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1 Supplementary SI1: An overview of the early phase of C.
elegans embryonic elongation

Soon after the ventral enclosure has completed, C. elegans embryos elongate from a lima-bean
shape to the characteristic cylindrical shape, resulting in a 4-fold increase in length and approx-
imately a 2-fold decrease in diameter1 (figure 1a). The elongation is thought to be driven by cell
shape changes, as can be most easily observed among seam cells (figure 1a). Muscle contrac-
tions, starting about midway through the process, are essential, since muscle-defective embryos
are paralyzed and arrest at the 2F stage. In the following paragraphs, we discuss mostly the early
phase of elongation which occurs prior to muscle contraction onset.

Pharmacological and genetic studies have proved the critical role of actomyosin contractility
during the early elongation. Inhibition of actin polymerization with cytochalasin-D prior to the 1.5F
stage blocks elongation, whereas application at later stage causes embryos to retract to their
pre-elongation state1. Non-muscle myosin II activation is regulated through phosphorylation and
dephosphorylation of the regulatory light chain MLC-4 by the LET-502/Rho-binding kinase and
MEL-11/Myosin phosphatase, respectively2;3;4. LET-502, the effector of the Rho GTPase RHO-
1, can be activated and inactivated by the C. elegans RhoGEF (Guanine Exchange Factors)
RHGF-2, and RhoGAP (GTPase Activating Protein) RGA-25;6, respectively. Mutations affecting
myosin II or its activation, such as MLC-4 and NMY-1/Non-muscle Myosin II heavy chain, RHGF-
2/RhoGEF, LET-502/ROCK, lead to hypo-elongation, whereby embryos arrest earlier than or
at the 2F stage2;4;5;7;8. By contrast, mutations affecting negative regulators of myosin II, like
mel-11 or rga-2, cause embryos to burst during elongation due to increased tension exerted on
adherens junctions3;6. The two myosin heavy chains, NMY-1 and NMY-2, work redundantly to
regulate actomyosin contractility8. Although essential during early embryonic development, our
data shows that NMY-2 is not required during elongation. Indeed, embryos homozygous for
the strong thermosensitive mutant nmy-2(ne3409)9 still elongated normally after shifting to the
restrictive temperature (25.5◦ C, data not show).

Several lines of evidence suggest that seam cells generate most of the actomyosin forces,
while the DV cells may remain passive. First, the myosin II regulatory light chain MLC-4 is mainly
required in seam cells4. Second, MLC-4, MLC-5/myosin essential light chain and NMY-1 are
higher expressed in seam cells4;7;8. Third, rescue experiments have shown that the positive
regulator of contractility RHGF-2/RhoGEF is required only in seam cells, whereas the negative
regulator RGA-2/RhoGAP acts specifically in DV cells5;6. Thus, all the players of acto-myosin
regulation pathway promote a high contractility in seam cells and keep a low contractility in DV
cells.

Although the myosin II activity is crucial in seam cells, the phenotypes of several mutants
affecting junctional proteins, which are thought to anchor actin bundles10, show an important role
of actin bundles in DV epidermal cells during elongation. In particular, zygotic hmp-1/α-catenin
mutants, in which actin bundles detach from the junctional belt, show bulges and cannot elongate.
Similarly, loss of ZOO-1/ZO-1 and VAB-9/Claudin homologues affects actin bundle organization
in DV cells, leading to deformities and an incomplete elongation11;12.

In summary, the epidermal actomyosin network is essential for the early elongation phase of
C. elegans embryo.

2 Supplementary SI2: The C. elegans embryonic epidermis is
under biaxial stress loading along the AP and DV directions

Despite the fact that a biological material is in general viscoelastic13, the elastic aspect of C.
elegans embryos seems to be more important. Indeed, inhibition of actin polymerization with
cytochalasin-D induces a retraction of the embryo to nearly its original length1, like a spring after
force release. Thus, we used an elastic model to describe C. elegans embryonic deformation. In
particular, we considered the epidermal cell cortex as an elastic plane. In this section, we exam-
ine, for the analysis of laser ablation responses, whether the epidermal cell cortex is subjected to
biaxial stress loading (stress along two orthogonal directions) along the AP and DV directions.
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If a thin cut is introduced in an infinite isotropic elastic plane under biaxial stress loading (figure
SI2a), Theocaris et al.14 have shown that the opening is an ellipse. The authors have shown that,
the rotation angle θ between the direction of the cut and the major axis of the opening ellipse, is
in general different from zero (figure SI2b). θ is equal to zero when the cuts are parallel to the
directions of stress loading or in case of equal tension-tension loading (σxx = σyy > 0)14.

To test if the AP and DV directions are indeed the directions of stress loading for different
seam cells (H1, V3, V6, figure 3a) during early elongation, we performed laser cuts in the AP and
DV directions and measured the rotation angle θ at equilibrium from the 1.3F to the 1.7F stages.
Figure SI2c shows that θ was not significantly different from zero for different magnitudes of stress
(figure 3b), consistent with the hypothesis that AP and DV are the principal directions of stress
loading. The difference of θ compared to 0 was more important for V6, as we had difficulties
to unambiguously determine the AP and DV direction for V6. In conclusion, the epidermal cell
cortex can be considered as an elastic plane under biaxial stress loading along the AP and DV
directions.
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Figure SI2: (a) An incision of length l was introduced in an elastic plane under biaxial stress along
the x and y directions. The cut was along the u axis with the uv coordinates. (b) The shape of
the opening at equilibrium was an ellipse14. We called u′ (of u′v′ coordinates) the axis parallel to
the major axis of the opening ellipse, which formed an angle θ to the direction of the initial cut.
(c) The rotation angle θ at equilibrium (measured around 9.5 s after cut) for H1 from the 1.3F to
the 1.7F stages and V3 and V6 from the 1.3F to the 1.5F stages. ‘DV’ and ‘AP’ mean DV and AP
opening, respectively. Red bars show the mean and standard error.
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3 Supplementary SI3: Comparison of two methods to analyze
laser ablation responses using the recoil dynamics and the
cut opening at equilibrium

In order to compare the two analysis methods of laser ablation using the equilibrium shape of the
cut opening or the recoil dynamics15;16, we estimated the initial recoil speed and the relaxation
half-time by fitting the relaxation of the cut borders (the minor axis of the cut opening) with the
equation:

y = y0 + (Plateau− y0)(1− e−γt) (1)

where y0 is the initial width of the cut opening, Plateau is the minor axis of the cut opening at
equilibrium and γ is the relaxation rate. The recoil speed can be obtained by taking the derivation
of the previous equation versus time:

v =
dy

dt
= (Plateau− y0)γe−γt (2)

Thus, the initial recoil speed is:
v0 = (Plateau− y0)γ (3)

The half-time, defined as the time interval needed to reach half of the distance between the
initial opening and the Plateau, is given by:

τ 1
2

=
ln(2)

γ
(4)

According to the model described in Rauzi et al., Smutny et al. and Mayer et al.15;16;17, the
initial recoil speed is proportional to the ratio of the cortical stress σ to the viscosity of the cellular
medium η:

v0 ∼
σ

η
(5)

and the relaxation half-time depends on the ratio of η to the cortex stiffness k:

τ 1
2
∼ η

k
(6)

The fitting of the equation (1) depends on the initial width of the cut opening y0. We used here
three methods to estimate y0. First, since the cut opening depends on the actomyosin contractility
(figure 2c), we reasoned that y0 should be close to the opening observed in a mutant where
actomyosin contractility is strongly inhibited. Indeed, in let-502(sb118ts) mutant, the opening
changed very little (figure 2c), which corresponded to a nearly complete inhibition of the early
elongation. The smallest opening in let-502(sb118ts) mutant was around 0.6 µm (figure 2c).
Second, our evaluation of the initial width of the opening using the same setup to photobleach
a thin fluorescent layer also gave around 0.6 µm. Finally, we tried to fit the recoil of cut borders
using the equation (1) with values of y0 decreasing from 0.6 µm to 0.2 µm (with 0.1 µm step)
and found a decrease of goodness of fit R2 (supplementary table 2). The goodness of fit R2 is a
fraction between 0 and 1 and higher values indicate better fits (GraphPad Prism 5, Goodness of fit
of nonlinear regression). Thus, all three approaches indicated that 0.6 µm was a good estimation
of the initial width of the cut opening (an example of fit is shown in figure S2). Subsequently, we
used y0 = 0.6 µm to derive the initial recoil speed and the relaxation half-time, and the results are
shown in the supplementary table 3.

We found that the relaxation half-time in the AP direction was similar with the one in the DV
direction in most of the seam cells examined at different stages (figure SI3a). Since the relaxation
time is proportional to the ratio of viscosity over the stiffness of the cortex, and the cytoplasmic
viscosity is likely homogeneous within a given cell, the cortex in seam cells is likely isotropic.
However it can vary from one cell to another as indicated in the figure SI3a.

Next, we wanted to know if the two methods to analyze the ablation response (based on the
cut recoil dynamics and the cut opening at equilibrium) gave consistent results about the stress
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magnitude and anisotropy. Since we compared different seam cells (H1, V3, V6) with potentially
different material properties (viscosity and stiffness), we multiplied the initial recoil speed by the
relaxation half-time to have the stress to stiffness ratio (equations (5,6)). We normalized the
previous ratio to the different cut lengths used in the different seam cells (5 µm in H1, 4 µm
in V3 and V6), then plotted the resulting values against the cut opening at equilibrium, which
also reports the stress over stiffness ratio (figure 2b, figure SI3c). The linear regression strongly
suggests that the two methods are in good agreement on the stress magnitude. Moreover, the
anisotropy of stress obtained by the two methods showed a linear correlation (SI5d).

In summary, the two methods to analyze laser ablation responses gave results consistent with
each other on the magnitude and the anisotropy of stress. The relaxation half-time obtained from
recoil dynamics analysis indicated that the seam cell cortex is isotropic.

a b

ec d

Figure SI3: (a) Relaxation half-time and (b) initial recoil speed derived from fitting the cut border
relaxation using an initial width of cut opening of 0.6 µm, in H1, V3 and V6 from the 1.3F to the
1.7F stages. Z-test, ns, p > 0.05; **, 0.001 < p < 0.01; ***, p < 0.001. DV and AP indicate the
directions of opening. (c) Comparison between the ratio of stress to stiffness derived using the cut
recoil dynamics (after normalization to the cut length) and the one derived from the cut opening
at equilibrium. (d) Comparison of the anisotropy of stress (defined by DV/AP stress) derived from
the recoil dynamics and from the cut opening at equilibrium.(e) The minor and major axes of cut
opening at equilibrium show a linear relationship when the cut length varied from 3 µm to 6 µm.
The ablations were performed in H1 at the 1.5F stage. Solid lines show a linear fit. R2 > 0.65. (f)
The ratio of the minor to major axis of the cut opening at equilibrium calculated from data shown
in (e).
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4 Supplementary SI4: The ratio of the minor to major axis of
the cut opening at equilibrium does not depend on the cut
length

As predicted by Theocaris et al.14, the minor to major axis ratio of the cut opening should be
independent of the cut length. Indeed, the equation for the major axis a over the cut length l of
the opening at equilibrium is given as:

a

l
=
E + σxx − σyy

E
(7)

where σxx and σyy are the stresses in the principal loading directions x and y, respectively, which
are also the laser cut directions. E is the Young modulus of the plane (figure SI2a-b). Thus,
according to the ratio of minor axis to cut length given in figure 2b, the minor to major axis ratio
of the ellipse at equilibrium is:

b

a
=

2σyy
E + σxx − σyy

(8)

and does not depend on the cut length l. Our experimental data fitted well with this prediction as
shown in figure SI3e-f. Indeed, when we plotted the minor versus major axes of the opening at
equilibrium, we observed a linear relationship (figure SI3e), when the cut length varied from 3 to
6 µm in the seam cell H1, for cuts in both the AP and DV directions. Thus, the minor to major
axis ratio is nearly a constant and independent of the cut length (figure SI3f), consistent with the
theory of Theocaris et al.14.

5 Supplementary SI5: Modeling of the C. elegans embryo as
a capped thin-wall pressured vessel and calculation of the
anisotropy of stress

The rationale for modeling the C. elegans embryo as a thin-wall pressured vessel is given in the
main text. To do so, first, we calculated the stress anisotropy for an axisymmetric vessel. We
derived the stress anisotropy for the head from this calculation since the head was considered
axisymmetric. Second, we calculated the stress anisotropy in the embryo body at the position of
the seam cell V3. The body was not axisymmetric due to the important folding of the embryo in
the eggshell, but the stress anisotropy can be obtained using a similar method.

5.1 Anisotropy of stress for an axisymmetric thin-wall pressured vessel

We consider an axisymmetric thin-wall pressured vessel with two ends capped. To make a par-
allel with C. elegans embryos, we call the axis of the vessel AP and the circumferential axis DV
(figure SI5a). We calculate the anisotropy of stress σDV

σAP
, where σAP is the longitudinal (AP) stress

and σDV is the circumferential stress (DV) on the wall.
Let us consider a point Q on the wall for which we calculate σDV

σAP
at this point. The tangent at

Q in the plane going through Q and the AP axis makes an angle α with AP.
Imagine that we cut the vessel in two parts by a plane going through Q and perpendicular to

the AP axis (figure SI5a). The vessel is divided into Ω1 and Ω2. The forces applied by Ω2 on Ω1

have two components F1 and F2 (Figure SI5b): F1 is the force applied by the wall of Ω2 on Ω1,
whereas F2 is the force exerted by the hydrostatic pressure from Ω2. We have

F1 = σAP 2πRh (9)

where R is the radius of the vessel at Q; h is the thickness of the wall (epidermis), considered as
a constant. F1AP is the component in the AP direction of F1 and is written as:

F1AP = F1cosα = σAP 2πRhcosα (10)
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F1AP is balanced by the hydrostatic force F2 because Ω1 is at equilibrium

F2 = pπR2 (11)

where p is the hydrostatic pressure. By combining the equations (10,11), we have:

σAP 2πRhcosα = pπR2 (12)

⇒ σAP =
pR

2hcosα
(13)

Now let’s consider a volume element Ω4 of length ∆l with two limiting sections perpendicular
to the AP axis, so that Ω4 is between Ω3 and Ω5 (figure SI5c). Imagine that we cut Ω4 into two
halfs Ω41 and Ω42 (Figure SI5d).

Let’s examine an element ∆s on the wall of Ω41, at the interface between Ω3 and Ω41(figure
SI5f). The force applied by the wall of Ω3 to this element is:

F3 = σAP (R3)h∆s = σAP (R3)hR3dβ (14)

where σAP (R3) means that σAP is a function of R3, β is the angle formed by the position of ∆s
with the Ω41-Ω42 interface as shown in figure SI5f. The force applied by Ω3 on Ω41 in the radial
direction (figure SI5e-f) is:

F3R = F3sinα(R3) = σAP (R3)hR3dβsinα(R3) (15)

where α(R3) means that α is a function of R3. The force applied by Ω3 in the direction −→n
perpendicular to the Ω41-Ω42 interface (figure SI5f) is:

F3n =

∫ π

0

F3Rsinβdβ =

∫ π

0

σAP (R3)hR3sinα(R3)sinβdβ (16)

= 2σAP (R3)hR3sinα(R3) (17)

If we replace σAP obtained from the equation (13), we have:

F3n = 2σAP (R3)hR3sinα(R3) =
pR2

3sinα(R3)

cosα(R3)
(18)

The force F5n exerted by Ω5 to Ω3 can be calculated in the same manner. We obtain:

F5n = −pR
2
5sinα(R5)

cosα(R5)
(19)

The resulting force applied by Ω3 and Ω5 to Ω41 in the −→n direction can be expressed as :

F35n = F3n + F5n =
d

dR
(
pR2sinα(R)

cosα(R)
)∆R = 2pRtanα(R)∆R+

pR2

cos2α(R)

dα

dR
∆R (20)

The force applied by Ω42 to Ω41 (figure SI5e-f) in the −→n direction is :

F12 = p∆lcosα(R)2R− σDV 2∆lh (21)

Since Ω4 is at equilibrium, we have :

F35n + F12 = 0 (22)

Note that
∆R = ∆lsinα (23)

From the equations (20, 21, 22, 23) we have

2pRtanα∆lsinα+
pR2

cos2α

dα

dR
∆lsinα+ p∆lcosα2R− σDV 2∆lh = 0 (24)
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⇒ σDV =
pRsin2α

hcosα
+
pRcosα

h
+
pR2sinα

2hcos2α

dα

dR
=

pR

hcosα
+
pR2sinα

2hcos2α

dα

dR
(25)

Thus we obtain the anisotropy of stress on the wall:

AS =
σDV
σAP

=
1

cosα + Rsinα
2cos2α

dα
dR

1
2cosα

= 2 +R
dα

dR
tanα (26)

We can now calculate the AS for vessels with a particular shape : a sphere, a cylinder and
an ellipsoid.

- For a sphere of radius R0 :
R = R0cosα (27)

According to the equation (13), the AP stress is:

σAP =
pR0

2h
(28)

If we take the derivation of the equation (27) with respect to R, we have

−R0sinα
dα

dR
= 1 (29)

⇒ R0cosαtanα
dα

dR
= −1 (30)

⇒ Rtanα
dα

dR
= −1 (31)

Combing the previous equation with the equation (26), we have:

⇒ AS =
σDV
σAP

= 1 (32)

- For a cylinder : α = const = 0

AS =
σDV
σAP

= 2 (33)

According to the equation (13), the AP stress is:

σAP =
pR

2h
(34)

where R is the radius of the cylinder.

- For an ellipsoid with the major axis a1 and minor axis a2 (figure SI5g), we can write the
coordinates of point Q in the plane going through Q and AP axis as:

⇒

{
x = a1cost
y = a2sint

(35)

thus

tanα =
dy

dx
=

a2cost

a1(−sint)
= −a2

a1
cotant (36)

d(tanα)

dt
= (1 + tan2α)

dα

dt
=
a2
a1

(1 + cotan2t) (37)
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Thus
dα

dt
=

a2
a1

(1 + cotan2t)

1 +
a22
a21
cotan2t

=
a1a2

a21sin
2t+ a22cos

2t
(38)

Due to the symmetry of the system, we examine only t ∈ [0, π]. We have:

R = y = a2sint (39)

dα

dR
=
dα

dt

dt

dR
=

a1a2
(a21sin

2t+ a22cos
2t)a2cost

=
a1

(a21sin
2t+ a22cos

2t)cost
(40)

From equations (36,39,40) we have

R
dα

dR
tanα =

−a22
a21sin

2t+ a22cos
2t

(41)

Thus:

AS =
σDV
σAP

= 2− a22
a21sin

2t+ a22cos
2t

(42)

For the middle of the ellipsoid, y = a2 and x = 0, t = π
2 , thus

AS =
σDV
σAP

= 2−
(
a2
a1

)2

(43)

According to the equation (13), the AP stress at the middle of the ellipsoid is:

σAP =
pa2
2h

(44)

Note that the radial stress on the wall is −p. Since the wall is thin, i.e h << R, we expect that
the radial stress is much smaller than the AP and DV stress on the wall for a sphere, an ellipsoid
or a cylinder.

5.2 Anisotropy of stress for the body seam cell V3 of C. elegans embryo

For the seam cell V3 at the 1.3F and 1.5F stages, there is an important curvature of the embryo
in the ventral part (figure SI5h). We cut a part of the embryo going through V3 and the dorsal part
of V3 (dash line, figure SI5h) and approximate that the resulting half-section as half a cylinder
(figure SI5i).
The force equilibrium for this part of the embryo in the circumferential direction (figure SI5i) is
written as:

σV 3
DV 2hL = p2R2L (45)

(force generated by circumferential stress on the wall = force due to the hydrostatic pressure),
where σV 3

DV is the DV stress at V3, h is the thickness of the epidermis, R2 is the radius at V 3, L is
the length of the region considered. Thus:

σV 3
DV =

pR2

h
(46)

For H1 in the head, if we considered the head as a sphere, the DV and the AP stresses are the
same and is given as (equations 28, 32):

σH1
DV = σH1

AP =
pR1

2h
(47)

where R1 is the head radius. If the AP stress is the same for H1 and V3, then the anisotropy of
stress at V3 is

AS =
σV 3
DV

σH1
AP

=
pR2

h
pR1

2h

= 2
R2

R1
(48)
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6 Supplementary SI6: The Hooke’s law written for seam and
DV epidermal cells

In this section, we further detail how we used the Hooke’s law to describe the deformation of the
seam and DV epidermal cells.

6.1 Supplementary SI6A: The Hooke’s law written for seam cells

The Hooke’s law for the deformation of seam cells is given by:

εsAP =
∆LsAP
Ls0AP

=
σsAP
E
− ν σ

s
DV

E
= −σ

s
AP

E
(νAS − 1) (49)

εsDV =
∆LsDV
Ls0DV

=
σsDV
E
− ν σ

s
AP

E
= −σ

s
AP

E
(ν −AS) (50)

Here we supposed that the embryonic cortex material property is isotropic with a Young modulus
E. εsAP and εsDV are the strain (which is equal to the relative length change) along the AP and DV
directions, respectively; ∆LsAP and ∆LsDV are the length change, Ls0AP and Ls0DV are the initial
length along the AP and DV directions, respectively. Positive values of εsAP or εsDV correspond
to an increase in length (or extension), whereas negative values correspond to a decrease in
length (shrinking). σsAP and σsDV are the stress along the AP and DV directions, respectively.
Positive values of σsAP or σsDV correspond to tensile stress, whereas negative values correspond
to contractile stress. ν is the Poisson’s ratio describing the shrinking in the AP direction when
tensile stress is applied in the DV direction, and vice-versa. Here we omit the stress along
the radial direction, since it is much smaller than the AP and DV stress for a thin-wall vessel
(supplementary SI5). AS is the stress anisotropy which equals to the DV to AP stress ratio.

AS =
σsDV
σsAP

(51)

If we have an isotropic spherical embryo covered with contractile seam cells (AS = 1), the embryo
would not deform due to its incompressibility and symmetry: εsAP = 0 and εsDV = 0. From this we
derived that ν = 1. We can thus rewrite the previous equations (49, 50) as:

εsAP = −σ
s
AP

E
(AS − 1) (52)

εsDV = −σ
s
AP

E
(1−AS) (53)

6.2 Supplementary SI6B: The Hooke’s law written for DV epidermal cells

As the DV epidermal cells have different stiffnesses along the AP and DV directions, the stress-
strain relationship along the AP and DV axes can be written:

εAP =
∆LAP
L0AP

=
σAP
EAP

− ν1
σDV
EDV

(54)

εDV =
∆LDV
L0DV

=
σDV
EDV

− ν2
σAP
EAP

(55)

where εAP and εDV are the strain (which is equal to the relative length change) along the AP
and DV axes, respectively; ∆LAP and ∆LDV are the length change, L0AP and L0DV are the
initial length of the cell in the the AP and DV directions, respectively. Positive values of εAP or
εDV correspond to an increase in length (or extension), whereas negative values correspond to
a decrease in length (shrinking) of the cells. σAP and σDV are the stress along the AP and DV
directions, respectively. Positive values of σAP or σDV correspond to tensile stress, whereas
negative values correspond to contractile stress. ν1 and ν2 are Poisson’s ratios.
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Since the head is considered axisymmetric, we have:

AS =
σsDV
σsAP

=
σDV
σAP

(56)

and replace

ω =
EDV
EAP

(57)

we have

εAP =
σAP
EAP

(
1− ν1

AS

ω

)
(58)

εDV =
σDV
EDV

(
1− ν2

ω

AS

)
(59)

While the CB model (see supplementary SI7,section 8.4) seems to be appropriate to describe
fiber-reinforced material in extension, its application is questionable to describe the shrinking in
the fiber direction. It is known for many fiber-reinforced composites to exhibit different stiffnesses
in response to extension and compression18;19. It is also known for biological polymers, such as
actin filaments, that they can have different mechanical properties under tensile or compressive
stress, as actin filaments buckle under compression20. The use of Poisson’s ratios for fiber-
reinforced material in compression is arguable, since the symmetry of stiffness (or compliance)
matrix may not be satisfied18. Given that the DV cells decrease their length in the fiber (DV)
direction (figure 3e), the fibers should be under compression. For this reason, we suggest that
the DV epidermal cells must have an active mechanism to adjust the actin bundle length to the
cell shrinkage along the DV direction, in order to maintain the reinforcement properties.

7 Supplementary SI7: Cracks opening in orthotropic and fiber-
reinforced planes

7.1 Introduction

This supplementary gives the proofs of the various relations used in the main paper to extract
the residual stresses in the epithelial cells. Exhibiting oriented actin cables, the epithelium can
be considered as a thin anisotropic soft layer. The correct description of the epithelium beha-
viour under strong deformations is achieved via hyper-elasticity. However, the determination of a
crack-shape in nonlinear elastostatic remains challenging and is not achieved to the best of our
knowledge. It is why we assume first a linear orthotropic planar material and solve the geometry
of the crack by potential functions21;22, following the pioneering contributions of Muskkhelishvili23,
Suo24, Theocaris et al.14 and Yoffe25. In the following, the shape of the crack is given, under sim-
ultaneous tension imposed far away along Ox and Oy, including also shear stresses (combined
Mode I and II of fracture). Then, we present the model for fiber soft material, which is a better
representation for living matter. Aiming to estimate residual stresses from the shape aperture, we
identify the correspondence between the linear elastic coefficients of anisotropic elasticity and
the parameters of a fiber model, at low strains.

7.2 Fracture in orthotropic linear elasticity

In material sciences, a common choice of elastic coefficients for orthotropic samples consists in
the definition of Young moduli affected to each axis and Poisson ratios defined for each pair of
orientation, in addition to shear moduli (equivalent to the second Lamé coefficients21 µ) . In case
of plane stress elasticity, the equivalent Hooke’s law is reduced to six independent coefficients:

uxx = 1
Ex

(σxx − νxyσyy); uyy = −νxy

Ex
σxx +

σyy

Ey

uzz = −νxz

Ex
σxx +

νyz

Ey
σyy; uxy = 1

2µxy
σxy

(60)
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The incompressibility condition: Σiuii = 0 involves the third components of the deformation uzz,
leading to: νxz = νyz = 1, so finally 4 elastic independent coefficients are required. When the
loads are applied at the border of the sample, the two in-plane components of the equilibrium
condition Div σ = 0:

∂σxx
∂x

+
∂σxy
∂y

= 0 and
∂σxy
∂x

+
∂σyy
∂y

= 0, (61)

are automatically satisfied by the definition of the Airy potential21: U(x, y):

σxx =
∂2U

∂y2
; σxy = − ∂2U

∂x∂y
; σyy =

∂2U

∂x2
(62)

Taking into account the Hooke’s law, Eq.(60), one recovers the usual forth order partial differential
equation for U :

∂4U

∂x4
+ 2ρΛ1/2 ∂4U

∂x2∂y2
+ Λ

∂4U

∂y4
= 0 (63)

where Λ = Ey/Ex and ρ = 1
2

√
Λ(Ex/µxy − 2νxy). For isotropic materials, Λ = ρ = 1, since

the second Lamé coefficient (related to the Young modulus E and to the Poisson ratio ν) reads:
µ = E/(2(1 + ν)). In the isotropic case and in the context of fracture, Eq.(63) has been solved23

with the help of holomorphic functions and complex analysis, in the case of plane-stress or plain
strain elasticity and in Mode I (uniaxial loading, perpendicular to the crack direction). The method
has been extended to bi-axial loading and arbitrary crack orientation by Theocaris et al14 using
the same strategy. Coming back to the anisotropic case and as pointed by Suo24, the theoretical
analysis differs according to the ρ value. However, to the best of our knowledge, the shape of a
crack of finite length has not been determined before, for an orthotropic material. Since we are
concerned with ρ < 1, proofs will be given for −1 < ρ < 1 and the results for the shape crack will
be simply mentioned without demonstration for arbitrary ρ.

7.3 Definition of two complex functions

Eq.(63) is an even quartic partial differential equation which can be solved by 2 holomorphic
functions F̃ (z1) and G̃(z2) where:

z1 = x+ Λ−1/4(m+ In)y; z2 = Λ−1/4(−m+ In)y; n =
√

(1 + ρ)/2 and m =
√

(1− ρ)/2.
(64)

This treatment is inspired from the work of Yoffe25 for elasto-dynamic cracks in mode I and
differs slightly from the work of Muskkhelishvili23 and Lekhnitskii26, more fancy but much less
intuitive. In the following, the formulation via complex potentials can be checked at each step by
elementary calculations. Each stress component σij also verifies Eq.(63) and can be written as:

σyy = 2Re[F ′(z1) +G′(z2)]; σxy = −2Re[µ1F
′(z1) + µ2G

′(z2)]; σxx = 2Re[µ2
1F
′(z2) + µ2

2G
′(z2)]
(65)

where F (z) = dF̃ (z)/dz. The reader can check easily that the two components of the equilibrium
equation (61) are verified. A standard choice for F ′(z1) and G′(z2) for a crack lying on the x-axis
between −a < x < a is:

F ′(z1) = (A1 + iA2)
z1√

z21 − (l/2)2
+B1 + iB2 and G′(z2) = (C1 + iC2)

z2√
z21 − (l/2)2

+D1 + iD2

(66)
where the 8 constants are real and will be determined by the boundary conditions on the crack
lips and the loads far from the crack. On the lips, we have the cancellation of σxy and σyy and
both square-roots in Eq.(66) are imaginary, so it reads: σyy = 0 =⇒ B1 = −D1 and C2 = −A2,

σxy = 0 =⇒ C1 = (C2 −A2)m/n−A1 and D2 = (B1 −D1)m/n−B2

(67)
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Eliminating the solid rotation at infinity leads to B1 = −n(mA2 + nA1), thus giving a fith relation-
ship. It remains to evaluate the 3 stress components at infinity σ∞yy, σ

∞
xy, σ

∞
xx and we obtain:

A1 =
1

4

(
σ∞yy−Λ1/4σ∞xy/m

)
, A2 = − n

4m
σ∞yy, B2 =

1

8mn

(
−
√

Λσ∞xx+σ∞yy+2mn2Λ1/4σ∞xy
)

(68)

Finally, taking into account the first relationship of the Hooke’s law, Eq.(60), knowing that uxx =
∂u/∂x, one can find the horizontal displacement on the lips by quadrature :

u± =
2√
ExEy

{1

2
(σ∞xxΛ1/2 − σ∞yy)x± nΛ1/4σ∞xy

√
(l/2)2 − x2} (69)

The determination of the vertical displacement is more subtile since v comes from the shear
relation: ∂v/∂x = −∂u/∂y + σxy/µxy, and we obtain after elimination of solid rotation,

v± =
2n

E
1/4
x E

3/4
y

{nΛ1/4σ∞xyx± σ∞yy
√

(l/2)2 − x2} (70)

In pure tensional loading, σ∞xy, calling β the ratio between the imposed vertical tension and the
horizontal one: β = σxx/σyy, we obtain:

u± = Λ1/2
σ∞yy
E2

(βΛ1/2 − 1)x and v± = ±2nΛ1/4
σ∞yy
Ey

√
(l/2)2 − x2 (71)

Even if the demonstration given here is for ρ < 1, a slightly different treatment can be achieved
for ρ = 1 and ρ > 1 but Eq.(69) and (70) and Eq.(71) remain valid with the same definition of
n =

√
(1 + ρ)/2 and Λ.

Linear elasticity allows to solve exactly problems of interest in two dimensions, but it is not
fully adapted to living matter which responds differently to low and high stresses. Indeed, in
linear elasticity, the material answers linearly to the forcing while for living tissues, we know
that large strains resist to the forcing mostly because of the fibers present in the tissue. Finite
elasticity for soft materials is a fast-developing domain presently but it is technically more difficult.
In particular, no exact crack solutions exist. Nevertheless, it presents a better description of the
elastic energy: it is the reason why we present hereafter the fiber model in finite elasticity, which
is probably more adapted to the epithelium we are considering.

7.4 Fiber model in finite elasticity

For a fibrous material, the elastic energy density W is chosen as the superposition of the en-
ergy of a gelatinous matrix WnH (most often, the neo-Hookean or the Monney-Rivlin model29)
and a fiber contribution27;28;30. Different models exist, more or less complicated, based on the
experimental responses of fibrous samples to stresses: muscles, arteries, and on required math-
ematical properties. We select a model which has the property to behave likely in tension or
compression, that is the CB model27;28, contrary to other models such the G − O −H model30

which gives a non symmetric answer in tension and compression. As shown in the Lecture31,
the CB model eliminates unexpected singularities such as the one obtained at low strains in
dispersion relations. Choosing a neo-Hookean matrix,

WnH =
µ0

2

(
λ21 + λ22 + λ23 − 3) (72)

where WnH is function only of the first invariant I1 =tr[FFT], (F being the strain tensor, defined
by Fij = ∂ui/∂uj), contrary to the Mooney-Rivlin model which incorporates also the second
invariant I2. We choose the fiber contribution27;28 as:

WCB =
µ0

2
K{2κ(λ21 + λ22 + λ23 − 3) + (1− 3κ)(λ22 +

1

λ22
)− 2} (73)
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where κ is a dispersion coefficient when the fibers are disordered28 and K is directly connected
to the elasticity of the fibers compared to the elasticity of the matrix. For simplicity, we put κ = 0
hereafter. Since we cannot solve the crack problem for a nonlinear sample, our plan is to consider
the low strain limit and relate the coefficients Λ and ρ which are responsible for the crack shape to
the coefficients µ0 and K of nonlinear elasticity. Considering plane-stress elasticity, minimization
of the elastic energy concerns the free energy under the constrain of incompressibility and the
condition that the Cauchy stress components σiz cancel.

G =

∫
dX1dX2dX3{W (λ1, λ2, λ3)− 3)− Pλ3J2D}, (74)

where J2D represents the Jacobian in 2D and P is a Lagrange multiplier. Minimization with
respect to the strain in the third direction gives:

P =
1

J2D

∂W

∂λ3
= λ3

∂W

∂λ3
(75)

7.5 Fiber versus orthotropic elasticity in extension

The correspondence between the anisotropic coefficients of the linear elasticity and the finite fiber
elasticity is possible at small values of the strain such that εi = |λi − 1| << 1. For plane-stress
elasticity, the Cauchy stress leads to:

σi = λi
∂W

∂λi
− P = λi

∂W

∂λi
− λ3

∂W

∂λ3
(76)

Expanding all λi for weak deformations, we derive without difficulty, for the C-B model:

ε1 =
1

µ0

1 +K

3 + 4K

(
σ1 −

1

2(1 +K)
σ2

)
and ε2 =

1

µ0

1

3 + 4K
(σ2 −

1

2
σ1) (77)

Comparison with the orthotropic Hookean law, Eq.(60), in-plane stress elasticity gives:

Ex = µ0

(
3 + 4K

1 +K

)
; Ey = µ0(3 + 4K); Λ = 1 +K; and νxy =

1

2(1 +K)
(78)

If we call the stiffness of the matrix (without fiber) E0, we have

E0 = 3µ0 (79)

and

Ex =
E0

3

(
3 + 4K

1 +K

)
; Ey =

E0

3
(3 + 4K) (80)

7.6 Fiber versus orthotropic elasticity in the case of shear deformation

To complete the set of coefficients, we need the shear coefficient µxy so we treat a pure shear
deformation such as: Then, the new coordinates in the current deformation are

x = X + ΓY ; y = Y z = Z (81)

giving the deformation tensor F, the left Cauchy -Green tensor29 FFT and the Cauchy stress
tensor31 σ

F =

 1 Γ 0
0 1 0
0 0 1

 ;FFT =

 1 + Γ2 Γ 0
Γ 1 0
0 0 1

 ;σ =

 1 Γµ0(1 + 2K) 0
Γµ0(1 + 2K) 0 0

0 0 0

 (82)

where σ is evaluated according to the following expression31

σ = µ0(FFT − I) + µ0K{(F ·M)⊗ (F ·M)− (F−T ·M)⊗ (F−T ·M)} (83)
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restricted to the linear approximation for weak value of the shear strain Γ. So the shear modulus
µxy of the orthotropic material is then:

µxy = µ0(1 + 2K) = Ex
1 +K

3 + 4K
(1 + 2K) (84)

which allows the calculation of the coefficient ρ introduced in Eq.(63):

ρ =
√

Λ(
E1

2µxy
− νxy) =

√
Λ

2(1 +K)
(
3 + 4K

1 + 2K
− 1) =

√
1 +K

1 + 2K
(85)

7.7 How to evaluate the residual stress from the crack opening

When we cut a fibrous sample, perpendicularly to the direction of the fibers, we obviously change
the structure locally and also the elastic properties along the crack. It is not sure that the CB
model describes the correct elasticity since the new aperture is free from fibers. Perhaps a
better approximation for the shape aperture is an isotropic elasticity. However, far from the crack
of length l, on a distance larger than l, the stresses reach the value at infinity so σyy and the
sample is fibrous. The CB model is an approximation but also the isotropic model and the truth
is perhaps between these extremes. In addition, we consider an infinite sample in all directions
Ox,Oy which implicitly assumes that the crack length is small compared to the epithelium size.
The the opening ellipse, in the isotropic approximation is then:

by = 4
σyy
3µ0

√
(l/2)2 − x2 (86)

with a crack on the x axis having a length l. The minor axis of the opening is then:

by = 2
σyy
3µ0

l = 2
σyy
E0

l (87)

Considering now that we cut the sample along the Oy direction then the cut opening ellipse is

bx = 4nΛ−1/4
σ∞xx(1 +K)

µ0(3 + 4K)

√
(l/2)2 − y2 (88)

where n is not modified and varies between 1 and 1/2 for increasing stiffness. The minor axis of
the opening is:

bx = 2nΛ−1/4
σ∞xx(1 +K)

µ0(3 + 4K)
l = 2nΛ−1/4

σ∞xx
Ex

l (89)

8 Supplementary SI8: Modeling the DV epidermis as an or-
thotropic material

As outlined in the main text, we could also have modeled the DV epidermis as an orthotropic
material (with different stiffnesses in orthogonal directions). In this section, we argued that doing
so is not compatible with the elongation of the embryo.

We modeled the DV epidermis as an orthotropic material with two principal Young moduli
along the DV and AP directions EDV and EAP , respectively. We suppose that the stresses σDV
and σAP are applied along the DV and AP directions, respectively, and there is no shear stress.
The opening in the DV and AP directions is given by the equation (70):

bDV
l

= 2n

(
EDV
EAP

) 1
4
(
σDV
EDV

)
(90)
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bAP
l

= 2n

(
EAP
EDV

) 1
4
(
σAP
EAP

)
(91)

where bDV and bAP are the minor axis of the cut opening in the DV and AP directions, respect-
ively; l is the initial cut length. n is the parameter given in the equation (64).

To obtain the DV/AP Young moduli ratio, if we divide the opening in the DV to the AP direction
(same cut length), then we have :

bDV
bAP

=

(
EAP
EDV

) 1
2
(
σDV
σAP

)
=

(
EAP
EDV

) 1
2

AS (92)

From the measurement of the AP and DV opening and given the same anisotropy of stress
AS in the HYP7 cell as in the H1 cell, we can derive the ratio of DV/AP Young moduli EDV

EAP
.

Figure SI8: Ratio of DV/AP Young moduli calculated from the orthotropic model for the DV epi-
dermis.

Figure SI8 shows that the ratio of DV/AP Young moduli, calculated from the orthotropic model,
decreased as the embryo elongated. This ratio became less than 1 after the 1.3F stage. Since
the activity of myosin II in the DV epidermis is low, the DV cells are likely submitted to tensile
stress from the seam cells. According to the Hooke’s law written for DV cells (supplementary
SI6B) and given a positive tensile stress on the DV cells, a decrease in the DV/AP Young moduli
ratio (ω) should decrease the AP length and increases the DV length. Thus, a decrease in the
DV/AP Young moduli ratio as given by the orthotropic model would hinder the elongation of the
DV cells in the AP direction and thus of the embryo as a whole, and be inconsistent with the
contribution of the DV cells during C. elegans embryo elongation (figure 3e).

9 Supplementary SI9: Calculation of the ratio of Young mod-
uli between the seam cell H1 and the head HYP7 cell matrix

To compare the material properties (Young modulus) between the seam cell H1 and the head
HYP7 cell matrix (without fibers), we made use of the opening in the DV direction when performing
laser cuts in these cells. The DV opening in the seam cell H1 is given as indicated in figure 2b:

bH1
DV

l
= 2

σH1
DV

E
(93)

where bH1
DV is the minor axis of the cut opening at equilibrium, l is the cut length, σH1

DV is the DV
stress in H1 and E is the Young modulus of H1. The head HYP7 cell behaved like an isotropic
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medium with a Young modulus E0 with cuts perpendicular to the actin fibers (DV opening). Thus,
the DV opening in the head HYP7 cell is given as:

bHY P7
DV

l
= 2

σHY P7
DV

E0
(94)

where bHY P7
DV is the minor axis of the cut opening at equilibrium, l is the cut length, σHY P7

DV is the
DV stress in the head HYP7 cell. Given their adjacent position (figure 3d), H1 and head HYP7
should be under the same DV stress:

σH1
DV = σHY P7

DV (95)

Thus:
bHY P7
DV

l
= 2

σHY P7
DV

E0
= 2

σH1
DV

E

E

E0
=
bH1
DV

l

E

E0
(96)

When we plotted the DV opening in the head HYP7 cell versus the DV opening in H1, the slope
gives us the ratio of Young moduli E

E0
.

10 Supplementary SI10: Calculation of K and DV/AP Young
moduli ratio for a fiber-reinforced material

For a fiber-reinforced material, from the equations (78, 85, 87, 89), we have:

bDV
bAP

=
(3 + 4K)

√
2

3(1 +
√
1+K

1+2K )
1
2 (1 +K)

3
4

σDV
σAP

=
(3 + 4K)

√
2

3(1 +
√
1+K

1+2K )
1
2 (1 +K)

3
4

AS (97)

where bDV and bAP are the minor axis of the DV and AP openings (we used the same cut length
l), respectively; AS is the anisotropy of stress and K is the fiber contribution factor. Since we can
measure the openings, given the anisotropy of stress, we can calculate K. We can easily derive
the DV/AP Young moduli ratio according to the equation (78):

ω =
EDV
EAP

= 1 +K (98)
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