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Abstract Previously, we reported an in-focus data acquisition method for cryo-EM single-particle

analysis with the Volta phase plate (Danev and Baumeister, 2016). Here, we extend the technique

to include a small amount of defocus which enables contrast transfer function measurement and

correction. This hybrid approach simplifies the experiment and increases the data acquisition

speed. It also removes the resolution limit inherent to the in-focus method thus allowing 3D

reconstructions with resolutions better than 3 Å.

DOI: 10.7554/eLife.23006.001

Introduction
The Volta phase plate (VPP) is a device which enables in-focus phase contrast in a transmission elec-

tron microscope (TEM) (Danev et al., 2014). It is the first phase-plate-type device to reach near-

atomic resolutions in single particle cryo-EM (Chua et al., 2016; Danev and Baumeister, 2016;

Khoshouei et al., 2016a, 2016b). Nowadays such resolutions are not uncommon, but there are still

challenges related mainly to intrinsic properties of the target structures. Small, heterogeneous and/

or flexible molecules are generally difficult to solve by the traditional defocus phase contrast (DPC)

method (Cheng et al., 2015). The VPP improves image contrast and thus could help with solving the

structures of such ‘difficult’ samples. Aside from the improved contrast, one of the main questions

about the VPP in the cryo-EM community has been: does it in any way limit the achievable resolution

as compared to DPC?

In our previous report (Danev and Baumeister, 2016) we presented an in-focus cryo-EM

approach with the VPP. The in-focus method, although ideal from a theoretical point of view, has a

few practical disadvantages and limitations. It requires very accurate focusing which complicates and

slows down the data acquisition. Furthermore, the achievable resolution is limited by the spherical

aberration of the objective lens to ~3 Å. At the time of our initial report the 3D reconstruction soft-

ware did not yet support VPP phase shift (PS) in the contrast transfer function (CTF). In the mean-

time, such support was implemented which enabled the present work. Here, we present a hybrid

approach which combines the VPP with a small amount of defocus. It simplifies the data acquisition

to a level similar to DPC and solves the resolution limit issue of the in-focus approach by enabling

CTF fitting and correction.

Results and discussion
In our report on in-focus cryo-EM with the VPP we used Thermoplasma acidophilum 20S proteasome

as a test sample (Danev and Baumeister, 2016). Here, we used the same sample for consistency

and continuation. The defocused VPP dataset is illustrated in Figure 1. Acquiring images with defo-

cus is easier and faster because the defocus and astigmatism can be fitted and corrected a posteri-

ori. The VPP provides low frequency contrast which allows the use of defocus values smaller than
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those typically used in DPC. Because of the low defocus the images (Figure 1A) look similar to in-

focus images (Figure 4A in Danev and Baumeister, 2016). The power spectrum in Figure 1B, how-

ever, clearly shows the effect of defocus with characteristic CTF rings (Thon rings). Fitting the CTFs

of VPP data requires an additional PS parameter (Rohou and Grigorieff, 2015). Such fits provide a

quantitative measure of the behavior of the VPP. Figure 1C shows a plot of the PS history through-

out the dataset. The VPP was advanced to a new position every 1.5 hr (every ~40 images, total dose

on the VPP ~50 nC). After each advance the PS drops abruptly to a low value (<0.2 p) and starts to

Figure 1. Volta phase plate with defocus cryo-EM dataset of 20S proteasome. (A) Representative image of 20S proteasomes in ice, defocus 500 nm. (B)

Power spectrum of the image in (A) showing contrast transfer function rings (Thon rings). To enhance the visibility of Thon rings, the power spectrum

was calculated as the sum of the power spectra of individual movie frames (McMullan et al., 2015). (C) Phase shift history throughout the dataset. The

phase shift gradually increases until the phase plate is moved to a new position where it suddenly drops and starts to raise again. (D) Histogram

illustrating the phase shift distribution. (E) Defocus history throughout the dataset. The target defocus was changed after ~200 images from 500 nm to

300 nm. (F) Histograms illustrating the defocus distributions. Scale bar: 50 nm.

DOI: 10.7554/eLife.23006.002

Danev et al. eLife 2017;6:e23006. DOI: 10.7554/eLife.23006 2 of 9

Research advance Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.23006.002
http://dx.doi.org/10.7554/eLife.23006


gradually build up again. Figure 1D contains a histogram of the measured PS. The distribution has a

maximum at ~0.6 p with a relatively small number of micrographs exhibiting low (<0.2 p) or high

(>0.8 p) PS. The evolving PS of the VPP is an advantage for single particle analysis because it moves

the positions of the CTF zeros thus mitigating the need to vary the defocus, which is necessary with

DPC. With the VPP, datasets can be collected with a single, low defocus value.

In this work (Figure 1C) as well as in the previous report (Figure 3 in Danev and Baumeister,

2016) the VPP exhibited more PS than in the original VPP paper (Figure 1C in Danev et al., 2014).

In addition, there is some variation in the PS magnitude between different areas on the phase plate

(Figure 1C). In practice, it is advantageous to have a VPP with slower PS development because this

allows collection of more images at each position. The heater used in the original VPP paper

(Danev et al., 2014) was a pre-production prototype and the phase plate was homemade thus the

production versions used in this work seem to exhibit a faster PS development. The variation of the

PS across VPP areas could indicate a local variation in the quality of the amorphous carbon film.

Overall, those factors do not prevent the collection of high quality data, as illustrated by the results

presented here, but there is definitely room for improvement and we hope that manufacturers will

take those observations into account when they develop future versions of the hardware.

The history of the measured defocus is plotted in Figure 1E. Approximately halfway through the

dataset acquisition we changed the target defocus from 500 nm to 300 nm to evaluate the perfor-

mance at different defocus values. The measured defocus has periodic oscillations, with ~16 image

period, probably caused by local variations in the slant of the support film (waviness), which can

introduce a defocus difference between the focusing and acquisition positions. Histograms of the

measured defocus values are shown in Figure 1F. The distribution of the 300 nm target defocus

data is wider than the 500 nm one but this seems to be caused by the systematic defocus oscillations

and not by random focusing errors (Figure 1E). The 300 nm target defocus had a practical disadvan-

tage in that fitting the CTFs of micrographs with defocus <300 nm was difficult because the CTF has

fewer rings and their period is similar to power spectrum features, such as the amorphous ice ring

at ~3.7 Å. In practice, the 500 nm defocus was more robust and easier to process.

High PS (>0.8 p) is undesirable because it causes CTF artifacts and thus reduces the quality of the

data. Figure 2A shows examples of images with different amounts of PS. The image on the left has

a low PS (0.1 p) and consequently lower contrast. The middle image is close to the optimal PS of 0.5

p and has good contrast and the best appearance. The image on the right was acquired with a high

PS of 0.9 p and looks ‘blurry’. The blurriness is caused by an extra CTF maximum at very low spatial

frequencies illustrated in Figure 2B. In practice, it is difficult to predict the exact shape or size of the

central spot of the VPP. Factors such as specimen charging, specimen thickness and beam drift

could cause the central beam to change its shape or move on the phase plate and thus modify the

central spot. We approximated the central spot of the VPP with a Gaussian function which has only

one parameter – the size of the spot. This is a simple model which, although not accurate in every

case, provides a satisfactory simulation of a rather unpredictable function. The bottom plot in

Figure 2B shows the approximated relative PS profile of the VPP. The top plot shows CTFs for vari-

ous saturation PS values. The CTFs were calculated using the formula:
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where ’ is the phase shift of the VPP in radians, k is the spatial frequency, s is the radius of the VPP

spot in reciprocal space (0.05 1/nm), 4z is the defocus (500 nm), l is the electron wavelength (0.002

nm) and CS is the spherical aberration coefficient (2.6*106 nm). In the case of an ideal phase plate

the VPP spot is infinitely small, i.e. s = 0. Up to a PS of 0.5 p (dotted lines) the CTFs behave well in a

sense that they rise gradually in accordance with the PS profile. For high PSs (red line) the CTF rises

quickly and passes through a maximum at the point where the PS crosses 0.5 p on its way to the sat-

uration value. This peak at very low spatial frequencies and the shift of the first CTF zero towards the

low frequencies are the reasons for the blurry appearance of the high PS image in Figure 2A. The

CTF model used in data processing is that of an ideal phase plate with a delta-function-like central

spot (black dashed line). The large deviation between the practical and the theoretical CTFs (pink

area in Figure 2B) means that high PS images are not handled optimally during processing.
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Figure 2C shows PS histograms of the particles before and after 3D classification. Particles with

low (<0.2 p) and high (>0.8 p) PSs were predominantly rejected indicating that such particles had

low correspondence with the reference. There was no correlation between defocus and particle

retention. The first few images after moving the VPP to a new position have a low PS which quickly

develops (Figure 3 in Danev and Baumeister, 2016). In those images there may be noticeable PS

evolution throughout the multiframe movie. A CTF fit taking into account such evolution is possible,

but in general, throwing away such images has little effect on the data acquisition throughput. For

high PS images, the CTF model can, in principle, be modified to include the central VPP spot which

should improve their handling. However, it is best to avoid both low and high PS images which could

be achieved through an improved data acquisition strategy. An optimal solution would be to incor-

porate PS monitoring in the automated data acquisition software through on-the-fly CTF fitting of

the acquired images. Once the PS reaches a preset value, e.g. 0.8 p, the VPP is advanced to the

next position and pre-irradiated for a given time to build up a desired initial PS, e.g. 0.2 p, before

continuing the acquisition. The dataset presented here was acquired with less frequent changes of

the VPP position and without throwing away the first few images in order to explore the effect of PS

on the quality of the data.

We first processed the data through the standard Relion workflow (Scheres, 2012, 2014). The

results are presented in Figure 3. The reconstruction reached a resolution of 2.4 Å according to the

gold-standard Fourier shell correlation (FSC) 0.143 criterion (Figure 3C). The visibility of primary

structure features, such as the holes in the tyrosine and phenylalanine rings (Figure 3B), is in accor-

dance with that estimate. The local resolution varies between 2.2 Å and 2.6 Å (Figure 3A). The sig-

nificant improvement in resolution compared to our previous in-focus dataset, at 3.2 Å (Danev and

Baumeister, 2016), confirms the effectiveness of the CTF correction. Figure 3E shows a plot of the

resolution versus number of particles calculated using random particle subsets. The resolution

Figure 2. Effects of the Volta phase plate phase shift on the image appearance and the contrast transfer function. (A) Examples of images at low (0.1 p),

optimal (0.5 p) and high (0.9 p) phase shifts. (B) Simulated contrast transfer functions (CTF) at 500 nm defocus and different phase shifts (top). Relative

phase shift (PS) profile of the Volta phase plate (bottom). The black dashed line represents a CTF of an ideal (delta function) phase plate with 0.9 p

phase shift. (C) Phase shift histograms before (gray) and after (red) 3D classification of the particles. Particles with low (<0.2 p) and high (>0.8 p) phase

shifts were predominantly rejected. The blue line (right vertical axis) is the particle retention (after vs before 3D classification). Scale bar: 20 nm.

DOI: 10.7554/eLife.23006.003
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improvement is consistent throughout the particle number range with a significant extension

towards low particle numbers. The improvement is also a result of the fact that the defocused data-

set was collected with a smaller pixel size (1.054 Å vs 1.35 Å previously) and in super-resolution

mode of the K2 camera. Figure 3F contains a plot of the logarithm of the number of particles vs the

squared reciprocal resolution, with a linear fit. The B-factor calculated as twice the slope of the fit

(Rosenthal and Henderson, 2003) was 103 Å2. In this work we did not collect a DPC dataset

because our main goal was to explore the capabilities of the VPP. We expect that with an ‘easy’

specimen, such as the 20S proteasome, DPC would have produced very similar results to those of

the VPP.

Figure 3. Results from the 3D reconstruction of the 20S proteasome dataset with Relion particle polishing. (A) Cross-section of the 3D map colored

according to the local resolution. (B) Examples of sidechain details. (C) Fourier shell correlation (FSC) plots indicating a resolution of 2.4 Å according to

the gold-standard FSC = 0.143 criterion. (D) Per-frame B-factors calculated during the particle polishing. (E) Resolution as a function of the number of

particles measured using random particle subsets. Also shown is a data point from Campbell et al. (2015). (F) Same data as in (E) but with logarithmic

and squared reciprocal axes. The slope of the linear fit indicates an overall B-factor of 103 Å2.

DOI: 10.7554/eLife.23006.004

Danev et al. eLife 2017;6:e23006. DOI: 10.7554/eLife.23006 5 of 9

Research advance Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.23006.004
http://dx.doi.org/10.7554/eLife.23006


We also tried a simplified data processing workflow based on the MotionCor2 software

(Zheng et al., 2016). It performs movie frame alignment with local motion tracking and dose-weight-

ing. Such preprocessing provides similar performance gains to particle polishing in Relion

(Scheres, 2014) but is more efficient in terms of computation and storage space. The results was,

for all practical purposes, virtually identical to that from particle polishing both in terms of resolution

(2.42 Å MotionCor2 vs 2.36 Å polishing) and B-factor (85 Å2 MotionCor2 vs 74 Å2 polishing).

Because of its simplicity, speed and comparable performance, nowadays we use the MotionCor2

workflow for most of our projects.

In summary, the use of VPP with defocus simplifies the data acquisition and improves the acquisi-

tion speed. The evolving PS of the VPP allows the use of a constant, low target defocus. In our expe-

rience, 500 nm is a good practical value because it ensures reliable CTF fits with some margin for

random or systematic focusing errors. Future modifications of the data acquisition software, to

include on-the-fly CTF fitting, PS monitoring and VPP pre-irradiation, would improve the perfor-

mance by preventing the collection of low and high PS images. Here, we demonstrated that the VPP

is not limited in resolution and matches the state of the art of DPC for ‘easy’ samples, such as the

20S proteasome. The real performance advantage of the VPP needs further exploration using ‘diffi-

cult’ samples, such as small, flexible and/or heterogeneous samples.

Materials and methods

Data acquisition
Cryo-samples were prepared as described previously (Danev and Baumeister, 2016). The data was

collected on an FEI Ttian Krios (FEI, Hillsboro, OR) electron microscope operated at 300 kV and

equipped with a Gatan GIF Quantum energy filter and a Gatan K2 Summit direct detection camera

(Gatan, Pleasanton, CA). The acquisition conditions were as follows: EFTEM Nanoprobe mode, mag-

nification x47,000, 50 mm C2 aperture, spot size 6, beam diameter 1.2 mm, beam current 0.105 nA,

zero-loss imaging with 20 eV slit, K2 Summit in super-resolution mode, physical pixel size 1.06 Å,

total dose 39 e�/Å2, dose rate on the detector 3.6 e�/pixel/s, exposure time 12 s, 24 frames 0.5 s

each. The data was acquired automatically with SerialEM software (Mastronarde, 2005). Focusing

was performed next to each hole with three image focusing (drift protection), 10 mrad beam tilt,

zero defocus offset and taking into account the effect of spherical aberration (target defocus =

desired defocus + 270 nm; e.g. for 500 nm underfocus the target defocus was set to �230 nm). The

VPP was advanced to a new position every 1.5 hr (every ~40 images, total dose on the VPP ~50 nC).

The data acquisition speed was ~27 images/hour, comparable to that of the previously collected in-

focus dataset (Danev and Baumeister, 2016). The throughput did not improve, despite simplified

focusing, because of the use of super-resolution mode of the K2 camera which added ~50 s to the

time required to process and save the movie frames. The movies were saved as dark-subtracted but

non-gain-normalized LZW compressed TIFF files which significantly reduced their size (~220 MB/

movie). The gain reference was saved separately.

Data processing workflow with relion particle polishing
The dataset consisted of 468 micrographs, 41 (9%) of which were rejected after visual inspection,

leaving 427 micrographs for processing. The super-resolution movies were first converted to MRC

format with the newstack from IMOD (Mastronarde and Held, 2016), which increased their size to

5.1 GB/movie. Magnification anisotropy correction (measured to be 1.2%) and gain normalization

were performed with mag_distortion_correct (Grant and Grigorieff, 2015). The movie frames were

aligned with unblur (Campbell et al., 2012). Particles were picked by template matching in Gauto-

match (http://www.mrc-lmb.cam.ac.uk/kzhang/). The CTFs were fitted with a homemade program in

MATLAB (MathWorks, Natick, MA). The rest of the processing was performed in the GPU-acceler-

ated beta version of Relion 2.0 (Kimanius et al., 2016). Particles were extracted from the aligned

super-resolution micrographs and movies with 2x downsampling, resulting in a pixels size of

1.054 Å, matching the physical pixel size of the camera. The box size after downsampling was 180

pixels. The initial dataset of 145,870 particles was subjected to a 3D refinement with D7 symmetry

which reached a resolution of 2.6 Å with a B-factor of 111 Å2. The output of the refinement was

used to ‘polish’ the particles with the following parameters: running average three frames, stddev
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on translations one pixel, stddev on particle distance 100 pixels, B-factor highres-limit 2 Å, B-factor

lowres-limit 7 Å. The polished dataset was 3D classified into five classes over several steps with finer

and finer angular and translational sampling and E-step resolution limit of 12 Å. The best class, con-

taining 93,596 particles (64% of the dataset), was 3D refined producing the final reconstruction with

a resolution of 2.4 Å and a B-factor of 74 Å2. The other 3D classes refined to much lower resolutions

with one of them showing some structure deformation in the form of separation between the top

and bottom halves of the 20S. This was probably due to an incomplete assembly of some particles

rather than being a valid functional state. To produce the resolution vs particle number data, subsets

of random particles were extracted from the final dataset and 3D refined separately with a 60 Å low-

pass filtered initial reference. The local resolution distributions were calculated with blocres from

Bsoft (Heymann and Belnap, 2007).

Data processing workflow with MotionCor2
For the MotioCor2 (Zheng et al., 2016) based reconstruction, the movies were gain-normalized and

aligned using 9 � 9 patches, 2x downsampling, first two frames discarded and dose-weighting with

1.0 e�/ Å2/frame which was ~1.5 times lower than the measured frame dose of 1.625 e�/ Å2/frame.

The reduced dose-weighting parameter was determined empirically by trying different values and

selecting the value which produced the highest resolution reconstructions. The CTFs were fitted on

the non-dose-weighted micrographs with ctffind4 (Rohou and Grigorieff, 2015) version 4.1.5 using

the following parameters: spherical aberration 2.62 mm, minimum resolution 20 Å, maximum resolu-

tion 3 Å, minimum defocus 3000 Å, maximum defocus 7000 Å, minimum phase shift 0 deg, maxi-

mum phase shift 175 deg, phase shift step 10 deg. Micrographs with estimated CTF resolution of

less than 3.5 Å were discarded (48 micrographs) leaving 379 micrographs for processing. Particle

picking and 3D classification was performed in the same fashion as described above. 83,127 particles

from the best 3D class were 3D refined producing a final reconstruction with a resolution of 2.4 Å

and a B-factor of 85 Å2.

Accession codes
The reconstructed 3D density maps from the Relion particle polishing and MotionCor2 data process-

ing workflows were deposited to the EMDataBank with accession codes EMD-3455 and EMD-3456

respectively. The dataset was deposited to the Electron Microscopy Pilot Image Archive with acces-

sion code EMPIAR-10078.
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