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Abstract The circuit mechanisms behind shared neural variability (noise correlation) and its

dependence on neural state are poorly understood. Visual attention is well-suited to constrain

cortical models of response variability because attention both increases firing rates and their

stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of

population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism

may underlie these diverse neural correlates of attention. We explore model cortical networks

where top-down mediated increases in excitability, distributed across excitatory and inhibitory

targets, capture the key neuronal correlates of attention. Our models predict that top-down signals

primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus

specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation

of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition.

DOI: 10.7554/eLife.23978.001

Introduction
The behavioral state of the brain exerts a powerful influence on the cortical responses. For example,

electrophysiological recordings from both rodents and primates show that the level of wakefulness

(Steriade et al., 1993), active sensory exploration (Crochet et al., 2011), and attentional focus

(Treue, 2001; Reynolds and Chelazzi, 2004; Gilbert and Sigman, 2007; Moore and Zirnsak,

2017) all modulate synaptic and spiking activity. Despite the diversity of behavioral contexts, in all of

these cases an overall elevation and desynchronization of cortical activity accompanies heightened

states of processing (Harris and Thiele, 2011). Exploration of the neuronal mechanisms that underly

such state changes has primarily centered around how various neuromodulators shift the cellular and

synaptic properties of cortical circuits (Hasselmo, 1995; Lee and Dan, 2012; Noudoost and Moore,

2011; Moore and Zirnsak, 2017) However, a coherent theory linking the modulation of cortical cir-

cuits to an active desynchronization of population activity is lacking. In this study we provide a cir-

cuit-based theory for the known attention-guided modulations of neuronal activity in the visual

cortex of primates performing a stimulus change detection task.

The investigation of the neuronal correlates of attention has a rich history. Attention increases the

firing rates of neurons engaged in feature- and spatial-based processing tasks (McAdams and

Maunsell, 2000; Reynolds et al., 1999). Attentional modulation of the stimulus-response sensitivity

(gain) of firing rates is more complicated, often depending on stimulus specifics such as the size and

contrast of a visual image (Williford and Maunsell, 2006; Reynolds and Heeger, 2009;

Sanayei et al., 2015). In recent years there has been increased focus on how brain states affect trial-

to-trial spiking variability (Crochet et al., 2011; Lin et al., 2015; Doiron et al., 2016; Stringer et al.,
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2016). In particular, attention decreases the shared variability (noise correlations) of the firing rates

from pairs of neurons (Cohen and Maunsell, 2009; Mitchell et al., 2009; Cohen and Maunsell,

2011; Herrero et al., 2013; Ruff and Cohen, 2014; Engel et al., 2016). The combination of a

reduction in noise correlations and an increase in response gain has potentially important functional

consequences through an improved population code (Cohen and Maunsell, 2009;

Rabinowitz et al., 2015). In total, there is an emerging picture of the impact of attention on the

trial-averaged and trial-variable spiking dynamics of cortical populations.

Phenomenological models of attentional modulation have been popular (Reynolds and Heeger,

2009; Navalpakkam and Itti, 2005; Gilbert and Sigman, 2007; Ecker et al., 2016); however, such

analyses cannot provide insight into the circuit mechanics of attentional modulation. Biophysical

models of attention circuits are difficult to constrain, due in large part to the diversity of mechanisms

which control the firing rate and response gain of neurons (Silver, 2010; Sutherland et al., 2009).

Nonetheless, several circuit models for attentional modulation have been proposed (Ardid et al.,

2007; Deco and Thiele, 2011; Buia and Tiesinga, 2008), but analysis has been mostly confined to

trial-averaged responses. Taking inspiration from these studies, mechanistic models of attentional

modulation can be broadly grouped along two hypotheses. First, the circuit mechanisms that control

trial-averaged responses may be distinct from those that modulate neuronal variability. This hypoth-

esis has support from experiments in primate V1 showing that N-methyl-D-aspartate receptors have

no impact on top-down attentional modulation of firing rates, yet have a strong influence of atten-

tional control of noise correlations (Herrero et al., 2013). A second hypothesis is that the modula-

tions of firing rates and noise correlations are reflections of a single biophysical mechanism. Support

for this comes from pairs of V4 neurons that each show strong attentional modulation of firing rates,

also show a strong attention mediated reductions in noise correlation (Cohen and Maunsell, 2011).

In this study we provide novel analysis of the covariability of V4 population activity engaged in an

attention-guided detection task (Cohen and Maunsell, 2009) that is consistent with the second

hypothesis. Specifically, the modulation of spike count covariance between unattended and

attended states has the same dimensionality as the firing rate modulation.

We use the results from our dimensionality analysis to show that an excitatory-inhibitory recurrent

circuit model subject to global fluctuations is sufficient to capture both the increase in firing rate and

eLife digest The world around us is complex and our brains need to navigate this complexity.

We must focus on relevant inputs from our senses – such as the bus we need to catch – while

ignoring distractions – such as the eye-catching displays in the shop windows we pass on the same

street. Selective attention is a tool that enables us to filter complex sensory scenes and focus on

whatever is most important at the time. But how does selective attention work?

Our sense of vision results from the activity of cells in a region of the brain called visual cortex.

Paying attention to an object affects the activity of visual cortex in two ways. First, it causes the

average activity of the brain cells in the visual cortex that respond to that object to increase.

Second, it reduces spontaneous moment-to-moment fluctuations in the activity of those brain cells,

known as noise. Both of these effects make it easier for the brain to process the object in question.

Kanashiro et al. set out to build a mathematical model of visual cortex that captures these two

components of selective attention. The cortex contains two types of brain cells: excitatory neurons,

which activate other cells, and inhibitory neurons, which suppress other cells. Experiments suggest

that excitatory neurons contribute to the flow of activity within the cortex, whereas inhibitory

neurons help cancel out noise. The new mathematical model predicts that paying attention affects

inhibitory neurons far more than excitatory ones. According to the model, selective attention works

mainly by reducing the noise that would otherwise distort the activity of visual cortex.

The next step is to test this prediction directly. This will require measuring the activity of the

inhibitory neurons in an animal performing a selective attention task. Such experiments, which

should be achievable using existing technologies, will allow scientists to confirm or disprove the

current model, and to dissect the mechanisms that underlie visual attention.

DOI: 10.7554/eLife.23978.002
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response gain as well as population-wide decrease of noise correlations. Our model makes two pre-

dictions regarding neuronal modulation: (1) that attentional modulation favors inhibitory neurons,

and (2) that stimulus drive favors excitatory neurons. Finally, we show that our model predicts

increased informational content in the excitatory population, which would result in improved readout

by potential downstream targets. In total, our study provides a simple, parsimonious, and biologi-

cally motivated model of attentional modulation in cortical networks.

Results

Attention decreases noise correlations primarily by decreasing
covariance
Two rhesus monkeys (Macaca mulatta) with microelectrode arrays implanted bilaterally in V4 were

trained in an orientation change detection task (Figure 1a; see Materials and methods: Data prepa-

ration). A display with oriented Gabor gratings on the left and right flashed on and off. The monkey

was cued to attend to either the left or right grating before each block of trials, while keeping fixa-

tion on a point between the two gratings. After a random number of presentations, one of the gra-

tings changed orientation. The monkey then had to saccade to that side to obtain a reward. The

behavioral task and data collection have been previously reported (Cohen and Maunsell, 2009).

A neuron is considered to be in an ’attended state’ when the attended stimulus is in the hemifield

containing that neuron’s receptive field (contralateral hemifield), and in an ’unattended state’ when

it is in the other (ipsilateral) hemifield. The trial-averaged firing rates from both attended and
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Figure 1. Attention increases firing rates and decreases trial-to-trial covariability of population responses. (a)

Overview of orientation-change detection task; see (Cohen and Maunsell, 2009) for a full description. (b) Firing

rates of neurons in the unattended (turquoise) and attended (orange) states, averaged over 3170 units. The slight

oscillation in the firing rate was due to the monitor refresh rate. (c) Attention significantly decreased the spike

count correlation and covariance and slightly increased variance. Error bars provide the SEM. (d) Histograms of

changes in covariance for each unit pair (black) and variance for each unit (gray). In each case we consider the

relative change ½XA � XU �=maxðXA;XUÞ, where X is either Covðni; njÞ or VarðniÞ. Data was collected from two

monkeys over 21 and 16 recording sessions respectively. Signals were analyzed over a 200 ms interval, starting 60

ms after stimulus onset.

DOI: 10.7554/eLife.23978.003
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unattended neurons displayed a brief transient rise ( ~100 ms after stimulus onset), and eventually

settled to an elevated sustained rate before the trial concluded (Figure 1b). During the sustained

period the mean firing rate of attended neurons (22:0 sp/s) was greater than that of unattended neu-

rons (20:6 sp/s) (t test, P < 10
�5).

A major finding of Cohen and Maunsell (2009) was that the pairwise trial-to-trial noise correla-

tions of the neuronal responses decreased with attention (Figure 1c, left, mean unattended 0.065,

mean attended 0.045, t test, P < 10
�5). The noise correlation between neurons i and j is a normalized

measure, �ij ¼ Covðni; njÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðniÞVarðnjÞ

p
, where Cov and Var denote spike count covariance and

variance respectively. Both spike count variance and covariance significantly change with attention

(hVarUitrials ¼ 5:02 spikes2, hVarAitrials ¼ 5:10 spikes2, t test, P < 10
�3, hCovAitrials ¼ 0:252, t test,

P < 10
�5), but the decrease in covariance (34:0%) is much more pronounced than the increase in vari-

ance (1:61%; Figure 1c, middle and right). We therefore conclude that the attention mediated

decrease in noise correlation is primarily due to decreased covariance.

To further validate this observation, we consider the distributions of pairwise changes in covari-

ance (black) and variance (gray) with attention over the entire data set (Figure 1d). Covariance and

variance are normalized by their respective maximal unattended or attended values (see Methods:

Comparing change in covariance to change in variance). The change in covariance with attention is

concentrated below zero with a large spread, whereas the change in variance is centered on zero

with a narrower spread. Taken together these results suggest that to understand the mechanism by

which noise correlations decrease it is necessary and sufficient to understand how spike count covari-

ance decreases with attention.

Attention is a low-rank modulation of noise covariance
A reasonable simplification of V4 neurons is that they receive a bottom-up stimulus alongside an

attention-mediated top-down modulatory input. However, to properly model top-down attention

we need to first understand the dimension of attentional modulation on the V4 circuit as a whole.

Let Af : fU 7! fA denote the attentional modulation of measure f from its value in the unattended

state, fU , to its value in the attended state, fA. For example, the firing rate modulation Ar can be

written as rA ¼ Ar � rU, where rA is an N � 1 vector of neural firing rates in the attended state, rU

denotes the firing rate vector in the unattended state, Ar is a vector the same size as r, and �
denotes elementwise multiplication. In this case, the entries ai of Ar are the ratios of the firing rates:

ai ¼ rAi =r
U
i (Figure 2a).

A less trivial aspect of attentional modulation is the modulation of covariance matrices:

CA ¼ AC �CU : (1)

Here CA is the attended spike count covariance matrix, CU the unattended spike count covari-

ance matrix, and AC is a matrix the same size as CU, consisting of entries gij, which we will call covari-

ance gains. Unlike firing rates, the transformation matrix AC can be of varying rank. On the one hand

AC could be constructed from the ratios of the individual elements: gij ¼ cAij=c
U
ij , with each pair of neu-

rons ði; jÞ receiving an individualized attentional modulation gij of their shared variability (Figure 2b,

left). Under this modulation AC is a rank N matrix. A rank N AC will always perfectly (and trivially) cap-

ture the matrix mapping in Equation (1). However, it is difficult to conceive of a top-down circuit

mechanism that would allow attention to modulate each pair individually. On the other hand, gij
could depend not on the specific pair ði; jÞ, but on the individual neurons of the pairing: gij ¼ gigj

(Figure 2b, right). In this case, only N values are needed to characterize AC : AC ¼ ggT , where g is a

N� 1 column vector, meaning AC has rank of 1. This is a more parsimonious and biophysically plausi-

ble scenario for attentional modulation, since in this case the covariance gain gij of neurons i and j is

simply emergent from the attentional modulation of the individual neurons. To test whether AC is

low rank we analyzed the V4 population recordings during the visual attention task (Figure 1), spe-

cifically measuring AC under the assumption that AC is rank 1:

CA ¼ ggT �CU : (2)

Equation (2) is a system of NðN� 1Þ=2 equations of the form cAij ¼ gigjc
U
ij in N unknowns g¼
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Figure 2. Rank one structure of attentional modulation of spike count covariance. (a) Attentional modulation of firing rate. Firing rates of neurons i and j

(black circles are modulated by bottom-up stimulus and top-down attention. (b) Two possible models of attentional modulation of covariance. Left:

High-rank covariance modulation, in which attention modulates the shared variability of each pair of neurons. Right: Low-rank covariance modulation, in

which attention modulates each neuron individually rather than in a pairwise manner. (c–e) The measured covariance values plotted against those

predicted by the rank-1 model for data collected in one recording session, for c, the actual data (� ¼ 0:77), d, shuffled data (�shuf ¼ 0:22, 100 shuffles),

Figure 2 continued on next page
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½g1; . . .gN �T (we only consider i 6¼ j to exclude variance modulation from our analysis). For N>3 this is

an overdetermined system, and we solve for g using a nonlinear equation solver. Let ĝ be the opti-

mal solution obtained by the solver (measured as a minimization of the L2-norm of the error; see

Methods: objfxn). Then ĈA :¼ ĝĝT �CU provides an approximation to the attended covariance matrix.

In an example data set from a single recording session with N ¼ 39 units, the correlation coefficient �

of the actual attended covariance values from CA versus the approximated attended covariance val-

ues from ĈA was 0:77 (Figure 2c). A shuffled CA matrix provides a reasonable null model, and the

example data set produces the lower bound correlation �shuf ¼ 0:22 (Figure 2d; see Materials and

methods: Shuffled covariance matrices). Finally, a Poisson model that perfectly decomposes as Equa-

tion (2), yet sampled with the same number of trials as in the experiment, gives an upper bound for

the rank one structure, the example data yields �ub ¼ 0:90 (Figure 2e; see Materials and methods:

Upper bound covariance matrices). In total, the combination of �, �shuf , and �ub (Figure 2f) suggests

that the rank one model of attention modulation of covariance AC is well justified.

We applied this analysis to 21 recording sessions from the right hemisphere of one monkey

(Figure 2g). For most of the recording sessions � is closer to �ub than �shuf . The averaged perfor-

mance of all sessions for both hemispheres of two monkeys generally agreed with this trend

(Figure 2h). We normalized � and �shuf by �ub for each session to better compare different sessions

that were subject to day-to-day variations outside of the experimenter’s control, such as the task

performance or the internal state of the monkey. To further validate our model we show the distribu-

tion of gis computed from the entire data set (Figure 3a). The majority of gi values are less than one,

consistent with hCovAitrials < hCovUitrials (Figure 1c). Further, there was little relation between the

attentional modulation of firing rates, measured by rAi =r
U
i , and the attentional modulation of

Figure 2 continued

and (e) artificial upper-bound data (�ub ¼ 0:90, 10 realizations of the upper bound model). (f) Synthesis of c-e in a bar plot. The orange area represents

the loss of model performance compared to the upper bound model, and the blue area represents the increase in model performance compared to

model applied to shuffled data. (g) Rank-1 model performance reported for 21 recording sessions from one monkey. Each bar represents one recording

session. Recordings from a mean of N ¼ 53:5 units in the right-hemisphere were analyzed, with maximum and minimum N of 80 and 35, respectively.

Error bars denote standard error of the mean. (h) Mean normalized performance (relative to �ub) for both hemispheres of two monkeys (M1 and M2). (i),

Analysis as in (g), using leave-one-out cross-validation to test the predictive power of the model. (j) Mean normalized performance of the cross-

validated data.
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covariance through gi (Figure 3b). This indicates that the circuit modulation of firing rates and covari-

ance are not trivially related to one another (Doiron et al., 2016).

We additionally tested the validity of our model in Equation (2) with a leave-one-out cross-valida-

tion analysis (see Materials and methods: Leave-one-out cross-validation). We accurately predicted

an omitted covariance CA
ij (Figure 2i and j), consistent with our original analysis (Figure 2g and h).

The individual session-by-session performance values for both the standard and leave-one-out set-

ups are provided (Appendix: Model performance for all monkeys and hemispheres).

Finally, we investigated to what extent the actual value of the covariance gain gi of neuron i

depends on the population of neurons in which it was computed. We solved the system of equations

CA
ij ¼ gigjC

U
ij using covariance matrices computed from recordings from distinct sets of neurons, over-

lapping only by neuron i. This gives two estimates of gi, that nevertheless agreed largely with one

another (Appendix: Low-dimensional modulation is intrinsic to neurons). This supported the hypoth-

esis that covariance gain gi is an intrinsic property of neuron i.

The standard and cross-validation tests verify that the low-rank model of attentional modulation

defined in Equation (2) explains between 66 and 82% (standard), or 56 and 77% (cross-validation) of

the data. Taking this to be a positive result, we conclude that the covariance gain modulation

depends largely on the modulation of individual neurons.

Network requirements for attentional modulation
Having described attentional modulation statistically our next goal is to develop a circuit model to

understand the process mechanistically. Consider a network of N coupled neurons, and let the spike

count from neuron i on a given trial be yi. The network output has the covariance matrix C with ele-

ments cij ¼ Covðyi; yjÞ. In this section we identify the minimal circuit elements so that the attentional

mapping AC : CU 7! CA satisfies the following two conditions (on average):

C1: cAij ¼ gigjc
U
ij ; attentional modulation of covariance is rank one (Figure 2).

C2: gi < 1 ; spike count covariance decreases with attention (Figure 1).

What follows is only a sketch of our derivation (a complete treatment is given in Appendix: Net-

work requirements for attentional modulation).

If inputs are weak then yi can be described by a linear perturbation about a background state

(Ginzburg and Sompolinsky, 1994; Doiron et al., 2004; Trousdale et al., 2012):

yi ¼ yiBþLi
XN

k¼1

Jikyk þ �i

 !

: (3)

Here yiB is the background activity of neuron i, Jik is the coupling strength from neuron k to i, and

Li is the input-to-output gain of neuron i. In addition to internal coupling we assume a source of

external fluctuations �i to neuron i. Here yi, yiB, and �i are random variables that vary across trials.

The trial-averaged firing rate of neuron i is ri ¼ hyii=T (where h�i denotes averaging over trials of

length T). The background state has variability bi ¼VarðyiBÞ which we assume to be independent

across neurons, meaning the background network covariance is B¼ diagðbiÞ. Finally, the external

fluctuations have covariance matrix X with element xij ¼Covð�i; �jÞ.
Motivated by our analysis of population recordings (Figure 2) we study attentional modulations

that target individual neurons. This amounts to considering only Ar : r
U
i 7! rAi and AL : LUi 7! LAi . Addi-

tionally, we assume that any model of attentional modulation must result in rAi > rUi (Figure 1b). A

widespread property of both cortical pyramidal cells and interneurons is that an increase of firing

rate ri causes an increase of input-output gain L (Cardin et al., 2007), thus we will also require

LA > LU .

Spiking covariability in recurrent networks can be due to internal interactions (through Jik) or

external fluctuations (through �i), or both (Ocker et al., 2017). Networks with unstructured connec-

tivity have internally generated covariability that vanishes as N grows. This is true if the connectivity

is sparse (van Vreeswijk and Sompolinsky, 1998), or dense having weak synapses where Jik ~ 1=N

(Trousdale et al., 2012) or strong synapses where Jik ~ 1=
ffiffiffiffi
N

p
combined with a balance between exci-

tation and inhibition (Renart et al., 2010; Rosenbaum et al., 2017). In these cases spiking covari-

ability requires external fluctuations to be applied and subsequently filtered by the network. We

follow this second scenario and choose X so as to provide external covariability to our network.
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Recent analysis of cortical population recordings show that the shared spiking variability across

the population can be well approximated by a rank one model of covariability (Kelly et al., 2010;

Ecker et al., 2014; Lin et al., 2015; Ecker et al., 2016; Rabinowitz et al., 2015; Whiteway and

Butts, 2017) (we remark that Rabinowitz et al., 2015 analyzed the same data set that we have in

Figures 1 and 2). Thus motivated we take the external fluctuations X to be rank one with xij ¼ xixj,

reflecting a single source of global external variability � with unit variance (neuron i receives �i ¼ xi�).

Combining this assumption with the linear ansatz in Equation (3) yields:

C» ðI�KÞ�1
Lx

� �

ðI�KÞ�1
Lx

� �T

¼ ccT ; (4)

where matrix K has element Kij ¼ LiJij and L¼ diagðLiÞ. We have also defined the vectors x¼
½x1; . . . ;xN �T and c¼ ½c1; . . . ;cN �T with ci ¼ ððI�KÞ�1

LxÞi. In total, the output covariability C will simply

inherit the rank of the input covariability X. Attentional modulation affects ci through K and L and

we easily satisfy condition C1 with gi ¼ cAi =c
U
i .

What remains is to find constraints on J and the attentional modulation of L that satisfy condition

C2. Let us consider the case where cUi ; c
A
i > 0 so that condition C2 is satisfied when cAi � cUi < 0. For

the sake of mathematical simplicity let us separate the population into qN excitatory neurons and

ð1� qÞN inhibitory neurons (0 < q < 1). Let all excitatory (inhibitory) neurons project with synaptic

strength JE (�JI ), have gain LE (LI ), and receive the external inputs of strength xE (xI ). Finally, let the

probability for all connections be p, and consider only weak connections (J / 1=N and N large) so

that we can ignore the influence of polysynaptic paths in the network (Pernice et al., 2011;

Trousdale et al., 2012). Then the attentional modulation of an excitatory neuron decomposes into:

cAE � cUE ¼ LAE �LUE
� �

xE
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

direct external input

þ LAE �LUE
� �

qpNJExE
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

external input filtered
through the excitatory population

� LAI �LUI
� �

ð1� qÞpNJIxI
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

external input filtered
through the inhibitory population

: (5)

The first term is the direct transfer of the external fluctuations, and the second and third terms

are indirect transfer of external fluctuations via the excitatory and inhibitory populations, respec-

tively. Recall that LA�LU > 0, meaning that for cAE � cUE < 0 to be satisfied we require the third term

to outweigh the combination of the first and second terms. In other words, the inhibitory population

must experience a sizable attentional modulation. A similar cancelation of correlations by recurrent

inhibition has been recently studied in a variety of cortical models (Renart et al., 2010;

Tetzlaff et al., 2012; Ly et al., 2012; Doiron et al., 2016; Rosenbaum et al., 2017).

In the above we considered weak synaptic connections where Jij ~ 1=N. Rather, if we scale

Jij ~ 1=
ffiffiffiffi
N

p
, as would be the case for classical balanced networks (van Vreeswijk and Sompolinsky,

1998), then for very large N the solution no longer depends upon the gain L. Finite N or the inclu-

sion of synaptic nonlinearities through short term plasticity (Mongillo et al., 2012) may be necessary

to satisfy condition C2 with large synapses. Furthermore, the large synaptic weights associated with

Jij ~ 1=
ffiffiffiffi
N

p
do not allows us to neglect polysynaptic paths, as is needed for Equation (5). Extending

our analysis to networks with balanced scaling will be the focus of future work.

In summary our analysis has identified two circuit features that allow recurrent networks to cap-

ture conditions C1 and C2 for attentional modulation. First, the network must be subject to a global

source of external fluctuations that dominates network covariability (C1). Second, the network must

have recurrent inhibitory connections that are subject to a large attentional modulation (C2).

Mean field model of attention
We next apply the intuition gained in the preceding section to propose a cortical model that cap-

tures key neural correlates of attentional modulation. We model V4 as a recurrently coupled network

of excitatory and inhibitory leaky integrate-and-fire model neurons (Tetzlaff et al., 2012;

Ledoux and Brunel, 2011; Trousdale et al., 2012; Doiron et al., 2004) (Figure 4a). In addition to

recurrent synaptic inputs, each neuron receives private and global sources of external fluctuating

input (Figure 4b). The global noise is an attention-independent source of input correlation that the

network filters and transforms into network-wide output spiking correlations (Figure 4c).
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While the linear response theory introduced in Equation (3) is well suited to study large networks

of integrate-and-fire neurons driven by weakly correlated inputs (Tetzlaff et al., 2012; Ledoux and

Brunel, 2011; Trousdale et al., 2012; Doiron et al., 2004), the analysis offers little analytic insight.

Instead, we consider the instantaneous activity across population a : raðtÞ ¼ 1

Na

P

i yiaðtÞ, where yiaðtÞ
is the spike train from neuron i of population a and Na is the population size (a ¼ E or I). This

approach reduces the model to just the two dynamic variables, the excitatory population rate rEðtÞ
and the inhibitory population rate rIðtÞ (rEðtÞ is shown in Figure 4d). Despite this severe reduction

the model retains the key ingredients for attentional modulation identified in the previous section –

recurrent excitation and inhibition combined with a source of global fluctuations.
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Figure 4. Excitatory-inhibitory network model. (a) Recurrent excitatory-inhibitory network subject to private and

shared fluctuations as well as top-down attentional modulation. (b) Example voltage trace from a LIF model

neuron in the network. Top tick marks denote spike times. (c) Spike time raster plot of the spiking activity from the

model network. (d) Population-averaged firing rate rEðtÞ of the excitatory population. Left: frequency distribution

of population-averaged firing rate. (e) Transfer function fE between the effective input and the firing rate for a

model excitatory neuron. The red segment represents the attentional shift in effective input and hence firing rate.

(f), Same as e, but for the inhibitory population. (g) Attention as a path through (�rE ,�rI ) space, and equivalently

through (IeffE , IeffI Þ space.
DOI: 10.7554/eLife.23978.006
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We take the population sizes to be large and consider a phenomenological dynamic mean field

(Tetzlaff et al., 2012; Ledoux and Brunel, 2011) of the cortical network (see Materials and meth-

ods: Mean field model):

tE
drE

dt
¼�rE þ fE �E þ JEErE � JEIrI þsE�ðtÞð Þ;

tI
drI

dt
¼�rI þ fI �I þ JIErE � JIIrI þsI�ðtÞð Þ:

(6)

The function fa is the input-output transfer of population a, taken to be the mean firing rate for a

fixed input (Figure 4e for the E population and Figure 4f for the I population). The parameter Jab is

the coupling strength from population b to population a. Finally, �a and sa are the respective

strengths of the mean input and the global fluctuation �ðtÞ to population a (throughout �ðtÞ has a

zero mean). To simplify our exposition we take symmetric coupling JEE ¼ JIE � JE and JEI ¼ JII � JI

and symmetric timescales tE ¼ tIð¼ 1Þ. We set the recurrent coupling so that the model has a station-

ary mean firing rate (�rE;�rI ), about which �ðtÞ induces fluctuations in rEðtÞ and rIðtÞ.
Attention is modeled as a top-down influence on the static input: �a ¼ �aB þ AD�a. Here �aB is a

background input, the parameter A models attention with A ¼ 0 denoting the unattended state and

A ¼ 1 the fully attended state, and D�a > 0 is the increase in �a due to attention. We note that the

choice of representing the unattended state by A ¼ 0 and the attended state by A ¼ 1 is only due to

convenience, and is not meant to make any statement about particular bounds on these states. In

this model attention simply increases the excitability of all of the neurons in the network (Figure 4a).

This modulation is consistent with the rank one structure of attentional modulation in the data (Fig-

ure 2), since �a is a single neuron property. The attention-induced increase in ð�E; �IÞ causes an

increase in the mean firing rates ð�rE;�rIÞ (red paths in Figure 4e,f), consistent with recordings from

putative excitatory (McAdams and Maunsell, 2000; Reynolds et al., 1999) and inhibitory neurons

(Mitchell et al., 2007) in visual area V4. Since fa is a simple rising function then there is a unique

mapping of an attentional path in ð�E; �IÞ space to a path in ð�rE;�rIÞ space (Figure 4g).

In total, our population model has the core features required to satisfy Conditions C1 and C2 of

the previous section. We next use our mean field model to investigate how attentional paths in

ð�rE;�rIÞ space affect population spiking variability.

Attention modulates population variability
The global input �ðtÞ causes fluctuations about the network stationary state: raðtÞ ¼ �ra þ draðtÞ. The
fluctuations draðtÞ are directly related to coordinated spiking activity in population a. In particular, in

the limit of large Na we have that VE � VarðrEÞ / hCovðyi; yjÞi, where the expectation is over ði; jÞ
pairs in the spiking network. Thus, in our mean field network we require attentional modulation to

decrease population variance VE.

For sufficiently small sa the fluctuations drEðtÞ and drIðtÞ obey linearized mean field equations (see

Materials and methods: Mean field model, Equation (17)). The linear system is readily analyzed and

we obtain the population variance VE computed over long time windows (see Materials and meth-

ods: Computing VE):

VE ¼
LEðJILIðsE �sIÞþsEÞ

1þ JILI � JELE

� �2

: (7)

Here La � f 0a is the response gain of neurons in population a. Equation (7) shows that VE depends

directly on La, and we recall that La changes with attention (the slope of fa in Figure 4e,f). Thus,

while the derivation of VE requires linear fluctuations about a steady state, attentional modulation

samples the nonlinearity in the transfer fa by changing the state about which we linearize. Any atten-

tion-mediated change in VE is not obvious since both LAI > LUI and LAE > LUE , meaning that both the

numerator and denominator in Equation (7) will change with attention.

We explore VE by sweeping over (�rE, �rI ) space (Figure 5a). When the network has high �rE and low

�rI then VE is large, while VE is low for the opposite case of high �rI and low �rE. Along our attention

path rE increases while VE decreases (Figure 5b), satisfying our requirements for attentional modula-

tion. The attention path that we highlight is just one potential path that reduces population variabil-

ity, however all paths which reduce VE share a large attention-mediated recruitment of inhibition. If
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we start with the unattended state (turquoise dot in Figure 5c) we can label all (D�E > 0;D�I > 0)

points that have a smaller population variance than the unattended point (light green region in

Figure 5c). These modulations all share that D�I > D�E (Figure 5c, green region is below the D�E ¼
D�I line). While the absolute comparison between D�E and D�I may depend on model parameters, a

robust necessary feature of top-down attentional modulation is that it must significantly recruit the

inhibitory population. This observation is a major circuit prediction of our model.

An intuitive way to understand inhibition’s role in the decrease in population variance is through

the stability analysis of the mean field equations. The eigenvalues of the linearized system are l1 ¼
�1� JILI þ JELE < 0 and l2 ¼ �1 (see Materials and methods: Mean field model, Equation (18)).

Note that the denominator of the population variance (Equation 7) equals the square of the eigen-

value product l1l2 ¼ 1þ JILI � JELE. The stability of the network activity is determined by l1; the

more negative l1, the more stable the point ð�rE;�rIÞ, and the better the network dampens the pertur-

bations about the point due to input fluctuations �ðtÞ. The decrease of l1 along the example atten-

tion path is clear (Figure 5d), and overcomes the increase in the numerator of VE due to increases in

LE and LI . The enhanced damping is why VE decreases, explicitly seen in the steeper decline of the

excitatory population autocovariance function in the attended compared to the unattended state

(Figure 5e).

This enhanced stability due to recurrent inhibition is a reflection of inhibition canceling population

variability provided by external fluctuations and recurrent excitation (Renart et al., 2010;

Tetzlaff et al., 2012; Ozeki et al., 2009). Indeed, taking the coupling J to be weak allows the
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expansion ð1þ JILI � JELEÞ�2
» 1þ 2JELE � 2JILI in Equation (7), so that the attention mediated

increase in LI reduces population variance through cancellation, as in Equation (5). However, this

expansion is not formally required to compute the eigenvalues l1 and l2, and these measure the sta-

bility of the firing rate dynamics. We mention the expansion only to compare to the original motiva-

tion for inhibition.

The expression for VE given above (Equation 7) assumes a symmetry in the network coupling,

namely that JEE ¼ JIE � JE and JEI ¼ JII � JI . This allowed VE to be compactly written, facilitating the

analysis of how attention affects both the numerator and denominator of Equation (7). However,

the linearization of the mean field equations and the subsequent analysis of population variability do

not require this assumption (see Materials and methods: Mean field model Equations (18–20)). To

explore the robustness of our main result we let JIE ¼ aJE and JII ¼ bJI , thereby breaking the cou-

pling symmetry for a;b 6¼ 1. The reduction in VE with attention is robust over a large region of (a;b)

(Figure 6a, green region). Focusing on selected ða;bÞ pairings within the region where VE decreases

shows that the attentional path identified for the network with coupling symmetry produces qualita-

tively similar behavior in the more general network (compare Figure 5c to Figure 6b–e). In total, the
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inhibitory mechanism for attention mediated reduction in population variability is robust to changes

in the recurrent coupling with the network.

While the reduced mean field equations are straightforward to analyze, a similar attenuation of

pairwise covariance Covðyi; yjÞ along the same attentional path occurs in the LIF model network

(Appendix: Spiking network). Using linear response analysis for the spiking network we can relate

the effect of inhibition to previous work in spiking networks (Renart et al., 2010; Tetzlaff et al.,

2012; Ly et al., 2012; Doiron et al., 2016). In particular, the attention-mediated decrease of

Covðyi; yjÞ occurs for a wide range of timescale, ranging as low as 20 ms. However, for short time-

scales that match the higher gamma frequency range (approximately 60–70 Hz) this attentional mod-

ulation increases Covðyi; yjÞ (Appendix 1—figure 6). This finding is consistent with reports of

attention-mediated increases of neuronal synchrony on gamma frequency timescales(Fries et al.,

2001; Buia and Tiesinga, 2008), particularly when inhibitory circuits are engaged (Kim et al., 2016).

Attention can simultaneously increase stimulus gain and decrease noise
covariance
An important neural correlate of attention is enhanced stimulus response gain (McAdams and

Maunsell, 2000). The previous section outlines how the recruitment of recurrent inhibitory feedback

by attention reduces response variability. However, inhibitory feedback is also a common gain con-

trol mechanism, and increased inhibition reduces response gain through the same mechanism that

dampens population variability (Sutherland et al., 2009). Thus it is possible that the decorrelating

effect of attention in our model may also reduce stimulus response gain as well, which would make

the model inconsistent with experimental data.

To insert a bottom-up stimulus s in our model we let the attention-independent background input

have a stimulus term: �aB ¼ kasþ �̂aB. Here ka is the feedforward stimulus gain to population a and

�̂aB is the background input that is both attention and stimulus independent. Our model captures a

bulk firing rate rE rather than a population model with distributed tuning. Because of this the stimu-

lus s should either be conceived as the contrast of an input, or the population conceived as a collec-

tion of identically-tuned neurons (i.e a single cortical column).

Straightforward analysis shows that the stimulus response gain of the excitatory population can

be written as (Materials and methods: Computing stimulus response gain):

GE �
d�rE

ds
¼ kE

ffiffiffiffiffiffi
VE

p

sE

þ JILELI

1þ JILI � JELE
ðkE � kIÞ: (8)

If kE ¼ kI then GE /
ffiffiffiffiffiffi
VE

p
, and thus any attentional modulation that reduces population variability

will necessarily reduce population stimulus sensitivity. However, for kE > kI the second term in Equa-

tion (8) can counteract this effect and decouple stimulus sensitivity and variability modulations.

Consider the example attentional path (Figure 4g) with the extreme choice of kE ¼ 1 and kI ¼ 0.

In this case attention causes an increase in GE (Figure 7a,b), while simultaneously causing a decrease

in VE (Figure 5a,b). This is a robust effect, as seen by the region in (�rE;�rI ) space for which the change

in VE from the unattended state is negative, and the change in GE is positive (green region,

Figure 7c). Further, for fixed kI the proportion of the gray rectangle that the green region occupies

increases with kE > kI (Figure 7d). Thus, the decoupling of attentional effects on population variabil-

ity and stimulus sensitivity is robust to both attentional path (D�E;D�I ) and feedforward gain (kE; kI )

choices. The condition that kE > kI implies that feedforward stimuli must directly target excitatory

neurons to a larger degree than inhibitory neurons (or at least the inhibitory neurons subject to

attentional modulation). This gives us a complementary prediction to the one from the previous sec-

tion: while top-down attention favors inhibitory neurons, the bottom-up stimulus favors excitatory

neurons.

In total, our model of attentional modulation in recurrently coupled excitatory and inhibitory corti-

cal networks subject to global fluctuations satisfies three main neural correlates of attention: (1)

increase in excitatory firing rates and in (2) stimulus-response gain, with a (3) decrease in pairwise

excitatory neuron co-variability.
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Impact of attentional modulation on neural coding
Attention serves to enhance cognitive performance, especially on discrimination tasks that are diffi-

cult (Moore and Zirnsak, 2017). Thus, it is expected that the attention-mediated reduction in popu-

lation variability and increase in stimulus response gain subserve an enhanced stimulus estimation

(Cohen and Maunsell, 2009; Ruff and Cohen, 2014). In this section we investigate how the atten-

tional modulation outlined in the previous sections affects stimulus coding by the population.

As mentioned above our simplified mean field model (Equation 6) considers only a bulk

response, where any individual neuron tuning is lost. As such a proper analysis of population coding

is not possible. Nonetheless, our model has two basic features often associated with enhanced cod-

ing, decreased population variability (Figure 5) and increased stimulus-response gain (Figure 7).

Fisher information (Averbeck et al., 2006; Beck et al., 2011) gives a lower bound on the variance

of a stimulus estimate constructed from noisy population responses, and is an often used metric for

population coding. The linear Fisher information (Beck et al., 2011) FIEI computed from our two-

dimensional recurrent network is:

FIEI ¼ GE GI½ �
VE CEI

CEI VI

� ��1
GE

GI

� �

¼ constant (9)

Here Va ¼VarðraÞ, Ga ¼ d�ra=ds, and CEI ¼CovðrE; rIÞ. The important result is that FIEI is invariant

with attention, meaning that attention does not increase the network’s capacity to estimate the stim-

ulus s.

While the proof of Equation (9) is straightforward and applies to our recurrent excitatory-inhibi-

tory population (see Materials and methods: Fisher information), the invariance of the total informa-

tion FEI with attention is most easily understood by analogy with an uncoupled, one-dimensional
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excitatory population (Figure 8a). Without coupling, the input to the population is simply

kEsþ sE�ðtÞ, which is then passed through the firing rate nonlinearity fE. In this case the gain is

GE ¼ kELE, and assuming a linear transfer the population variance is VE ¼ s2

EL
2

E. In total the linear

Fisher information from the uncoupled population is then:

FIucE ¼G2

E

VE

¼ ðkELEÞ2
s2
EL

2
E

¼ k2E
s2
E

: (10)

The proportion L2E by which attention increases the squared gain (Figure 8a, top) is exactly

matched by the attention related increase in population variance (Figure 8a, bottom), resulting in

cancellation of any attention-dependent terms in FIE.
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Figure 8. Attention improves stimulus estimation by the excitatory population embedded within excitatory (E)-

inhibitory (I) network. (a) Top: For a uncoupled excitatory population, the stimulus response gain GE increases with

attention. Turquoise: unattended state; orange: attended state. Bottom: Population variance VE increases with

attention. Stimulus-response curves same as above. Input variance is computed from all input to a population,

including external noise and recurrent coupling. The Fisher information for the uncoupled E population is constant

with attention because the squared gain G2

E and variance VE increase proportionally (b) Same as (a) but for the E

population within the E � I network. Top: GE increases with attention. Bottom: VE decreases with attention,

because the net input variance of the E population decreases with attention. (c) Total Fisher information for

coupled E-I populations is constant with attention. By contrast, the Fisher information of the excitatory component

FIE increases with attention.
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The majority of projection neurons in the neocortex are excitatory, so we now consider the stimu-

lus estimation from a readout of only the excitatory population. Combining our previous results we

obtain:

FIE ¼
G2

E

VE

¼ ðJILIðkE � kIÞþ kEÞ2
s2
E � J2I L

2
I ðsEsI �s2

E �s2
I Þ� 2JILIsEðsI �sEÞ

: (11)

Restricting the readout to be from only the excitatory population drastically reduces the total

information (compare FIEI to FIE in Figure 8c). As with the uncoupled population the response gain

GE of the excitatory neurons in the coupled population increases with attention (Figure 8b, top). Yet

unlike the uncoupled population the net input variability to the E population is reduced by attention

through a cancelation of the external variability �ðtÞ via inhibition (Figure 8b, bottom). These two

components combine so that despite FIE < FIEI , we have that FIE does increase with attention

(Figure 8c). In sum, even though the total stimulus information in the network does not change with

attention, the amount of information extractable from the excitatory population increases, which

could lead to improved downstream stimulus estimation in the attended state.

Discussion
Using population recordings from visual area V4 we identified rank one structure in the mapping of

population spike count covariability between unattended and attended states. We used this finding

to motivate an excitatory-inhibitory cortical circuit model that captures both the attention-mediated

increases in the firing rate and stimulus response gain, as well as decreases in noise correlations. Our

model accomplishes this with only an attention dependent shift in the overall excitability of the corti-

cal population, in contrast to a scheme where distinct biophysical mechanisms would be responsible

for respective firing rate and noise correlations modulations. The model makes two key predictions

about how stimulus and modulatory inputs are distributed over the excitatory-inhibitory cortical cir-

cuit. First, top-down attentional signals must affect inhibitory neurons more than excitatory neurons

to allow a better damping of global fluctuations in the attended state. Second, bottom-up stimulus

information must be biased towards excitatory cells to permit higher gain in the attended state. In

total, the increased response gain and decreased correlations enhance the flow of information when

the readout is confined to the excitatory population.

Candidate physiological mechanisms for attentional modulation
Our model does not consider a specific type of inhibitory neuron, and rather models a generic recur-

rent excitatory-inhibitory circuit. However, inhibitory circuits in cortex are complex, with at least

three distinct interneuron types being prominent in many areas: parvalbumin- (PV), somatostatin-

(SOM), and vasointestinal peptide-expressing (VIP) interneurons (Rudy et al., 2011; Pfeffer et al.,

2013; Kepecs and Fishell, 2014). In mouse visual cortex, both SOM and PV cells form recurrent cir-

cuits with pyramidal cells, with PV cells having stronger inhibitory projections to pyramidal cells than

those of SOM cells (Pfeffer et al., 2013). Furthermore, PV and SOM neurons directly inhibit one

another, with the SOM to PV connection being stronger than the PV to SOM connection

(Pfeffer et al., 2013). Finally, VIP cells project strongly to SOM cells (Pfeffer et al., 2013) and are

activated from inputs outside of the circuit (Lee et al., 2013; Fu et al., 2014), making them an

attractive target for modulation. Recent studies in visual, auditory, and somatosensory cortical cir-

cuits show that VIP cell activation provides an active disinhibition of pyramidal cells via a suppression

of SOM cells (Kepecs and Fishell, 2014). Basal forebrain (BF) stimulation modulates both muscarinic

and nicotinic ACh receptors (mAChRs and nAChRs respectively) in a fashion that mimics attentional

modulation (Alitto and Dan, 2012). In particular, the recruitment of VIP cell activity in vivo through

BF stimulation is strongly dependent on both the muscarinic and nicotinic cholinergic pathways

(Alitto and Dan, 2012; Kuchibhotla et al., 2017; Fu et al., 2014), and it has thus been hypothe-

sized VIP cells activation could be an important component of attentional modulation (Alitto and

Dan, 2012; Poorthuis et al., 2014).

If we consider the inhibitory population in our model to be PV interneurons then the recruitment

of VIP cell activity via top-down cholinergic pathways is consistent with our attentional model in two

ways. First, activation of the VIP ! SOM ! pyramidal cell pathway provides a disinhibition to
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pyramidal cells, modeled simply as an overall depolarization to pyramidal cells in the attended state

(Figure 4). Second, the activation of the VIP ! SOM ! PV cell pathway disinhibits PV cells, and the

strong SOM ! PV projection would suggest that the disinhibition is sizable as required by our

model (Figure 5c). Finally, a recent study in mouse medial prefrontal cortex reports that identified

PV interneurons show an attention related increase in activity, and that optogenetic silencing of PV

neurons impairs attentional processing (Kim et al., 2016).

However, our logic is perhaps overly simplistic and neglects the direct modulation of SOM cells

via muscarinic and nicotinic cholinergic pathways (Alitto and Dan, 2012; Kuchibhotla et al., 2017)

that could compromise the disinhibitory pathways. Further, there is evidence of a direct ACh modu-

lation of PV cells (Disney et al., 2014) as opposed to through a disinhibitory pathway. Finally, there

may be important differences across both species (mouse vs. primate) and visual area (V1 vs. V4)

that fundamentally change the pyramidal, PV, SOM, and VIP circuit that is understood from mouse

V1 (Pfeffer et al., 2013). Future studies in the inhibitory to excitatory circuitry of primate visual cor-

tex, and its attentional modulation via neuromodulation, are required to navigate these issues.

Finally, the simultaneous increase in response gain and decrease in noise correlations with atten-

tion requires excitatory neurons to be more sensitive to bottom-up visual stimulus than inhibitory

neurons (kE > kI , Figure 7). In mouse visual cortex, GABAergic interneurons show overall less stimu-

lus selectivity than pyramidal neurons (Sohya et al., 2007), however this involves both direct feedfor-

ward and recurrent contributions to stimulus tuning. While our model simplified the feedforward

stimulus gain kE and kI to be constant with attention, it is known that attention also modulates feed-

forward gain through presynaptic nACh receptors (Disney et al., 2007). Notably, nAChRs are found

at thalamocortical synapses onto layer 4 excitatory cells and not onto inhibitory neurons, suggesting

that kE would increase with attention while kI would not. Thus, kE should also increase with attention

while kI should not, further supporting that kE > kI .

Modeling global network fluctuations and their modulation
Our model considered the source of global fluctuations as external to the network. This choice was

due in part to difficulties in producing global, long timescale fluctuations through strictly internal

coupling (Renart et al., 2010; Rosenbaum et al., 2017). Our model assumed that the intensity of

these external input fluctuation were independent of attention. Rather, attention shifted the operat-

ing point of the network such that the transfer of input variability to population-wide output activity

was attenuated in the attended state.

Recent analysis of population recordings show that generative models of spike trains that con-

sider gain fluctuations in conjunction with standard spike emission variability capture much of the

variability of cortical dynamics (Rabinowitz et al., 2015; Lin et al., 2015). Further, these gain fluctu-

ations are well approximated by a one-dimensional, global stochastic process affecting all neurons in

the population (Ecker et al., 2014; Rabinowitz et al., 2015; Lin et al., 2015; Ecker et al., 2016;

Engel et al., 2016; Whiteway and Butts, 2017). When these techniques are applied to population

recordings subject to attentional modulation, the global gain fluctuations are considerably reduced

in the attended state (Rabinowitz et al., 2015; Ecker et al., 2016). Our assumption that external

input fluctuations to our network are attention-invariant is consistent with this statistical analysis since

it is necessarily constructed from only output activity. Nevertheless, another potential model is that

the reduction in population variability is simply inherited from an attention-mediated suppression of

the global input fluctuations. Unfortunately, it is difficult to distinguish between these two mecha-

nisms when restricted to only output spiking activity.

However, a model where output variability reductions are simply inherited from external inputs

suffers from two criticisms. First, it begs the question: what is the mechanism behind the shift in

input variability? Second, our model requires only an increase in the external depolarization to excit-

atory and inhibitory populations to account for all attentional correlates. An inheritance model would

necessarily decouple the attentional mechanisms behind increases in network firing rate (still requir-

ing a depolarization) and the decrease in global input variability. Thus, our model offers a parsimoni-

ous and biologically motivated explanation of these neural correlates of attention. Further work

dissecting the various external and internal sources of variability to cortical networks, and their atten-

tional modulation, is needed to properly validate or refute these different models.
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Attentional modulation of neural coding through inhibition
Our network model assumed attention-invariant external fluctuations and weak recurrent inputs, per-

mitting a linear analysis of network activity. As a consequence the linear information transfer by the

entire population was attention-invariant (Figure 8), because attention modulated the network’s

transfer of signal and noise equivalently. However, this invariance was only apparent if the decoder

had access to both the excitatory and inhibitory populations. However, most of the neurons in cortex

that project between areas are excitatory. When the decoder was restricted to only the activity of

the excitatory population then our analysis uncovered two main results. First, the excitatory popula-

tion carried less information than the combined excitatory-inhibitory activity, suggesting an inher-

ently suboptimal coding scheme used by the cortex. Second, the attention-mediated modulation of

the inhibitory neurons increased the information carried by the excitatory population. This agrees

with the wealth of studies that show that attention improves behavioral performance on stimulus dis-

crimination tasks.

Determining the impact of population-wide spiking variability on neural coding is complicated

(Averbeck et al., 2006; Kohn et al., 2016). A recent theoretical study has shown that noise correla-

tions that limit stimulus information must be parallel to the direction in which population activity enc-

odes the stimulus (Moreno-Bote et al., 2014). The fluctuations in our network satisfy this criteria,

albeit trivially since all neurons share the same stimulus input. Indeed, in our network the external

inputs appear to the network as sþ xðtÞ, meaning that fluctuations from the noise source xðtÞ are

indistinguishable from fluctuations in the stimulus s. This is an oversimplified view and assumes that

the decoder treats the neurons as indistinguishable from one another, at odds with classic work in

population coding (Pouget et al., 2000). Extending our network to include distributed tuning and

feature-based recurrent connectivity is a natural next step (Ben-Yishai et al., 1995; Rubin et al.,

2015). To do this the spatial scales of feedforward tuning, recurrent projections, external fluctua-

tions, as well as attention modulation must all be specified. It is not clear how noise correlations will

depend on these choices yet work in spatially distributed balanced networks shows that solutions

can be complex (Rosenbaum et al., 2017).

The role of inhibition in shaping cortical function is a longstanding topic of study (Isaacson and

Scanziani, 2011), including recent work showing inhibition can actively decorrelate cortical

responses (Renart et al., 2010; Tetzlaff et al., 2012; Ly et al., 2012). Our work gives a concrete

example of how this decorrelation can be gated and used to control the flow of information. Of

interest are tasks that probe a distributed population where attention again decreases noise correla-

tions between neurons with similar stimulus preference, yet increases noise correlations between

cells with dissimilar stimulus preference (Ruff and Cohen, 2014). The circuit mechanisms underlying

this neural correlate of attention are unclear. However, there is ample work in understanding how

recurrent inhibition shapes cortical activity in distributed populations (Isaacson and Scanziani,

2011), including in models of attentional circuits (Ardid et al., 2007; Buia and Tiesinga, 2008).

Adapting our model to include distributed tuning is an important next step and will be a better

framework to discuss the coding consequences of the attentional modulation circuits proposed in

our study.

Methods and materials

Data preparation
Data was collected by from two rhesus monkeys with microelectrode arrays implanted bilaterally in

V4 as they performed an orientation-change detection task (Figure 1a) (Cohen and Maunsell,

2009). All animal procedures were in accordance with the Institutional Animal Care and Use Com-

mittee of Harvard Medical School. Two oriented Gabor stimuli flashed on and off several times, until

one of them changed orientation. The task of the monkey was to then saccade to the stimulus that

changed. Each recording session consisted of at least four blocks of trials in which the monkey’s

attention was cued to the left or right. We excluded from the analysis instruction trials which

occurred at the start of each block to cue the monkey to one side to attend to, catch trials in which

the monkey was rewarded just for fixating, and trials in which the monkey did not perform the task

correctly. Moreover, the first and last stimulus presentations in each trial were not analyzed, to pre-

vent transients due to stimulus appearance or change from affecting the results. The total number of
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trials included in the analysis from all the recording sessions was 42; 496. Each trial consisted of

between 3 and 12 stimulus presentations, of which all but the first and last were analyzed.

Recordings from the left and right hemispheres of each monkey were analyzed separately

because the activities of the neurons in opposite hemispheres had near-zero correlations

(Cohen and Maunsell, 2009). Neurons in the right hemisphere were considered to be in the

attended state when the attentional cue was on the left, and vice-versa. We note that because our

criteria for choosing which trials and units to analyze were based on different needs for data analysis

compared to the original study (Cohen and Maunsell, 2009) the specific firing rates and covariances

differ quantitatively from those previously reported.

In monkey 1, an average of 51:1 (min 35, max 80) units were analyzed from the right hemisphere,

and an average of 27:5 (min 14, max 56) units were analyzed from the left hemisphere. From monkey

2, an average of 56:6 (min 43, max 71) units from the right hemisphere, and an average of 37:7 (min

32, max 46) units from the left hemisphere were analyzed. From each recording, spikes falling

between 60 and 260 ms from stimulus onset were considered for the firing rate analysis, to account

for the latency of neuronal responses in V4.

Comparing change in covariance to change in variance
Let SU be the matrix containing spike counts of the neurons on trials in which they are in the unat-

tended state, and SA the matrix containing spike counts of the neurons on trials in which they are in

the attended state. Denote the unattended spike count covariance matrix by CU ¼ CovðSUÞ, and the

attended one by CA ¼ CovðSAÞ. Attentional changes in covariance and variance were measured both

on average (Figure 1c) and as distributions (Figure 1d). The distributions of the normalized

differences

CovA�CovU

maxðjCovAj; jCovU jÞ
and

VarA�VarU

maxðjVarAj; jVarU jÞ
(12)

reveal a concentration of negative covariance changes, and a distribution of variance changes sym-

metric about zero. Here, CovA and CovU (VarA and VarU ) are vectors containing covariance (variance)

values of the entire data set. Note that the distributions are bounded between �2 and 2 by

construction.

Solving systems of equations by error minimization
When solving systems of the form of Equation (2) in order to quantify the fit of the model, a nonlin-

ear equation solver (fminunc) in MATLAB was used. The solver found minima of an objective function

which we defined as the Euclidean norm of the difference of the approximation of the attended

covariance matrix and the original attended covariance matrix, in other words, the error of the

approximation:

f ðg1; :::;gNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i < j

ðgiCUði; jÞgj�CAði; jÞÞ2
s

: (13)

Shuffled covariance matrices
For finite population sizes (N < ¥) we expect our algorithm to extract some low-rank structure

between arbitrary covariance matrices. Let
ffiffiffiffiffiffi

CA
p

be the principal square root of the attended covari-

ance matrix, the unique positive-semidefinite square root of a positive-semidefinite matrix. Consider

the symmetric matrix D ¼ permð
ffiffiffiffiffiffi

CA
p

Þ computed from the a random permutation of the upper-trian-

gular entries of
ffiffiffiffiffiffi

CA
p

. Finally, let CA
shuf ¼ realðDDÞ. The square root-permutation-squaring procedure

guarantees a positive-semidefinite matrix, as the square of any matrix is positive-semidefinite. Shuf-

fling removes any relation between CU and CA
shuf , and any remaining detected structure would be

due to finite sampling. The shuffled covariance gain ĝshuf provides the prediction

ĈA
shuf :¼ ĝshuf ĝ

T
shuf � CU , and �shuf measures the relation between ĈA

shuf and CA
shuf . Synthetic data shows

that as population size N becomes large the coefficient �shuf approaches 0 (Appendix: Detected

structure in random covariance matrices is a finite-size effect).
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Upper bound covariance matrices
The covariance matrices CU and CA are estimates obtained from a finite number of trials, and any

estimation error will compromise the ability to detect rank one structure of AC. Here we outline an

upper bound for the model performance based on a finite number of trials over which the covari-

ance matrices were originally estimated. Let ĈA :¼ ĝĝT � CU with ĝ minimizing the L2 norm of

CA :¼ ggT � CU . We remark that ĈA perfectly decomposes according to the statistical model in Equa-

tion (2). We used ĈA to generate an artificial set of N correlated Poisson spike counts, using an algo-

rithm based on a latent multivariate gaussian model (Macke et al., 2009). We sampled these

population spike counts with a fixed number of trials (M) with D be the resulting M � N matrix of

Poisson samples for each process. Let CA
ub ¼ CovðDÞ be the ’upper bound’ covariance matrix: a finite

trial sampling approximation to the perfectly decomposable matrix ĈA. Finally, we employ our algo-

rithm to give ĈA
ub :¼ ĝubĝ

T
ubC

U , where the vector ĝub minimizes the L2 norm of the error.

Since ĈA is perfectly decomposable then for M ! ¥ we have ĈA
ub ¼ CA

ub ¼ ĈA. Thus in the large M

limit the coefficient �ub between elements of ĈA
ub and CA

ub converges to 1 (Appendix: Performance

limited by available number of trials). However, for finite M we have that �ub < 1, solely due to inac-

curacies in estimating ĈA with CA
ub. To account for the possibility of particular strings of realizations D

introducing random biases into CA
ub, we performed the following analysis on 10 independently gener-

ated upper-bound covariance matrices CA
ub.

Leave-one-out cross-validation
Instead of solving the system consisting of all Equations (2), we remove one of them. Denote the

complete set of equations by S, an individual equation as sij :¼ fCA
ij ¼ gigjC

U
ij g and the set of equa-

tions with one of them removed as Sab :¼ S� sab. We then solve the system Sab. Denote the solution

by gab. We can then compare CA
ab and ĈA

ab ¼ gabðaÞgabðbÞCU
ab. We do this for maxð1000;NðN � 1Þ=2

possible systems Sab. The � of the vector of resulting CA
ab vs ĈA

ab values is a measure of how well the

system can predict one of its elements, or in other words, how well the structure holds together

when one element is taken out. This leave-one-out cross-validation was performed for the shuffled

and the upper-bound cases as well.

Mean field model
The mean spiking activity over the population a ð¼ E or IÞ is

raðtÞ ¼ hyiaðtÞii; (14)

where yiaðtÞ ¼
Pnia

j¼1
dðt� t

j
iaÞ is the spike train of excitatory neuron i of population a, nia is the number

of spikes from that neuron, and t
j
ia is the time of spike j. We follow previous studies (Tetzlaff et al.,

2012; Ozeki et al., 2009; Ledoux and Brunel, 2011) and consider the firing rate dynamics of the E

and I populations given by the system in Equations (6):

tE
drE

dt
¼�rE þ fE �EBþAD�E þ JEErE � JEIrI þsE

ffiffiffiffiffiffiffiffiffiffiffi

1��
p

xEðtÞþ
ffiffiffi
�

p
xðtÞ

h i� �

;

tI
drI

dt
¼�rI þ fI �IBþAD�I þ JIErE � JIIrI þsI

ffiffiffiffiffiffiffiffiffiffiffi

1��
p

xIðtÞþ
ffiffiffi
�

p
xðtÞ

h i� �

:

Here �aB is the attention independent drive to population a, A2 ½0;1� is the attention variable,

and D�a is the maximal drive to population a due to attention. The parameter Jab is the coupling

from population b to populations a. The stochastic processes xEðtÞ, xIðtÞ, and xðtÞ are the global fluc-

tuations applied to the network. The excitatory and inhibitory populations have private fluctuations

xaðtÞ and also common fluctuations xðtÞ given to both populations; the parameter � scales the

degree of private versus common fluctuations. We perform calculations for arbitrary � and then take

�! 1 to match the system given in Equations (6). The total intensity of fluctuations to population a

is set by sa. These simplified rate equations give an accurate picture of the long-timescale dynamics

of networks of coupled spiking neuron models that are in the fluctuation driven regime (Ledoux and

Brunel, 2011). The operative timescale reflects a combination of synaptic and membrane
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integration; since we are interested in spiking covariance over time windows that are much longer

than these, we take them to be unity for simplicity.

To give a quantitative match between the equilibrium statistics of the rate equations and the

leaky integrate-and-fire (LIF) network simulations we take the transfer function f to be the inverse

first passage time of an LIF neuron driven by white noise (Ledoux and Brunel, 2011):

faðIÞ ¼ ta

ffiffiffiffi
p

p Z ð�VRþIÞ=ha

ð�VTþIÞ=ha

expðz2ÞerfcðzÞdz
 !�1

: (15)

The parameter ha is the intensity of the external fluctuations given to the LIF neurons (Appendix:

Spiking model). The membrane timescale t gives the dimensions of 1/s to the firing rate ra. The

parameter VT denotes spike threshold while VR is the reset potential. Model parameters are given in

Table 1.

If the input fluctuations, xðtÞ, xEðtÞ, and xIðtÞ are white noise processes then the nonlinearity in f

makes the stochastic dynamics of rEðtÞ and rIðtÞ complicated (non-diffusive). To simply the analysis

we consider xðtÞ as the limiting process from:

tx
dx

dt
¼�xþ ffiffiffiffi

tx
p

�xðtÞ;

for tx ! 0, with h�xðtÞi ¼ 0 and h�xðtÞ�xðt0Þi ¼ dðt� t0Þ. This makes xðtÞ sufficiently smooth in time

(the same is true for xEðtÞ and xIðtÞ).
We restrict the coupling Jab such that for sa ¼ 0 the equilibrium point ð�rE;�rIÞ is stable and given

by:

�rE ¼ fEð�EBþAD�E þ JEE�rE � JEI�rIÞ;
�rI ¼ fIð�IBþAD�I þ JIE�rE � JII�rIÞ: (16)

For sufficiently small sa the fluctuations in population activity about the equilibrium firing rate,

draðtÞ ¼ raðtÞ��ra, obey the linearized stochastic system:

tE
d

dt
drE ¼ ð�1þLEJEEÞdrE �LEJEIdrI þLEsEð

ffiffiffiffiffiffiffiffiffiffiffi

1��
p

xEðtÞþ
ffiffiffi
�

p
xðtÞÞ;

tI
d

dt
drI ¼ LIJIEdrE �ð1þLIJIIÞdrI þLIsIð

ffiffiffiffiffiffiffiffiffiffiffi

1��
p

xIðtÞþ
ffiffiffi
�

p
xðtÞÞ: (17)

Table 1. Model Parameters.

Parameter Description Value

t Time constants for membrane dynamics 0.01 s

VT Spike Threshold 1

VR Spike Reset 0

�E Excitatory baseline bias 0.6089

�I Inhibitory baseline bias 0.5388

D�E Attentional modulation of excitatory bias 0.2624

D�I Attentional modulation of inhibitory bias 0.3608

JE Excitatory coupling constant 1.5

JI Inhibitory coupling constant 3

sE Amplitude of external noise to E population 0.3

sI Amplitude of external noise to I population 0.35

c Proportion of common noise to E and I populations 1

kE Sensitivity of E population to stimulus input 1

kI Sensitivity of I population to stimulus input 0

DOI: 10.7554/eLife.23978.011
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Here La ¼ dfa
dI
jI¼Ieffa

is the slope of the transfer function fa evaluated at the equilibrium point

Ieffa ¼ �aþAD�a þ JaE�rE � JaI�rI . Equation (17) is a two dimensional Ornstein-Uhlenbeck process

(Gardiner, 2004) that is readily amenable to analysis.

Computing VE

In matrix form the system Equation(17) is written as:

d

dt
dr¼MdrþDx: (18)

Here dr¼ ½drE;drI �, x¼ ½xE;xI ;x�, and

M ¼ �1þ LEJEE �LEJEI
LIJIE �1� LIJII

� �

and D ¼ LEsE

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
0 LEsE

ffiffiffi
�

p
0 LIsI

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
LIsI

ffiffiffi
�

p
� �

.

The stationary autocovariance function is computed as:

~CðsÞ ¼ hdrðtÞ;drðtþ sÞi ¼
expðMsÞS if s > 0

Sexpð�MTsÞ if s� 0

�

; (19)

where s is a time lag and S¼ ðDetMÞDDTþ½M�ðTrMÞ1�DDT ½M�ðTrMÞ1�T
2ðTrMÞðDetMÞ is the variance matrix (Det and Tr denote

the determinant and trace operations, respectively). Here, 1 is the 2� 2 identity matrix.

The covariance between populations a and b over long time scales is given by

Cða;bÞ ¼
Z

¥

�¥
~Cðs;a;bÞds; (20)

where the integration is performed over the appropriate element of the matrix ~CðsÞ. In particular,

the long timescale variance of the excitatory population is given by (after some algebra):

VE ¼CðE;EÞ ¼ L2E

ð1þ JILI � JELEÞ2
ðJILIðsE �sIÞþsEÞ2: (21)

We remark that the long timescale covariance matrix can alternatively be computed from C¼
M�1D½M�1D�T (Gardiner, 2004). To obtain the compact expression for VE we have assumed symmet-

ric coupling: JI :¼ JEI ¼ JII , JE :¼ JEE ¼ JIE, and �! 1. These are not required for the main results of

our study and merely ease the analysis of equations.

Computing stimulus response gain
We decompose �aB ¼ kasþ �̂aB and define the gain of population a to stimulus s as Ga ¼ d�ra

ds
¼ La

dIa
ds
.

The term dIa
ds

is obtained by differentiating Equations (16)) with respect to s:

dIa

ds
¼ ka þ JEGE � JIGI :

Solving the system of two equations for GE yields:

GE ¼
LEðkE þ JILIðkE � kIÞÞ

1þ JILI � JELE
: (22)

For the sake of compactness we set sE ¼ sI to obtain the result in Equation (8).

Fisher information
Linear Fisher Information depends on the stimulus response gains and covariance matrix of the excit-

atory and inhibitory populations:
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FIEI ¼ GE GI½ � VE CEI

CEI VI

� ��1
GE

GI

� �

¼G2

EVI þG2

IVE � 2GEGICEI

VEVI �C2
EI

; (23)

When the input correlation 0� � < 1 we have:

VE ¼
LE

1þ JILI � JELE

� �2

J2I L
2

I ðs2

E þs2

I � 2sEsI�Þþ 2JILIsEðsE �sI�Þþs2

E

� �
; (24)

VI ¼
LI

1þ JILI � JELE

� �2

J2EL
2

Eðs2

E þs2

I � 2sEsI�Þþ 2JELEsIðsI �sE�Þþs2

I

� �
; (25)

and

CEI ¼
LELI

1þ JILI � JELEð Þ2
ðJEJILELIðs2

E þs2

I � 2sEsIcÞ

þJELEsEðsE �sI�Þ� JILIsIðsI �sE�ÞþsEsI�Þ:
(26)

Inserting these expressions and those for GE and GI into Equation (23) and simplifying yields:

FIEI ¼
2�kEkIsEsI � k2Es

2

I � k2I s
2

E

ð�2 � 1Þs2
Is

2
E

: (27)

We remark that FIEI is independent of LE and LI and thus independent of attentional modulation.

Notice that we have re-introduced the correlation constant � into the equations, rather than only

considering the limit � ! 1. If � ¼ 1, the excitatory and inhibitory populations are receiving

completely identical noise. If this is the case, the correlation cancellation would be perfect, leading

to infinite informational content, as can be seen in Equation (27).
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Appendix 1

Detected structure in random covariance matrices is a
finite-size effect
Here we show that any prediction of rank one structure in our shuffled covariance matrix (non-

zero �shuf in Figure 2 of the main text) is a finite-data effect. The trial-by-trial covariance

matrices of the experimental data are computed from the spike counts recorded from a set

number of units. To explore the effect of population size on the detected structure in the

shuffled covariance matrices we must rely on synthetic data.

We construct the synthetic covariance matrices by generating Gaussian random numbers

with the same mean and standard deviation as the actual covariance matrices from the data.

This construction serves as a substitute for the shuffled covariance matrices, and allows for

arbitrarily large populations. As we increase the number of units from near 10 to 500, �shuf
decreases accordingly, indicating that any positive �shuf is due to the finite population size,

rather than any inherent structure in the data (Appendix 1—figure 1).

shuf

Appendix 1—figure 1. Detected structure in randomly generated covariance matrices is a

finite-size effect. The model performance (�shuf ) decreases with increasing system size (black

curves). The �shuf computed from the shuffled neural data (red dots) falls in the same area as

the synthetic data performance, suggesting that the synthetic data is a reasonable stand-in.

DOI: 10.7554/eLife.23978.012

Model performance is limited by number of trials in data
The upper bound for our model �ub did not saturate 1 (see Figure 2 of the main text). Here, we

show that this is also due the finite data available. If infinitely many trials were available to

compute the spike count covariance matrices from the data, and the data obeyed by the

low-rank statistical model, the performance of the model (�ub) should tend to one. To test

this, we generate synthetic data from correlated Poisson processes as in the upper bound

computation of the main text but do not limit the number of samples to the number of trials

in the original data. As the number of samples increases we find that �ub ! 1 (Appendix 1—

figure 2).
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Appendix 1—figure 2. The performance of the model �ub (black curves) on synthetic data using

increasing numbers of Poisson realizations approaches 1. The Poisson model computed with

the same number of trials as the data is shown for comparison (red dots).

DOI: 10.7554/eLife.23978.013

Model performance for all monkeys and hemispheres
The model performance for individual recording sessions are given here for transparency

(Appendix 1—figure 3 for the full data and Appendix 1—figure 4 for the leave-one-out

cross validation).
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Appendix 1—figure 3. Performance of basic analysis on model on individual recording sessions

from left hemisphere of monkey 1, and both hemispheres of monkey 2. The format and colors

match that described in Figure 2 of the main text.

DOI: 10.7554/eLife.23978.014

Low-dimensional modulation is intrinsic to neurons
In order to further test our model, we asked to what extent the actual value of the covariance

gain gi of neuron i depends on the neural population whose covariance matrix gi was

estimated from. If we had solved the system S of equations CA
i;j ¼ gigjC

U
i;j using covariance

matrices computed from recordings from a different set of neurons (including neuron i),

would the value of gi be different? If not, this would be further indication of the

independence of the attentional modulation of neuron i from the particular set of other

neurons it is analyzed with.
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We tackle this question by dividing a set of N neurons into k sets S
ð1Þ
i ; S

ð2Þ
i ; :::; S

ðkÞ
i of m �

ðN þ 1Þ=2 neurons each that all contain the neuron ni (m � N=2þ 1 if N is originally even). As

an example take k ¼ 2 and consider the set of neurons n1; :::; n2i�1 partitioned into two

subsets S
ð1Þ
i ¼ fn1; :::; nig and S

ð2Þ
i ¼ fni; :::; n2i�1g (Appendix 1—figure 5a). We solve

Equation (1) using the systems of equations obtained from S
ð1Þ
i and S

ð2Þ
i , and obtain two

solutions g
ð1Þ
i and g

ð2Þ
i . We take the variance of the g-estimations as a metric for how closely

the different subsets can estimate an intrinsic value of g. A higher variance would indicate a

poorer convergence, and therefore a lower degree of independence from other neurons.

Appendix 1—figure 5b shows the spread of g-estimates from one dataset for the data, as

well as the upper (UB) and lower (shuf) bounds. This spread includes estimates for all g-

values for all neurons. The spread in the shuffled case (SEM¼ 7:42) is largest by two orders

of magnitude, and the spread of the upper bound (SEM¼ 2:60� 10
�3) is only one order of

magnitude tighter than that of the data (SEM¼ 1:03� 10
�2), so this case is close to ideal.

Appendix 1—figure 4. Performance of leave-one-out cross-validation on model on data from

individual recording sessions from the left hemisphere of Monkey 1, and both hemispheres of

Monkey 2. The format and colors match that described in Figure 2 of the main text.

DOI: 10.7554/eLife.23978.015

Kanashiro et al. eLife 2017;6:e23978. DOI: 10.7554/eLife.23978 30 of 38

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.23978.015
http://dx.doi.org/10.7554/eLife.23978


... ...

...

...

-4 0 4 8

Appendix 1—figure 5. Overlap analysis of gain parameters. (a) Schematic of overlap analysis. A

set of n2i�1 neurons is divided into two sets S1 and S2 of i, which overlap by exactly one

neuron, indexed without loss of generality as neuron i. Parameter gi is computed using S1

and S2, resulting in two estimates g
ð1Þ
i and g

ð2Þ
i . (b) Spread of g estimates for the data (black),

as well as the upper (blue) and lower (green) bounds, from one day of recordings in one

monkey. (c) Mean variance of the g estimates computed from the data (abscissa) vs from the

upper bound (ordinate), normalized by the mean shuffled variance. Each color denotes one

of the monkeys, circles denote the right hemisphere recordings, and plusses denote the left

hemisphere recordings. The gray regions consist of those points that are beyond 0:5, and

therefore closer to the lower bound than the upper bound.

DOI: 10.7554/eLife.23978.016

For each data set, the analysis is done for each neuron for 100 different permutations of the

neurons to generate S
ðkÞ
i , k ¼ 1; :::; 100. For shuffled and upper-bound analysis, 10 shuffles or

Poisson realizations, and 10 permutations were used. In all cases there was a total of 100�
#neurons points. Appendix 1—figure 5c shows an overview of the performance for all

datasets. The abscissa is the mean variance of the g-estimates computed from the data,

normalized by the mean variance computed from the shuffled data:
hVarkðgðkÞi

Þii
hhVarkðgðkÞi;shuf

Þishuf ii
. The ’shuf’

subscript denotes averaging over each shuffle. The ordinate is the mean variance of the g-

estimates computed from the upper bound, with the same normalization:
hhVarkðgðkÞi;UBÞipoissii
hhVarkðgðkÞi;shuf

Þishuf ii
. The

’poiss’ subscript denotes averaging over each Poisson realization of the upper bound

covariance matrix. We chose to normalize the mean data and upper-bound variances by the

mean shuffled variance so that a value of 1 would mean equality to the lower bound,

meaning the only detected structure comes from finite-size effects, and a value of 0 would

mean perfect convergence of the g-estimates. The gray regions are a visualization for the

points which are closer to 1 than 0 (values above 0:5) on the log-axes. Most of the data

unsurprisingly falls below the diagonal, so the variance is greater for the data than the upper

bound. Less trivially, most of the data falls outside of the gray regions, and are much closer

to 0 than 1, indicating excellent performance. This implies a structure in the modulation of

the (unshuffled) covariance matrices that is preserved over analysis in the contexts of

different groups of other neurons. In other words, attention modulates the individual

neurons to a large extent independently, in a low-dimensional manner.
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Network requirements for attentional modulation
In this section we study a network of N neurons with the spike train output from neuron i being

yiðtÞ ¼
P

k dðt � tikÞ where tik is the kth spike time from neuron i. We consider multiple trials of

the discrimination experiment and model the spike train only over a time period t 2 ð0; TÞ,
where we assume that the spike trains to have have reached equilibrium statistics. We abuse

notation and take the spike count from neuron i over a trial as yi ¼
R T

0
yiðtÞdt. The trial-to-trial

covariance matrix of the network response is C with element cij ¼ Covðyi; yjÞ.

To analyze the network activity we first assume that each spike train is simply perturbed

about a background state and employ the linear response ansatz (Ginzburg and

Sompolinsky, 1994; Doiron et al., 2004; Trousdale et al., 2012) :

yi ¼ yiBþLi
XN

k¼1

Jikyk þ �i

 !

: (28)

Here, Jik is the synaptic coupling from neuron k to neuron i (proportional to the synaptic

weight), and �i is a fluctuating external input given to neuron i. The background state of

neuron i is yiB, and it represents the stochastic output of a neuron that is not due to the

recurrence from the network ðJ ¼ 0Þ or the external input (�i ¼ 0). Finally, Li is the input to

output gain of a neuron i. In this framework, yi, yiB, and �i are random variables, while Li and

Jik are parameters that describe the intrinsic and network properties of the system. Without

loss of generality we take hyiBi ¼ 0, h�ii ¼ 0, making hyii ¼ 0 a solution for the mean activity.

We remark that formally Equation (28) is incorrect as written; yi is a random integer while,

for instance, LiJikyk need not be an integer. Equation (28) is only correct upon taking an

expectation (over trials) of yi.

Here we derive the requirements for external fluctuations and internal coupling for network

covariability C to satisfy the following two conditions (on average):

C1: cAij ¼ gigjc
U
ij ; attentional modulation of covariance is rank one.

C2: gi < 1 ; spike count covariance decreases with attention.

It is convenient to write Equation (28) in matrix form and isolate for the population

response:

~y¼ I�Kð Þ�1 ~yBþL~�
� �

: (29)

Here ~y ¼ ½y1; . . . yN �T with similar notation for ~yB and~�. The matrix K has element Kij ¼ LiJij,

while L ¼ diagðLiÞ and I is the identity matrix. Using Equation (29) we can express the

covariance matrix C ¼ h~y~yTi as:

C¼ ðI�KÞ�1
BðI�KTÞ�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

internal covariability

þðI�KÞ�1
LXLðI�KTÞ�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

external covariability

; (30)

where T denotes the transpose operation. Here B ¼ h~yB~y
T
Bi is the background covariance,

which we take to be simply B ¼ diagðbiÞ. The input covariance matrix is X ¼ h~�~�Ti with
elements xij. In the above we assumed that h~yB

~�Ti ¼ 0, meaning that the background state

is uncorrelated with the external noisy input.

It is clear that C naturally decomposes into two terms. The first term represents the

correlations that are internally generated within the network, via the direct synaptic coupling
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K acting upon the background state B. The second term is how the direct synaptic coupling

K filters the externally applied correlations X.

Satisfying C1
The background matrix B is a diagonal matrix and is hence rank N. The high rank B combined

with attentional modulations of both B and K make it impossible to satisfy condition C1. If

the spectral radius of K is less than 1, then we can expand I�Kð Þ�1¼ Iþ
P

¥

n¼1
Kn

(Pernice et al., 2011; Trousdale et al., 2012). Inserting this expansion into the expression

for the internally generated covariability yields:

ðI�KÞ�1
BðI�KTÞ�1 ¼BþBKT þKBþKBKT þ� � � :

Extracting the covariance between neuron i and j (i 6¼ j) due to internal coupling within the

network gives:

cijB ¼ biLjJjiþ bjLiJijþ
X

k

LiLjbkJikJjk þ �� � :

If we take Jij ~ 1=N and the network connectivity to be dense (meaning the connection

probability is ~Oð1Þ) then each term is Oð1=NÞ. So long as the spectral radius of K is less

than one then the series converges and as N ! ¥ we have that cijB vanishes (Pernice et al.,

2011; Trousdale et al., 2012; Helias et al., 2014).

This argument can be extended to networks with Jij ~ 1=
ffiffiffiffi
N

p
when combined with a balance

condition between recurrent excitation and inhibition. Such networks also produce an

asynchronous state where cijB ~ 1=N, vanishing in the large N limit (Renart et al., 2010).

However, formally balanced networks in the asynchronous state with N ! ¥ have solutions

that do not depend on the firing rate transfer L. The attention dependent modulation AL :

LU ! LA is a critical component of our model and care must be taken in ensuring that

In contrast, the external covariance X is not a diagonal matrix, so that the contributions from

external fluctuations to C scale as N2J2. This is Oð1Þ for J / 1=N. Thus, while the terms in X

must be weak for the linear approximation in Equation (28) to hold, they need not vanish

for large N. Indeed, for moderate X and large network size it is reasonable to ignore the

contribution of internally generated fluctuations to C. Recent analysis of cortical population

recordings show that the shared spiking variability across the population can be well

approximated by a rank one model of covariability (Ecker et al., 2014; Lin et al., 2015;

Ecker et al., 2015; Rabinowitz et al., 2015). Thus motivated, we take the external

fluctuations X ¼ xxT where x ¼ ½x1; . . . ; xN �T . In total, we have for large N the approximation:

C» ðI�KÞ�1
Lx

� �

ðI�KÞ�1
Lx

� �T

¼ ccT : (31)

Hence C is rank one matrix with c ¼ ðI�KÞ�1
Lx

� �

¼ ½c1; . . . ; cN �T . It is trivial to satisfy

condition C1 with gi ¼ cAi =c
U
i .

Satisfying C2
We again use the expansion I�Kð Þ�1¼ Iþ

P
¥

n¼1
Kn. Truncating this expansion at n ¼ 1 yields

an approximation considering only synaptic paths of length one in the network, and

neglecting higher order paths. This is appropriate for Jij sufficiently small. Truncating after

inserting the expansion into Equation (30) yields the following approximation for c:
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c» IþKð ÞLx: (32)

The analysis in the main text begins with this approximation to derive Equation (5) of the

main text.

Spiking network

Spiking network description
We implement a network of leaky integrate-and-fire neurons (LIF) with 1000 excitatory neurons

and 200 inhibitory neurons. Individual neurons were modeled as integrate-and-fire units

whose voltages obeyed

dVi

dt
¼ 1

t
�i �Við Þþ I

syn
i þ Iexti (33)

for neuron i. When the voltage reached a threshold Vth ¼ 1, a spike was recorded and the

voltage reset to Vre ¼ 0. Time was measured in units of the membrane time constant, t ¼ 1

for all neurons. The bias � depended on neuron type and attentional state. In the

unattended state, the bias for excitatory neurons was �un
E ¼ 0:6089 and �un

I ¼ 0:5388. In the

attended state, �att
E ¼ 0:8713 and �att

I ¼ 0:8996. The recurrent input to neuron i was

I
syn
i ðtÞ ¼

X

j

WijJijðtÞ � yjðtÞ (34)

where Wij is the strength of the connection from neuron j to neuron i, JijðtÞ is the synaptic

filter for the projection from neuron j to neuron i, � denotes convolution and yjðtÞ is neuron
j’s spike train – a series of d-functions centered at spike times. The synaptic filters were taken

to be alpha functions,

JijðtÞ ¼
t

ts
e�t=ts (35)

with ts ¼ 0:3 of the passive membrane time constant for all synapses. The connection

probability from neurons in population A to population B was pAB, with pEE ¼ 0:2 and

pEI ¼ pIE ¼ pII ¼ 0:4. Synaptic weights for connections between excitatory neurons were

WEE ¼ 0:0075 and WIE ¼ 0:0037, WEI ¼ �0:0375, WII ¼ �0:0375. These parameters, and the

bias voltages �, were chosen so that the mean field theory derived above was valid for the

spiking network’s firing rates.

The excitatory neurons were divided into four clusters, each excitatory neuron receiving half

of its inputs from neurons in the same cluster and half from others. Projections to and from

inhibitory neurons were unclustered.

External input from outside the network was contained in Iexti . We modeled this as a partially

correlated Gaussian white noise process: Iexti ðtÞ ¼ si

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
�iðtÞ þ

ffiffiffi
c

p
�cðtÞ

� �
. �iðtÞ was

Gaussian white noise private to neuron i and �cðtÞ was shared between all neurons. c ¼ 0:05

denoted the fraction of common input and the noise intensity for excitatory neurons was

sE ¼ 0:3 and for inhibitory neurons sI ¼ 0:35.

The firing rate of neuron i in a trial of length L is given by its spike count in that trial nLi , ri ¼
hnLi i=L where h�i denotes averaging over trials. The spike train covariance between neurons i

and j describes the above-change likelihood that action potentials occur in each spike train

separated by a time lag s:
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qijðsÞ ¼
1

L

Z L

0

hyiðtÞyjðt� sÞidt� rirj: (36)

For simulations, we measure the population-averaged spike train cross-covariance function

QðsÞ ¼ NEðNE � 1Þð Þ�1
PNE

i;j¼1;i 6¼j qijðsÞ by average a randomly chosen subsample of 100 spike

train cross-covariances from pairs of neurons in the same cluster.

In order to calculate the covariance of neuron i and j’s spike counts in windows of length T,

nTi and nTj , we use the relation

Cov nTi ;n
T
j

� �

� hnTi nTj i� hnTi ihnTj i

¼
Z T

�T

qijðsÞ T � sj jð Þ
(37)

The cross-correlation of input currents was averaged over the same random subsample of

the network as the spike train covariances. Current cross-correlations were normalized so

that each current’s autocorrelation at zero lag was 1.

Spiking network analysis
The LIF model simulates voltages and produces spike trains, from which we can compute firing

rates and covariances. Appendix 1—figure 6a,b show example voltage traces of individual

excitatory neurons, with the spikes they produce shown above. Note that in the attended

state, more spikes are produced, corresponding to a higher firing rate. Appendix 1—figure

6c,d show rasters for all the neurons in the unattended (c) and attended (d) states. Higher

firing rates can be observed, especially for the inhibitory neurons. Averaging the spike trains

over the excitatory population gives us the PSTH of the excitatory neurons. Appendix 1—

figure 6e, left shows the unattended (turquoise) and attended (orange) PSTH smoothed

with a sliding Gaussian window with width (std dev) 10 ms. The histograms on the right

demonstrate the decrease in population variance with attention.
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Appendix 1—figure 6. Spiking model and simulations. (a,b) Example voltage trace from an

excitatory model neuron in the unattended (a) and attended (b) states. Top tick marks

denote spike times. (c) Raster plot of neurons in the unattended state. Neurons 1 to 1000

are excitatory, and 1001 to 1200 are inhibitory. (d) Raster plot of neurons in the attended

state. (e) Excitatory population-averaged firing rates for the unattended (turquoise) and
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attended (orange) states. Right: frequency distributions of population-averaged firing rates.

(f) Mean pairwise spike count covariance for different counting windows. Other than an

increase in synchrony on very small timescales due to gamma oscillations, the spike count

covariance decreases with attention regardless of counting window. (g) Ratio RCov of

attended and unattended spike count covariance, as a function of counting window. (h, i)

Derived (solid turquoise) and simulated (muted turquoise) spike train cross-covariance

functions of excitatory neurons in the unattended (h) and attended (i) states, averaged over

pairs. (j) Spike train cross-covariance functions of excitatory neurons in the unattended and

attended states, normalized to peak at 1. (k, l) Normalized input current cross-correlation

functions of excitatory inputs to pairs of neurons (dashed green), inhibitory inputs to pairs of

neurons (dashed red), excitatory and inhibitory inputs to pairs of neurons (blue), and

summed excitatory and inhibitory recurrent inputs to pairs of neurons (black), in the

unattended (k) and attended (l) states. (m) Attended (orange) vs unattended (turquoise)

recurrent input cross-correlation functions. The excitatory cross-correlation function is

narrower, just as for the output cross-covariance function, so the effects are happening on

the level of inputs.

DOI: 10.7554/eLife.23978.017

The spiking model provides the opportunity to directly compute the pairwise spiking

covariance, in addition to the population variance. Appendix 1—figure 6f shows the

pairwise spike count covariance computed over counting windows from 0 to 200 ms. For

small counting windows, corresponding to high-frequency correlations, neurons in the

attended state have slightly higher spike count covariance. This is consistent with the slightly

higher peak in the attended autocovariance function from the mean-field theory (Figure 4e,

main text), as well as experimental results (Fries et al., 2001). For counting windows greater

than 30 ms, the spike count covariance notably decreases with attention. The experiments

we are modeling (Cohen and Maunsell, 2009) measure spike count correlations over 200 ms

counting windows, corresponding to the right-most points in Appendix 1—figure 6f. The

proportional changes in the spike count covariance are expressed in the covariance ratio

RCov ¼ CovAðn1; n2Þ=CovUðn1; n2Þ, shown in Appendix 1—figure 6g. Values of RCov greater

than one indicate increased spike count covariance with attention, and values of RCov less

than one indicate decreased spike count covariance with attention. The crossing of the

RCov ¼ 1 line is apparent at counting windows of approximately 30 ms. The theoretical values

were computed using linear response theory (Trousdale et al., 2012).

To dissect the spike count covariance by different time lags, we consider the spike train

covariance function (Equation 36), which is the pairwise-neuron analogue of the

autocovariance function of the population-averaged activity (Figure 5e, main text).

Appendix 1—figure 6h,i show the spike train covariance functions of excitatory neurons in

the unattended and attended states. To compare the two, Appendix 1—figure 6j shows

them normalized so that their maximum values are 1. In accordance with our mean-field

results, the attended spike train covariance decays faster than the unattended spike train

covariance, indicating increased stability in the attended state.

The spiking model also provides the opportunity to investigate the inputs to individual

neurons, something that is difficult to do experimentally, and does not apply to mean-field

models. Appendix 1—figure 6k,l shows the correlation functions of different types of inputs

to a pair of excitatory neurons, averaged over pairs of excitatory neurons, in the unattended

(k) and attended (l) states. Computing the correlation functions of the total recurrent input

(black curves) reveals that correlations between excitatory inputs (EPSC-EPSC, dashed

green), and correlations between inhibitory inputs (IPSC-IPSC, dashed red), are canceled by

anti-correlations between excitatory and inhibitory inputs (EPSC-IPSC, blue). This is

consistent with the idea of correlation cancellation by inhibitory tracking of excitatory activity

(Renart et al., 2010; Tetzlaff et al., 2012; Ly et al., 2012). Attention, by shifting the system

into a more stable state, allows this cancellation to occur more efficiently, thereby reducing

the pairwise covariance. Appendix 1—figure 6m shows the input current correlation

functions of the total recurrent inputs to pairs of excitatory neurons, normalized to peak at 1.
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We conclude that the correlation cancellation brought about by recurrent inhibitory

feedback suppresses correlations of the total recurrent input, which in turn decreases the

output correlations.
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