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Abstract Despite the central role that antibodies play in the adaptive immune system and in

biotechnology, much remains unknown about the quantitative relationship between an antibody’s

amino acid sequence and its antigen binding affinity. Here we describe a new experimental

approach, called Tite-Seq, that is capable of measuring binding titration curves and corresponding

affinities for thousands of variant antibodies in parallel. The measurement of titration curves

eliminates the confounding effects of antibody expression and stability that arise in standard deep

mutational scanning assays. We demonstrate Tite-Seq on the CDR1H and CDR3H regions of a well-

studied scFv antibody. Our data shed light on the structural basis for antigen binding affinity and

suggests a role for secondary CDR loops in establishing antibody stability. Tite-Seq fills a large gap

in the ability to measure critical aspects of the adaptive immune system, and can be readily used

for studying sequence-affinity landscapes in other protein systems.

DOI: 10.7554/eLife.23156.001

Introduction
During an infection, the immune system must recognize and neutralize invading pathogens. B-cells

contribute to immune defense by producing antibodies, proteins that bind specifically to foreign

antigens. The astonishing capability of antibodies to recognize virtually any foreign molecule has

been repurposed by scientists in a wide variety of experimental techniques (immunofluorescence,

western blots, ELISA, ChIP-Seq, etc.). Antibody-based therapeutic drugs have also been developed

for treating many different diseases, including cancer (Chan and Carter, 2010).

Much is known about the qualitative mechanisms of antibody generation and function

(Murphy et al., 2008). The antigenic specificity of antibodies in humans, mice, and most jawed ver-

tebrates is primarily governed by six complementarity determining regions (CDRs), each roughly 10

amino acids (aa) long. Three CDRs (denoted CDR1H, CDR2H, and CDR3H) are located on the anti-

body heavy chain, and three are on the light chain. During B-cell differentiation, these six sequences

are randomized through V(D)J recombination, then selected for functionality as well as against the

ability to recognize host antigens. Upon participation in an immune response, CDR regions can fur-

ther undergo somatic hypermutation and selection, yielding higher-affinity antibodies for specific

antigens. Among the CDRs, CDR3H is the most highly variable and typically contributes the most to

antigen specificity; less clear are the functional roles of the other CDRs, which often do not interact

with the target antigen directly.

Many high-throughput techniques, including phage display (Smith, 1985; Vaughan et al., 1996;

Schirrmann et al., 2011), ribosome display (Fujino et al., 2012), yeast display (Boder and Wittrup,

1997; Gai and Wittrup, 2007), and mammalian cell display (Forsyth et al., 2013), have been
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developed for optimizing antibodies ex vivo. Advances in DNA sequencing technology have also

made it possible to effectively monitor both antibody and T-cell receptor diversity within immune

repertoires, e.g. in healthy individuals (Boyd et al., 2009; Weinstein et al., 2009; Robins et al.,

2009, 2010; Mora et al., 2010; Venturi et al., 2011; Murugan et al., 2012; Zvyagin et al., 2014;

Elhanati et al., 2014; Qi et al., 2014; Thomas et al., 2014; Elhanati et al., 2015), in specific tissues

(Madi et al., 2014), in individuals with diseases (Parameswaran et al., 2013) or following vaccina-

tion (Jiang et al., 2013; Vollmers et al., 2013; Laserson et al., 2014; Galson et al., 2014;

Wang et al., 2015). Yet many questions remain about basic aspects of the quantitative relationship

between antibody sequence and antigen binding affinity. How many different antibodies will bind a

given antigen with specified affinity? How large of a role do epistatic interactions between amino

acid positions within the CDRs have on antigen binding affinity? How is this sequence-affinity land-

scape navigated by the V(D)J recombination process, or by somatic hypermutation? Answering these

and related questions is likely to prove critical for developing a systems-level understanding of the

adaptive immune system, as well as for using antibody repertoire sequencing to diagnose and moni-

tor disease.

Recently developed ‘deep mutational scanning’ (DMS) assays (Fowler and Fields, 2014) provide

one potential method for measuring binding affinities with high enough throughput to effectively

explore antibody sequence-affinity landscapes. In DMS experiments, one begins with a library of var-

iants of a specific protein. Proteins that have high levels of a particular activity of interest are then

enriched via one or more rounds of selection, which can be carried out in a variety of ways. The set

of enriched sequences is then compared to the initial library, and protein sequences (or mutations

within these sequences) are scored according to how much this enrichment procedure increases

their prevalence.

eLife digest Antibodies are proteins produced by cells of the immune system to tag or

neutralize potential threats to the body, such as foreign substances and disease-causing microbes.

Antibodies do this by binding to target molecules called antigens. An antibody’s ability to bind to

an antigen depends on the sequence of amino acids – the building blocks of proteins – that make

up the antibody. Through a process that randomizes this sequence of amino acids, the immune

system generates a vast pool of antibodies that are able to target almost any foreign antigen that

exists in nature.

Currently, little is understood about how the sequence of amino acids in an antibody determines

how strongly that antibody binds to its antigen target – a property referred to as the antibody’s

binding affinity. Answering this fundamental question requires techniques that can measure the

affinities of many different antibodies at the same time. However, previous high-throughput

methods have been unable to provide quantitative measurements of binding affinities. These kinds

of measurements are difficult because an antibody’s amino acid sequence governs more than just

binding affinity: it also affects how easy it is to produce that antibody, and what fraction of antibody

molecules work properly.

Adams et al. now describe a new method, named “Tite-Seq”, that overcomes these issues. First,

thousands of different antibodies are displayed on the surface of yeast cells, with each cell carrying a

single kind of antibody. These cells are then incubated with fluorescently labeled antigen at a wide

range of different concentrations. Next, the yeast cells are sorted based on how brightly they glow;

brighter cells have more antigen bound to them, and so it is possible to calculate how much of the

antigen is bound to each kind of antibody at each concentration. Plotting these data provides a

“binding curve” for each antibody, which is then used to read off the antibody’s binding affinity in a

way that is not affected by the factors that have plagued other high-throughput methods.

Tite-Seq is thus able to measure the binding affinities for thousands of different antibodies at the

same time. This will potentially allow researchers to address many fundamental and yet unanswered

questions about how the immune system works. Tite-Seq can also be used to measure how amino

acid sequence affects the binding affinity of proteins other than antibodies.

DOI: 10.7554/eLife.23156.002
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Multiple DMS assays have been described for investigating protein-ligand binding affinity. But no

DMS assay has yet been shown to provide absolute quantitative binding affinity measurements, i.e.,

dissociation constants in molar units. For example, one of the first DMS experiments (Fowler et al.,

2010) used phage display technology to measure how mutations in a WW domain affect the affinity

of this domain for its peptide ligand. These data were sufficient to compute enrichment ratios and

corresponding sequence logos, but they did not yield quantitative affinities. Analogous experiments

have since been performed on antibodies using yeast display (Reich et al., 2015; Kowalsky et al.,

2015) and mammalian cell display (Forsyth et al., 2013). Yeast-display-based DMS assays have also

proven particularly useful for mapping protein epitopes that are targeted by specific antibodies of

interest (Kowalsky et al., 2015; Doolan and Colby, 2015; Van Blarcom et al., 2015). Still, none of

these approaches provides quantitative affinity values. SORTCERY (Reich et al., 2015, ), a DMS

assay that combines yeast display and quantitative modeling, has been shown to provide approxi-

mate rank-order values for the affinity of a specific protein for short unstructured peptides of varying

sequence. Determining quantitative affinities from SORTCERY data, however, requires separate low-

throughput calibration measurements (Reich et al., 2014). Moreover, it is unclear how well SORT-

CERY, if applied to a library of folded proteins rather than unstructured peptides, can distinguish

sequence-dependence effects on affinity from sequence-dependent effects on protein expression

and stability. Other recent work has described a DMS assay, again based on yeast display, for mea-

suring fold-changes in affinity relative to a reference protein (Kowalsky and Whitehead, 2016). This

method, however, does not provide absolute values for dissociation constants, is vulnerable to the

confounding effects of sequence-dependent expression and protein stability, and was observed to

have only a 10-fold dynamic range.

To enable massively parallel measurements of absolute binding affinities for antibodies and other

structured proteins, we have developed an assay called ‘Tite-Seq.’ Tite-Seq, like SORTCERY, builds

on the capabilities of Sort-Seq, an experimental strategy that was first developed for studying tran-

scriptional regulatory sequences in bacteria (Kinney et al., 2010). Sort-Seq combines fluorescence-

activated cell sorting (FACS) with high-throughput sequencing to provide massively parallel meas-

urements of cellular fluorescence. In the Tite-Seq assay, Sort-Seq is applied to antibodies displayed

on the surface of yeast cells and incubated with antigen at a wide range of concentrations. From the

resulting sequence data, thousands of antibody-antigen binding titration curves and their corre-

sponding absolute dissociation constants (here denoted KD) can be inferred. By assaying full binding

curves, Tite-Seq is able to measure affinities over many orders of magnitude (We note that

Kowalsky et al. (2015) have described yeast display DMS experiments performed at multiple con-

centrations. These data, however, were not used to reconstruct titration curves or infer quantitative

KD values). Moreover, the resulting affinity values provided by Tite-Seq are not confounded by the

(rather substantial) effect that sequence variation can have on either (a) the amount of protein

expressed on the surface of cells or (b) the specific activity of displayed proteins (i.e., the fraction of

protein molecules that are functional).

We demonstrated Tite-Seq on a protein library derived from a well-studied single-chain variable

fragment (scFv) antibody specific to the small molecule fluorescein (Boder and Wittrup, 1997;

Boder et al., 2000). Mutations were restricted to CDR1H and CDR3H regions, which are known to

play an important role in the antigen recognition of this scFv (Boder et al., 2000; Midelfort et al.,

2004). The resulting affinity measurements were validated with binding curves for a handful of

clones measured using standard low-throughput flow cytometry. Our Tite-Seq measurements reveal

both expected and unexpected differences between the effects of mutations in CDR1H and CDR3H.

These data also shed light on structural aspects of antigen recognition that are independent of

effects on antibody stability.

Results

Overview of Tite-Seq
Our general strategy is illustrated in Figure 1. First, a library of variant antibodies is displayed on the

surface of yeast cells (Figure 1A). The composition of this library is such that each cell displays a sin-

gle antibody variant, and each variant is expressed on the surface of multiple cells. Cells are then

incubated with the antigen of interest, bound antigen is fluorescently labeled, and fluorescence-
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activated cell sorting (FACS) is used to sort cells one-by-one into multiple ‘bins’ based on this fluo-

rescent readout (Figure 1B). Deep sequencing is then used to survey the antibody variants present

in each bin. Because each variant antibody is sorted multiple times, it will be associated with a histo-

gram of counts spread across one or more bins (Figure 1C). The spread in each histogram is due to

cell-to-cell variability in antibody expression, and to the inherent noisiness of flow cytometry meas-

urements. Finally, the histogram corresponding to each antibody variant is used to compute an

‘average bin number’ (Figure 1C, dots), which serves as a proxy measurement for the average

amount of bound antigen per cell.

It has previously been shown that KD values can be accurately measured using yeast-displayed

antibodies by taking binding titration curves, i.e., by measuring the average amount of bound

Figure 1. Schematic illustration of Tite-Seq. (A) A library of variant antibodies (various colors) are displayed on the

surface of yeast cells (tan). (B) The library is exposed to antigen (green triangles) at a defined concentration, cell-

bound antigen is fluorescently labeled, and FACS is used to sort cells into bins according to measured

fluorescence. (C) The antibody variants in each bin are sequenced and the distribution of each variant across bins

is computed (histograms; colors correspond to specific variants). The mean bin number (dot) is then used to

quantify the typical amount of bound antigen per cell. (D) Binding titration curves (solid lines) and corresponding

KD values (vertical lines) can be inferred for individual antibody sequences by using the mean fluorescence values

(dots) obtained from flow cytometry experiments performed on clonal populations of antibody-displaying yeast.

(E) Tite-Seq consists of performing the Sort-Seq experiment in panels A–C at multiple antigen concentrations,

then inferring binding curves using mean bin number as a proxy for mean cellular fluorescence. This enables KD

measurements for thousands of variant antibodies in parallel. We note that the Tite-Seq results illustrated in panel

E were simulated using three bins under idealized experimental conditions, as described in Appendix 1. The

inference of binding curves from real Tite-Seq data is more involved than this panel might suggest, due to the

multiple sources of experimental noise that must be accounted for.

DOI: 10.7554/eLife.23156.003
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antigen as a function of antigen concentration (VanAntwerp and Wittrup, 2000; Gai and Wittrup,

2007). The median fluorescence f of labeled cells is expected to be related to antigen concentration

via

f ¼ A
c

cþKD

þB (1)

where A is proportional to the number of functional antibodies displayed on the cell surface, B

accounts for background fluorescence, and c is the concentration of free antigen in solution.

Figure 1D illustrates the shape of curves having this form. By using flow cytometry to measure f on

clonal populations of yeast at different antigen concentrations c, one can infer curves having the sig-

moidal form shown in Equation 1 and thereby learn KD. Such measurements, however, can only be

performed in a low-throughput manner.

Tite-Seq allows thousands of binding titration curves to be measured in parallel. The Sort-Seq

procedure illustrated in Figure 1A–C is performed at multiple antigen concentrations, and the
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Figure 2. Yeast display construct and antibody libraries (A) Co-crystal structure of the 4-4-20 (WT) antibody from

Whitlow et al. (1995) (PDB code 1FLR). The CDR1H and CDR3H regions are colored blue and red, respectively.

(B) The yeast display scFv construct from Boder and Wittrup (1997) that was used in this study. Antibody-bound

antigen (fluorescein) was visualized using PE dye. The amount of surface-expressed protein was separately

visualized using BV dye. Approximate location of the CDR1H (blue) and CDR3H (red) regions within the scFv are

illustrated. (C) The gene coding for this scFv construct, with the six CDR regions indicated. The WT sequence of

the two 10 aa variable regions are also shown. (D) The number of 1-, 2-, and 3-codon variants present in the 1H

and 3H scFv libraries. Figure 2—figure supplement 1 shows the cloning vector used to construct the CDR1H and

CDR3H libraries, as well as the form of the resulting expression plasmids.

DOI: 10.7554/eLife.23156.004

The following figure supplement is available for figure 2:

Figure supplement 1. Cloning strategy.

DOI: 10.7554/eLife.23156.005

Adams et al. eLife 2016;5:e23156. DOI: 10.7554/eLife.23156 5 of 27

Research article Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.23156.004
http://dx.doi.org/10.7554/eLife.23156.005
http://dx.doi.org/10.7554/eLife.23156


resulting average bin number for each variant antibody is plotted against concentration. Sigmoidal

curves are then fit to these proxy measurements, enabling KD values to be inferred for each variant.

We emphasize that KD values cannot, in general, be accurately inferred from Sort-Seq experi-

ments performed at a single antigen concentration. Because the relationship between binding and

KD is sigmoidal, the amount of bound antigen provides a quantitative readout of KD only when the

concentration of antigen used in the labeling procedure is comparable in magnitude to KD. How-

ever, single mutations within a protein binding domain often change KD by multiple orders of magni-

tude. Sort-Seq experiments used to measure sequence-affinity landscapes must therefore be carried

out over a range of concentrations large enough to encompass this variation.

Furthermore, as illustrated in Figure 1C and D, different antibody variants often lead to different

levels of functional antibody expression on the yeast cell surface. If one performs Sort-Seq at a single

antigen concentration, high affinity (low KD) variants with low expression (blue variant) may bind less

antigen than low affinity (high KD) variants with high expression (orange variant). Only by measuring

full titration curves can the effect that sequence has on affinity be deconvolved from sequence-

dependent effects on functional protein expression.

Proof-of-principle Tite-Seq experiments
To test the feasibility of Tite-Seq, we used a well-characterized antibody-antigen system: the 4-4-20

single chain variable fragment (scFv) antibody (Boder and Wittrup, 1997), which binds the small

molecule fluorescein with KD ¼ 1:2 nM (Gai and Wittrup, 2007). This system was used in early work

to establish the capabilities of yeast display (Boder and Wittrup, 1997), and a high resolution co-

crystal structure of the 4-4-20 antibody bound to fluorescein, shown in Figure 2A, has been deter-

mined (Whitlow et al., 1995). An ultra-high-affinity (KD ¼ 270 fM) variant of this scFv, called 4m5.3,

has also been found (Boder et al., 2000). In what follows, we refer to the 4-4-20 scFv from

Boder and Wittrup (1997) as WT, and the 4m5.3 variant from Boder et al. (2000) as OPT.

The scFv was expressed on the surface of yeast as part of the multi-domain construct illustrated

in Figure 2B and previously described in Boder and Wittrup (1997). Following (Boder et al., 2000),

we used fluorescein-biotin as the antigen and labeled scFv-bound antigen with streptavidin-RPE

(PE). The amount of surface-expressed protein was separately quantified by labeling the C-terminal

c-Myc tag using anti-c-Myc primary antibodies, followed by secondary antibodies conjugated to Bril-

liant Violet 421 (BV). See Appendix 2 for details on this labeling procedure.

Two different scFv libraries were assayed simultaneously. In the ‘1H’ library, a 10 aa region

encompasing the CDR1H region of the WT scFv (see Figure 2C) was mutagenized using microarray-

synthesized oligos (see Appendix 3 for details). The resulting 1H library consisted of all 600 single-

codon variants of this 10 aa region, 1100 randomly chosen 2-codon variants, and 150 random 3-

codon variants (Figure 2D). An analogous ‘3H’ library was generated for a 10 aa region containing

the CDR3H region of this scFv. In all of the Tite-Seq experiments described below, these two librar-

ies were pooled together and supplemented with WT and OPT scFvs, as well with a nonfunctional

scFv referred to as D.

Tite-Seq was carried out as follows. Yeast cells expressing scFv from the mixed library were incu-

bated with fluorescein-biotin at one of eleven concentrations: 0 M, 10�9:5 M, 10�9 M, 10�8:5 M, 10�8

M, 10�7:5 M, 10�7 M, 10�6:5 M, 10�6 M, 10�5:5 M, and 10
�5 M. After subsequent PE labeling of bound

antigen, cells were sorted into four bins using FACS (Figure 3A). Separately, BV-labeled cells were

sorted according to measured scFv expression levels (Figure 3B). The number of cells sorted into

each bin is shown in Figure 3C. Each bin of cells was regrown and bulk DNA was extracted. The 1H

and 3H variable regions were then PCR amplified and sequenced using paired-end Illumina sequenc-

ing, as described in Appendix 4. The final data set consisted of an average of 2:6� 10
6 sequences

per bin across all 48 bins (Figure 3D). Three independent replicates of this experiment were per-

formed on three different days.

For each variant scFv gene, a KD value was inferred by fitting a binding curve to the resulting

Tite-Seq data, with separate curves independently fit to data from each Tite-Seq experiment

(Figure 4A). As illustrated in Figure 1E, this fitting procedure uses the sigmoidal function in Equa-

tion 1 to model mean bin number as a function of antigen concentration. However, the need to

account for multiple sources of noise in the Tite-Seq experiment necessitates a more complex
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procedure than Figure 1E might suggest; the details of this inference procedure are described in

Appendix 5.

Separately, the Sort-Seq data obtained by sorting the BV-labeled libraries were used to deter-

mine the expression level of each scFv. Specifically, we use E to denote (for each scFv in the library)

Figure 3. Details of our Tite-Seq experiments. (A) Gates used to sort cells based on PE fluorescence, which

provides a readout of bound antigen. Cells were labeled at the eleven different antigen concentrations. Shades of

red indicate the four fluorescence gates used to sort cells; these correspond to bins 0, 1, 2, and 3 (from left to

right). (B) Gates, indicated in shades of purple, used to sort cells based on BV fluorescence, which provides a

readout of antibody expression. (C) The number of cells sorted into each bin. (D) The number of Illumina reads

obtained from each bin of sorted cells after quality control measures were applied. The data shown in this figure

corresponds to a single Tite-Seq experiment. Figure 3—figure supplement 1 and Figure 3—figure supplement

2 show data for two independent replicates of this experiment.

DOI: 10.7554/eLife.23156.006

The following figure supplements are available for figure 3:

Figure supplement 1. Tite-Seq experiment, replicate 2.

DOI: 10.7554/eLife.23156.007

Figure supplement 2. Tite-Seq experiment, replicate 3.

DOI: 10.7554/eLife.23156.008
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Figure 4. Accuracy and precision of Tite-Seq. (A) Binding curves and KD measurements inferred from Tite-Seq

data. (B) Mean fluorescence values (dots) and corresponding inferred binding curves (lines) obtained by flow

cytometry measurements for five selected scFvs (WT, OPT, C5, C45, and C107). In (A,B), values corresponding to 0

M fluorescein are plotted on the left-most edge of the plot, dotted lines show the upper (10�5 M) and lower (10�9:5

M) limits on KD sensitivity, vertical lines show inferred KD values, and different shades correspond to different

replicate experiments. (C) Comparison of the Tite-Seq-measured and flow-cytometry-measured KD values for all

clones tested. Colors indicate different scFv protein sequences as follows: WT (purple), OPT (green), D (black), 1H

clones (blue), and 3H clones (red). Each KD value indicates the mean log10 KD value obtained across all replicates,

with error bars indicating standard error. Clones with KD outside of the affinity range are drawn on the boundaries

of this range, which are indicated with dotted lines. The coefficient of determination (R2) between log Tite-Seq

values and log flow KDvalues includes clones outside of the affinity range; in such cases, the corresponding

boundary value (10�9:5 M or 10�5:0 M) has been used. The amino acid sequences and measured KD values for all

clones tested are provided in Table 1. Figure 4—figure supplement 1 provides plots, analogous to panels A and

B, for all of the assayed clones. Figure 4—figure supplement 2 compares KD and E values obtained across all

three Tite-Seq replicates. Figure 4—figure supplement 3 quantifies measurement error using synonymous

mutants. Figure 4—figure supplement 4 provides information about library composition. Figure 4—figure

supplement 5 illustrates the poor correlation between scFv enrichment and Tite-seq measured KD values.

Figure 4 continued on next page
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the mean bin number that results from this expression-based sorting; this E value provides a mea-

surement of the surface expression level of that scFv. All E values have been scaled so that the mean

of such measurements for all synonymous WT scFv gene variants is 1.0.

Low-throughput validation experiments
To judge the accuracy of Tite-Seq, we separately measured binding curves for individual scFv clones

as described for Figure 1D. In addition to the WT, OPT, and D scFvs, we assayed eight clones from

the 1H library (named C3, C5, C7, C18, C22, C132, C133 and C144) and eight clones from the 3H

library (C39, C45, C93, C94, C102, C103, C107, C112). Each clone underwent the same labeling pro-

cedure as in the Tite-Seq experiment, after which median fluorescence values were measured using

standard flow cytometry. KD values were then inferred by fitting binding curves of the form in Equa-

tion 1 using the procedure described in Appendix 6. These curves, which can be directly compared

to Tite-Seq measurements (Figure 4A), are plotted in Figure 4B; at least three replicate binding

curves were measured for each clone. See Figure 4—figure supplement 1 for the titration curves of

all the tested clones.

Tite-Seq can measure dissociation constants
Figure 4C reveals a strong correspondence between the KD values measured by Tite-Seq and those

measured using low-throughput flow cytometry. The robustness of Tite-Seq is further illustrated by

the consistency of KD values measured for the WT scFv. Using Tite-Seq, and averaging the results

from the 33 synonymous variants and over all three replicates, we determined KD ¼ 10
�8:87�0:02 M for

the WT scFv. These measurements are largely consistent with the measurement of KD ¼ 10
�8:61�0:07

M obtained by averaging low-throughput flow cytometry measurements across 10 replicates, and

coincides with the previously measured value of 1:2 nM ¼ 10
�8:9 M reported in (Gai and Wittrup,

2007). The three independent replicate Tite-Seq experiments give reproducible results as measured

by direct comparison (Figure 4—figure supplement 2), from synonymous mutant variation (Fig-

ure 4—figure supplement 3) and library composition Figure 4—figure supplement 4) with Pearson

coefficients ranging from r ¼ 0:82 to r ¼ 0:89 for all the measured KD values between replicates;

note that KD values outside of the sensitivity range are included in the calculation of these Pearson

coefficients as described in the Figure 4 caption.

The error bars for KD values in Figure 4C calculated from the variability of the fits to different rep-

licates therefore support the reproducibility of the experiment. The main discrepancy in these error

Figure 4 continued

Figure 4—figure supplement 6 shows a 2-fold difference in the specific activities of OPT and WT scFvs.

Figure 4—figure supplement 7 illustrates the simulations we used in Figure 4—figure supplement 8 to validate

the ability of our analysis to infer correct KD values.

DOI: 10.7554/eLife.23156.009

The following figure supplements are available for figure 4:

Figure supplement 1. Binding curves for all clones.

DOI: 10.7554/eLife.23156.010

Figure supplement 2. Concordance between replicate experiments.

DOI: 10.7554/eLife.23156.011

Figure supplement 3. Error estimates from synonymous mutants.

DOI: 10.7554/eLife.23156.012

Figure supplement 4. Composition of scFv libraries.

DOI: 10.7554/eLife.23156.013

Figure supplement 5. Sort-Seq enrichment correlates poorly with Tite-Seq-measured affinity.

DOI: 10.7554/eLife.23156.014

Figure supplement 6. Differing specific activities of OPT and WT.

DOI: 10.7554/eLife.23156.015

Figure supplement 7. Realistic Tite-Seq simulations.

DOI: 10.7554/eLife.23156.016

Figure supplement 8. Validation of analysis pipeline.

DOI: 10.7554/eLife.23156.017

Adams et al. eLife 2016;5:e23156. DOI: 10.7554/eLife.23156 9 of 27

Research article Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.23156.009
http://dx.doi.org/10.7554/eLife.23156.010
http://dx.doi.org/10.7554/eLife.23156.011
http://dx.doi.org/10.7554/eLife.23156.012
http://dx.doi.org/10.7554/eLife.23156.013
http://dx.doi.org/10.7554/eLife.23156.014
http://dx.doi.org/10.7554/eLife.23156.015
http://dx.doi.org/10.7554/eLife.23156.016
http://dx.doi.org/10.7554/eLife.23156.017
http://dx.doi.org/10.7554/eLife.23156


bar calculations occurred for clones c22 and c102 (see also Figure 4—figure supplement 1). The

reason for this discrepancy is currently unclear. We note that Tite-Seq-measured KD values for these

two clones are close to 10
�7 M, and that the analysis of synonymous variants (Figure 4—figure sup-

plement 3) found that Tite-Seq-measured KDs in this region exhibited the largest variations.

The necessity of performing KD measurements over a wide range of antigen concentrations is

illustrated in Figure 4—figure supplement 5. At each antigen concentration used in our Tite-Seq

experiments, the enrichment of scFvs in the high-PE bins correlated poorly with the KD values

inferred from full titration curves. Moreover, at each antigen concentration used, a detectable corre-

lation between KD and enrichment was found only for scFvs with KD values close to that

concentration.

Figure 4—figure supplement 6 suggests a possible reason for the weak correlation between KD

values and enrichment in high-PE bins. We found that, at saturating concentrations of fluorescein

(2�M), cells expressing the OPT scFv bound twice as much fluorescein as cells expressing the WT

scFv. This difference was not due to variation in the total amount of displayed scFv, which one might

control for by labeling the c-Myc epitope as in Reich et al. (2015). Rather, this difference in binding

reflects a difference in the specific activity of displayed scFvs. Yeast display experiments performed

at a single antigen concentration cannot distinguish such differences in specific activity from differen-

ces in scFv affinity.

To further test the capability of Tite-Seq to infer dissociation constants from sequencing data

over a wide range of values, as well as to validate our analysis procedures, we simulated Tite-Seq

Table 1. Clones measured using flow cytometry and Tite-Seq. List of scFv clones, ordered by their flow-cytometry-measured KD values.

With the exception of OPT and D, these clones differed from WT only in their 1H and 3H variable regions. WT amino acids within these

regions are capitalized; variant amino acids are shown in lower case. No sequence is shown for D because this clone contained a large

deletion, making identification of the 1H and 3H variable regions meaningless. KD values saturating our lower detection limit of 10�9:5

M or upper detection limit of 10�5:0M are written with a <
~

or >
~

sign to emphasize the uncertainty in these measurements. Tite-Seq

KD values indicate mean and standard errors computed across the three replicate Tite-Seq experiments; they are not averaged across

synonymous variants.

Name 1H variable region
3H
variable region No. replicates (flow) KD [M] (flow) KD [M] (Tite-Seq)

OPT TFghYWMNWV GasYGMeYlG 3 <
~

10�9.5 <
~

10�9.5

C107 TFSDYWMNWV GaYYGMDYWG 3 10�9.28±0.04 10�9.18±0.11

C112 TFSDYWMNWV GSYYGMDYcG 3 10�8.95±0.07 10�9.19±0.14

WT TFSDYWMNWV GSYYGMDYWG 10 10�8.61±0.07 10�8.92±0.10

C144 vFSDYWMNWV GSYYGMDYWG 3 10�8.57±0.03 10�8.86±0.04

C133 aFSDYWMNWV GSYYGMDYWG 3 10�8.55±0.06 10�8.62±0.09

C132 TFmDYWlNWV GSYYGMDYWG 3 10�8.48±0.08 10�8.38±0.29

C94 TFSDYWMNWV GSYYGMDsWG 3 10�8.46±0.06 10�8.50±0.04

C5 TFSDYWiNWV GSYYGMDYWG 3 10�8.34±0.10 10�8.55±0.09

C93 TFSDYWMNWV GSYrGMDYWG 3 10�7.35±0.08 10�7.60±0.70

C39 TFSDYWMNWV GSYYGMDYWa 3 10�7.08±0.20 10�7.28±0.17

C102 TFSDYWMNWV sSkYGMDYWG 3 10�5.76±0.16 10�7.25±0.60

C22 ssSDYWMNWV GSYYGMDYWG 3 10�5.69±0.31 10�7.53±0.07

C7 hFSDYWMNWl GSYYGMDYWG 3 10�5.53±0.18 10�5.39±0.18

C45 TFSDYWMNWV GSYdGnDYWG 3 10�5.40±0.24 >
~

10�5.0

C103 TFSDYWMNWV GSYYGMDlWG 3 10�5.15±0.47 10�5.44±0.55

C3 TFSDYWMsWV GSYYGMDYWG 3 >
~

10�5.0 >
~

10�5.0

C18 TFSDYsMNWV GSYYGMDYWG 3 >
~

10�5.0 >
~

10�5.0

D – – 12 >
~

10�5.0 >
~

10�5.0

DOI: 10.7554/eLife.23156.018
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data in silico and analyzed the results using the same analysis pipeline that we used for our experi-

ments. Details about the simulations are given in Appendix 7. The simulated data is illustrated in Fig-

ure 4—figure supplement 7. KD values inferred from these simulated data agreed to high accuracy

with the KD used in the simulation (Figure 4—figure supplement 8), thus validating our analysis

pipeline.

Properties of the affinity and expression landscapes
Figure 5 shows the effect that every single-amino-acid substitution mutation within the 1H and 3H

variable regions has on affinity and on expression; histograms of these effects are provided in Fig-

ure 5—figure supplement 1. In both regions, the large majority of mutations weaken antigen bind-

ing (1H: 88%; 3H: 93%), with many mutations increasing KD above our detection threshold of 10�5 M

(1H: 36%; 3H: 52%). Far fewer mutations reduced KD (1H: 12%; 3H: 7%), and very few dropped KD

below our detection limit of 10�9:5 M (1H: 0%; 3H: 3%). Histograms of the effect of two or three

Figure 5. Effects of substitution mutations on affinity and expression. Heatmaps show the measured effects on

affinity (A,B) and expression (C,D) of all single amino acid substitutions within the variables regions of the 1H (A,C)

and 3H (B,D) libraries. Purple dots indicate residues of the WT scFv. Green dots indicate non-WT residues in the

OPT scFv. Figure 5—figure supplement 1 provides histograms of the non-WT values displayed in panels A–D.

Figure 5—figure supplement 2 compares the effects on KD of both single-point and multi-point mutations.

DOI: 10.7554/eLife.23156.020

The following figure supplements are available for figure 5:

Figure supplement 1. Histograms of substitution effects on affinity and expression.

DOI: 10.7554/eLife.23156.021

Figure supplement 2. Effects of multi-point mutations on affinity and expression.

DOI: 10.7554/eLife.23156.022
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amino acid changes relative to WT, shown in Figure 5—figure supplement 2A, reveal that multiple

random mutations tend to further reduce affinity. We also observed that mutations within the 3H

variable region have a larger effect on affinity than do mutations in the 1H variable region. Specifi-

cally, single amino acid mutations in 3H were seen to increased KD more than mutations in 1H (1H

median KD ¼ 10
�6:84; 3H median KD >

~

10
�5:0; P ¼ 4:7� 10

�4, one-sided Mann-Whitney U test). This

result suggests that binding affinity is more sensitive to variation in CDR3H than to variation in

CDR1H, a finding that is consistent with the conventional understanding of these antibody CDR

regions (Xu and Davis, 2000; Liberman et al., 2013).

Our observations are thus fully consistent with the hypothesis that the amino acid sequences of

the CDR1H and CDR3H regions of the WT scFv have been selected for high affinity binding to fluo-

rescein. We know this to be true, of course; still, this result provides an important validation of our

Tite-Seq measurements.

To further validate our Tite-Seq affinity measurements, we examined positions in the high affinity

OPT scFv (from [Boder et al., 2000]) that differ from WT and that lie within the 1H and 3H variable

regions. As illustrated in Figure 5A and B, five of the six OPT-specific mutations reduce KD or are

nearly neutral. Previous structural analysis (Midelfort et al., 2004) has suggested that D106E, the

only OPT mutation that we find significantly increases KD, may indeed disrupt antigen binding on its

own while still increasing affinity in the presence of the S101A mutation.

Next, we used our measurements to build a ‘matrix model’ (also known as a ‘position-specific

affinity matrix,’ or PSAM [Foat et al., 2006]) describing the sequence-affinity landscape of these two

regions. Our model assumed that the log10 KD value for an arbitrary amino acid sequence could be

computed from the log10 KD value of the WT scFv, plus the measured change in log10 KD produced

by each amino acid substitution away from WT. We evaluated our matrix models on the 1H and 3H

variable regions of OPT, finding an affinity of 10�9:16 M. Our simple model for the sequence affinity

landscape of this scFv therefore correctly predicts that OPT has higher affinity than WT. The quanti-

tative affinity predicted by our model does not match the known affinity of the OPT scFv

(KD ¼ 10
�12:6 M), but this is unsurprising for three reasons. First the OPT scFv differs from WT in 14

residues, only 6 of which are inside the 1H and 3H variable regions assayed here. Second, one of the

OPT mutations (W108L) reduces KD below our detection threshold of 10�9:5 M; in building our matrix

model, we set this value equal to 10
�9:5, knowing it would likely underestimate the affinity-increasing

effect of the mutation. Third, our additive model ignores potential epistatic interactions. Still, we

thought it worth asking how likely it it would be for six random mutations within the 1H and 3H vari-

able regions to reduce affinity as much as our model predicts for OPT. We therefore simulated a

large number (107) of variants having a total of 6 substitution mutations randomly scattered across

the 1H and 3H variable regions. The fraction of these random sequences that had an affinity at or

below our predicted affinity for OPT was 4:7� 10
�5. This finding is fully consistent with the fact that

the mutations in OPT relative to WT were selected for increased affinity, an additional confirmation

of the validity of our Tite-Seq measurements.

The sequence-expression landscape measured in our separate Sort-Seq experiment yielded quali-

tatively different results (Figure 5C and D). We observed no significant difference in the median

effect that mutations in the variable regions of 1H (median E ¼ 0:826) versus 3H (median E ¼ 0:822)

have on expression (P ¼ 0:96, two-sided Mann-Whitney U test); see also Figure 5—figure supple-

ment 1. The variance in these effects, however, was larger in 3H than in 1H (P ¼ 9:9� 10
�16, Lev-

ene’s test). These results suggest two things. First, the 3H variable region appears to have a larger

effect on scFv expression than the 1H variable region has. At the same time, since we observe fewer

beneficial mutations in 1H (Figure 5C) than in 3H (Figure 5D), the WT sequence appears to be more

highly optimized for expression in CDR1H than in CDR3H. The effect of double or triple mutations

further reduced expression in both CDRs (Figure 5—figure supplement 2B), similar to what was

observed for affinity.

Structural correlates of the sequence-affinity landscape
We asked if the sensitivity of the antibody to mutations could be understood from a structural per-

spective. To quantify sensitivity of affinity and expression at each position i, we computed two

quantities:
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SiK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log10K
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D � log10K
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� �2
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aji

r
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SiE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eia �EWTð Þ2
D E

aji

r

: (3)

Here, KWT
D and EWT respectively denote the dissociation constant and expression level measured

Figure 6. Structural context of mutational effects. (A) Crystal structure (Whitlow et al., 1995) of the CDR1H and

CDR3H variable regions of the WT scFv in complex with fluorescein (green). Each residue (CDR1H: positions 28–

37; CDR3H: positions 100–109) is colored according to the SK and SE values computed for that position. These

variables, SK and SE , respectively quantify the sensitivity of KD and E to amino acid substitutions at each position,

with larger values corresponding to greater sensitivity; see Equations 2 and 3 for definitions of these quantities.

(B,C) For each position in the CDR1H and CDR3H variable regions, SK is plotted against either (B) the number of

contacts the WT residue makes within the protein structure, or (C) the distance of the WT residue to the

fluorescein molecule. (D,E) Similarly, SE is plotted against either (D) the number of contacts or (E) the distance to

the antigen. R2 is the coefficient of determination.

DOI: 10.7554/eLife.23156.023
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for the WT scFv, K ia
D and Eia denote analogous quantities for the scFv with a single substitution muta-

tion of amino acid a at position i, and h�iaji denotes an average computed over the 19 non-WT amino

acids at that position.

Figure 6A shows the known structure (Whitlow et al., 1995) of the 1H and 3H variable regions

of the WT scFv in complex with fluorescein. Each residue is colored according to the SK and SE val-

ues computed for its position. To get a better understanding of what aspects of the structure might

govern affinity, we plotted SK values against two other quantities: the number of amino acid contacts

made by the WT residue within the antibody structure (Figure 6B), and the distance between the

WT residue and the antigen (Figure 6C). We found a strong correlation between SK and the number

of contacts, but no significant correlation between SK and distance to antigen. By contrast, SE did

not correlate significantly with either of these structural quantities (Figure 6D and E).

Discussion
We have described a massively parallel assay, called Tite-Seq, for measuring the sequence-affinity

landscape of antibodies. The range of affinities measured in our Tite-Seq experiments (10�9:5 M to

10
�5:0 M) includes a large fraction of the physiological range relevant to affinity maturation (10�10 M

to ~10�6 M) (Batista and Neuberger, 1998; Foote and Eisen, 1995; Roost et al., 1995). Expanding

the measured range of affinities below 10
�9:5 M might require larger volume labeling reactions, but

would be straight-forward. Tite-Seq therefore provides a potentially powerful method for mapping

the sequence-affinity trajectories of antibodies during the affinity maturation process, as well as for

studying other aspects of the adaptive immune response.

The details of our Tite-Seq experiments (e.g., 11 antigen concentrations, four sorting bins per

concentration, etc.) were chosen largely for experimental convenience. The effects of varying these

parameters have not been systematically explored, and a future investigation of these effects might

be valuable. Figure 4—figure supplement 8 does illustrate, via simulation, the effect of read depth

on the precision of measured KD values. These simulations, along with an analysis of synonymous

Table 2. Primers. Oligonucleotide sequences are written 50 to 30. Bold sequences indicate variable regions. The ‘1H library’ and ‘3H

library’ primers respectively contained the 1H and 3H variable regions (bold) analyzed in this paper. These primer libraries were synthe-

sized by LC Biosciences using microarray-based DNA synthesis. All other primers were ordered from Integrated DNA Technologies.

The ‘[XX]’ portion of L1AF_XX and L1AR_XX indicates the location of each of 64 different barcodes (i.e., XX = 01, 02, . . ., 64), which

ranged in length from 7 bp to 10 bp and which differed from each other by at least two substitution mutations.

Name Sequence

1H library GTGTTGCCTCTGGATTCACTTTTAGTGACTACTGGATGAACTGGGTCCGCCAGTCTCCAGA

3H library GTGACTGAGGTTCCTTGACCCCAGTAGTCCATACCATAGTAAGAACCCGTACAGTAATAGATACCCAT

oRAL10 TTCTGAGGAGACGGTGACTGAGGTTCCTTG

oRAR10 TGAAGACATGGGTATCTATTACTGTACG

oRAL11 CAGTCCTTTCTCTGGAGACTGGCG

oRAR11 ATGAAACTCTCCTGTGTTGCCTCTGGATTC

3H1F TTCTGAGGAGACGGTGACT

3H2R TGAAGACATGGGTATCTATTACTGTAC

1H2F CAGTCCTTTCTCTGGAGACTG

1H1R ATGAAACTCTCCTGTGTTGCCT

oRA10 GCATATCTAAGGTCTCGTTCTGAGGAGACGGTGAC

oRA11 GCCGATTGTTGGTCTCCATGAAACTCTCCTGTGTTGC

PE1v3ext AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG

PE2v3 AAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCT

L1AF_XX ACACTCTTTCCCTACACGACGCTCTTCCGATCT[XX]AGTCTTCTTCAGAAATAAGC

L1AR_XX CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT[XX]GCTTGGTGCAACCTG

DOI: 10.7554/eLife.23156.019
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variants (Figure 4—figure supplement 3), suggest that the primary source of noise in our experi-

ments came not from a lack of sorted cells or Illumina reads, but rather from the inefficient post-sort

recovery of antibody sequences. We therefore suggest that improvements to our post-sort DNA

recovery protocol might substantially improve the resolution of Tite-Seq.

Tite-Seq fundamentally differs from prior DMS experiments in that full binding titration curves,

not two-bin enrichment statistics, are used to determine binding affinities. The measurement of

binding curves provides three major advantages. First, binding curves provide absolute KD values in

molar units, not just rank-order affinities, like those provided by SORTCERY (Reich et al., 2015), or

relative affinity ratios, like those provided by the method of Kowalsky and Whitehead (2016). Sec-

ond, because ligand binding is a sigmoidal function of affinity, DMS experiments performed at a sin-

gle ligand concentration (e.g., [Kowalsky and Whitehead, 2016]) are insensitive to receptor KDs

that differ substantially from this ligand concentration. Binding curves, by contrast, integrate meas-

urements over a wide range of concentrations and are therefore sensitive to a wide range of KDs.

The third advantage of measuring binding curves pertains to the fact that protein sequence

determines not just ligand-binding affinity, but also the quantity and specific activity of surface-dis-

played proteins. Our data (Figure 4—figure supplement 5 and Figure 4—figure supplement 6)

suggest that these confounding effects can be large and that they can distort yeast display affinity

measurements computed from enrichment statistics gathered at a single antigen concentration.

Strong sequence-dependent effects on both the expression and specific activity of yeast-displayed

proteins has been reported by other groups as well (e.g., [Burns et al., 2014]), although the absence

of such effects has also been reported (e.g., [Kowalsky and Whitehead, 2016]). Ultimately, the

magnitude of these effects is likely to vary substantially from protein to protein. It should also be

noted that many DMS studies using yeast display (e.g., epitope mapping studies [Kowalsky et al.,

2015; Doolan and Colby, 2015; Van Blarcom et al., 2015]) might not suffer from these potentially

confounding effects, and in such cases it probably makes sense to employ a simpler experimental

design than is required for Tite-Seq. Nevertheless, either Tite-Seq or other experimental methods

that assay full binding curves are probably essential if one wants to quantitatively and reliably mea-

sure KD values in a massively parallel fashion.

We wish to emphasize, more generally, that changing a protein’s amino acid sequence can be

expected to change multiple biochemical properties of that protein. Our work illustrates the impor-

tance of designing massively parallel assays that can disentangle these effects. Tite-Seq provides a

general solution to this problem for massively parallel studies of protein-ligand binding. Indeed, the

Tite-Seq procedure described here can be readily applied to any protein binding assay that is com-

patible with yeast display and FACS. Many such assays have been developed (Liu, 2015). We expect

that Tite-Seq can also be readily adapted for use with other expression platforms, such as mamma-

lian cell display (Forsyth et al., 2013).

Our Tite-Seq measurements reveal interesting distinctions between the effects of mutations in

the CDR1H and CDR3H regions of the anti-fluorescein scFv antibody studied here. As expected, we

found that variation in and around CDR3H had a larger effect on affinity than did variation in and

around CDR1H. We also found that CDR1H is more optimized for protein expression than is CDR3H,

an unexpected finding that appears to be novel. Yeast display expression levels are known to corre-

late with thermostability (Shusta et al., 1999). Our data is limited in scope, and we remain cautious

about generalizing our observations to arbitrary antibody-antigen interactions. Still, this finding sug-

gests the possibility that secondary CDR regions (such as CDR1H) might be evolutionarily optimized

to help ensure antibody stability, thereby freeing up CDR3H to encode antigen specificity. If this

hypothesis holds, it could provide a biochemical rationale for why CDR3H is more likely than CDR1H

to be mutated in functioning receptors (Liberman et al., 2013) and why variation in CDR3H is often

sufficient to establish antigen specificity (Xu and Davis, 2000).

Tite-Seq can also potentially shed light on the structural basis for antibody-antigen recognition.

By comparing the effects of mutations with the known antibody-fluorescein co-crystal structure

(Whitlow et al., 1995), we identified a strong correlation between the effect that a position has on

affinity and the number of molecular contacts that the residue at that position makes within the anti-

body. By contrast, no such correlation of expression with this number of contacts is observed. Again,

we are cautious about generalizing from observations made on a single antibody. If our observation

were to hold for other antibodies, however, it would suggest that the functional geometry of
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paratopes might be governed by networks of residues whose positions and orientations are strongly

interdependent.

Materials and methods
Tite-Seq was performed as follows. Variant 3H and 1H regions were generated using microarray-syn-

thesized oligos (LC Biosciences, Houston TX. USA). These were inserted into the 4-4-20 scFv of

(Boder and Wittrup, 1997) using cassette-replacement restriction cloning as in (Kinney et al.,

2010); see Appendix 3. Yeast display experiments were performed as previously described

(Boder et al., 2000) with modifications; see Appendix 2. Sorted cells were regrown and bulk DNA

was extracted using standard techniques, and amplicons containing the 1H and 3H variable regions

were amplified using PCR and sequenced using the Illumina NextSeq platform; see Appendix 4.

Three replicate experiments were performed on different days. Raw sequencing data has been

posted on the Sequence Read Archive under BioProject ID PRJNA344711. Low-throughput flow

cytometry measurements were performed on clones randomly picked from the Tite-Seq library.

Sequence data and flow cytometry data were analyzed using custom Python scripts, as described in

Appendices 5 and 6. Processed data and analysis scripts are available at github.com/jbkinney/16_

titeseq.
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Appendix 1

Schematic simulations
For panels D and E of Figure 1, data was simulated (using Equation 1) for two hypothetical

scFvs: one similar to WT, with KD ¼ 1:2� 10
�9 M, A ¼ 300, and B ¼ 10, and one similar to a

typical mutant, with KD ¼ 10
�6 M, A ¼ 1000, B ¼ 10. Simulated sorts were performed at the

eleven antigen concentrations used in our experiments (c ¼ 0 M, 10�9:5 M, 10�9:0 M, . . .,

10
�5:0 M). For each clone at each antigen concentration, fluorescence signals were simulated

for 1000 cells by multiplying the f quantity in Equation 1 by a factor of expðhÞ where h is a

normally distributed random number. Figure 1D shows the mean values of these simulated

fluorescence signals. Curves of the form in Equation 1 were fit to these data by minimizing

the square deviation between predicted log10 f values and the log10 mean of the simulated

fluoresence values. The Tite-Seq measurements illustrated in Figure 1E were simulated by

sorting 1000 cells, using fluorescence values generated in the same manner as above, into

three bins defined by the following fluorescence boundaries: ð0; 30Þ for bin 0, ð30; 300Þ for
bin 1, and ð300;¥Þ for bin 2. The mean bin number for each clone at each antigen

concentration was then computed. Curves having the form in Equation 1 were then fit to

these data by minimizing the square deviation of predicted log10 f values from these mean

bin values.
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Appendix 2

Yeast display
To help ensure consistency across samples, the yeast display cultures used in our low-

throughput flow cytometry measurements and in our Tite-Seq experiments were inoculated

with carefully prepared frozen liquid culture inocula. Specifically, inoculation cultures were

grown at 30�C in SC-trp +2% glucose to an OD600 value between 0.9 and 1.1, then stored

at �80
� in aliquots containing 10% glycerol and either 0.4 ml�OD of cells (for clones) or 1

ml�OD of cells (for libraries).

The expression of yeast-displayed scFvs was induced as follows. Liquid cultures of SC-

trp +2% glucose were inoculated using single frozen inocula, yielding an approximate

starting OD of 0.05. These cultures were grown at 30�C for 8 hr; the final OD of these

cultures was approximately 0.7. Cells were then spun down at 1932 g for 8 min at 4�C,

resuspended in SC-trp +2% galactose+0.1% glucose at 0.2 OD, and incubated for 16 hr at

20
�C. We note that adding 0.1% glucose to these galactose induction cultures was essential

for reliably achieving scFv expression in a large fraction of yeast cells.

Induced yeast were fluorescently labeled as follows. Galactose induction cultures were spun

down and washed with ice cold TBS-BSA (0.2 mg/ml BSA, 50 mM Tris, 25 mM NaCl, pH 8).

This yielded approximately 5.3 ml�OD of cells for Tite-Seq FACS. For antigen binding

reactions, cells were then resuspended in a primary labeling reaction containing 40 ml TBS-

BSA and biotinylated fluorescein (ThermoFisher B1370) at a concentration between 0 M and

10
�5 M, then incubated with shaking for 1 hr at room temperature. Reaction volumes were

large enough to ensure that >
~

10 antigen molecules per scFv were present, assuming ~ 10
5

scFvs per cell (Boder and Wittrup, 1997). Cells were then washed twice with 40 ml ice cold

TBS-BSA, suspended in a secondary labeling reaction containing 1 ml ice-cold TBS-BSA and

7 �g/ml streptavidin R-PE (ThermoFisher S866), and incubated for 30 min at 4�C while

shaking. Cells were then spun down and resuspended in ice cold TBS-BSA and saved for

FACS later that day. Expression labeling reactions proceeded in the same manner, except

that the primary labeling reaction contained 1.4 �g/ml rabbit anti-c-Myc antibody (Sigma-

Aldrich C3956) in place of the antigen, and the secondary labeling reaction contained 0.8

�g/ml BV421-conjugated donkey anti-rabbit antibody (BioLegend 406410) in place of

streptavidin R-PE. The labeling reactions used to filter out improperly cloned scFvs (as

described in Appendix 3) proceeded in the same manner as the expression labeling

reaction, except that 0.8 �g/ml mouse anti-HA antibody (Roche 11583816001) was added to

the primary labeling reaction, while 0.4 �g/ml APC-conjugated anti-mouse antibody (BD

Biosciences 550826) was added to the secondary labeling reaction. For clonal flow

cytometry measurements, we kept reagent and cell concentrations the same as described

above, but reduced reaction volumes 27-fold. Secondary labeling reactions with streptavidin

R-PE were done at 4 �g/ml in 112.5 �l. Secondary labeling reactions with 0.8 �g/ml BV421-

conjugated donkey anti-rabbit antibody were performed in 60 �l.
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Appendix 3

Cloning strategy
Amplicons containing variable CDR1H or CDR3H regions were generated as follows. An

oligonucleotide library containing mutagenized 1H and 3H variable regions (see Table 2)

was generated by LC Sciences using microarray-based synthesis. The specific oligos used are

provided at github.com/jbkinney/16_titeseq. 1H and 3H library oligos were separately

amplified via PCR using primers oRAL10 and oRAR10 (for 1H) or oRAL11 and oRAR11 (for

3H). Oligos containing the WT sequence were amplified from plasmid pCT302 (Boder and

Wittrup, 1997) using primers 1H2F and 1H1R (for the 1H region) or 3H1F and 3H2R (for the

3H region). Overlap-extension PCR using primers oRA10 and oRA11, one oligo library (1H or

3H) and the complementary WT oligo (3H or 1H, respectively), and plasmid pCT302, were

then used to create the iRA11 amplicon library (Figure 2—figure supplement 1A). Note

that each amplicon in this library had mutations only in the 1H variable region or in the 3H

variable region, but not in both of these regions.

The pRA10 cloning vector (Figure 2—figure supplement 1B) was assembled using Gibson

cloning (Gibson et al., 2009) with template plasmids pCT302 (Boder and Wittrup, 1997)

and pJK14 (Kinney et al., 2010). pCT302 is the yeast display expression plasmid containing

the WT scFv. pJK14 contains a ccdB cloning cassette flanked by outward-facing BsmBI

restriction sites. pRA10 closely resembles pCT302, except that it contains the ccdB cassette

from pJK14 in place of the region of the scFv gene that we aimed to mutagenize. Multiple

spurious BsmBI restriction sites present pCT302 were also removed in pRA10. pRA10 was

propagated in Escherichia coli strain DB3.1, which is resistant to the CcdB toxin.

The pRA11 plasmid library (Figure 2—figure supplement 1C) was generated by digesting

pRA10 with BsmBI, digesting the iRA11 amplicon library with BsaI, and subsequent ligation

with T4 DNA ligase. Ligation reactions were desalted and transformed into DH10B E. coli via

electroporation, yielding >
~

10
8 transformants. The 1H and 3H libraries were cloned

separately.

The pRA11 libraries were introduced into the EBY100 strain of Saccharomyces cerevisiae

using high-efficiency LiAc transformation (Gietz and Schiestl, 2007). This yielded >
~

10
5

transformants. To filter out yeast containing improperly cloned scFvs, we induced scFv

expression, immuno-affinity labeled the HA and c-Myc epitopes on the scFv, and used FACS

to recover 8� 10
5 � 2� 10

6 cells that registered positive for both epitopes. The scFv

induction and labeling procedures used to do this are described in Appendix 2. 144 yeast

clones were picked at random from this library and submitted for low-throughput Sanger

sequencing of the 1H and 3H variable regions of the scFv. Based on preliminary Tite-Seq

experiments, 19 of these clones were then chosen for low-throughput KD measurements.
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Appendix 4

Tite-Seq procedure
The inocula used for our Tite-Seq experiments comprised yeast harboring the 1H and 3H pRA11

plasmid libraries, mixed in equal proportions, and spiked at 0.625% with OPT-containing

yeast (as a positive control) and at 0.625% with D-containing yeast (negative control). Cells

were then grown, induced, and labeled with antigen at eleven different concentrations (0 M,

10
�9:5 M, 10�9:0 M, . . ., 10�5:0 M) as described in Appendix 2.

Each batch of labeled cells was then sorted, using FACS, over a period of approximately 20

min. During FACS, cells were first filtered based on forward scatter and side scatter to help

ensure exactly one live cell per droplet. Cells passing these criteria were sorted into four

bins based on R-PE fluorescence. The fluorescence gates used in these sorts were kept the

same across all antigen concentrations (see Figure 3, Figure 3—figure supplement 1, and

Figure 3—figure supplement 2). Cells were sorted into a rounded 5 ml polypropylene tube

containing 1 ml 2X YPAD media. In our separate Sort-Seq experiments assaying scFv

expression levels, cells were prepared and sorted in the same way, save for the changes to

the labeling reaction described in Appendix 2 and the use of gates on BV421 fluorescence

instead of R-PE fluorescence.

Each of the 48 bins of sorted cells, as well as a sample of unsorted cells, were then

deposited in 5 ml of SC-trp +2% glucose and regrown overnight at 30�C. Approximately 25

ml�OD of cells were then spun down, resuspended in a lysis reaction containing 200 �l of 0.5

mm glass beads, 200 �l of Phenol/chloroform/isoamyl alcohol and 200 �l of yeast lysis buffer

(10 mM NaCl, 1 mM Tris, 0.1 mM EDTA, 0.2% Triton X-100, 0.1% SDS), and vortexed for 30

min. 200 �l of water was added, cells were spun down, and the aqueous layer was

extracted. Four subsequent extractions were performed, the first two using 200 �l of

Phenol/chloraform/isoamyl alcohol, the second two using 200 �l for chloroform/isoamyl

alcohol. Bulk nucleic acid was then ethanol precipitated and resuspended in 100 �l of IDTE

(Integrated DNA Technologies).

Two rounds of PCR were then performed on each of the 49 samples of bulk nucleic acid. In

the first round of PCR, primers L1AF_XX and L2AF_XX were used to amplify the 1H-to-3H

region and to add a bin-specific barcode (numbered XX = 01, 02, . . ., 64) on either end of

the 1H-to-3H region; see Figure 2—figure supplement 1. To keep PCR crossover to a

minimum, only 15 PCR cycles were used. These 49 PCR reactions were then pooled, purified

using a QIAquick PCR purification kit (Qiagen), and used as template for second round of

PCR with primers PE1v3ext and PE2v3. Again, to keep crossover to a minimum, only 25 PCR

cycles were used. This PCR reaction was again purified, mixed with PhiX DNA (at ~ 25%

molarity) and submitted for sequencing using the Illumina NextSeq platform.

Analysis of the resulting sequence data across the three replicate Tite-Seq experiments

revealed that some of the 147 FACS bins were highly under-sampled. This under-sampling

likely resulted from the use of a non-saturating number of PCR cycles prior to pooling. The

different barcodes incorporated into the PCR primers also appear to have affected

amplification efficiency to different extents. To even out the distribution of reads across bins,

we selected the 27 most poorly sampled bins, re-amplified the 1H-to-3H regions in these

bins using primers with different barcodes than before, and submitted the resulting

amplicons for a fourth round of Illumina NextSeq sequencing.
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Appendix 5

Inference of KD from Tite-Seq data
We modeled the binding titration curve of each sequence – i.e., the curve describing how mean

cellular fluorescence depends on antigen concentration – using a non-cooperative Hill

function. Making the dependence on scFv sequence s and antigen concentration c explicit,

Equation 1 of the main text becomes

fsc ¼ As

c

cþKD;s
þB; (A1)

where fsc denotes the mean fluorescence of cells carrying sequence s and labeled with

antigen at concentration c, B represents the autofluorescence of cells, and was set equal to

the mean fluorescence of cells labeled at 0 M antigen. As is the increase in fluorescence due

to saturation of all surface-displayed scFvs, and KD;s is the dissociation constant for sequence

s. We inferred As and KD;s for all sequences s as follows.

Tite-Seq does not provide direct measurements of the fluorescence fsc. Instead, we

approximated this quantity using a weighted averaged over sorting bins. Specifically, we

assumed that

ln fsc »
X

b

pbjscFbc: (A2)

Here, Fbc is the mean log fluorescence of the cells that were sorted at concentration c into

bin b, and pbjsc is the probability that a cell having sequence s and labeled at concentration c,

if sorted, would be found in bin b. Values for Fbc were computed directly from the FACS

data log. The probabilities pbjsc, by contrast, were inferred from Tite-Seq read counts. These

probabilities are closely related to Rbsc, the number of sequence reads for each sequence s

from bin b at antigen concentration c. This relationship is complicated by additional factors

that arise from variability in sequencing depth from bin to bin. Moreover, because there

were often a small number of reads for any particular sequence in a given bin, it was

necessary in our inference procedure to treat the relationship between pbjsc and Rbsc

probabilistically.

We therefore inferred values for the probabilities pbjsc through the following maximum

likelihood procedure. First, we assumed that the number of reads Rbsc is related to an

‘expected’ number of reads rbsc via a Poisson distribution. The log likelihood of observing a

specific set of read counts Rbsc over all bins b and concentrations c for a given sequence s is

therefore given by

Ls ¼ ln
Y

b;c

1

Rbsc!
rbsc

Rbsce�rbsc

" #

: (A3)

The expected number of reads rbsc is, in turn, related to the probability pbjsc via

rbsc ¼
Rbc

Cbc

CcPs pbjsc: (A4)

Here, Rbc ¼
P

s Rbsc is the total number of reads from bin b at antigen concentration c, Cbc is

the number of cells sorted into bin b at antigen concentration c (obtained from the FACS

data log), Cc ¼
P

b Cbc is the total number of cells sorted at concentration c, and Ps is the

fraction of cells in the library with sequence s. The factor RbcCc=Cbc in Equation A4 accounts
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for differences in the depth with which each bin was sequenced. Note: Equation A3

assumes that each final read arose from a different sorted cell. This assumption is clearly

violated if Rbc>Cbc. In cases where this inequality was found to hold, we rescaled all Rbsc !
hRbsc where h ¼ Cbc=Rbc before undertaking further analysis.

For each sequence s, we inferred KD;s, As, Ps, and all probabilities pbjsc by maximizing the

likelihood Ls subject to the constraint that

X

b

pbjscFbc ¼ ln As

c

cþKD;s
þB

� �

(A5)

at every concentration c. Note that, in this procedure, the sorting probabilities pbjsc are not

modeled explicitly as a function of the putative mean fluorescence. Instead, they are inferred

from the data along with the parameters of the non-cooperative Hill function. Doing this

dispenses with the need for a detailed characterization of the noise in the Tite-Seq sorting

procedure. The validity of this procedure is evinced by the analysis of simulated data, shown

in Figure 4—figure supplement 8.

The maximum likelihood optimization problem described above was solved as follows. For

each concentration c, we created a grid of 100 equally spaced points for ln fsc 2 ½F0a, F3a�.
For each possible value of fsc, we then used Nelder-Mead optimization of pbjsc to minimize Ls

under the constraint in Equation A5. Akima interpolation was then used to create a function

of the optimized probability p̂bjsc as a function of fsc. We then scanned a 321� 201 grid of

values for the pair ðKD;s;AsÞ and selected the pair that minimized

LsðKD;s;As; p̂bjscðKD;s;AsÞ;Ps

� 	

b;c
Þ. We repeated this scan by varying Ps over 95 different

values. The final inferred values for KD;s, As, and Ps were those so found to maximize Ls.

Python code for this inference procedure is provided at github.com/jbkinney/16_titeseq.
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Appendix 6

Inference of KD from flow cytometry experiments on
individual clones
Low-throughput flow cytometry measurements performed on clonal cell populations were used

to measure fsc;flow, the mean fluoresence of cells carrying sequence s and labeled at antigen

concentration c. As for the Tite-Seq inference procedure described in Appendix 5, it was

assumed that fsc;flow could be modeled using the non-cooperative Hill function

Asc=ðcþ KD;sÞ þ B, where As is the increase in mean fluorescence due to fully labeled scFvs of

sequence s, KD;s is the corresponding dissociation constant, and B is background

fluorescence. B was computed from the average fluorescence of clones at 0 M fluorescein.

As and KD;s were then inferred by minimizing the square deviation between measured

ln fsc;flow values and log Hill function predictions, i.e.,

X

c

ln fsc;flow � ln As

c

cþKD;s
þB

� �� �2

: (A6)

This optimization procedure was performed using a grid search algorithm in which KD;s was

restricted to the interval ½10�10M; 10�3M� and As was restricted to the interval ½Â; 100Â� where
Â denotes the average range of fluorescence values over the 4-to-8 clones assayed per flow

cytometry session.
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Appendix 7

Realistic Tite-Seq simulations
In order to test our analysis pipeline, we simulated realistic Tite-Seq data and analyzed it with

the same scripts that we used on real data. For each sequence s, a KD;s value was randomly

drawn from the interval [10�10 M, 10�4 M] using a uniform distribution in log space, and an As

value was drawn uniformly from a uniform distribution spanning the bulk of experimentally

observed A values. At each of the eleven antigen concentrations c, we then modeled the

distribution of cellular fluorescence using a Gaussian Mixture Model (GMM) in log space.

Specifically, letting x denote log10 cellular fluorescence values, we assumed that the

probability density describing x to be

PscðxÞ ¼
a

s0

ffiffiffiffiffiffi

2p
p e

�ðx��0Þ2

2s2
0 þ 1�a

s1

ffiffiffiffiffiffi

2p
p e

�ðx��scÞ2
2s2

1 ; (A7)

where a ¼ 0:2 is the fraction of non-expressing cells, �0 ¼ 4:77 and s0 ¼ 1 are the mean and

standard deviation of x values for dark cells, and s1 ¼ 0:5 is the standard deviation of x

values for scFv-expressing cells. The mean x value of scFv-expressing cells, here denoted �cs,

was chosen so that the population average of x is given by the Hill function in Equation A1,

i.e., so that

hxiPsc
¼ As

c

cþKD;s
þB: (A8)

The left hand side of Equation A8 can be computed analytically using Equation A7. Doing

this and solving for �sc gives

�sc ¼ ln
Asc

cþKD;s
þB�ae�0þs2

0
=2

� �

� lnð1�aÞ�s2

1

2
; (A9)

this is the specific formula we used to compute �sc as a function of c, As, and KD;s. Next we

computed exact pbjsc values using

pbjsc ¼
Z bþ

b�
dxPscðxÞ; (A10)

where bþ and b� are the upper and lower fluorescence bounds used for bin b in our Tite-Seq

experiment (replicate number 1). These values were then used to draw read counts Rbsc for

each sequence s values via

Rbsc ~Binomialðn¼ ksRbc;p¼ pbjscÞ; (A11)

where ks is a random variable, uniformly distributed on a log scale between 0:01 and 100,

used to represent noise due to PCR jackpotting. Data thus simulated for WT values of KD

and A are shown in Figure 4—figure supplement 7.
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