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Montreal, Canada; 10Department of Biology, Washington University, St. Louis,
United States

Abstract The visual system consists of two major subsystems, image-forming circuits that drive

conscious vision and non-image-forming circuits for behaviors such as circadian photoentrainment.

While historically considered non-overlapping, recent evidence has uncovered crosstalk between

these subsystems. Here, we investigated shared developmental mechanisms. We revealed an

unprecedented role for light in the maturation of the circadian clock and discovered that

intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for this refinement process. In

addition, ipRGCs regulate retinal waves independent of light, and developmental ablation of a

subset of ipRGCs disrupts eye-specific segregation of retinogeniculate projections. Specifically, a

subset of ipRGCs, comprising ~200 cells and which project intraretinally and to circadian centers in

the brain, are sufficient to mediate both of these developmental processes. Thus, this subset of

ipRGCs constitute a shared node in the neural networks that mediate light-dependent maturation

of the circadian clock and light-independent refinement of retinogeniculate projections.

DOI: 10.7554/eLife.22861.001

Introduction
Light is detected by the eye for image-forming functions, including conscious perception of the

visual scene, and for non-image-forming (NIF) functions, such as synchronization of circadian rhythms

to the solar day (circadian photoentrainment) and the pupillary light reflex. These diverse visual func-

tions, both image- and non-image-forming, require the retina for the detection and the initial proc-

essing of light signals, which are then relayed to the brain via the output neurons of the eye, retinal
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ganglion cells (RGCs). The majority of RGCs project to image-forming centers in the brain, such as

the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). A subset of RGCs, how-

ever, is intrinsically photosensitive (Berson, 2003; Berson et al., 2002; Hattar et al., 2002;

Provencio et al., 1998), in addition to receiving indirect light signals from the classical photorecep-

tors, rods and cones (Lucas et al., 2003; Mrosovsky and Hattar, 2003; Panda et al., 2002;

Ruby et al., 2002; Schmidt et al., 2008). These intrinsically photosensitive RGCs (ipRGCs) constitute

the sole conduit of light information to non-image-forming centers in the brain, such as the supra-

chiasmatic nucleus (SCN) (Güler et al., 2008; Hattar et al., 2003; Panda et al., 2003). ipRGCs drive

non-image-forming behaviors even in the absence of rods and cones (Czeisler et al., 1995;

Foster et al., 1991; Freedman et al., 1999; Lucas et al., 2001, 1999). Early reports envisioned a

strict separation between the image- and non-image-forming visual networks (Dreher and Robin-

son, 1991; Moore, 1997; Young and Lund, 1994), but this view has begun to be challenged by

recent evidence for functional crosstalk between the two systems (Ecker et al., 2010;

Estevez et al., 2012; Renna et al., 2011; Schmidt et al., 2014; Zhang et al., 2008).

During development, all RGCs must achieve precise central connections in the brain that are nec-

essary for the generation of visual behaviors. Precise visual circuits emerge in a multistep process:

axon guidance pathways establish a coarse level of organization, which are then refined in an activ-

ity-dependent manner (Arroyo and Feller, 2016; Oster and Sretavan, 2003; Osterhout et al.,

2014; Wong, 1999). The image-forming visual system has been a classic model of activity-depen-

dent refinement of neuronal circuits, and both light-dependent and independent mechanisms play

critical roles (Hubel et al., 1977; Meister et al., 1991; Shatz and Stryker, 1988). Refinement of the

coarse projections of the RGCs to the dLGN is dependent on spontaneously generated neural activ-

ity, termed retinal waves. These retinal waves, with defined properties, sweep across the retina to

instruct segregation of eye-specific projections to the dLGN and SC (Ackman et al., 2012;

Chandrasekaran et al., 2005; Feller, 2002, 2009; Firth et al., 2005; McLaughlin et al., 2003;

Meister et al., 1991; Mrsic-Flogel et al., 2005; Muir-Robinson et al., 2002; Shatz and Stryker,

1988; Stellwagen and Shatz, 2002; Wong, 1999; Xu et al. 2011; Zhang et al., 2011). Interestingly,

light detection through ipRGCs influences retinal waves (Renna et al., 2011), although, eye-specific

segregation still proceeds normally in the absence of light (Demas et al., 2006). In turn, retinal

waves have been shown to modulate the intraretinal gap junction network of ipRGCs (Arroyo et al.,

2016). Furthermore, light detection by ipRGCs has also been implicated in regulating developmen-

tal vascularization in the eye (Rao et al., 2013). However, it has not been determined whether

ipRGCs have light-independent developmental roles or whether the developmental roles of ipRGCs

have permanent functional consequences.

ipRGCs are best known for their ability to synchronize the circadian clock in the SCN to the solar

day (Chen et al., 2011; Güler et al., 2008), a process known as circadian photoentrainment. The cir-

cadian clock contains an intrinsic genetic program that, in the absence of environmental light input,

produces molecular and physiological rhythms with periods close to, but not exactly, 24 hr

(Harmer et al., 2001; Menaker et al., 1978). Due to the autonomous nature of the circadian clock,

the prevailing view has been that the fundamental features of the clock in the SCN, such as period

length, do not require environmental input for maturation (Davis and Menaker, 1981; Davis and

Gorski, 1985; Jud and Albrecht, 2006; Pittendrigh, 1954; Richter, 1971; Vallone et al., 2007;

Yamazaki et al., 2002). However, there is intriguing evidence that animals that do not form eyes or

the optic nerve due to genetic defects exhibit a lengthened circadian period (Laemle and Ottenwel-

ler, 1998; Wee et al., 2002). Since ipRGCs are the major, if not the sole, source of retinal input to

the SCN (Baver et al., 2008; Berson, 2003; Hattar et al., 2006, 2002), these observations implicate

a possible role for ipRGCs in the maturation of the circadian clock.

ipRGCs have now been shown to also project to the image-forming visual system (Ecker et al.,

2010). These projections appear to arise from subtypes of ipRGCs that are morphologically and

physiologically distinct from the originally identified ipRGCs, which are now known as M1 ipRGCs

(Ecker et al., 2010; Schmidt et al., 2011; Schmidt and Kofuji, 2009; Schmidt et al., 2008). M1

ipRGCs predominantly innervate non-image-forming centers and are molecularly differentiated

based on the expression of a transcription factor, Pou4f2 (also called Brn3b) (Chen et al., 2011).

Specifically, Pou4f2-negative M1 ipRGCs project exclusively to circadian centers in the brain and

send intraretinal axonal collaterals (Chen et al., 2011), whereas the majority of M1 ipRGCs and all

non-M1 ipRGCs express Pou4f2. The non-M1 ipRGC subtypes (M2-M5) send their axons to the
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dLGN and SC and are capable of supporting coarse pattern vision in animals lacking functional rod

and cone phototransduction pathways (Brown et al., 2010; Ecker et al., 2010). In addition, the M4

subtype of ipRGCs has been recently shown to influence vision by specifically mediating contrast

sensitivity (Estevez et al., 2012; Schmidt et al., 2014).

Here, we used a variety of mutant mouse lines in which different proportions of ipRGCs are

ablated at different ages to investigate developmental roles for ipRGCs and the long-term functional

consequences. We show that a subset of ipRGCs (Pou4f2-negative M1 ipRGCs) influence the devel-

opment of both the circadian and the visual systems. Furthermore, we show that light plays an

essential role in the circadian but not the image-forming visual process.

Results

Developmental ablation of ipRGCs using Diphtheria toxin A subunit
We utilized two allelic changes at the melanopsin locus to ablate ipRGCs at different ages. As we

have published previously, expression of attenuated diphtheria toxin (aDTA) from the melanopsin

(Opn4) locus (Opn4aDTA) results in ablation of mostly the M1 ipRGCs and does so only at adult ages

(Güler et al., 2008) (Figure 1A,B,D,E). A newly generated line, expresses the full-strength version of

diphtheria toxin (DTA) (Opn4DTA) and causes ablation of ipRGCs at early postnatal stages (Figure 1;

Figure 1—figure supplement 1A–B; Supplementary file 1). To quantify ipRGC loss in the aDTA

and DTA lines, we used two genetic labeling methods. The Opn4Cre; Z/AP mice, in which alkaline

phosphatase (AP) expression is dependent on Cre expression in ipRGCs, labels all subtypes of

ipRGCs (Ecker et al., 2010). Whereas in Opn4LacZ mice only M1 ipRGCs are labeled following X-Gal

staining for b-galactosidase activity (Hattar et al., 2002; McNeill et al., 2011). In animals heterozy-

gous for DTA and Cre (Opn4Cre/DTA; Z/AP mice; Supplementary file 1), ipRGCs were reduced in

number at birth (Figure 1A,C). Total ipRGC number declined until P14, when approximately 500

cells survived, and then remained constant thereafter through 1year of age (Figure 1A,C and E).

Using the LacZ locus with the aDTA or DTA loci, we show that at 6 months of age, about 75 M1

ipRGCs survived in Opn4LacZ/DTA mice (Supplementary file 1), and consistent with our previous

report, about 125 M1 ipRGCs survived in Opn4LacZ/aDTA mice (Güler et al., 2008) (Figure 1F;

Supplementary file 1). These results show that even some ipRGCs that express high levels of mela-

nopsin (M1s) can survive the presence of a single dose of the full strength DTA.

We then sought to determine whether two alleles of DTA would result in a more complete ipRGC

ablation. Since melanopsin is the only known marker for all ipRGCs, either an allele of Cre or LacZ is

required at the melanopsin locus in order for ipRGCs to be labeled and quantified. Neither an anti-

melanopsin antibody nor in situ hybridization with a melanopsin probe can be utilized because Cre,

LacZ, aDTA, and DTA replace the melanopsin gene and thus result in a knockout for melanopsin.

However, retinal innervation of the SCN originates exclusively from ipRGCs and thus the extent of

innervation can be used as a proxy for ipRGC loss. To determine whether two copies of DTA

(Opn4DTA/DTA; Supplementary file 1) would produce further ablation of ipRGCs, we therefore exam-

ined retinal innervation of the SCN as an indirect measure of ipRGC loss. We labeled all retinal pro-

jections by injecting fluorescently labeled cholera toxin subunitb (CTB, a neuronal tracer) into the

eyes and compared SCN innervation in 6-month-old wild-type, heterozygous (Opn4DTA/+), homozy-

gous attenuated-DTA (Opn4aDTA/aDTA), and homozygous DTA (Opn4DTA/DTA) mice (Figure 1D;

Supplementary file 1). Sparse retinal fibers were found in the SCN of heterozygous DTA mice

(Opn4DTA/+) as observed in Opn4Cre/DTA; Z/AP mice (Figure 1A) but these retinal fibers were entirely

absent in Opn4DTA/DTA mice (Figure 1D) suggesting that Opn4DTA/DTA mice have more extensive

ipRGC loss than Opn4DTA/+ mice. The more substantial and earlier ipRGC loss in Opn4DTA/DTA mice

was also confirmed by examining SCN innervation using CTB injections in P7 wild-type, Opn4aDTA/

aDTA, and Opn4DTA/DTA mice (Figure 1B).

Given the strength of DTA as a toxin, we assessed Opn4DTA/DTA mice for off-target effects. Gen-

eral retinal structure was evaluated by staining retinal sections from wild-type and Opn4DTA/DTA mice

with hematoxylin and eosin stains and additionally fluorescent staining for various retinal cell types,

including cones, ON bipolar cells, calretinin-positive amacrine and ganglion cells, and Brn3a positive

ganglion cells (Figure 1—figure supplement 1C,E–F). Wild-type and Opn4DTA/DTA mice appeared

similar by these stains, and quantification of total retinal thickness, as well as the thickness of each of
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Figure 1. Developmental ablation of ipRGCs in the mouse retina. (A) Developmental time course of ipRGC innervation of the SCN, visualized by AP

staining, in Opn4Cre/+; Z/AP and Opn4Cre/DTA; Z/AP mouse. For comparison, SCN staining from Opn4Cre/aDTA; Z/AP mice at P14 are also shown. Scale

bar = 200 mm. (B) SCN innervation in P7 WT, Opn4DTA/DTA, and Opn4aDTA/aDTA mice revealed by CTB injections into the eyes. Scale bar = 100 mm. (C)

Developmental time course of ipRGC (all subtypes) cell density visualized by AP staining of retina from Opn4Cre/+ Z/AP (control) and Opn4Cre/DTA; Z/AP

Figure 1 continued on next page
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the retinal layers, based on hematoxylin and eosin staining showed no difference between wild-type

and Opn4DTA/DTA mice (Figure 1—figure supplement 1D). We also counted the number of SMI-32-

positive ganglion cells, Brn3a-positive ganglion cells, cones, and starburst amacrine cells (Figure 1—

figure supplement 1G–J). When we compared wild-type and Opn4DTA/DTA mice, there was no dif-

ference in cell number of any of these cell types. It is relevant to mention that about 50% of SMI-32

positive ganglion cells are actually M4 ipRGCs (Estevez et al., 2012; Schmidt et al., 2014), which

express lower levels of melanopsin compared to M1 ipRGCs (Ecker et al., 2010; Sexton et al.,

2015). Thus, expression of two copies of DTA from the melanopsin locus does not even succeed in

killing all ipRGCs. Nonetheless, since we lack specific molecular markers for the other non-M1 ipRGC

subtypes, we have no means of knowing the exact time course and extent of ablation for each of

those subtypes. To assess potential off target effects in relevant brain regions, we counted the total

number of nuclei (based on DAPI staining) and the total number of neurons (identified by antibody

staining for Hu) in the SCN of wild-type and Opn4DTA/DTA mice. There was no difference between

wild-type and Opn4DTA/DTA mice in the number of nuclei or neurons when compared in total or sec-

tion by section through the SCN (Figure 1—figure supplement 2). Furthermore, the total size of

the dLGN was also not different between wild-type and Opn4DTA/DTA mice or among any other

tested mouse lines (Figure 4—figure supplement 4E). These data combined demonstrate that DTA

efficiently and selectively ablated ipRGCs at early postnatal ages.

ipRGCs are necessary to set the period length of the circadian clock
We recorded wheel-running activity under a 12:12-LD cycle, to measure circadian photoentrainment,

and under constant darkness, to measure the intrinsic properties of the circadian clock (Figure 2A–

C). We assessed wild-type and Opn4LacZ/LacZ (a null allele for melanopsin) mice as controls and also

recorded wheel-running activity of Opn4aDTA/aDTA, Opn4DTA/DTA, Opn4DTA/+, and Opn4DTA/LacZ mice

(Figure 2A; Figure 2—figure supplement 1; Supplementary file 1). Opn4LacZ/LacZ and wild-type

mice showed normal photoentrainment, phase shifting (at CT16), and free-running periods

(Figure 2A–C). As previously published, Opn4aDTA/aDTA mice were unable to photoentrain or phase

shift and free-ran under all lighting conditions with a period comparable to controls (Güler et al.,

2008) (Figure 2A–C). Opn4DTA/+ mice photoentrained, phase shifted (at CT16), and free-ran in con-

stant darkness with a normal circadian period (Figure 2A–C) indicating that residual retinal input to

the SCN in heterozygotes is sufficient for circadian photoentrainment. In the Opn4DTA/LacZ mice,

the ~500 remaining ipRGCs (~75 M1 ipRGCs) in heterozygous DTA animals, further lose their intrin-

sic photoresponses due to the loss of both melanopsin alleles and thus can only relay rod/cone input

to the brain. In these mice, circadian responses to light were highly attenuated, with inconsistent

entrainment and phase-shifting, and exhibited a free-running period comparable to control mice

(Figure 2A–C, Figure 2—figure supplement 1A). Similar to Opn4aDTA/aDTA mice, Opn4DTA/DTA mice

did not photoentrain; however, they free-ran with an abnormally lengthened period (Figure 2A,B;

Figure 2—figure supplement 1B). Because full-strength DTA, but not aDTA, kills ipRGCs during

Figure 1 continued

mice at P0 (control n = 3, DTA n = 7), P3 (control n = 7, DTA n = 5), P5 (control n = 6, DTA n = 4), P9 (control n = 4, DTA n = 4), and P14 (control n = 3,

DTA n = 6, aDTA n = 5). Cell counts from P14 retinas of Opn4Cre/aDTA; Z/AP mice are also shown for comparison. Using a two-way ANOVA, we found a

strongly significant effect of genotype. A t-test for P0, P3, P5, and P9 time points, and a one-way ANOVA with Bonferroni’s post-hoc analysis for P14

revealed a significant cell loss at each time point. (D) SCN innervation revealed by CTB injections into the eyes of 6-month-old WT, Opn4DTA/+,

Opn4DTA/DTA, and Opn4aDTA/aDTA mice. Scale bar = 200 mm. (E) Total cell counts of ipRGCs (all subtypes) revealed by alkaline phosphatase staining at

P14 and 1 year of age in Opn4Cre/+; Z/AP (control; P14: n = 5, 1 year: n = 4), Opn4Cre/aDTA; Z/AP (P14: n = 5; 1 year: n = 3), and Opn4Cre/DTA; Z/AP (P14:

n = 6; 1 year: n = 6). Two-way ANOVA, Bonferroni’s multiple comparisons test and adjusted p values. (F) Total cell counts of M1 ipRGCs, identified by

x-Gal staining of retinas from 6 month old Opn4LacZ/+ (control; n = 4), Opn4LacZ/aDTA, and Opn4LacZ/DTA mice (n = 4). One-way ANOVA, Bonferroni’s

multiple comparisons test and adjusted p values. Error bars represent s.e.m. for all graphs. See also Figure 1—figure supplement 1.

DOI: 10.7554/eLife.22861.002

The following figure supplements are available for figure 1:

Figure supplement 1. Generation and characterization of mice with an Opn4DTA allele.

DOI: 10.7554/eLife.22861.003

Figure supplement 2. The number of cells in the SCN is unaffected in Opn4DTA/DTA mice.

DOI: 10.7554/eLife.22861.004
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Figure 2

Figure 2. Developmental ablation of ipRGCs results in a lengthened circadian period. (A) Representative actograms of wild-type, Opn4LacZ/LacZ,

Opn4DTA/+, Opn4DTA/LacZ, Opn4DTA/DTA and Opn4aDTA/aDTA mice under 12:12-LD cycle and constant darkness (DD). White background indicates light

and grey background indicates darkness. (B) The circadian period length of all tested genotypes (wild-type: n = 18, Opn4LacZ/LacZ: n = 17, Opn4DTA/+:

n = 8, Opn4DTA/LacZ: n = 7, Opn4DTA/DTA: n = 7, and Opn4aDTA/aDTA: n = 18). (C) For phase-shifting experiments, a subset of wild-type, Opn4LacZ/LacZ,

Opn4aDTA/aDTA were assessed, and the total mice analyzed was as follows: wild-type (n = 7), Opn4LacZ/LacZ (n = 8), Opn4DTA/+ (n = 8), Opn4DTA/LacZ

(n = 7), Opn4DTA/DTA (n = 7), and Opn4aDTA/aDTA (n = 8). As expected from substantial ipRGC ablation, phase shifting was significantly reduced in

Opn4DTA/LacZ, Opn4DTA/DTA and Opn4aDTA/aDTA mice. (D) Representative actograms of wild-type mice enucleated at either P0 (n = 8) or P60 (n = 7),

under 12:12-LD and DD. (E) The circadian period length for both enucleation groups. Only mice enucleated at P0 exhibited a lengthened circadian

period (B and C) One-way ANOVA with Bonferroni’s multiple comparisons test and adjusted p values. (E) Two-way ANOVA, Bonferroni’s multiple

comparisons test and adjusted p values. Error bars represent s.e.m. for all graphs. See also Figure 2—figure supplements 1–2.

Figure 2 continued on next page
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early development, these findings suggested the hypothesis that ipRGCs act during early postnatal

ages to establish a normal circadian period length. We performed a general examination of expres-

sion of transcription factors important for SCN development and a neuropeptide relevant for clock

function to examine the SCN, and found no apparent disruption in the SCN of Opn4DTA/DTA mice

(Figure 2—figure supplement 2). Thus, loss of ipRGC innervation does not drastically alter SCN

development, and it is possible the lengthened period stems from a loss of direct ipRGC-dependent

regulation of SCN neurons. Alternatively, this effect could be due to altered input from the intergen-

iculate leaflet (IGL), which also receives innervation by ipRGCs.

To assess the relevance of early ablation of ipRGCs in causing the lengthened circadian period of

Opn4DTA/DTA mice, we removed both eyes from mice at either P0 or P60 to mimic the killing of

ipRGCs early (Opn4DTA/DTA) versus late (Opn4aDTA/aDTA). Starting at P74, we recorded wheel-running

activity under a 12:12-LD cycle and constant darkness. Since the mice lack eyes, they lacked photic

effects on the clock (Figure 2D,E). However, mice enucleated at P0 exhibited a lengthened circadian

period similar to Opn4DTA/DTA mice, whereas mice enucleated at P60 phenocopied Opn4aDTA/aDTA

mice exhibiting a period comparable to intact mice (Figure 2A–B,D–E). Circadian period length has

been shown to be stable in adult mice kept under constant darkness for 2 months

(Campuzano et al., 1999). Thus, these data corroborate results from Opn4DTA/DTA mice indicating

that ipRGCs function postnatally to set the length of the circadian period.

Light is required to set the length of the intrinsic circadian period
We asked whether light-driven input from ipRGCs is important for establishing circadian period

length. Wild-type animals were raised under either constant darkness or a 12:12-LD cycle. At P60,

we assessed the intrinsic circadian period of these animals by recording their wheel-running activity

in constant darkness (Figure 3A,B; Figure 3—figure supplement 1). While the phenotype was less

penetrant than that the Opn4DTA/DTA mice and P0 enucleates, most (9 of 16) dark-reared mice exhib-

ited a longer intrinsic circadian period than mice raised in a 12:12-LD cycle and this was stable for

duration of our recordings (up to 60 days; Figure 3A,B; Figure 3—figure supplement 1). The

lengthened period of the dark-reared animals was comparable to that exhibited by mice enucleated

at P0 and mice with early postnatal ablation of ipRGCs (Opn4DTA/DTA) (Figures 2 and 3; Figure 3—

figure supplement 1). It has been thought that the mammalian circadian period length was estab-

lished independent of sensory input, but our data show that light contributes to this process. In

zebrafish, it is known that light is required to initiate expression of clock genes and for generation of

rhythms (Ben-Moshe et al., 2014; Kazimi and Cahill, 1999; Ziv et al., 2005); however, this is the

first evidence to indicate that light is also required for mammalian clock maturation.

Upon exposure to a 12:12-LD-cycle, dark-reared mice photoentrained, and light exposure during

photoentrainment was sufficient to normalize the circadian period length (Figure 3A,B; Figure 3—

figure supplement 1). Furthermore, a single short light pulse (3 hr), which did not cause photoen-

trainment, (Figure 3C,D) was also sufficient to set the circadian period of dark-reared animals

(Figure 3C,D). These data indicate that brief light exposure is sufficient to set the circadian period

and can even occur in adults, thus, indicating a lack of a critical developmental window for this

process.

Developmental ablation of ipRGCs disrupts axonal segregation of
retinogeniculate projections
By P7, ipRGCs have reached their central targets in the brain (Figure 1A–B) (McNeill et al., 2011)

and a subset of ipRGCs forms intra-retinal collateral axons that terminate in the inner plexiform layer,

Figure 2 continued

DOI: 10.7554/eLife.22861.005

The following figure supplements are available for figure 2:

Figure supplement 1. Additional actograms for Opn4DTA/LacZ and Opn4DTA/DTA mice.

DOI: 10.7554/eLife.22861.006

Figure supplement 2. Expression pattern of transcription factors critical for SCN development.

DOI: 10.7554/eLife.22861.007
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where they synapse onto dopaminergic amacrine cells (Joo et al., 2013; Prigge et al., 2016) (Fig-

ure 4—figure supplement 1). P7 is in the middle of a critical developmental period for the image-

forming visual system. From P0-P14, the retinotopic map is being refined by spontaneously gener-

ated neural activity in the retina, termed retinal waves (Ackman et al., 2012; Feller, 2009;

Feller et al., 1996; McLaughlin et al., 2003; Meister et al., 1991; Ramoa et al., 1989; Shatz, 1990;

Stellwagen and Shatz, 2002; Xu et al. 2011; Zhang et al., 2011). The presence of intra-retinal col-

laterals on ipRGCs at early postnatal ages provides anatomical means for ipRGCs to influence the

Figure 3. Light sets the circadian period length, even during adulthood. (A and B) Representative actograms of wild-type mice raised in either a 12:12-

LD cycle (n = 13) or darkness (n = 16), and exposed to 12:12-LD cycle for 1 month. The circadian period of dark-reared mice is lengthened initially, but

rescued and is no longer significantly different from 12:12-LD reared mice after light exposure. (C and D) Representative actograms of wild-type mice

raised in either a 12:12-LD cycle (n = 17) or in darkness (n = 12), and then exposed to a 3 hr light pulse. Dark-reared mice exhibited a longer period.

Following the 3 hr light pulse, the circadian period length of dark-reared animals shortened. (B and D) Two-way ANOVA, Bonferroni’s multiple

comparisons test and adjusted p values. Error bars represent s.e.m. See also Figure 3—figure supplement 1.

DOI: 10.7554/eLife.22861.008

The following figure supplement is available for figure 3:

Figure supplement 1. Actograms for all dark reared mice tested.

DOI: 10.7554/eLife.22861.009
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retina during an important developmental window. The Opn4DTA/DTA mice allowed us the opportu-

nity to directly test the involvement of ipRGCs, not just melanopsin-based light sensitivity, in the

development and refinement of the image-forming visual system. To investigate this, we traced the

axonal projections of retinal ganglion cells in adult wild-type and Opn4DTA/DTA mice, and observed

that, while retinal innervation of the superior colliculus in Opn4DTA/DTA mice was comparable to wild-

type (Figure 4—figure supplement 2), eye-specific axonal segregation in the dLGN was severely

disrupted (Figure 4A,B; Figure 4—figure supplements 3 and 4). In Opn4DTA/DTA mice, the ipsilat-

eral zone had poorly defined boundaries and substantial contralateral innervation (Figure 4A). We

quantified eye-specific axonal segregation in the dLGN using two distinct methods (Datwani et al.,

2009; Demas et al., 2006; Renna et al., 2011) (Figure 4B; Figure 4—figure supplement 3). In

Opn4DTA/DTA mice, there was a significant increase in the percentage of pixels with overlapping

input from the two eyes, and this eye-specific segregation defect was most severe in the caudal

dLGN (Figure 4A, Figure 4—figure supplement 4F). The total amount of ipsilateral and contralat-

eral input and total dLGN size were similar across all tested genotypes (Figure 4C,D, Figure 4—fig-

ure supplement 4C–E). Abnormal eye-specific segregation was not observed in either melanopsin

knockout mice (Opn4LacZ/LacZ) or mice with ipRGCs ablated during adulthood (Opn4aDTA/aDTA) (Fig-

ure 4—figure supplement 4A–D). Importantly, Opn4DTA/+ mice, which have substantial ipRGC loss,

although to lesser degree than Opn4DTA/DTA mice, exhibited disrupted eye-specific segregation that

was intermediate between wild-type and Opn4DTA/DTA mice (Figure 4A,B, Figure 4—figure supple-

ment 4F). Combined, these data reveal an developmental role for ipRGCs in the segregation of all

RGC inputs to the dLGN.

To conclusively determine whether ipRGCs function during early postnatal ages to regulate

refinement of retinogeniculate projections, we examined eye-specific segregation at P8 and, similar

to adult mice, found an increase in overlapping ipsilateral and contralateral projections in Opn4DTA/

DTA mice, but no difference in total retinal input compared to wild-type (Figure 5A–D). These data

indicate that ipRGCs function at early postnatal ages to mediate refinement of the image-forming

visual system by regulating eye-specific segregation of retinogeniculate projections.

Mice with early ablation of ipRGCs have deficits in visual acuity
To examine the functional consequence of altered eye-specific segregation, we compared wild-type,

Opn4LacZ/LacZ, and Opn4DTA/DTA mice in two behavioral tests of visual acuity: the virtual optomotor

system and the visual water task (Douglas et al., 2005; Prusky et al., 2000). By both measures,

Opn4DTA/DTA animals exhibited reduced visual acuity compared to controls (wild-type and Opn4LacZ/

LacZ; Figure 4E,F).

Heterozygous DTA animals (Opn4DTA/+) have less ipRGC loss than homozygous mice (Opn4DTA/

DTA) (Figure 1D; Supplementary file 1) and have intermediate deficits in eye-specific segregation

compared to homozygous and wild-type mice (Figure 4A,B; Figure 4—figure supplement 4F).

Remarkably, Opn4DTA/+ mice also exhibited an intermediate reduction in visual acuity (Figure 4E,F).

Thus, the severity of the deficits in eye-specific segregation and visual functions were correlated with

the extent of ipRGC loss. While many factors including circadian time and the pupillary light reflex

contribute to visual acuity, these factors cannot explain the deficits in visual acuity observed in

Opn4DTA/+ and Opn4DTA/DTA mice. First, the loss of acuity in Opn4DTA/DTA cannot be explained by a

loss of photoentrainment and the possibility that we are testing acuity at different circadian times,

because Opn4DTA/+ mice, which photoentrain also exhibit deficits in visual acuity. In addition,

Opn4aDTA/aDTA mice, which free run, do not exhibit the substantial reduction in acuity observed in

Opn4DTA/DTA mice. Furthermore, loss of the pupillary light reflex cannot fully explain the deficits in

visual acuity because when the pupil is fully dilated with atropine there is only a minor reduction in

acuity and it is not comparable to the substantial deficits observed in Opn4DTA/+ and Opn4DTA/DTA

mice (Güler et al., 2008). However, it is important to note that we cannot rule out contributions

from direct effects of ipRGCs on retinal functions. For example, the role of M1 ipRGCs in regulating

dopamine in the retina, could contribute (Dkhissi-Benyahya et al., 2013; Prigge et al., 2016;

Zhang et al., 2012).
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Figure 4. Adult Opn4DTA/DTA mice display deficits of eye-specific axonal segregation and visual acuity. (A) RGC axonal innervation of the adult dLGN of

wild-type (n = 12), Opn4DTA/+ (n = 8), Opn4DTA/DTA (n = 10) and Opn4Cre/+; Pou4f2zDTA/+ (n = 6; previously published as Opn4Cre/+; Brn3bzDTA/+). The

rightmost images represent binarized version of the merged images to visualize the overlap between contralateral and ipsilateral RGC projections.

Representative images were taken from the region of the dLGN indicated by the blue arrow in Figure 4—figure supplement 4F. (B) Opn4DTA/DTA mice

Figure 4 continued on next page
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Spontaneous retinal activity is altered in Opn4DTA/DTA mice
Eye-specific segregation deficits in Opn4DTA/DTA mice were observed by P8, and since light through

ipRGCs modulates retinal wave activity and retinal waves drive ipRGC spiking (Renna et al., 2011),

we hypothesized that Opn4DTA/DTA have altered spontaneous retinal activity in darkness. We

recorded wave activity at P6 in the dark on a multielectrode array in wild-type and Opn4DTA/DTA reti-

nas (Figure 5E–H; Supplementary file 2). Spiking properties of RGCs during waves were signifi-

cantly altered in Opn4DTA/DTA mice. Wave-associated bursts (WABs) were significantly longer in

duration, and had higher firing rates, and shorter inter-burst intervals (Figure 5E,G–H,

Supplementary file 2) than they did in wild-type controls. There were also significantly more total

spikes as well as more spikes outside of bursts (Figure 5E,G–H, Supplementary file 2). Correlated

spiking activity between neurons was very similar between the genotypes, as measured by the spike

time tiling coefficient (STTC; [Cutts and Eglen, 2014])(Figure 5F). These data indicate that ipRGCs

are critical for normal retinal wave activity, even in darkness, and together with our anatomical find-

ings (Figure 4A–D; Figure 4—figure supplements 3–4), allow us to suggest that ipRGCs mediate

eye-specific segregation of RGC projections to the dLGN by regulating the spiking properties of

conventional RGCs during retinal waves.

200 M1 ipRGCs are sufficient for both setting the circadian period and
refining the imaging-forming visual system
There are currently five identified subtypes of ipRGCs. M1 ipRGCs project to non-image-forming

brain centers, while M2-M5 ipRGCs project at least in part to image-forming targets (Ecker et al.,

2010; Schmidt et al., 2011; Schmidt and Kofuji, 2009). The M1 subtype can be further subdivided

based on expression of the transcription factor Pou4f2 (also referred to as Brn3b), which is also

expressed in all non-M1 ipRGCs (Chen et al., 2011).~200 Pou4f2-negative-M1 ipRGCs project exclu-

sively to circadian centers (predominantly to the SCN) (Figure 4—figure supplement 5B)

(Chen et al., 2011) and are the subset of ipRGCs that have intra-retinal collateral axons (data not

shown). This population of cells are sufficient for circadian photoentrainment in the presence of one

copy of melanopsin (Chen et al., 2011). As described previously, Pou4f2-positive M1 ipRGCs and

non-M1 ipRGCs can be selectively ablated by crossing Opn4Cre/+ mice with Pou4f2Z-DTA/+ mice (pre-

viously published as Brn3bZ-DTA/+ mice), in which a floxed stop cassette followed by DTA was

inserted into the Pou4f2 locus (Chen et al., 2011; Mu et al., 2005). In doubly heterozygous offspring

(Opn4Cre/+; Pou4f2Z-DTA/+, previously published as Opn4Cre/+;Brn3bZ-DTA/+ mice, Supplementary file

1), Pou4f2-positive ipRGCs (some M1 and all non-M1 ipRGCs) are ablated by P7, leaving a subset of

Figure 4 continued

exhibited a significantly higher percentage of overlapping pixels relative to the total number of LGN than any other tested genotype. Opn4DTA/+ mice

exhibited levels of overlapping pixels that were intermediate compared to Opn4DTA/DTA and control mice. (C and D) The percentage of the total

number of pixels in the dLGN from ipsilateral and contralateral fibers is similar among all tested genotypes. (E and F) The virtual optokinetic system

and visual water task were used to assess visual function wild-type (virtual optokinetic system: n = 16, visual water task: n = 10), Opn4LacZ/LacZ (virtual

optokinetic system: n = 4, visual water task: n = 6), Opn4DTA/+ (virtual optokinetic system: n = 9, visual water task: n = 6), Opn4DTA/DTA (virtual

optokinetic system: n = 7, visual water task: n = 10) mice. Wild-type and Opn4LacZ/LacZ mice were indistinguishable. Opn4DTA/DTA mice exhibited

reduced visual acuity compared to wild-type mice, and Opn4DTA/+ mice exhibited intermediate visual acuity. (B–F) One-way ANOVA, Bonferroni’s

multiple comparisons test and adjusted p values. Error bars represent s.e.m. See also Figure 4—figure supplements 1–5.

DOI: 10.7554/eLife.22861.010

The following figure supplements are available for figure 4:

Figure supplement 1. ipRGC intra-retinal axonal collaterals are present by P7.

DOI: 10.7554/eLife.22861.011

Figure supplement 2. Retinal innervation of the SC in Opn4DTA/DTA mice is indistinguishable from wild-type mice.

DOI: 10.7554/eLife.22861.012

Figure supplement 3. Quantification of disruption in eye-specific axonal segregation in the dLGN of adult Opn4DTA/DTA mice.

DOI: 10.7554/eLife.22861.013

Figure supplement 4. Eye-specific axonal segregation is normal in Opn4Cre/+, Opn4LacZ/LacZ, and Opn4aDTA/aDTA mice.

DOI: 10.7554/eLife.22861.014

Figure supplement 5. All but ~200 ipRGCs are ablated by P7 in Opn4Cre/+; Pou4f2zDTA/+ mice.

DOI: 10.7554/eLife.22861.015
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Figure 5. Opn4DTA/DTA mice display disrupted eye-specific axonal segregation as early as P8 and exhibit altered RGC firing properties. (A) RGC axonal

innervation of the dLGN in P8 wild-type (n = 4) and Opn4DTA/DTA (n = 4) mice as in Figure 3A. (B) At P8, Opn4DTA/DTA mice exhibit a significantly higher

percentage of overlapping pixels relative to the total number of LGN pixels than wild-type mice. (C and D) The percentage of the total number of

pixels in the dLGN from ipsilateral and contralateral fibers is similar among all tested genotypes. * indicates p<0.05 with Student’s t-test. Error bars

Figure 5 continued on next page
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M1 Pou4f2-negative ipRGCs (~200 cells) and all conventional RGCs (Chen et al., 2011) (Figure 4—

figure supplement 5A, Supplementary file 1). In these mice, the SCN remains innervated by

ipRGCs, the IGL receives partial innervation, and ipRGC innervation of image-forming brain regions

is entirely abolished (Chen et al., 2011) (Figure 4—figure supplement 5B).

In Opn4Cre/+; Pou4f2Z-DTA/+ mice, ablation of Pou4f2-positive ipRGCs is complete by P7, and at

this age only the ~200 Pou4f2-negative ipRGCs remain (Figure 4—figure supplement 5A;

Supplementary file 1). Opn4Cre/+; Pou4f2Z-DTA/+ mice can photoentrain and free-run with a circadian

period indistinguishable from controls (Chen et al., 2011), indicating that the remaining Pou4f2-neg-

ative-M1 ipRGCs are sufficient to set the circadian period. Organization of eye-specific retinogenicu-

late projections in Opn4Cre/+; Pou4f2Z-DTA/+ is also indistinguishable from controls (Figure 4A–D;

Figure 4—figure supplement 4A–D). Together these results demonstrate that a single subpopula-

tion of ipRGCs are critically involved in the development of networks devoted to image-forming

vision and the circadian clock. This small population of cells is sufficient for setting of the circadian

period as well as proper segregation of retinogeniculate circuitry.

Discussion
In this study, we identified a shared developmental mechanism for the maturation of the circadian

clock and refinement of eye-specific segregation. Our work reveals the unprecedented role that light

plays in setting the circadian period and identified a regulatory component of the neural networks

that regulate refinement of RGC projections to the thalamus.

The methods we used to ablate ipRGCs involve some inherent uncertainties. We used two differ-

ent versions of diphtheria toxin subunit A with different potencies. As expected, the full-strength

DTA was more efficient than was the attenuated form at killing ipRGCs, but it also ablated ipRGCs

earlier in development. One concern of using two copies of the toxin gene is that even low leaky

expression could lead to off-target cell death. We think this is unlikely since the toxin failed to ablate

at least one ipRGC subtypes with low levels of melanopsin expression—the M4 cells. Moreover, loss

of cells in the retina and retinofugal projections in the brain were consistent with selective loss of

ipRGCs. However, it is always possible that DTA expression from the melanopsin locus causes a

reduction in cell populations that we did not examine. Further, because DTA blocks protein transla-

tion, it could disrupt the function of some cells without actually killing them; the assays we per-

formed do not distinguish between these forms of toxin action. In addition, technical limitations

precluded full assessment the degree of cell loss for many ipRGC subtypes. We currently lack spe-

cific molecular markers for M2, M3, and M5 cells. Furthermore, dendritic stratification is key to dis-

tinguishing ipRGC subtypes, but DTA-dependent ipRGC loss occurs before dendritic arborizations

are mature (between P10-P15, Coombs et al., 2007). However, it is clear that, in Opn4Cre/+;

Pou4f2Z-DTA/+ mice, Pou4f2-positive ipRGCs, which include all non-M1 ipRGCs, die early during

development and yet, their death does not affect the circadian period or the segregation of RGC

projections in the dLGN. Thus, despite some uncertainty about which ipRGCs types die in these

mouse lines and when they do so, taken together our data support the view that early ablation of

Pou4f2-negative M1 ipRGCs are sufficient to induce the effects reported here.

Our study indicates that contrary to the prevailing view that the circadian clock develops indepen-

dent of environmental input, light is necessary for setting the intrinsic period of the circadian clock.

When wild-type animals were raised in constant darkness, they exhibited a lengthened circadian

period as was observed when mice were enucleated at P0 and when ipRGCs were ablated at early

Figure 5 continued

represent s.e.m. for all graphs. (E) RGC spiking properties. Opn4DTA/DTA mice exhibit longer WABs and had a higher firing rate, with more spikes and a

shorter inter-burst interval. There were also significantly more spikes outside of WABs. (F) Spike Time Tiling Coefficient (STTC) versus distance

demonstrating that correlated spiking activity between neurons was similar in Opn4DTA/DTA mice compared to controls. 275 spike trains from wild-type/

control, 245 from DTA. * represent statistically significant differences after Student’s T-tests with a Holm-Bonferroni correction, a = 0.05, m = 22 for

spiking properties, m = 10 for STTC.’ Exact p values are listed in Supplementary file 2. (G) Representative raster plots from multielectrode array

recording of retinal waves in P6 WT and Opn4DTA/DTA mice in the dark. Each row represents the activity on a single electrode. (H) Expansion of one

wave (identified by the red box in (G)). Error bars represent s.e.m. for all graphs.

DOI: 10.7554/eLife.22861.016
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postnatal ages (Opn4DTA/DTA) but not when mice were enucleated at P60 or when ipRGCs were only

ablated during adulthood (Opn4aDTA/aDTA; Figures 2 and 3). Remarkably, when dark-reared mice

were exposed to light for the first time during adulthood, their period length became indistinguish-

able from mice reared under a 12:12 LD cycle (Figure 3). This rescue indicates there is no critical

developmental window during which the intrinsic properties of the circadian clock must be set by

light. Moreover, once animals are exposed to light, the circadian period is irreversibly set. It will be

of interest to investigate the molecular and cellular mechanisms underlying the lengthened period in

Opn4DTA/DTA, P0 enucleates, and dark reared mice, and how light detection by ipRGCs induces a

permanent change in the period length of the circadian clock.

We noticed that the phenotype exhibited by dark-reared animals was less penetrant than that of

Opn4DTA/DTA and P0 enucleates. Though a majority of dark-reared animals (9 of 16) exhibited a

lengthened period, the remainder did not (Figure 3—figure supplement 1). By contrast, virtually all

Opn4DTA/DTA mice and P0 enucleates exhibited lengthened circadian periods. One possible interpre-

tation of this variability could be that the process of setting the circadian period is highly sensitive to

light. This is supported by the fact that merely 3 hr of light exposure is sufficient to set the circadian

period (Figure 3C,D). Alternatively, some dark-reared animals could have been exposed to, say,

very weak light occasionally leaking from night vision goggles or it is possible that, since ipRGCs

depolarize during retinal waves, spontaneously derived activity can partially suffice for period set-

ting. It would be interesting, in future studies, to dark rear mice that lack retinal waves and deter-

mine whether a higher proportion exhibit a lengthened period than dark-reared wild-type mice.

A surprising finding was that early genetic ablation of ipRGCs led to disrupted eye-specific segre-

gation in the dLGN and reduced visual acuity (Figures 4 and 5; Figure 4—figure supplements 3

and 4). Even more surprisingly, our data implicated Pou4f2-negative M1 ipRGCs, which have been

viewed as circadian photoreceptors, as being involved in the development of the image-forming

visual system (Figure 4A,B; Figure 4—figure supplement 4A–B). In Opn4Cre/+; Pou4f2Z-DTA/+ mice,

ipRGC subtypes known to innervate the dLGN (i.e., M2-M5 cells) are developmentally ablated (Fig-

ure 4—figure supplement 5) and only ~200 Pou4f2-negative, circadian center projecting-M1

ipRGCs remain (Chen et al., 2011). In these animals, geniculate organization and visual acuity are

normal (Figure 4A–D) (Chen et al., 2011). The further loss of these 200 Pou4f2-negative M1 ipRGCs

in Opn4DTA/DTA mice (Figure 1) resulted in severe deficits in image-forming visual system (Figures 4

and 5; Figure 4—figure supplements 3 and 4). These results also suggested that the defects

observed in Opn4DTA/DTA mice are not due to the loss of direct ipRGC innervation of the dLGN, nor

to a generalized reduction in the total number of RGCs.

It is possible that the segregation deficits observed in Opn4DTA mice are due to the altered spon-

taneous retinal activity that occurs in P6 Opn4DTA/DTA mice. The salient features of retinal waves

appear to be comprised of correlated, patterned activity sweeping across the retina, instructive for

the formation of retinofugal circuits in the superior colliculus (Xu et al. 2015; Xu et al. 2011),

whereas the individual spiking properties of ganglion cells drive eye-specific segregation within the

dorsal lateral geniculate nucleus (Speer et al., 2014). Many previous studies have examined mice

with genetically or pharmacologically disrupted spontaneous activity (Blankenship et al., 2011;

Rossi et al., 2001; Stellwagen et al., 1999; Torborg et al., 2005; Xu et al. 2011), yet, Opn4DTA/

DTA mice are a unique instance of a manipulation that caused an increase in non-WAB firing while

WAB activity remains highly correlated between pairs of RGCs. Connexin36/45 double knockouts,

which have disrupted eye-specific segregation, exhibit increased tonic firing in RGCs, although cor-

related firing between RGCs is also highly reduced (Blankenship et al., 2011). In ferret, disruption

of patterned activity by the ablation of starburst amacrine cells altered correlated activity and a num-

ber of WAB bursting properties, yet eye-specific segregation proceeded normally (Speer et al.,

2014). Our data are consistent with this study, suggesting changes in spiking activity outside of

WABs is critical for eye specific sectors within the dLGN.

The contribution of disrupted eye-specific segregation to reduced visual acuity has yet to be thor-

oughly investigated likely because many mutations or manipulations that cause disrupted eye-spe-

cific segregation also disrupt other functions of the visual system. For example, no b-wave (nob)

mice have disrupted eye-specific segregation (Demas et al., 2006) and have behavioral deficits in

visual acuity, but this more likely explained by their substantially altered ERG responses

(Neuillé et al., 2014). Similarly eye injections of TTX or epibatidine would disrupt acuity for reasons

other than disrupting eye-specific segregation. Nonetheless, b2 KO mice, which have eye-specific
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segregation deficits at P8 but not at P28 (Feller, 2002), have a substantial deficit in visual acuity in

the optomotor response and by recordings of visually evoked potentials (Rossi et al., 2001), but

exhibit no deficit in the Y-maze (Wang et al., 2009). Thus, it is plausible that the disrupted eye-spe-

cific segregation in Opn4DTA/DTA and Opn4DTA/+ causes the reduction in visual acuity, but as dis-

cussed above, we cannot rule out the contribution of other roles for ipRGCs in retina.

Pou4f2-negative M1 ipRGCs project intra-retinal axonal collaterals that synapse onto dopaminer-

gic amacrine cells, and these projections are present by P7 (Prigge et al., 2016) (Figure 4—figure

supplement 1). Thus, it is probable that ipRGCs regulate the spiking properties of RGCs through

intra-retinal signaling via axonal collaterals.

In this study, we found that maturation of the circadian clock requires light input and setting of

the circadian period can occur even in adulthood. We also showed that ipRGCs are necessary for

refinement of eye-specific axonal segregation in the LGN as well as normal visual acuity. Our work

reveals that while the networks underlying the image-forming and NIF systems have long been

viewed as distinct, ipRGCs constitute a shared node in the neural circuits that mediate light-depen-

dent maturation of the circadian clock and refinement of retinogeniculate projections.

Materials and methods

Animal models
Animals were housed and treated in accordance with NIH and IACUC guidelines, and used protocols

approved by the Johns Hopkins University and Brown University Animal Care and Use Committees

(Protocol numbers MO16A212, and 1010040).

Statistical analysis
All statistical tests were performed in Graphpad Prism 6, except for retinal wave analysis the detail

of which are described below. Specific statistical comparisons are listed in the figure captions.

Generation of Opn4DTA mice
To generate Opn4DTA mice, we used the targeting arms and general strategy detailed in

(Ecker et al., 2010; Güler et al., 2008; Hattar et al., 2002). The construct contained a 4.4 kb

sequence immediately 5’ of the start codon for mouse melanopsin, followed by the coding sequence

for diphtheria toxin A (DTA) subunit, an internal ribosomal entry site (IRES), the coding sequence for

tauLacZ, and a self-excising neomycin resistance construct (loxP-tAce-Cre-Pol II-Neo-loxP) (Fig-

ure 1—figure supplement 1A). Embryonic stem (ES) cells were first screened for homologous

recombination by PCR, and then homologous recombination was confirmed with Southern blot anal-

ysis (a restriction digestion with SpeI resulted in a 10.7 kb band for the wild-type allele and a 5.3 kb

band for the recombined allele) (Figure 1—figure supplement 1B). The blastocyst injection was per-

formed by the Johns Hopkins transgenic core facility. The germline transmission was obtained by

crossing chimeric males with C57Bl/6J females. The genotyping was done by PCR. The DTA allele

was detected with the primers: AACTTTTCTTCGTACCACGG (forward) and ACTCATACATCGCATC

TTGG (reverse), and the wild-type allele was detected with the primers: CCCCTGCTCATCATCATC

TTCTG (forward) and TGACAATCAGTGCGACCTTGGC (reverse). Opn4DTA/+ and Opn4DTA/DTA mice

are viable, fertile, and do not exhibit any gross abnormalities in size.

Alkaline phosphatase staining
A cre-mediated alkaline phosphatase (AP) reporter, provided by Tudor Badea in Jeremy Nathan’s

lab, was expressed in conjunction with Opn4Cre (Ecker et al., 2010). Mice were deeply anesthetized

with 30 ml/kg Avertin and then intracardially perfused with phosphate-buffered saline for 3 min fol-

lowed by 40 ml of 4% paraformaldehyde. Brains and retinas were isolated and post-fixed for 40 min

in 4% paraformaldehyde. Brains were mounted in 3% agarose and then cut into 200 mm sections on

a vibrating microtome (Vibra-tome 1000 Plus). Tissue was heat-inactivated for overnight at 65˚C.
Alkaline phosphatase histochemistry was performed using NBT/BCIP tablets (Roche) for 2–4 hr in

the dark with constant shaking. Tissue was washed three times with phosphate-buffered saline con-

taining 0.1% Tween-20 (Sigma-Aldrich). Retinas were mounted immediately and imaged. Brains

were fixed 3 hr in 4% paraformaldehyde at 4˚C, then counterstained with 1:5 Fast Red nuclear stain
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(Vector Laboratories) in water for 7 min. The sections were then dehydrated in an ethanol series, and

after at least in hour in 100% ethanol, the sections were cleared in a 2:1 mixture of benzyl benzoate:

benzyl alcohol (Sigma-Aldrich), mounted in glycerol, and imaged immediately. To measure cell den-

sity, we counted the number of ipRGCs, in four representative areas of each retina, and calculated

the density of ipRGCs per mm2.

X-gal staining
Mice were deeply anesthetized with 30 ml/kg Avertin followed by cervical dislocation. Eyes were iso-

lated and fixed in 4% paraformaldehyde for 10 min. Retinas were dissected out and then incubated

in buffer B (100 mM phosphate buffer at pH 7.4, 2 mM MgCl2, 0.01% sodium deoxycholate, 0.02%

IGEPAL) then stained for 3 days in buffer B plus 5 mM potassium ferricyanide, 5 mM potassium fer-

rocyanide and 1 mg/ml X-gal as described in Hattar et al. (2002).

Hematoxilin and eosin staining
Animals were anesthetized with 30 ml/kg Avertin, and eyes were removed fixed in 4% PFA for 1 hr.

Retinas were dissected in PBS, placed in cartridges (Tissue-Tek Biopsy Uni-Cassette), and processed

and embedded in paraffin overnight. Eyecups were sectioned at 6 mm. Resulting sections were

deparaffinize by immersion in two changes of xylene for 10 min each. Sections were then rehydrated

in descending series of ethanol ending in water for 5 min. Sections were stained with hematoxylin

for 30 s, washed with tap water for 10 dips, placed briefly in 0.1% sodium bicarbonate, and then

rinsed in clean tap water for 10 dips. Sections were rinsed in 70% ethanol for five dips and stained in

eosin for 20 s. Sectioned were dehydrated with an ascending series of ethanol, ending with two

washes of 100% ethanol. Sections were placed in two washes of xylene (5 min each), and mounted in

Permount.

Immunohistochemistry
Whole eyes were fixed for 15 min in 2% paraformaldehyde (PFA) diluted in PBS and were then dis-

sected to remove the cornea and lens. Whole eyecups were fixed for additional 45 min in 2% PFA

diluted in PBS. Further dissection was done to release the retinas from the RPE, and four nicks were

made so that the retina would lay flat. Whole retinas were blocked in 500 mL of PBS containing

0.3% Triton X100% and 3% goat serum for 2 hr at RT. Either mouse anti-Brn3a (Millipore, cat

#AB5945, RRID:AB_92154) (1:250), rabbit anti-g13 (generously provided by Robert Margolskee,

RRID: AB_2314434)(1:500), rabbit anti-calretinin (Swant, cat #CR 7699/3 hr, RRID: AB_10000321)

(1:500), goat anti-ChAT (Millipore, cat #Ab144p, RRID: AB_262156) (1:200), or mouse anti-SMI-32

(Covance, cat #SMI-32R, RRID: AB_2315331) (1:500) was diluted in blocking solution and incubated

overnight at 4˚C. Retinas were washed 10 min in three changes of PBS, then placed in 1:500 Alexa

Fluor secondary antibody (Invitrogen) overnight at 4˚C. Retinas were washed as above and mounted

flat on slides in VectaShield (Vector Labs, RRID: AB_2336789). To measure cell density was measured

by counting cells in four representative areas of each retina, and density was calculated as the num-

ber of cells per mm2.

For SCN cell counts, mice were perfused with cold 4% PFA, brains were dissected out and then

cryoprotected in 30% sucrose, frozen in OCT, and 25 mm serial coronal sections containing the SCN

were taken. Slides were blocked in PBS containing 0.3% Triton X100 and 3% goat serum for 3 hr at

RT and then incubated overnight at 4˚C in 1:200 monoclonal mouse immunoglobulin G (IgG) 2b

anti-human-HuC/D (Thermofisher, cat# A-21271, RRID: AB_2096358). Slides were then washed in

PBS and then incubated in 1:500 goat anti-mouse IgG2b (isotype of secondary antibody is critical

(Thermofisher, RRID: AB_429670)) overnight at 4˚C. Slides were then washed in PBS and mounted in

VectaShield (Vector Labs, RRID: AB_2336789) with DAPI. For counting of DAPI-labeled nuclei and

Hu-labeled cell bodies, we used a program that was coded in Mathmatica (Wolfram) and was previ-

ously described in Martinelli et al. (2016).

PNA staining
Mice were deeply anesthetized with 30 ml/kg Avertin followed by cervical dislocation. Eyes were iso-

lated and fixed in 4% PFA for 1 hr. Retinas were dissected out and then incubated for 2 hr in Alexa

488-conjugated lectin peanut agglutinin (PNA) (Invitrogen cat# L21409, RRID: AB_2315178) diluted
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1:200 in PBS with 0.3% Triton X100% and 3% goat serum. Retinas were then washed in PBS and

mounted in VectaShield (Vector Labs, RRID: AB_2336789).

In-situ hybridization
Mice were anesthetized with a ketamine/xylazine mixture before transcardially perfusing with 0.9%

saline followed by 4% PFA in PBS, pH 7.4. All tissues were post fixed in 4% PFA overnight at 4˚C,
cryoprotected in 20% sucrose in PBS, frozen in OCT. Compound Embedding Medium (Tissue-Tek),

and stored at �75˚C. Serial sections (20 mm) were cut on a Hacker cryostat and thaw mounted on

Superfrost Plus slides (Thermo Fisher Scientific). Five adjacent sets of sections were prepared from

each postnatal age and stored at –20˚C. Probes were generated as described in VanDunk et al.

(2011). Slides were immersed in 4% PFA, permeabilized with proteinase K, returned to 4% PFA

before being washed in 0.1 M triethanolamine-HCl with 0.25% acetic anhydride. Once blocked in

hybridization buffer at 65˚C slides were incubated in hybridization buffer containing 1–2 mg/ml DIG-

labeled anti-sense cRNA overnight at 65˚C. Slides were then washed in 2XSSC buffer at 62˚C,
washed in 0.2XSSC at 65˚C, blocked with 10% normal horse serum (NHS) in 0.1M PBS, and incu-

bated in alkaline phosphatase labeled anti-DIG antibody (1:2000 in 10% NHS; Roche, RRID: AB_

514497) overnight. Sections were washed and color was visualized using Nitro blue tetrazolium and

5-Bromo-4-chloro-3-indolyl phosphate (Roche). Staining was stopped after visual inspection. Sections

were washed, fixed in 4% PFA, and coverslipped in 90% glycerol, Vectashield Mounting Medium

(Vector Laboratories, RRID: AB_2336789), or UltraCruz Mounting Media with DAPI (Santa Cruz

Biotechnology).

Images were acquired using a Nikon Eclipse 90i microscope, Photometrics Coolsnap HQ2 camera

with a Prior Scientific ProScan II motorized translation stage, and acquired in Volocity (PerkinElmer

Life and Analytical Sciences). Images were exported as 8bit JPEG or TIFF files. All images were

adjusted for clarity by filtering and/or modifying levels, as necessary, in Photoshop (Adobe Systems).

Enucleations
In order to remove the eyes, P0 mice were placed on ice for 2 min, and then a 1–2 mm incision was

made across each eyelid using a sterile scalpel blade. The scalpel blade was then used to puncture

the eyes and forceps were used to pull the eyes free of the orbitals. P60 mice were first anesthetized

with intraperitoneal injection of 20 mL/kg of Avertin. Fingers were placed on either side of the eye

causing it to bulge, a curved pair of scissors was placed between the eye and the skin, and the optic

nerve was cut. Bleeding was controlled by orbital pressure. The animal was monitored over the next

several days for signs of infection.

Wheel running behavior
Mice were placed in cages with a 4.5-inch running wheel, and their activity was monitored with Vital-

View software (Mini Mitter), and cages were changed at least every 2 weeks. All free-running periods

and phase shifts were calculated with ClockLab (Actimetrics).

6-month-old wild-type (n = 18 mice), Opn4LacZ/LacZ (n = 17), Opn4DTA/+ (n = 8), Opn4DTA/LacZ

(n = 7), Opn4DTA/DTA (n = 7), and Opn4aDTA/aDTA (n = 18) mice were placed in 12:12 LD for 10 days

followed by constant darkness for 14 days. For phase-shifting experiments, a subset of wild-type,

Opn4LacZ/LacZ, Opn4aDTA/aDTA were used. Wild-type (n = 7), Opn4LacZ/LacZ (n = 8), Opn4DTA/+ (n = 8),

Opn4DTA/LacZ (n = 7), Opn4DTA/DTA (n = 7), and Opn4aDTA/aDTA (n = 8) mice were exposed to a light

pulse (500 lx; CT16) for 15 min, after being in constant dark for 14 days.

P0 and P60 ennucleated animals were placed in 12:12 LD for 24 days followed by constant dark-

ness for 14 days.

Dark-reared animals and control mice (raised in 12:12 LD) were placed in constant darkness with-

out any exposure to light. Wheel running behavior was recorded in constant darkness for 1–3

months. Mice were then either given a 3-hr light pulse (LD reared: n = 17; DD reared: n = 12) or

placed in 12:12 LD for 14 days and then presented with a 6-hr shift and allowed to re-entrain for 14

days (LD reared: n = 13; DD reared: n = 16). Mice were then returned to constant darkness for 1

month.
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Cholera toxin injections
WT (n = 12), Opn4LacZ/LacZ (n = 6), Opn4aDTA/aDTA (n = 6), Opn4DTA/+ (n = 8), Opn4DTA/DTA (n = 10),

and Opn4Cre/+ (n = 8), and Opn4Cre/+; Pou4f2Z-DTA/+ (n = 6) mice used for examination of adult cen-

tral projections were raised in a standard 12:12 LD cycle. 3-6-month-old mice were anaesthetized

with 20 mL/kg of Avertin. Eyes were injected intravitreally using a glass pipet with approximately 2

ml of cholera toxin B subunit conjugated with Alexa Fluor 488 (Thermofisher, cat# C34775) or Alexa

Fluor 594 (Thermofisher, cat# C22842) using a Harvard Apparatus HL-190 picospritzer. CTB-488 was

used at a concentration of 6.25 mg/mL and CTB-594 was used at 5 mg/mL for all injections. Three days

after injection, mice were perfused with 4% PFA, and brains were isolated, cryoprotected in 30%

sucrose, frozen in OCT, and 40 mm sections were taken using a cryostat. Sections were dried over-

night, mounted in VectaShield, and imaged on a Zeiss Imager M1 upright epifluorescence micro-

scope (AxioVision). Retinas were also dissected, mounted in vectashield, and examined for good

injection quality.

Mice used to examine LGN projections at P8 were born and raised in 12:12-LD cycle. At P7, mice

were anaesthetized on ice, and ocular injections of contrasting fluorescent anterograde tracers (chol-

era toxin subunit B (CTB)-Alexa-488 and CTB-Alexa-594) were made. At P8, mice were perfused

with 4% PFA, and brains were isolated, cryoprotected in 30% sucrose, frozen in OCT, and 40 mm

sections were taken using a cryostat. Sections were dried overnight, mounted in VectaShield (Vector

Laboratories, RRID: AB_2336789), and imaged on a Zeiss Imager M1 upright epifluorescence micro-

scope (AxioVision). Retinas were also dissected, mounted in vectashield, and examined for good

injection quality. Only animals with complete retinal labeling were assessed further. For assessment

of SCN innervation at P7, mice were injected with CTB-Alexa-488 at P4. At P7, mice were perfused

with 4% PFA, and brains were isolated, cryoprotected in 30% sucrose, frozen in OCT, and 40 mm

sections were taken using a cryostat. Sections were dried overnight, mounted in VectaShield (Vector

Laboratories, RRID: AB_2336789), and imaged on Zeiss LSM 700 Confocal.

Quantification of eye-specific segregation
Quantifications were performed with the analyzer blinded to the genotypes being measured.

Percent overlap between contralateral and ipsilateral projections
40 mm serial sections were taken spanning the dLGN. Images were taken of every section containing

the dLGN. In ImageJ, for each image, a background threshold was determined by measuring the

maximum intensity of pixels in regions of the section that contained no retinal innervation. Each

image was binerized at this intensity threshold. Pixels from contralateral fibers were psedo-colored

red and pixels from ipsilateral fibers were psedo-colored green. The whole dLGN was selected. Per-

cent overlap represents ((number of yellow pixels/total number of pixels)*100)), percent ipsilateral

represents ((number of green pixels/total number of pixels)*100)), and percent contralateral repre-

sents ((number of red pixels/total number of pixels)*100))(Datwani et al., 2009; Demas et al.,

2006). Averages presented in bar graphs represent all sections from the dLGN pooled, and the dis-

tribution of segregation throughout the dLGN is shown in Figure 4—figure supplement 4F. Repre-

sentative images were always taken from the region of the dLGN indicated by the blue arrow in

Figure 4—figure supplement 4F.

Quantification of eye-specific segregation using the variance of R-value
distribution (additional quantification method for eye specific segregation)
A complete series of 40 mm sections spanning the dLGN were digitally imaged with settings (gain,

exposure time and gamma level) that were identical for all photomicrographs and for both tracers

for all mice. Sections from each brain were aligned to ensure all images analyzed were within the

same region of the dLGN. We were blind to genotype until data were processed and analyzed, as

described by (Renna et al., 2011). For this quantification method, 15 sections from the middle of

the LGN were analyzed per adult mouse, per dLGN hemisphere. R-values were calculated for all pix-

els within each dLGN. This was done by selecting a region of interest that was maximally innervated

by the contralateral eye and a region of interest that was maximally innervated by the ipsilateral eye.

The R-distribution for maximally ipsilateral segregated pixels and maximally contralateral pixels were

calculated and averaged across all 15 dLGN sections. Pixels with an R-value less than 99.9% of the
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maximally contra segregated pixels and more than 99.9% of all maximally ipsilateral segregated pix-

els were termed unsegregated pixels.

Similar to (Renna et al., 2011), we calculated the variance for each dLGN R-distribution. Larger

variances are indicative of a wider range of values (more ipsilateral dominant pixels and contralateral

dominate pixels), and thus, fewer pixels with more balanced left and right eye input.

Reconstruction of retinal innervation of the SC
Similar to (Fernandez et al., 2012), Coronal sections were used for the SC reconstruction using Mat-

lab (Math Work). For each section, the retino-recipient SC was outlined, and the total retinotopic

area was calculated. Images were converted to 8-bits of grey scale and the optic density of CTB-

staining was calculated. The total length was measured and divided in bins (4 mm) from the medial

to lateral region. The CTB density was obtained by dividing the total pixel area by CTB+ pixels.

Finally, a colorimetric thermal representation was applied (from 0% = blue to 100% = red). All sec-

tions containing the SC were used for a final reconstruction of the retinal projection to the SC.

Retinal wave recordings
Mice were shipped overnight at postnatal day 5 (Opn4DTA/DTA from Johns Hopkins University and

wild-type control mice from Jackson Laboratories). All procedures involving the use of animals were

in accordance with the National Institutes of Health and approved by the Brown University Institu-

tional Animal Care and Use Committee. Upon arrival at Brown University, the P6 mice were sacri-

ficed via a lethal intraperitoneal injection of Beuthanasia. As previously described, retinas were

extracted and placed ganglion-cell side down on the array under dim red light (Renna et al., 2011).

The retinas were continuously superfused with oxygenated Ames solution maintained at 36–37˚C,
and were kept in constant darkness. Recordings were made after at least 30 min of dark adaptation.

The raw analog data were digitized using MC Rack software (Multi Channel Systems) before

being filtered. Further processing was done in OfflineSorter (Plexon Inc.). In order to determine the

number of neurons being sampled by each electrode, we filtered the raw digitized data using a 125

Hz high-pass filter. A threshold of 5 standard deviations from the baseline voltage was used as the

criterion for a spike. The candidate spikes were then sorted using OfflineSorter (Plexon Inc.) for the

first two principal components of the waveforms, using a standard T-distribution E-M algorithm

(Shoham et al., 2003). Spikes appearing within a 1 ms window on 70% of channels were assumed to

be artifacts (caused by bubbles or other disturbances) and were discarded.

Spike time tiling coefficients
To quantify the amount of correlation between two spike trains, we used the spike time tiling coeffi-

cient (STTC) (Cutts and Eglen, 2014). We calculated the STTC for every pair of units in a retina,

using a correlation time interval of Dt = 50 ms, and took the median over the interelectrode distance

to get a STTC vs Interelectrode Distance curve. We also identified units from the ground channel,

and units from electrodes that had poor contact with the retina (had a mean firing rate lower than

0.25 Hz over the entire 10 min recording) for later removal.

Burst identification
Spike timestamps were exported to NeuroExplorer v4.133 (Nex Technologies) for burst analysis. We

employed NeuroExplorer’s Surprise algorithm to detect bursts of spiking, using a minimum surprise

value of 4. This value was based on (Kirkby et al., 2013), where spike trains were considered burst-

ing if a Poisson probability dropped below 10�4, and surprise-values are the negative logarithm of

that probability.

Calculation of firing properties
All spike timestamps and burst start- and end-timestamps from all sorted units were exported to

text from NeuroExplorer. Firing properties were calculated from these data files using custom Visual

Basic for Applications macros. Our calculations proceeded as follows, for each unit. First, units from

invalid channels (as defined above) were excluded from further analysis. Second, bursts shorter than

0.75 s or longer than 15 s were also excluded, although their constituent spikes were kept for later

firing rate calculations. Third, bursts that started less than half of the maximum burst duration (7.5 s)
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after the recording started or that ended less than that duration before the recording ended were

excluded from further analysis. This ensured that interrupted WABs—WABs that occurred while the

recording was being started or stopped—were not analyzed. The constituent spike timestamps of

these bursts were also kept for later firing rate calculations.

WABs were identified as follows. All bursts were divided into 10 bins of equal duration. For a

given burst, if the start of at least one of its bins was within a time interval Dt of the start of any bin

of a different burst, then those two bursts were said to be ‘associated’. The interval Dt was equal to

half of the sum of the two bursts’ bin-durations. If a burst was associated with a burst on at least two

neighboring channels, then it was classified as a WAB, where a channel’s ‘neighboring channels’

were any of the eight channels physically surrounding it on the MEA grid. Bursts could not be associ-

ated with bursts on the same unit or the same channel, and a burst could not be associated with a

burst from multiple units on a single neighboring channel. Finally, spiking property values for an

entire retina were taken as the average over all of its units’ values.

Statistics
For spiking properties, we employed two-tailed Student’s T-tests assuming unequal variance for

each property, with a significance level of a = 0.05. We used the Holm-Bonferroni method to control

the familywise error rate of these multiple comparisons. To compare the dependency of STTC on

distance between these populations, we employed a second round of Student’s T-tests, comparing

the STTC-values at all interelectrode distances less than or equal to 800 mm.

Virtual optomotor system
Using the virtual optokinetic system (Douglas et al., 2005), we placed individual mice in a box cre-

ated using four computer screens, which display sine wave gratings that move to create virtual cylin-

der. If mice can see the gratings, they track the moving bars by turning their head. To obtain an

estimate of visual acuity using this setup, we increased the spatial frequency (SF) of the gratings until

the mice no longer tracked the movement of the gratings.

The visual water task
In the visual water task (Prusky et al., 2000), mice are place in a trapezoidal shaped maze that con-

tains water and has a divider down the middle to create two arms. At the end of one arm, a gray

panel in displayed and in the other arm, sine wave grating is displayed. Mice were trained, using gra-

tings with a low SF, to associate the gratings with a hidden platform that allows them to escape

from the water. The location of the grey panel and gratings with the hidden platform were moved

between the arms in a pseudorandom pattern that mice cannot memorize. Any entrances into the

arm containing the grey panel were recorded as incorrect, after the mice could reliably swim to the

platform with greater that 90% accuracy, the SF of the gratings was increased. An animal’s threshold

was considered to have been reached once they failed to have better than 70% accuracy out of 10

trials. This threshold was confirmed by retesting the previous SF, which is 0.02cycles/degree lower,

and then retesting the spatial frequency that the mice initially failed. If the mouse’s behavior

repeated where they could see the lower SF, but not one increment higher, then the visual acuity of

that mouse was recorded as the last spatial frequency where they had better than 70% accuracy.

Acknowledgements
We would like to thank Marnie Halpern, Carla Shatz, Rejji Kuruvilla, Tiffany Schmidt, and Alan Rupp

for their critical reading and advice on the manuscript. We would also like to thank the mouse tri-lab

for suggestions and advice. Funding was provided by The Johns Hopkins University-Dean’s office

funds, The David and Lucile Packard Foundation Fellowship, The Alfred P. Sloan Fellowship, National

Institutes of Health Grants R01-GM076430 and R01-EY019053 (to SH); R01-EY017137 (to DMB);

DC007395 (to HZ); R01-GM104991 (to EH); R01-HL089742 (to PAG); F32-EY20108 and

R15EY026255 (to JMR); and the Canadian Institutes of Health Research MOP-77570 (to MC). In addi-

tion, this research was supported (in part) by the Intramural Research Program of the NIMH.

Chew et al. eLife 2017;6:e22861. DOI: 10.7554/eLife.22861 20 of 26

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.22861


Additional information

Funding

Funder Grant reference number Author

National Institute of General
Medical Sciences

GM076430 Samer Hattar

National Eye Institute R01-EY019053 Samer Hattar

David and Lucile Packard
Foundation

Samer Hattar

Alfred P. Sloan Foundation Samer Hattar

Johns Hopkins University Samer Hattar

National Eye Institute R01-EY017137 David M Berson

National Institute on Deafness
and Other Communication
Disorders

DC007395 Haiqing Zhao

National Institute of General
Medical Sciences

R01-GM104991 Erik D Herzog

National Heart, Lung, and
Blood Institute

R01-HL089742 Paul A Gray

National Eye Institute F32-EY20108 Jordan M Renna

National Eye Institute R15EY026255 Jordan M Renna

Canadian Institutes of Health
Research

MOP-77570 Michel Cayouette

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

KSC, Conceptualization, Data curation, Formal analysis, Supervision, Investigation, Methodology,

Writing—original draft, Writing—review and editing; JMR, Conceptualization, Data curation, Formal

analysis, Investigation, Methodology, Writing—original draft, Writing—review and editing; DSM,

Conceptualization, Data curation, Formal analysis, Investigation, Methodology; DCF, Conceptualiza-

tion, Resources, Formal analysis, Investigation, Visualization, Diego was the one who did crucial

experiments now in Figure 1, to answer the reviewers’ concerns about the strength of the DTA ver-

sus the aDTA in killing ipRGCs during development; WTK, Conceptualization, Formal analysis, Inves-

tigation; MBT, Conceptualization, Investigation; JLE, Conceptualization, Investigation, Methodology;

GSL, Data curation, Formal analysis, Investigation; CV, Resources, Data curation, Investigation, Visu-

alization; DCV, Formal analysis, Investigation, Methodology; AT, Resources, Formal analysis, Investi-

gation; SW, Data curation, Investigation; PAG, Conceptualization, Resources, Data curation, Formal

analysis, Supervision, Investigation; MC, Resources, Supervision, Funding acquisition, Investigation;

EDH, Formal analysis, Supervision, Investigation, Writing—original draft; HZ, Conceptualization,

Resources, Formal analysis, Supervision, Investigation, Methodology, Writing—original draft; DMB,

Supervision, Funding acquisition, Writing—original draft, Writing—review and editing; SH, Concep-

tualization, Supervision, Funding acquisition, Writing—original draft, Writing—review and editing

Author ORCIDs

Kylie S Chew, http://orcid.org/0000-0003-4752-009X

William T Keenan, http://orcid.org/0000-0003-3381-744X

Samer Hattar, http://orcid.org/0000-0002-3124-9525

Ethics

Animal experimentation: Animals were housed and treated in accordance with NIH and IACUC

guidelines, and used protocols approved by the Johns Hopkins University and Brown University Ani-

mal Care and Use Committees (Protocol numbers MO16A212 and 1010040).

Chew et al. eLife 2017;6:e22861. DOI: 10.7554/eLife.22861 21 of 26

Research article Neuroscience

http://orcid.org/0000-0003-4752-009X
http://orcid.org/0000-0003-3381-744X
http://orcid.org/0000-0002-3124-9525
http://dx.doi.org/10.7554/eLife.22861


Additional files
Supplementary files
. Supplementary file 1. Description of all mouse lines.

DOI: 10.7554/eLife.22861.017

. Supplementary file 2. Values and statistics for retinal wave recordings. Properties of spontaneous

retinal activity in P6 WT and Opn4DTA/DTA mice. Recordings were done in darkness. * represent sta-

tistically significant differences after Student’s T-tests with a Holm-Bonferroni correction, a = 0.05,

m = 22. Significance is determined when the p-value is less than or equal to the Holm-Bonferroni

corrected p-value.

DOI: 10.7554/eLife.22861.018

References
Ackman JB, Burbridge TJ, Crair MC. 2012. Retinal waves coordinate patterned activity throughout the
developing visual system. Nature 490:219–225. doi: 10.1038/nature11529, PMID: 23060192

Arroyo DA, Feller MB. 2016. Spatiotemporal features of retinal waves instruct the wiring of the Visual Circuitry.
Frontiers in Neural Circuits 10:54. doi: 10.3389/fncir.2016.00054, PMID: 27507937

Arroyo DA, Kirkby LA, Feller MB. 2016. Retinal waves modulate an Intraretinal Circuit of Intrinsically
Photosensitive retinal ganglion cells. Journal of Neuroscience 36:6892–6905. doi: 10.1523/JNEUROSCI.0572-
16.2016, PMID: 27358448

Baver SB, Pickard GE, Sollars PJ, Pickard GE. 2008. Two types of melanopsin retinal ganglion cell differentially
innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. European Journal of
Neuroscience 27:1763–1770. doi: 10.1111/j.1460-9568.2008.06149.x, PMID: 18371076

Ben-Moshe Z, Foulkes NS, Gothilf Y. 2014. Functional development of the circadian clock in the zebrafish pineal
gland. BioMed Research International 2014:235781–8. doi: 10.1155/2014/235781, PMID: 24839600

Berson DM, Dunn FA, Takao M. 2002. Phototransduction by retinal ganglion cells that set the circadian clock.
Science 295:1070–1073. doi: 10.1126/science.1067262, PMID: 11834835

Berson DM. 2003. Strange vision: ganglion cells as circadian photoreceptors. Trends in Neurosciences 26:314–
320. doi: 10.1016/S0166-2236(03)00130-9, PMID: 12798601

Blankenship AG, Hamby AM, Firl A, Vyas S, Maxeiner S, Willecke K, Feller MB. 2011. The role of neuronal
connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina. Journal of Neuroscience
31:9998–10008. doi: 10.1523/JNEUROSCI.5640-10.2011, PMID: 21734291

Brown TM, Gias C, Hatori M, Keding SR, Semo M, Coffey PJ, Gigg J, Piggins HD, Panda S, Lucas RJ. 2010.
Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biology 8:e1000558.
doi: 10.1371/journal.pbio.1000558, PMID: 21151887

Campuzano A, Cambras T, Vilaplana J, Canal MM, Carulla M, Dı́ez-Noguera A. 1999. Period length of the light-
dark cycle influences the growth rate and food intake in mice. Physiology & Behavior 67:791–797. doi: 10.1016/
S0031-9384(99)00196-1, PMID: 10604852

Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC. 2005. Evidence for an instructive role of retinal activity in
retinotopic map refinement in the superior colliculus of the mouse. Journal of Neuroscience 25:6929–6938.
doi: 10.1523/JNEUROSCI.1470-05.2005, PMID: 16033903

Chen SK, Badea TC, Hattar S. 2011. Photoentrainment and pupillary light reflex are mediated by distinct
populations of ipRGCs. Nature 476:92–95. doi: 10.1038/nature10206, PMID: 21765429

Chen SK, Chew KS, McNeill DS, Keeley PW, Ecker JL, Mao BQ, Pahlberg J, Kim B, Lee SC, Fox MA, Guido W,
Wong KY, Sampath AP, Reese BE, Kuruvilla R, Hattar S. 2013. Apoptosis regulates ipRGC spacing necessary for
rods and cones to drive circadian photoentrainment. Neuron 77:503–515. doi: 10.1016/j.neuron.2012.11.028,
PMID: 23395376

Coombs JL, Van Der List D, Chalupa LM. 2007. Morphological properties of mouse retinal ganglion cells during
postnatal development. The Journal of Comparative Neurology 503:803–814. doi: 10.1002/cne.21429,
PMID: 17570502

Cutts CS, Eglen SJ. 2014. Detecting pairwise correlations in spike trains: an objective comparison of methods
and application to the study of retinal waves. Journal of Neuroscience 34:14288–14303. doi: 10.1523/
JNEUROSCI.2767-14.2014, PMID: 25339742

Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo JF. 1995. Suppression
of melatonin secretion in some blind patients by exposure to bright light. New England Journal of Medicine
332:6–11. doi: 10.1056/NEJM199501053320102, PMID: 7990870

Datwani A, McConnell MJ, Kanold PO, Micheva KD, Busse B, Shamloo M, Smith SJ, Shatz CJ. 2009. Classical
MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron 64:463–
470. doi: 10.1016/j.neuron.2009.10.015, PMID: 19945389

Chew et al. eLife 2017;6:e22861. DOI: 10.7554/eLife.22861 22 of 26

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.22861.017
http://dx.doi.org/10.7554/eLife.22861.018
http://dx.doi.org/10.1038/nature11529
http://www.ncbi.nlm.nih.gov/pubmed/23060192
http://dx.doi.org/10.3389/fncir.2016.00054
http://www.ncbi.nlm.nih.gov/pubmed/27507937
http://dx.doi.org/10.1523/JNEUROSCI.0572-16.2016
http://dx.doi.org/10.1523/JNEUROSCI.0572-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27358448
http://dx.doi.org/10.1111/j.1460-9568.2008.06149.x
http://www.ncbi.nlm.nih.gov/pubmed/18371076
http://dx.doi.org/10.1155/2014/235781
http://www.ncbi.nlm.nih.gov/pubmed/24839600
http://dx.doi.org/10.1126/science.1067262
http://www.ncbi.nlm.nih.gov/pubmed/11834835
http://dx.doi.org/10.1016/S0166-2236(03)00130-9
http://www.ncbi.nlm.nih.gov/pubmed/12798601
http://dx.doi.org/10.1523/JNEUROSCI.5640-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21734291
http://dx.doi.org/10.1371/journal.pbio.1000558
http://www.ncbi.nlm.nih.gov/pubmed/21151887
http://dx.doi.org/10.1016/S0031-9384(99)00196-1
http://dx.doi.org/10.1016/S0031-9384(99)00196-1
http://www.ncbi.nlm.nih.gov/pubmed/10604852
http://dx.doi.org/10.1523/JNEUROSCI.1470-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16033903
http://dx.doi.org/10.1038/nature10206
http://www.ncbi.nlm.nih.gov/pubmed/21765429
http://dx.doi.org/10.1016/j.neuron.2012.11.028
http://www.ncbi.nlm.nih.gov/pubmed/23395376
http://dx.doi.org/10.1002/cne.21429
http://www.ncbi.nlm.nih.gov/pubmed/17570502
http://dx.doi.org/10.1523/JNEUROSCI.2767-14.2014
http://dx.doi.org/10.1523/JNEUROSCI.2767-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25339742
http://dx.doi.org/10.1056/NEJM199501053320102
http://www.ncbi.nlm.nih.gov/pubmed/7990870
http://dx.doi.org/10.1016/j.neuron.2009.10.015
http://www.ncbi.nlm.nih.gov/pubmed/19945389
http://dx.doi.org/10.7554/eLife.22861


Davis FC, Menaker M. 1981. Development of the mouse circadian pacemaker: independence from
Environmental cycles. Journal of Comparative Physiology ? A 143:527–539. doi: 10.1007/BF00609919,
PMID: 25309022

Davis FC, Gorski RA. 1985. Development of hamster circadian rhythms: prenatal entrainment of the pacemaker.
Journal of Biological Rhythms 1:77–89. doi: 10.1177/074873048600100108, PMID: 2979576

Demas J, Sagdullaev BT, Green E, Jaubert-Miazza L, McCall MA, Gregg RG, Wong RO, Guido W. 2006. Failure
to maintain eye-specific segregation in Nob, a mutant with abnormally patterned retinal activity. Neuron 50:
247–259. doi: 10.1016/j.neuron.2006.03.033, PMID: 16630836

Dkhissi-Benyahya O, Coutanson C, Knoblauch K, Lahouaoui H, Leviel V, Rey C, Bennis M, Cooper HM. 2013. The
absence of melanopsin alters retinal clock function and dopamine regulation by light. Cellular and Molecular
Life Sciences 70:3435–3447. doi: 10.1007/s00018-013-1338-9, PMID: 23604021

Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, Prusky GT. 2005. Independent visual threshold
measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Visual
Neuroscience 22:677–684. doi: 10.1017/S0952523805225166, PMID: 16332278

Dreher B, Robinson SR. 1991. Neuroanatomy of the Visual Pathways and Their Development. Boca Raton: CRC
Press.

Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S.
2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision.
Neuron 67:49–60. doi: 10.1016/j.neuron.2010.05.023, PMID: 20624591

Estevez ME, Fogerson PM, Ilardi MC, Borghuis BG, Chan E, Weng S, Auferkorte ON, Demb JB, Berson DM.
2012. Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to
geniculocortical vision. Journal of Neuroscience 32:13608–13620. doi: 10.1523/JNEUROSCI.1422-12.2012,
PMID: 23015450

Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ. 1996. Requirement for cholinergic synaptic
transmission in the propagation of spontaneous retinal waves. Science 272:1182–1187. doi: 10.1126/science.
272.5265.1182, PMID: 8638165

Feller MB. 2002. The role of nAChR-mediated spontaneous retinal activity in visual system development. Journal
of Neurobiology 53:556–567. doi: 10.1002/neu.10140, PMID: 12436420

Feller MB. 2009. Retinal waves are likely to instruct the formation of eye-specific retinogeniculate projections.
Neural Development 4:24. doi: 10.1186/1749-8104-4-24, PMID: 19580682

Fernandez DC, Pasquini LA, Dorfman D, Aldana Marcos HJ, Rosenstein RE. 2012. Ischemic conditioning protects
from axoglial alterations of the optic pathway induced by experimental diabetes in rats. PLoS One 7:e51966.
doi: 10.1371/journal.pone.0051966, PMID: 23284834

Firth SI, Wang CT, Feller MB. 2005. Retinal waves: mechanisms and function in visual system development. Cell
Calcium 37:425–432. doi: 10.1016/j.ceca.2005.01.010, PMID: 15820390

Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. 1991. Circadian photoreception in the
retinally degenerate mouse (rd/rd). Journal of Comparative Physiology A 169:39–50. doi: 10.1007/BF00198171,
PMID: 1941717

Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z, Foster R. 1999. Regulation of
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Lucas RJ, Freedman MS, Muñoz M, Garcia-Fernández JM, Foster RG. 1999. Regulation of the mammalian pineal
by non-rod, non-cone, ocular photoreceptors. Science 284:505–507. doi: 10.1126/science.284.5413.505,
PMID: 10205062

Lucas RJ, Douglas RH, Foster RG. 2001. Characterization of an ocular photopigment capable of driving pupillary
constriction in mice. Nature Neuroscience 4:621–626. doi: 10.1038/88443, PMID: 11369943

Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. 2003. Diminished pupillary light reflex at high
irradiances in melanopsin-knockout mice. Science 299:245–247. doi: 10.1126/science.1077293, PMID: 1252224
9

Martinelli DC, Chew KS, Rohlmann A, Lum MY, Ressl S, Hattar S, Brunger AT, Missler M, Südhof TC. 2016.
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Neuillé M, El Shamieh S, Orhan E, Michiels C, Antonio A, Lancelot ME, Condroyer C, Bujakowska K, Poch O,
Sahel JA, Audo I, Zeitz C. 2014. Lrit3 deficient mouse (nob6): a novel model of complete congenital stationary
night blindness (cCSNB). PLoS One 9:e90342. doi: 10.1371/journal.pone.0090342, PMID: 24598786

Oster SF, Sretavan DW. 2003. Connecting the eye to the brain: the molecular basis of ganglion cell axon
guidance. British Journal of Ophthalmology 87:639–645. doi: 10.1136/bjo.87.5.639, PMID: 12714414

Osterhout JA, El-Danaf RN, Nguyen PL, Huberman AD. 2014. Birthdate and outgrowth timing predict cellular
mechanisms of axon target matching in the developing visual pathway. Cell Reports 8:1006–1017. doi: 10.
1016/j.celrep.2014.06.063, PMID: 25088424

Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA. 2002. Melanopsin
(Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216. doi: 10.1126/
science.1076848, PMID: 12481141

Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M,
Kay SA, Van Gelder RN, Hogenesch JB. 2003. Melanopsin is required for non-image-forming photic responses
in blind mice. Science 301:525–527. doi: 10.1126/science.1086179, PMID: 12829787

Pittendrigh CS. 1954. On temperature independence in the clock system controlling emergence time in
Drosophila. PNAS 40:1018–1029. doi: 10.1073/pnas.40.10.1018, PMID: 16589583

Prigge CL, Yeh PT, Liou NF, Lee CC, You SF, Liu LL, McNeill DS, Chew KS, Hattar S, Chen SK, Zhang DQ. 2016.
M1 ipRGCs influence visual function through Retrograde signaling in the Retina. Journal of Neuroscience 36:
7184–7197. doi: 10.1523/JNEUROSCI.3500-15.2016, PMID: 27383593

Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. 1998. Melanopsin: an opsin in Melanophores, brain,
and eye. PNAS 95:340–345. doi: 10.1073/pnas.95.1.340, PMID: 9419377

Prusky GT, West PW, Douglas RM. 2000. Behavioral assessment of visual acuity in mice and rats. Vision Research
40:2201–2209. doi: 10.1016/S0042-6989(00)00081-X, PMID: 10878281

Ramoa AS, Campbell G, Shatz CJ. 1989. Retinal ganglion beta cells project transiently to the superior colliculus
during development. PNAS 86:2061–2065. doi: 10.1073/pnas.86.6.2061, PMID: 2467298

Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS, Ferrara N, Copenhagen DR, Lang RA. 2013. A direct and
melanopsin-dependent fetal light response regulates mouse eye development. Nature 494:243–246. doi: 10.
1038/nature11823, PMID: 23334418

Renna JM, Weng S, Berson DM. 2011. Light acts through melanopsin to alter retinal waves and segregation of
retinogeniculate afferents. Nature Neuroscience 14:827–829. doi: 10.1038/nn.2845, PMID: 21642974

Richter CP. 1971. Inborn nature of the rat’s 24-hour clock. Journal of Comparative and Physiological Psychology
75:1–4. doi: 10.1037/h0030681, PMID: 5559214

Chew et al. eLife 2017;6:e22861. DOI: 10.7554/eLife.22861 24 of 26

Research article Neuroscience

http://dx.doi.org/10.1016/S0031-9384(98)00045-6
http://www.ncbi.nlm.nih.gov/pubmed/9662081
http://dx.doi.org/10.1126/science.284.5413.505
http://www.ncbi.nlm.nih.gov/pubmed/10205062
http://dx.doi.org/10.1038/88443
http://www.ncbi.nlm.nih.gov/pubmed/11369943
http://dx.doi.org/10.1126/science.1077293
http://www.ncbi.nlm.nih.gov/pubmed/12522249
http://www.ncbi.nlm.nih.gov/pubmed/12522249
http://dx.doi.org/10.1016/j.neuron.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27478018
http://dx.doi.org/10.1016/S0896-6273(03)00790-6
http://dx.doi.org/10.1016/S0896-6273(03)00790-6
http://www.ncbi.nlm.nih.gov/pubmed/14687549
http://dx.doi.org/10.1186/1749-8104-6-8
http://www.ncbi.nlm.nih.gov/pubmed/21418557
http://dx.doi.org/10.1126/science.2035024
http://www.ncbi.nlm.nih.gov/pubmed/2035024
http://dx.doi.org/10.1146/annurev.ph.40.030178.002441
http://www.ncbi.nlm.nih.gov/pubmed/345954
http://dx.doi.org/10.1146/annurev.med.48.1.253
http://www.ncbi.nlm.nih.gov/pubmed/9046960
http://dx.doi.org/10.1081/CBI-120026043
http://www.ncbi.nlm.nih.gov/pubmed/14680139
http://dx.doi.org/10.1523/JNEUROSCI.1555-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16033902
http://dx.doi.org/10.1016/j.cub.2005.01.043
http://www.ncbi.nlm.nih.gov/pubmed/15797020
http://www.ncbi.nlm.nih.gov/pubmed/12097474
http://dx.doi.org/10.1371/journal.pone.0090342
http://www.ncbi.nlm.nih.gov/pubmed/24598786
http://dx.doi.org/10.1136/bjo.87.5.639
http://www.ncbi.nlm.nih.gov/pubmed/12714414
http://dx.doi.org/10.1016/j.celrep.2014.06.063
http://dx.doi.org/10.1016/j.celrep.2014.06.063
http://www.ncbi.nlm.nih.gov/pubmed/25088424
http://dx.doi.org/10.1126/science.1076848
http://dx.doi.org/10.1126/science.1076848
http://www.ncbi.nlm.nih.gov/pubmed/12481141
http://dx.doi.org/10.1126/science.1086179
http://www.ncbi.nlm.nih.gov/pubmed/12829787
http://dx.doi.org/10.1073/pnas.40.10.1018
http://www.ncbi.nlm.nih.gov/pubmed/16589583
http://dx.doi.org/10.1523/JNEUROSCI.3500-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/27383593
http://dx.doi.org/10.1073/pnas.95.1.340
http://www.ncbi.nlm.nih.gov/pubmed/9419377
http://dx.doi.org/10.1016/S0042-6989(00)00081-X
http://www.ncbi.nlm.nih.gov/pubmed/10878281
http://dx.doi.org/10.1073/pnas.86.6.2061
http://www.ncbi.nlm.nih.gov/pubmed/2467298
http://dx.doi.org/10.1038/nature11823
http://dx.doi.org/10.1038/nature11823
http://www.ncbi.nlm.nih.gov/pubmed/23334418
http://dx.doi.org/10.1038/nn.2845
http://www.ncbi.nlm.nih.gov/pubmed/21642974
http://dx.doi.org/10.1037/h0030681
http://www.ncbi.nlm.nih.gov/pubmed/5559214
http://dx.doi.org/10.7554/eLife.22861


Rossi FM, Pizzorusso T, Porciatti V, Marubio LM, Maffei L, Changeux JP. 2001. Requirement of the nicotinic
acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system.
PNAS 98:6453–6458. doi: 10.1073/pnas.101120998, PMID: 11344259

Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF. 2002. Role of melanopsin in circadian
responses to light. Science 298:2211–2213. doi: 10.1126/science.1076701, PMID: 12481140

Schmidt TM, Taniguchi K, Kofuji P. 2008. Intrinsic and extrinsic light responses in melanopsin-expressing
ganglion cells during mouse development. Journal of Neurophysiology 100:371–384. doi: 10.1152/jn.00062.
2008, PMID: 18480363

Schmidt TM, Kofuji P. 2009. Functional and morphological differences among intrinsically photosensitive retinal
ganglion cells. Journal of Neuroscience 29:476–482. doi: 10.1523/JNEUROSCI.4117-08.2009, PMID: 19144848

Schmidt TM, Chen SK, Hattar S. 2011. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse
functions. Trends in Neurosciences 34:572–580. doi: 10.1016/j.tins.2011.07.001, PMID: 21816493

Schmidt TM, Alam NM, Chen S, Kofuji P, Li W, Prusky GT, Hattar S. 2014. A role for melanopsin in alpha retinal
ganglion cells and contrast detection. Neuron 82:781–788. doi: 10.1016/j.neuron.2014.03.022, PMID: 2485393
8

Sexton TJ, Bleckert A, Turner MH, Van Gelder RN. 2015. Type I intrinsically photosensitive retinal ganglion cells
of early post-natal development correspond to the M4 subtype. Neural Development 10:17. doi: 10.1186/
s13064-015-0042-x, PMID: 26091805

Shatz CJ, Stryker MP. 1988. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents.
Science 242:87–89. doi: 10.1126/science.3175636, PMID: 3175636

Shatz CJ. 1990. Competitive interactions between retinal ganglion cells during prenatal development. Journal of
Neurobiology 21:197–211. doi: 10.1002/neu.480210113, PMID: 2181063

Shoham S, Fellows MR, Normann RA. 2003. Robust, automatic spike sorting using mixtures of multivariate
t-distributions. Journal of Neuroscience Methods 127:111–122. doi: 10.1016/S0165-0270(03)00120-1, PMID: 12
906941

Speer CM, Sun C, Liets LC, Stafford BK, Chapman B, Cheng HJ. 2014. Eye-specific retinogeniculate segregation
proceeds normally following disruption of patterned spontaneous retinal activity. Neural Development 9:25.
doi: 10.1186/1749-8104-9-25, PMID: 25377639

Stellwagen D, Shatz CJ, Feller MB. 1999. Dynamics of retinal waves are controlled by cyclic AMP. Neuron 24:
673–685. doi: 10.1016/S0896-6273(00)81121-6, PMID: 10595518

Stellwagen D, Shatz CJ. 2002. An instructive role for retinal waves in the development of retinogeniculate
connectivity. Neuron 33:357–367. doi: 10.1016/S0896-6273(02)00577-9, PMID: 11832224

Torborg CL, Hansen KA, Feller MB. 2005. High frequency, synchronized bursting drives eye-specific segregation
of retinogeniculate projections. Nature Neuroscience 8:72–78. doi: 10.1038/nn1376, PMID: 15608630

Vallone D, Lahiri K, Dickmeis T, Foulkes NS. 2007. Start the clock! circadian rhythms and development.
Developmental Dynamics 236:142–155. doi: 10.1002/dvdy.20998, PMID: 17075872

VanDunk C, Hunter LA, Gray PA. 2011. Development, maturation, and necessity of transcription factors in the
mouse suprachiasmatic nucleus. Journal of Neuroscience 31:6457–6467. doi: 10.1523/JNEUROSCI.5385-10.
2011, PMID: 21525287

Wang L, Rangarajan KV, Lawhn-Heath CA, Sarnaik R, Wang BS, Liu X, Cang J. 2009. Direction-specific disruption
of subcortical visual behavior and receptive fields in mice lacking the beta2 subunit of nicotinic acetylcholine
receptor. Journal of Neuroscience 29:12909–12918. doi: 10.1523/JNEUROSCI.2128-09.2009, PMID: 19828805

Wee R, Castrucci AM, Provencio I, Gan L, Van Gelder RN. 2002. Loss of photic entrainment and altered free-
running circadian rhythms in math5-/- mice. Journal of Neuroscience 22:10427–10433. PMID: 12451142

Wong RO. 1999. Retinal waves and visual system development. Annual Review of Neuroscience 22:29–47.
doi: 10.1146/annurev.neuro.22.1.29, PMID: 10202531

Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC.
2011. An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron
70:1115–1127. doi: 10.1016/j.neuron.2011.04.028, PMID: 21689598

Xu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. 2015. Spatial pattern of spontaneous retinal
waves instructs retinotopic map refinement more than activity frequency. Developmental Neurobiology 75:
621–640. doi: 10.1002/dneu.22288, PMID: 25787992

Yamazaki S, Alones V, Menaker M. 2002. Interaction of the retina with suprachiasmatic pacemakers in the control
of circadian behavior. Journal of Biological Rhythms 17:315–329. doi: 10.1177/074873040201700405,
PMID: 12164248

Young MJ, Lund RD. 1994. The anatomical substrates subserving the pupillary light reflex in rats: origin of the
consensual pupillary response. Neuroscience 62:481–496. doi: 10.1016/0306-4522(94)90381-6, PMID: 7830893

Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG. 2008. Intraretinal signaling by ganglion
cell photoreceptors to dopaminergic amacrine neurons. PNAS 105:14181–14186. doi: 10.1073/pnas.
0803893105, PMID: 18779590

Zhang J, Ackman JB, Xu HP, Crair MC. 2011. Visual map development depends on the temporal pattern of
binocular activity in mice. Nature Neuroscience 15:298–307. doi: 10.1038/nn.3007, PMID: 22179110

Zhang DQ, Belenky MA, Sollars PJ, Pickard GE, McMahon DG. 2012. Melanopsin mediates retrograde visual
signaling in the retina. PLoS One 7:e42647. doi: 10.1371/journal.pone.0042647, PMID: 22880066

Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y. 2005. Functional development of the zebrafish pineal gland:
light-induced expression of period2 is required for onset of the circadian clock. Journal of Neuroendocrinology
17:314–320. doi: 10.1111/j.1365-2826.2005.01315.x, PMID: 15869567

Chew et al. eLife 2017;6:e22861. DOI: 10.7554/eLife.22861 25 of 26

Research article Neuroscience

http://dx.doi.org/10.1073/pnas.101120998
http://www.ncbi.nlm.nih.gov/pubmed/11344259
http://dx.doi.org/10.1126/science.1076701
http://www.ncbi.nlm.nih.gov/pubmed/12481140
http://dx.doi.org/10.1152/jn.00062.2008
http://dx.doi.org/10.1152/jn.00062.2008
http://www.ncbi.nlm.nih.gov/pubmed/18480363
http://dx.doi.org/10.1523/JNEUROSCI.4117-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19144848
http://dx.doi.org/10.1016/j.tins.2011.07.001
http://www.ncbi.nlm.nih.gov/pubmed/21816493
http://dx.doi.org/10.1016/j.neuron.2014.03.022
http://www.ncbi.nlm.nih.gov/pubmed/24853938
http://www.ncbi.nlm.nih.gov/pubmed/24853938
http://dx.doi.org/10.1186/s13064-015-0042-x
http://dx.doi.org/10.1186/s13064-015-0042-x
http://www.ncbi.nlm.nih.gov/pubmed/26091805
http://dx.doi.org/10.1126/science.3175636
http://www.ncbi.nlm.nih.gov/pubmed/3175636
http://dx.doi.org/10.1002/neu.480210113
http://www.ncbi.nlm.nih.gov/pubmed/2181063
http://dx.doi.org/10.1016/S0165-0270(03)00120-1
http://www.ncbi.nlm.nih.gov/pubmed/12906941
http://www.ncbi.nlm.nih.gov/pubmed/12906941
http://dx.doi.org/10.1186/1749-8104-9-25
http://www.ncbi.nlm.nih.gov/pubmed/25377639
http://dx.doi.org/10.1016/S0896-6273(00)81121-6
http://www.ncbi.nlm.nih.gov/pubmed/10595518
http://dx.doi.org/10.1016/S0896-6273(02)00577-9
http://www.ncbi.nlm.nih.gov/pubmed/11832224
http://dx.doi.org/10.1038/nn1376
http://www.ncbi.nlm.nih.gov/pubmed/15608630
http://dx.doi.org/10.1002/dvdy.20998
http://www.ncbi.nlm.nih.gov/pubmed/17075872
http://dx.doi.org/10.1523/JNEUROSCI.5385-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.5385-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21525287
http://dx.doi.org/10.1523/JNEUROSCI.2128-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19828805
http://www.ncbi.nlm.nih.gov/pubmed/12451142
http://dx.doi.org/10.1146/annurev.neuro.22.1.29
http://www.ncbi.nlm.nih.gov/pubmed/10202531
http://dx.doi.org/10.1016/j.neuron.2011.04.028
http://www.ncbi.nlm.nih.gov/pubmed/21689598
http://dx.doi.org/10.1002/dneu.22288
http://www.ncbi.nlm.nih.gov/pubmed/25787992
http://dx.doi.org/10.1177/074873040201700405
http://www.ncbi.nlm.nih.gov/pubmed/12164248
http://dx.doi.org/10.1016/0306-4522(94)90381-6
http://www.ncbi.nlm.nih.gov/pubmed/7830893
http://dx.doi.org/10.1073/pnas.0803893105
http://dx.doi.org/10.1073/pnas.0803893105
http://www.ncbi.nlm.nih.gov/pubmed/18779590
http://dx.doi.org/10.1038/nn.3007
http://www.ncbi.nlm.nih.gov/pubmed/22179110
http://dx.doi.org/10.1371/journal.pone.0042647
http://www.ncbi.nlm.nih.gov/pubmed/22880066
http://dx.doi.org/10.1111/j.1365-2826.2005.01315.x
http://www.ncbi.nlm.nih.gov/pubmed/15869567
http://dx.doi.org/10.7554/eLife.22861


Chew et al. eLife 2017;6:e22861. DOI: 10.7554/eLife.22861 26 of 26

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.22861

