic average), we down-

sampled RNA-seq data for each cell of interest to 1 million mapped reads (downsampled data are

available in Supplementary file 3). In total 546 tdTomato+ cells were used to generate these cell-

class transcriptomic averages: 77 Gad2-IRES-Cre;Ai14 cells, 122 Cux2-CreERT2;Ai14 cells, 99

Scnn1a-Tg3-Cre;Ai14 cells, 171 Rbp4-Cre;Ai14 cells, and 77 Ntsr1-Cre;Ai14 cells. To define differen-

tially expressed genes between each pair of cell classes, we used DESeq2 (Love et al., 2014). To

assign each peak to the nearest gene, we applied the nearest function from GenomicRanges in R to

the merged peak set from DiffBind and RefSeq TSS gene annotations retrieved from the UCSC

Genome Browser database (RRID: SCR_005780). These peak-gene associations are summarized in

Supplementary file 1C. For downstream analysis, replicate values for ATAC-seq data from each Cre

line were averaged. We then calculated the correlation between peak accessibility and associated

gene transcription using the sample Pearson correlation coefficient. To determine if average peak

accessibility and average gene expression for any gene-peak pair were associated more strongly

than expected by chance, we compared these correlations to 10 randomly-permuted datasets (Fig-

ure 4—figure supplement 2).

Pairwise comparisons of peak accessibility and gene expression
To compare pairwise peak accessibility to pairwise gene expression data (Figure 4A), we first calcu-

lated differentially-expressed genes using DESeq2 for each pair of neuronal cell classes. For each

pairwise comparison, we filtered the genes to select those that were significantly
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differentially expressed between the two cell classes (adj. p-value < 0.001), and assigned them into

one of the two groups based on the cell class with higher average expression for that gene. For

each of these two groups, we then selected all peaks from the two cell classes involved in the com-

parison that were associated with the differentially-expressed genes. We then determined if the

peak accessibility values for the two classes were significantly different using a Mann-Whitney U test.

We adjusted the results for multiple comparisons using Bonferroni correction.

ATAC-seq and RNA-seq module analysis
We assigned peaks and genes to modules using a two-step k-means clustering process. This was

done to first identify common patterns of accessibility and expression, then to use those patterns to

build modules found both among ATAC-seq peaks and gene expression. We first selected the peaks

for clustering as those which were significantly differentially accessible in at least one comparison

between pairs of glutamatergic cell classes (adjusted DiffBind p-value < 0.01) and had at least a 4-

fold difference in average TMM accessibility score. We then scaled peak accessibility scores between

0 and 1 for each peak by subtracting the minimum value for each peak across glutamatergic classes,

and then dividing by the maximum. For building gene expression modules, we selected only differ-

entially expressed genes and performed the same scaling as for peaks (DESeq2 pval < 0.05, fold

change > 2). These sets of peaks and genes were then clustered separately using k-means clustering

to build an initial set of patterns found in the chromatin accessibility and gene expression data (Fig-

ure 5—figure supplement 1). The vectors used for clustering were scaled average peak accessibility

values (for peak module analysis) and scaled average gene expression values (for gene module anal-

ysis), described above. These vectors each have four dimensions, one for each glutamatergic cell

class. Because unsupervised k-means clustering is dependent on random selection of initial cluster

centroids, we manually selected a set of 8 clusters based on the initial k-means cluster results

as seeds for a second round of clustering to obtain a convergent set of modules. We chose four pat-

terns based on selective, high accessibility/expression for each of the four glutamatergic cell classes,

as well as four other patterns that were frequently observed in both peaks and genes (Upper+, high

in L2/3 and L4; Lower+, high in L5 and L6; L4-, low in L4 only; and L6-, low in L6 only). To use these

patterns as seed centroids, we generated binarized centroid vectors. For each dimension, values > 0.5

were set to 1, and < 0.5 were changed to 0. We then ran k-means clustering on the selected peaks

and genes using these eight cluster centers as seed values to generate final peak and gene modules.

We tested the significance of peak-gene module associations by counting the frequency with which

peaks in each peak module were positionally associated with genes in each gene module, then

calculated enrichment or depletion using Fisher’s exact test. To account for multiple comparisons,

we used Benjamini and Hochberg correction.

Motif enrichment analysis
To calculate enrichment of motifs in our peak modules (defined above), we first chose a background

set for each module. The background sets were selected by choosing all modules whose k-means

cluster centers were < 0.5 for any cell classes in which the foreground module had k-means cluster

centers > 0.5. This selection ensured that peaks in the foreground module and background module

did not share the same accessibility pattern in any of the glutamatergic cell classes (Figure 6—figure

supplement 1). We next removed any peaks with a width > 400 bp, and retrieved the sequences

corresponding to each peak in the foreground and background sets. Files containing these sequen-

ces were submitted to Analysis of Motif Enrichment (AME v4.10.1, McLeay and Bailey, 2010), part

of the MEME suite (RRID:SCR_001783), to calculate enrichment of sequence motifs in each of the

eight peak modules compared to peaks in the dissimilar background sets. For AME analysis, we

used the JASPAR 2016 VERTEBRATES motif database (RRID:SCR_003030) (Mathelier et al., 2016),

with the addition of NEUROD2 motifs which have been previously identified, but were not included

in this database (Fong et al., 2015). We examined the AME results for each module, and compiled

a set of motifs that were found to be highly significantly associated with differential peak accessibil-

ity: CUX, DLX, etc. To find depleted motifs, AME was also performed with foreground and back-

ground peak sets reversed. AME results for each peak module are available in Supplementary file

2A. For downstream analysis of peaks that contain these TF target motifs, we searched all peaks for

motif occurrences using Find Individual Motif Occurrences (FIMO, Grant et al., 2011). Selected
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FIMO results, with the locations of each differentially accessible motif among our peak sets, can be

found in Supplementary file 2B. To identify the cognate TFs that may bind these motifs, we used a

single exemplar of these TF families to search the TreeFam database (RRID:SCR_013401) to identify

related transcription factors (Ruan et al., 2008), then filtered these factors for those with an average

gene expression count > 5 for at least one glutamatergic cell class. We then performed literature

searches for each remaining factors to determine if they are known to not bind to the

motifs identified in our AME results, and excluded those factors. To footprint TF occupancy, we

used the locations of motif families identified by FIMO within our peak set, and plotted the position

of the 5’ end of the sequenced fragments in a single replicate of BAM-formatted mapped reads for

each cell class as the Tn5 insertion sites for that cell class. These footprints were then normalized to

the millions of reads in each BAM file. Motif LOGOs were generated using WebLogo v3.5.0

(Crooks et al., 2004).

Network analysis
To build a regulatory network, we selected regulatory source nodes using the flowchart in Figure 7—

figure supplement 1A. We started with differentially enriched motifs from AME analysis, and result-

ing TreeFam TF candidates, described above. We then assigned a gene module to each TF, by cal-

culating the Pearson correlation between the average gene expression and the k-means centers of

each gene module. The module with the highest score was assigned to the gene. We then looked at

literature to determine if the gene product was a likely repressor or activator of transcription. If the

gene product was likely to be an activator, we checked to see if the TF target motif was enriched

among peaks in the peak module that matched the assigned gene module. If the gene product was

likely to be a repressor, we checked for depletion of the TF target motif in the corresponding gene

module. For each set of motifs and gene modules, we then selected the highest-expressed gene

that passed the above criteria as a putative activator or repressor source node.

We next selected edges (TF motifs) and targets (TF genes) using the flowchart provided in Fig. 7-

figure supplement 1BFigure 7—figure supplement 1B. For each differentially enriched motif

selected from our AME analysis, we used FIMO to find all instances of the motif in the sequences of

our peaks. We then filtered motifs to obtain only those that were significantly associated with at

least one peak module (Fisher’s exact test p-value < 0.01), then filtered for motifs that were found in

peaks that were positively associated with a gene expression module (Fisher’s exact test p-value

< 0.01). We then selected motifs that were found in peaks that were significantly differentially acces-

sible in at least one pairwise comparison between glutamatergic cell classes (DiffBind p < 0.001),

and were associated with a differentially expressed gene (DESeq2 p < 1�10�5). To plot the resulting

network, we restricted our target set to motifs in peaks that were positionally associated with known

TF genes listed in the AnimalTFDB database (RRID:SCR_001624) (Zhang et al., 2012). Finally, we

grouped our filtered motifs based on whether the TF that binds the target motif is known to be a

repressor or an activator. For activators, we did a final filtering step to select only motifs in peaks

whose accessibility was positively correlated with expression of the activator gene (Pearson correla-

tion coefficient > 0.3). For repressors, we selected motifs in peaks that were negatively correlated

with expression of their putative regulator (Pearson correlation coefficient <�0.3). The final table of

filtered associations is available as Supplementary file 2C. Finally, we plotted the resulting network

diagram using Cytoscape v.3.4.0 (Shannon et al., 2003).

Data analysis and presentation tools
Source code for our analyses are available online at: https://github.com/hypercompetent/

Gray2017eLife. Analysis and visualization of the data presented in this paper were made possible

through the use of several R packages: dplyr (Wickham and Francois, 2016), gdata (Warnes et al.,

2015), matrixStats (Bengtsson, 2016), purrr (Wickham, 2016), and reshape2 (Wickham, 2007) for

general manipulation of datasets; ggplot2 for plotting of most graphs and figures (Wickham, 2009);

gplots for plotting of some heatmaps (Warnes et al., 2016); viridis (Garnier, 2016) and RColor-

Brewer (Neuwirth, 2014) for heatmap color selection; dendextend for plotting dendrograms (Gal-

ili, 2015); Gviz for plots of chromosome ideograms (Hahne and Ivanek, 2016); UpSetR for plotting

overlaps between sets of ATAC-seq peaks (Lex et al., 2014); GenomicRanges for calculations involv-

ing peak and TSS positions in the genome (Lawrence et al., 2013); rtracklayer (Lawrence et al.,
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2009) for access to RefSeq data from the UCSC Genome Browser database; GenomicAlignments for

manipulating data from paired-end BAM files (Lawrence et al., 2013); DESeq2 for calculations of

differential gene expression and differential peak accessibility (Love et al., 2014); DiffBind for com-

parisons between ATAC-seq samples (Stark and Brown, 2011); and BSgenome for genomic

sequence retrieval (Pagès, 2016Pagès, 2016). We have listed only packages that were invoked

directly, though each package may require additional dependencies.
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