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Abstract 12 

We hypothesized that human genes and disease-associated alleles might be systematically 13 
functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based 14 
Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological 15 
profiles, which grouped into biologically meaningful gene clusters consistent with known functional 16 
annotation (e.g., the RAS-RAF-MEK-ERK cascade). We used novel subpopulation-based 17 
visualization methods to interpret the morphological changes for specific clusters. This unbiased 18 
morphologic map of gene function revealed TRAF2/c-REL negative regulation of YAP1/WWTR1-19 
responsive pathways. We confirmed this discovery of functional connectivity between the NF-κB 20 
pathway and Hippo pathway effectors at the transcriptional level, thereby expanding knowledge of 21 
these two signaling pathways that critically regulate tumor initiation and progression. We make the 22 
images and raw data publicly available, providing an initial morphological map of major biological 23 
pathways for future study. 24 
 25 
 26 

Introduction 27 

The dramatic increase in human genome sequence data has created a significant bottleneck. The 28 
number of genes and variants known to be associated with most human diseases has increased 29 
dramatically (Amberger et al. 2015). Unfortunately, the next step - understanding the function of 30 
each gene and the mechanism of each allele in the disease - typically remains non-systematic and 31 
labor-intensive. Most commonly, researchers painstakingly design, develop, and apply a disease-32 
specific or biological process-specific assay. 33 

Over 30% of genes in the human genome are of unknown function (Leonetti et al. 2016) and even 34 
annotated genes have additional functions yet to be uncovered. Furthermore, even when a gene’s 35 
normal functions are known, methods are lacking to predict the functional impact of the millions of 36 
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genetic variants found in patients. These gaps must be filled in order to convert the promise of 37 
human genome sequence data into clinical treatments. 38 

Therefore, there is a widespread need for systematic approaches to functionally annotate genes 39 
and variants therein, regardless of the biological process or disease of interest. One general 40 
approach depends on guilt-by-association, linking unannotated genes to annotated ones based on 41 
properties such as protein-protein interaction data, sequence similarity, or, most convincingly, 42 
functional similarity (Shehu, Barbará, and Molloy 2016). In the latter category are profiling 43 
techniques, where dozens to hundreds of measurements are made for each gene perturbation and 44 
the resulting profile is compared against profiles for annotated genes. Various data sources can be 45 
used for profiling; gene expression is one that can be performed in relatively high-throughput and it 46 
has been proven useful in predicting gene function (Lamb et al. 2006). In fact, high-throughput 47 
mRNA profiles were recently used to cluster alleles found in lung adenocarcinoma based on their 48 
functional impact, a precursor to therapeutic strategy for variants of previously unknown 49 
significance (Berger et al. 2016). 50 

Images are a less mature data source for profiling but show tremendous promise. Morphological 51 
profiling data is complementary to transcriptional profiling data (Wawer et al. 2014) and is less 52 
expensive. Morphological profiling has succeeded across several applications, including grouping 53 
small-molecule perturbations based on their mechanism of action (Caicedo, Singh, and Carpenter 54 
2016; Bougen-Zhukov et al. 2016), and grouping genes based on morphological profiles derived 55 
from cells perturbed by RNA interference (RNAi) (Mukherji et al. 2006; Boutros and Ahringer 2008; 56 
Fuchs et al. 2010; Pau et al. 2013). One limitation of RNAi for morphological profiling is that the 57 
number of measurements must be limited or else the resulting profiles are dominated by off-target 58 
effects, especially seed effects (Singh et al. 2015). Some computational solutions have shown 59 
some promise in overcoming this problem for gene expression profiling (Schmich et al. 2015), but 60 
their utility is unproven for image-based profiling, and regardless RNAi does not permit analysis of 61 
gene variants, only knockdown. Modification of genes via CRISPR will require new libraries of 62 
reagents and is as yet untested in morphological profiling. 63 

In the proof-of-concept work presented here, we tested morphological profiling using 64 
overexpression in human cells as a general approach to annotate gene and allele function. We 65 
profiled a reference series of well-known genes, and a small number of variants thereof, by Cell 66 
Painting. In particular, we wondered whether the information content of this strategy would 67 
outweigh potential limitations (e.g., due to cellular context or expression level). We found that the 68 
approach successfully clustered genes and alleles based on functional similarity, revealed specific 69 
morphological changes even when present in only a subpopulation of heterogeneous cells, and 70 
uncovered novel functional connections between important biological pathways.  71 

Results  72 

Morphological profiles from Cell Painting of expression constructs are sensitive and 73 
reproducible 74 
To profile each exogenously expressed gene (or allele therein), we used our previously developed 75 
image-based profiling assay, called Cell Painting (Gustafsdottir et al. 2013; Bray et al. 2016). This 76 
microscopy-based assay consists of six stains imaged in five channels and revealing eight cellular 77 
components: DNA, mitochondria, endoplasmic reticulum, Golgi, cytoplasmic RNA, nucleoli, actin, 78 
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and plasma membrane (Fig. 1A). In five replicates in 384-well plate format, we infected U-2 OS 79 
cells (human bone osteosarcoma cells), chosen for their flat morphology and previous validation in 80 
the assay, with an arrayed “reference” expression library of 323 open reading frame (ORF) 81 
constructs of partially characterized functions (Supplementary file 1A), a subset of which have 82 
been previously described (E. Kim et al. 2016). Of these, we prioritized analysis of the 220 83 
constructs that were most closely representative of the annotated full length transcripts (see 84 
Methods). Morphological profiles were extracted using CellProfiler for image processing, yielding 85 
1,384 morphological features per cell, and Python/R scripts for data processing, including feature 86 
selection and dimensionality reduction (Fig. 1B, and see Methods). This computational pipeline 87 
yielded a 158-dimensional profile for each of 5 replicates for each gene or allele tested. 88 

 89 

Figure 1: Morphological profiling by Cell Painting. (A) Example Cell Painting images from each of the five 90 
channels for a negative control sample (no gene introduced). (B) From left to right : Cell and nucleus outlines 91 
found by segmentation in CellProfiler; raw profiles (2,769 dimensional) containing median and median 92 
absolute deviation of each of 1,384 measurements over all the cells in a sample, plus cell count; processed 93 
profiles which are made less redundant by feature selection and Principal Component Analysis; dendrogram 94 
constructed based on the processed profiles (see Fig. 3). Replicates are merged to produce a profile for 95 
each gene which is then compared against others in the experiment to look for similarities and differences. 96 
Not all genes are likely to impact cellular morphology given the limitation of our experiment--using a 97 
single cell line at a single time point under a single set of conditions and stained with six 98 
fluorescent labels. We therefore first asked what fraction of these ORFs impacted morphology. 99 
Surprisingly, we found that 50% (110/220) of these ORF constructs induced reproducible 100 
morphological profiles distinct from negative control profiles (Fig. 2A, and see Methods). Next, we 101 
ruled out the possibility that position artifacts may have artificially inflated this result by taking an 102 
alternative pessimistic null distribution which takes well position into account (Fig. 2-figure 103 
supplement 1). Therefore, we conclude that a single “generic” morphological profiling assay can 104 
detect signal from a substantial proportion of genes in our reference set. We next turned to testing 105 
whether those signals are biologically meaningful and can lead to novel, unbiased discoveries 106 
about gene function. 107 

 108 
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 109 

Figure 2: (A) 50% of the gene overexpression constructs produced a detectable phenotype by image-110 
based profiling. Constructs yielding a reproducible phenotype ought to have a median correlation among 111 
replicates that is higher than the 95th percentile of correlations seen for pairs of different constructs; this is 112 
true for 51% (112 out of 220) of the constructs (as shown). Additionally, we removed two constructs that 113 
passed that filter but whose profiles were highly similar to negative control profiles (not shown), leaving 110 114 
constructs (50%) for further analysis. (B) Of wild-type ORF pairs that both yielded a distinguishable 115 
phenotype, 96% showed significant correlation to each other. Correlations between the 23 pairs of 116 
constructs that are clones of the same gene (although with potential sequence variation or possibly different 117 
isoforms) were almost always much higher than correlations between pairs of constructs related to different 118 
genes. The threshold, shown as the dashed line, is set to 95th percentile of profile correlation for pairs of 119 
different genes. Profile correlation of these 23 pairs lie above the threshold. (C) Genes in pathways 120 
thought to regulate morphology were more likely to yield detectable phenotypes vs. the remainder of 121 
genes in the experiment. The same cutoff as in (A) is used to identify percentage of genes with a detectable 122 
phenotype. This percentage is 87% for the genes hypothesized to change morphology, while it is 48% for the 123 
other genes. 124 

 125 

Morphological profiling is robust, showing expected relationships 126 

Given that technical replicates produce similar morphological profiles, we next evaluated whether 127 
similarities between profiles induced by different constructs are meaningful. We began with the 128 
simplest case: for a subset of genes in the experiment, a “wild-type” sequence (see Methods for 129 
important definitions) was captured in more than one ORF construct (23 pairs). These pairs either 130 
correspond to different physical cloning events and preparations but with highly similar full-length 131 
sequence (as defined in Methods; category a: 9 pairs), or a substantive difference in their 132 
nucleotide sequence, for example, isoforms (category b: 14 pairs). We found that, as expected, the 133 
phenotypes of over-expressed wild-type ORFs of the same gene were more similar to each other, 134 
on average, than to randomly selected genes. Of the 23 pairs for which both wild-type ORFs 135 
yielded a phenotype distinguishable from negative controls, 22 (~96%) of the pairs’ profiles were 136 
correlated more than expected by chance (Fig. 2B, the one pair not meeting that threshold was in 137 
category b), confirming that different constructs with biological similarity indeed produce similar 138 
morphological profiles. 139 

This result also confirms that the sequence differences seen in separately cloned wild-type 140 
constructs do not generally have a major functional impact, but we caution that any individual 141 
construct of interest may have an impactful mutation; thus the raw sequence data should be 142 
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examined and testing alternate constructs for a gene may be recommended. Note that if, for 143 
example, only 50% of wild-type pairs showed high profile correlation, it would remain ambiguous 144 
whether it was caused by the poor assay quality or the constructs’ sequence mismatches. But in 145 
this particular case the mentioned near perfect consistency rules out either of the two possibilities. 146 
We also note that the 23 pairs analyzed here are located in different well locations on each plate; 147 
this result therefore also rules out widespread artifacts, such as plate position effects or metadata 148 
errors. 149 

We suspected that the small number of engineered constitutively activating alleles for certain 150 
genes would, on average, yield a stronger phenotype than their wild-type counterparts. We indeed 151 
found that correlations between replicates of the constitutively activating allele were typically higher 152 
than correlations between replicates of the wild-type version of a gene (Supplementary file 1B; p-153 
value = 0.012, one-sided paired t-test). 154 

We hypothesized that genes in pathways known to affect cellular morphology (RAC1, KRAS, 155 
CDC42, RHOA, PAK1, and genes related to the Hippo pathway) would be more likely to yield a 156 
morphological phenotype distinguishable from negative controls than other genes in the analysis. 157 
Indeed, we found this to be true (Fisher’s test p-value = 3.7 × 10-3) (Fig. 2C). Reassured by this 158 
validation, we were curious which pathways would be most and least likely to yield detectable 159 
morphological phenotypes, recognizing that “pathways” are neither separate nor well-defined 160 
entities. We found genes manually annotated as being in the Hippo, Hedgehog, cytoskeletal 161 
reorganization, and Mitogen-activated protein kinases (MAPK) pathways were more likely to result 162 
in a phenotype, whereas genes annotated as belonging to the JAK/STAT, hypoxia, and BMP 163 
pathways were among the least likely to yield a phenotype under the conditions tested (Fig. 2-164 
figure supplement 2 and Supplementary file 1C). Nevertheless, the majority of pathways could be 165 
interrogated by morphological profiling. 166 

Morphological signature similarity captures known gene-gene relationships 167 

Given the caveats and limitations of overexpressing genes (see Discussion), we next tested 168 
whether image-based profiling of expression constructs could capture relationships among genes 169 
known to be functionally related. Because a reliable and complete map of all gene-gene 170 
connections is not available, we evaluated the accuracy of our results via two approaches. 171 

First, we compared our data to protein-protein interaction data from BioGRID (Stark et al. 2006). 172 
This is imperfect ground truth for judging our predictions because two proteins might physically 173 
interact without producing the same morphological phenotype when overexpressed, and genes in 174 
the same pathway might regulate the same phenotype without any physical interaction. 175 
Nevertheless, we expect that the corresponding proteins of gene pairs with highest profile similarity 176 
are more likely than average to physically interact. Indeed, looking at wild-type versions of genes 177 
showing a detectable phenotype (the 73 genes represented in the 110 constructs), the ratio of 178 
verified gene connections among the top 5% correlated gene pairs (9%, 13 verified out of 143 179 
possible combinations) is significantly higher than that of other gene pairs (5%, 128 verified out of 180 
2,485 possible; Fisher’s test p-value = 0.04; Supplementary file 1D). 181 

Second, we manually annotated each gene for the pathway with which it is associated. This 182 
approach is based on expert opinion and thus imperfect knowledge of all genes’ function; 183 
furthermore many pathways interrelate, and genes in the same pathway are not expected to have 184 



 

 

   

6

identical phenotypes given that their functions are rarely identical (most notably, overexpression of 185 
some may activate while others suppress a biological pathway or process). Nonetheless, we 186 
expect pairs of genes whose morphological profiles correlate highly to be more likely than average 187 
to be annotated in the same pathway vs. different pathways. Using the same 73 genes as in the 188 
previous analysis, the ratio of gene connections with the same-pathway annotation in the top 5% 189 
most-correlated gene pairs was 20% (29 pairs out of 143), significantly higher than the ratio for the 190 
remaining pairs (6%, 139 pairs out of 2,485; Fisher’s test p-value = 7.53 × 10ିଽ; Supplementary file 191 
1E). 192 

An initial morphological map of gene function 193 

Having quantitatively established that morphological profiling is sensitive, robust, and captures 194 
known gene-gene relationships, we explored these relationships in a correlation matrix (Fig. 3 195 
bottom left and Fig. 3-figure supplement 1). The overall structure, with multiple groupings along the 196 
diagonal, is consistent with the fact that the 110 constructs (73 unique genes) that showed a 197 
phenotype had been annotated as representing 19 different pathways. That is, we did not see 198 
large, homogeneous clusters, as would be expected if morphological profiling was sensitive to 199 
perturbation but not highly specific. This rules out uniform toxicity induced by a large number of 200 
genes, for example. Neither did we see only signal along the diagonal, which would have indicated 201 
no strong similarity between any gene pairs. 202 

We next created a dendrogram (Fig. 3) and defined 25 clusters (see Methods and Fig. 3-figure 203 
supplement 2) to explore the similarities among genes. Pairs of wild-type ORFs almost always 204 
clustered adjacently, consistent with our quantitative analysis described above (Fig. 2B). After 205 
retaining only one copy of replicate ORFs, we found that the majority of clusters (19 out of the 22 206 
clusters containing more than one gene) were enriched for one or more Gene Ontology terms 207 
(Supplementary file 1F), indicating shared biological functions within each cluster. 208 

Using this dendrogram, we began by interrogating three clusters that conformed well to prior 209 
biological knowledge. First, we analyzed Cluster 20, containing the two canonical Hippo pathway 210 
members YAP1 and WWTR1 (more detail in Supplementary file 2-20A and Supplementary file 2-211 
20B PDFs, and in a later section of the text). Both are known to encode core transcriptional 212 
effectors of the Hippo pathway (Johnson and Halder 2014), and a negative regulator of these 213 
proteins, STK3 (also known as MST2), is the strongest anti-correlating gene for the cluster 214 
(Supplementary file 2-20A PDF, panel c1). 215 

Second, we noted Cluster 21 is comprised of the two phosphatidylinositol 3-kinase signaling/Akt 216 
(PI3K) regulating genes, PIK3R1 and PTEN, both frequently mutated across 12 cancer types in 217 
The Cancer Genome Atlas (TCGA) (Kandoth et al. 2013). These results are consistent with 218 
previous observations that certain isoforms of PIK3R1 reduce levels of activated Akt, a dominant 219 
negative effect (Abell et al. 2005) AKT3 is in a cluster anti-correlated to the Cluster 21 220 
(Supplementary file 2-21A PDF, panel b1). 221 

 222 
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 223 

Figure 3: Morphological relationships among overexpressed genes/alleles, determined by Cell 224 
Painting. Correlations between pairs of genes/alleles were calculated and displayed in a correlation matrix 225 
(bottom left inset, full resolution is available as Fig. 3-figure supplement 1). Only the 110 genes/alleles with a 226 
detectable morphological phenotype were included. The rows and columns are ordered based on a 227 
hierarchical clustering algorithm such that each blue submatrix on the diagonal shows a cluster of genes 228 
resulting in similar phenotypes. The correlations were then used to create a dendrogram (main panel) where 229 
the radius of the subtree containing a cluster shows the strength of correlation. The 25 clusters containing at 230 
least two constructs are printed on the dendrogram in arbitrary colored fonts, while gene names colored gray 231 
and marked by asterisks are those that do not correlate as strongly with their nearest neighbors (i.e., they 232 
are singletons or fall below the threshold used to cut the dendrogram for clustering). Each colored arc 233 
corresponds to a cell subpopulation as noted in the legend. Line thickness indicates the strength of 234 
enrichment of the subpopulation in the cluster samples compared to the negative control. Solid vs. dashed 235 
lines indicate the over- vs. under-representation of the corresponding subpopulation in a cluster, 236 
respectively. Note that the number next to each cluster in the dendrogram is referenced in the main text and 237 
corresponds to the numbered supplemental data file for each cluster. 238 

 239 
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Third, we examined three Clusters (19, 6 and 3) that included many MAPK-related genes. Cluster 240 
19 is the largest example of a tight cluster of genes already known to be associated; it includes 241 
four activators in the RAS-RAF-MEK-ERK cascade: KRAS, RAF1 (CRAF), BRAF, and MOS. 242 
Notably, two constitutively active alleles of these genes, BRAFV600E (H. Davies et al. 2002) and 243 
RAF1L613V (Wu et al. 2011), form a separate cluster (Cluster 6) adjacent to their wild-type 244 
counterparts. Furthermore, the constitutively active RAS alleles HRASG12V and KRASG12V (McCOY, 245 
Bargmann, and Weinberg 1984) are in the next-closest cluster (Cluster 3), which also contains 246 
MAP2K4 and MAP2K3 (known to be activated by Ras (Shin et al. 2005)), as well as CDKN1A (Jalili 247 
et al. 2012). By contrast, MAPKs that are known to be unrelated to the RAS-RAF-MEK-ERK 248 
cascade, such as MAPK14 in Cluster 5, are far away in the dendrogram. 249 

Overall, these results support the notion that connections between genes can be efficiently 250 
discovered using our approach. 251 

Visualization approaches to assist interpretation of morphological signatures 252 

We hypothesized that the specific morphologic features that segregated each of the clusters would 253 
provide insight into gene function. Examining images (Supplementary file 2-19A PDF, panel 3) or 254 
rank-ordered lists of features that distinguish individual profiles or clusters (Supplementary file 1G) 255 
is tedious and lacks sensitivity for all but the most obvious of phenotypes, confirming that 256 
quantitative morphological profiling is more sensitive than the human visual system. 257 

We therefore devised several strategies to enhance biological interpretability from these 258 
experiments and applied these in combination. First, we grouped features into meta-features 259 
based on their type of measurement, i.e., shape, texture, intensity, etc., and the cell constituents to 260 
which they are related, to create a Feature Grid (Fig. 4A). Second, we performed unsupervised 261 
grouping of features by mapping the top 20 most-distinguishing features for each cluster onto a 262 
plane, creating a Feature Map (Fig. 4B), in which highly correlated features are mapped nearby 263 
each other (see “Feature Interpretation” in Methods for an explanation of individual feature names). 264 
In certain cases, these visualizations revealed the nature of the morphological phenotype (e.g., 265 
nuclear shape abnormalities distinguishing Supplementary file 2-7A PDF), but for others these 266 
approaches did not suffice to yield an obvious phenotypic conclusion (e.g., for Cluster 19, Fig. 4A 267 
and 4B). 268 

Third, we hypothesized that leveraging the single-cell resolution of image-based profiling might be 269 
highly sensitive in enhancing interpretation, particularly for cases where only a subset of cells is 270 
distinctive from negative controls. To test this, for each given cluster of genes together with 271 
negative controls we identified 20 subpopulations using k-means clustering on single cell data. We 272 
calculated the abundance of cells in each of the 20 subpopulations to determine which are 273 
over/under-represented relative to controls for the given cluster (corresponding images are shown; 274 
Supplementary file 2-1B, 2B, … 25B PDFs. For example, the MAPK pathway activators in Cluster 275 
19 show increased prevalence of a subpopulation of cells with strongly asymmetric ER, 276 
mitochondria, and Golgi staining, indicating a cell polarization phenotype (Fig. 4C, and 277 
Supplementary file 2-19B PDF, Categories 1 and 2), for which there is evidence in the literature 278 
(Šamaj, Baluška, and Hirt 2004; Elsum, Martin, and Humbert 2013; Godde et al. 2014). This 279 
phenotype was not captured by manual inspection nor the first two approaches (e.g., 280 
Supplementary file 2-19A PDF, panels a2 and b2). 281 
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Encouraged by this, we supplemented the morphological map by compiling these and other 282 
visualizations into PDF files for each cluster, summarized in Fig. 5 and provided in full as 283 
Supplementary file 2. We also noticed that certain subpopulations were similar across several 284 
clusters (Fig. 3-figure supplement 3 shows sample cell images of each such subpopulation); we 285 
annotated their enrichment/de-enrichment on the dendrogram (Fig. 3).  286 

287 
Figure 4: Visualizations used to interpret morphology of Cluster 19 (for other clusters, see 288 
Supplementary file 2-1A, …, 25A PDF files). (A) Feature Grid. RNA and AGP (actin, Golgi, plasma 289 
membrane) intensity contribute most to the genes in Cluster 19 (KRAS, RAF1, BRAF, and MOS). Dark blue 290 
colors indicate higher median z-score of the relevant measurements for genes in the cluster relative to 291 
negative controls. As “RadialDistribution” features do not exist for the DNA channel, it is colored in black. (B) 292 
Feature Map. The feature names showing the greatest difference between the cluster and negative controls 293 
are shown, based on largest absolute value of z-scores (full resolution version is available in Cluster 19A 294 
PDF). They are mapped in 2D space such that features that are highly correlated with each other across all 295 
genes’ profiles are placed close together and thus can be interpreted together. Blue/red colored names 296 
indicate positive/negative sign of the z-score (i.e., blue indicates that the cluster shows higher values than 297 
controls). According to this map, the average intensity of AGP, RNA and Mito shows high variation for cells 298 
within samples in Cluster 19 (e.g., large mad_Cytoplasm_Intensity_MeanIntensity_AGP, where the prefix 299 
“mad” refers to median absolute deviation, a robust form of standard deviation). (C) Sample images of a 300 
subpopulation of cells enriched and de-enriched for all genes in Cluster 19. Cells with asymmetric 301 
organelle distribution are highly over-represented for genes in the cluster, and cells with more even 302 
distribution of organelles are less abundant. Note that the exemplar cells are shown at the center of the 303 
patches. This explains the duplications observed in some patches. Scale bars are 39.36 ݉ߤ long. Pixel 304 
intensities are multiplied by 5 for display. 305 
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 306 

Figure 5: Data and visualizations supporting the morphological map for each cluster. For all 25 307 
clusters, there are two corresponding Supplemental PDF files. Left: Supplementary file 2-type A PDFs 308 
(e.g., “1A.pdf”) provide an overview of data about the cluster. Panel a1 lists the genes/alleles in the cluster 309 
as well as expert annotations regarding related pathways and the cell count (as a z-score) for each 310 
gene/allele. Panel b1 contains the average correlation of the cluster to other clusters, indicating uniqueness 311 
of the cluster’s morphological phenotype. Panel c1 lists the top five negatively correlated gene/alleles to the 312 
cluster. Panel a2 shows the Feature Grid summarizing categories of morphological features distinguishing 313 
the cluster from the negative control. Panel b2 shows the Feature Map displaying the names of the top 20 314 
morphological features distinguishing the cluster from the negative control, positioned based on similarity. 315 
Explanations for feature names can be found in the Methods section. Panel c2 shows a correlation matrix for 316 
just those genes/alleles in the cluster. Panel 3 contains sample images of fields of view of cells expressing 317 
each gene/allele in the cluster, along with images of the control for comparison. Right: Supplementary file 318 
2-type B PDFs contain multiple plots aiming to illustrate the phenotype based on single-cell data, including 319 
cell subpopulation enrichment/suppression in the cluster. First, a histogram of single-cell DNA content is 320 
shown for all cells from all genes/allele treatments in the cluster, indicating the overall cell cycle distribution. 321 
Next, bar plots show (for the cluster overall and for each gene in the cluster) which of 20 subpopulations of 322 
cells are enriched and suppressed relative to negative controls. Finally, each subsequent page of the PDF is 323 
devoted to the subpopulations whose representation differs from negative controls in a statistically significant 324 
way, whether enriched or suppressed (subpopulations which are very small in both the cluster and negative 325 
control samples are omitted). For each subpopulation, a bar plot shows the top 10 most-distinguishing 326 
feature names (versus negative control cells). Then, sample images are shown of individual representative 327 
cells from each subpopulation.  328 
 329 
 330 
Using these visualizations, we began by interrogating three adjacent and correlating clusters 331 
(Clusters 4, 7, and 11) contain wild-type and mutant alleles of CDC42, a gene encoding a Rho 332 
family GTPase with diverse roles in cell polarity, morphology, and migration (Melendez, Grogg, and 333 
Zheng 2011; Martin 2015). Cluster 4 contains the constitutively active mutant CDC42 Q61L (Nobes 334 
and Hall 1999) as well as MAP3K2 and MAP3K9. The highly similar Cluster 7 contains the 335 
dominant negative alleles CDC42 T17N (Nobes and Hall 1999) and RAC1 T17N (S. Zhang et al. 336 
1995), a related RAS superfamily member. That activating and inhibiting alleles would yield similar 337 
phenotypes when overexpressed is not surprising for CDC42 (Melendez, Grogg, and Zheng 2011). 338 
Cluster 7 also contains isoforms and alleles of AKT: specifically, AKT3 and the constitutively active 339 
E17K alleles of both AKT1 and AKT3 (M. S. Kim et al. 2008; M. A. Davies et al. 2008). Akt is 340 
known to be essential for certain Cdc42-regulated functions (Higuchi et al. 2001) and vice versa 341 
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(Stengel and Zheng 2012). Finally, the nearby Cluster 11 (which is discussed in more detail later) 342 
contains the wild-type form of CDC42 as well as TRAF2, a canonical NF-κB activator; these two 343 
are known to interact and share functions in actin remodeling (Marivin et al. 2014). We also note 344 
that anti-correlating genes to these clusters (generally in Clusters 13 and 21) are consistent with 345 
existing knowledge, including (a) AKT family member AKT1S1 (a Proline rich AKT substrate, 346 
PRAS40 (Kovacina et al. 2003; Wiza et al. 2014), Supplementary file 2-7A PDF panels b1 and c1) 347 
(b) CDK2 (a known target of Akt (Maddika et al. 2008)), (c) PIK3R1 and PTEN in Cluster 21, 348 
described previously, which have known interactions with AKT (Cheung and Mills 2016; Hemmings 349 
and Restuccia 2015). Thus, all of these connections have previously been identified. 350 

Subpopulation visualization revealed that Clusters 4, 7, and 11 are enriched in cells that are huge 351 
and binucleate (Fig. 3, example images shown in Supplementary file 2-4B PDF). Genes in all three 352 
clusters also show irregularities in DNA content, namely, an enrichment in cells with sub-2N DNA 353 
content, a decrease in cells with 2N DNA content, and, for most genes, a decrease in cells with S 354 
phase and 4N DNA content, indicating a significant amount of DNA fragmentation and thus 355 
apoptosis (DNA histograms in Supplementary file 2-4B, 7B, and 11B PDFs). These phenotypes 356 
are consistent with these genes’ known role in the cell cycle and cell polarity (Chircop 2014). 357 

As a second test case, we examined Cluster 8, which contains PRKACA (the catalytic subunit α of 358 
protein kinase A, PKA) and two of its known substrates: GLI1 (a transcription factor mediating 359 
Hedgehog signaling)(Asaoka 2012), and RHOAQ63L (a Ras homolog gene family member)(Lang et 360 
al. 1996; Rolli-Derkinderen et al. 2005). The highly similar Cluster 10 contains the wild-type RHOA, 361 
as well as ELK1 which is also linked to the Rho GTPase family and PKA (Bachmann et al. 2013; 362 
Murai and Treisman 2002). 363 

We investigated the morphological changes causing these genes to cluster. RhoA is a known 364 
regulator of cell morphology and cell rounding is a known related phenotype (Oishi et al. 2012). We 365 
found that indeed all members of Clusters 8 and 10 significantly induce cell rounding 366 
(Supplementary file 1H). Although cell count is lower for genes Clusters 8 and 10, the degree 367 
varies greatly (from z-score -0.67 to -3.02, Supplementary file 2-8A and 10A PDFs, panel a1), 368 
ruling out that simple sparseness of cells explains their high similarity in the assay. As well, the 369 
overall DNA content distribution of the cell populations appears relatively normal (Supplementary 370 
file 2-8B and 10B PDFs). Subpopulation extraction provides a satisfying biological explanation for 371 
these clusters’ distinctive phenotype: the increased roundness and strong variation in intensity 372 
levels (per the Feature Grid) across the population stems from an increased proportion of 373 
telophase, anaphase, and apoptotic cells (Fig. 3 and Supplementary file 2-8B and 10B PDFs). 374 

We therefore conclude that the morphological map can link related genes to each other and that 375 
the morphological data can provide insight into their functions, particularly with the help of 376 
subpopulation visualization.  377 

An unexpected relationship between the Hippo pathway and regulators of NF-κB 378 
signaling (Clusters 11, 20, and 22)   379 

We wondered whether novel relationships might emerge from our unbiased classification of gene 380 
and allele function based on morphologic profiling. We noticed that the known regulator of NF-κB 381 
signaling, TRAF2 (in Cluster 11, together with CDC42) (Grech et al. 2004; Tada et al. 2001), yields 382 
a signature strongly anti-correlated to YAP1/WWTR1 (Cluster 20), which encode the transcriptional 383 
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effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (Transcriptional co-384 
activator with a PDZ-domain). The Hippo pathway and NF-κB signaling are critical regulators of cell 385 
survival and differentiation, and dysregulation of these pathways is implicated in a number of 386 
cancers (Varelas 2014; Hoesel and Schmid 2013; Tornatore et al. 2012), but we found no 387 
evidence in the literature (in particular through BioGRID) of physical interaction between the 388 
proteins encoded by Cluster 11 genes and Cluster 20 genes. Confirming our approach, a 389 
functional connection between CDC42 (Cluster 11) and YAP1 (Cluster 20) has been identified: 390 
deletion of CDC42 phenocopies the loss of YAP1 in kidney-specific conditional knockouts in mice 391 
(Reginensi et al. 2013). Still, the NF-κB pathway (and in particular the Cluster 11 member TRAF2), 392 
has not been closely tied to YAP and TAZ in human cells (see Discussion). 393 

We first wanted to characterize Clusters 11 and 20 to confirm that relationships within each cluster 394 
are supported in the literature. Indeed we found evidence for most of the within-cluster 395 
connections. CDC42 and TRAF2 (Cluster 11) physically interact and share functions in actin 396 
remodeling (Marivin et al. 2014). As described in a prior section YAP/TAZ (Cluster 20) are known 397 
to share functional similarities in the Hippo pathway, being regulated by, and also regulating, 398 
cytoskeletal dynamics. Consistent with these known functions, we found that core effector of the 399 
Hippo pathway which functions to restrict YAP/TAZ nuclear activity, STK3 (which encodes the Mst2 400 
kinase) (Meng, Moroishi, and Guan 2016), has a morphological signature strongly anti-correlated 401 
to YAP1/WWTR1 (Supplementary file 2-20A PDF, panel c1). We note that although STK3 and 402 
TRAF2 are both moderately anti-correlated with YAP/TAZ (Cluster 20), STK3 and TRAF2 are not 403 
themselves highly correlated, indicating each has a different subset of phenotypes that anti-404 
correlate to YAP/TAZ. We also note that two clones of another protein known to influence YAP 405 
activity, STK11, form Cluster 22 which falls nearby YAP1/WWTR1; a connection between STK11 406 
and YAP has been identified (albeit with opposite directionality, identified via knockdown of STK11 407 
(Mohseni et al. 2014)). Further, YAP1 is among the highest anti-correlating genes to REL (data not 408 
shown; REL is a singleton in the dendrogram and thus not in a cluster), whose protein product, c-409 
Rel, has a known connection to TRAF2 (Jin et al. 2015). These results reaffirm that the Cell 410 
Painting-based morphological signatures are a useful reporter of biologically meaningful 411 
connections among genes in these pathways. 412 

Given the striking inverse correlation between YAP1/WWTR1 and TRAF2, we sought to confirm a 413 
negative regulatory relationship between the Hippo and NF-κB pathways by multiple orthogonal 414 
methods. 415 

First, we explored the observed inverse morphological impact using the Cell Painting data. The 416 
morphological impact of genes in Cluster 11 and 20 is quite strong (median replicate correlation is 417 
at the 74th and 81st percentile, and average within-group correlations are 0.66 and 0.73). 418 
Subpopulation analysis showed that Cluster 20 (YAP1, WWTR1) is enriched for cells that are 419 
slightly large, slightly elongated, and have disjoint, bright mitochondria patterns, whereas Cluster 420 
11 (TRAF2, CDC42) is de-enriched for those subpopulations and instead enriched for binucleate 421 
cells, very large cells, and small cells with asymmetric organelles (Fig. 3 and 6A and 6B).  422 
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 423 
Figure 6: Morphological and transcriptional cross-talk between the Hippo pathway and regulators of 424 
NF-κB signaling. (A) The TRAF2/CDC42 cluster (Cluster 11) is enriched for bi-nucleate cells, small cells 425 
with asymmetric organelles, and huge cells. Note that exemplar images shown are not labeled with the 426 
actual gene they are associated with. Rather they are only supposed to provide a visual insight of the cell 427 
morphologies which are enriched in the gene cluster. (B) The YAP1/WWTR1 cluster (Cluster 20) is enriched 428 
for cells with bright disjoint mitochondria patterns, slightly large cells, and slightly elongated cells. Scale bars 429 
are 39.36 ݉ߤ long. Pixel intensities are multiplied by 5 for display. (C) Gene Set Enrichment Analysis 430 
(GSEA) reveals that gene overexpression leading to down-regulation of YAP1 targets (CTGF, CYR61, and 431 
BIRC5) are enriched for regulators of the NF-κB pathway (Enrichment Score p-value = 8.19 × 10ିହ). The 432 
horizontal axis gives the index of ORFs sorted based on the average amount of down-regulation of the YAP1 433 
targets. Each blue hash mark on this axis indicates an NF-κB pathway member. The running enrichment 434 
score, which can range from -1 to 1, is plotted on the vertical axis and quantifies the accumulation of NF-κB 435 
pathways members on the sorted list of ORFs. (D) TRAF2 and REL suppress YAP and TAZ transcriptional 436 
activity. REL and TRAF2 suppress the ability of wild-type (D1) YAP and (D2) TAZ to drive the expression of 437 
a TEAD-regulated luciferase reporter. Activity of nuclear active mutants of (D3) YAP (5SA) and (D4) TAZ 438 
(4SA) are similarly suppressed. Luciferase reporter activity was measured in HEK293T cells co-transfected 439 
with expression constructs as indicated and a TEAD luciferase reporter was used to measure YAP-directed 440 
transcription. (* p-value < 0.05, ** p-value = 0.001, *** p-value < 0.0001) 441 
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Second, given that YAP/TAZ are transcriptional regulators, we analyzed gene expression data. 442 
Using the same constructs as in our Cell Painting experiment, we found an anti-correlated 443 
relationship at the mRNA level, consistent with the anti-correlation we had seen in morphological 444 
space. To do this, we used Gene Set Enrichment Analysis (Subramanian et al. 2005) and publicly 445 
available data, which includes data from four to nine different cell lines at one to four time points 446 
(http://lincscloud.org). Time point refers to the duration of treating the cells with over-expression 447 
constructs until the time gene expression readouts are made. This analysis revealed that the NF-448 
κB pathway is the pathway most enriched among genes whose overexpression results in down-449 
regulation of known YAP1 targets, CTGF, CYR61, and BIRC5 (Zhao et al. 2008) (Benjamini and 450 
Hochberg (BH) adjusted p-value = 2 × 10ି଼ in Supplementary file 1I, and Fig. 6C), with TRAF2 451 
being among the genes contributing to this enrichment (Supplementary file 1I). We also saw 452 
enrichment of NF-κB pathway members when testing a data-driven set of targets of YAP1/TAZ 453 
(Fig. 6-figure supplement 1, see Methods). In the inverse analysis, genes that alter the levels of 454 
TRAF2/REL common targets are weakly enriched in Hippo pathway members (Fig. 6-figure 455 
supplement 2, see Methods). This is consistent with the hypothesis that NF-κB members can 456 
downregulate YAP/TAZ targets but not strongly vice versa. 457 

Finally, we more directly confirmed negative crosstalk between NF-κB effectors and YAP/TAZ 458 
using a synthetic TEAD luciferase reporter that is YAP/TAZ responsive (Dupont et al. 2011). 459 
Importantly, these confirmatory experiments used different cellular contexts and perturbation 460 
constructs versus the original Cell Painting data. Co-expression of the NF-κB pathway effectors 461 
TRAF2 or C-REL with YAP or TAZ led to significantly lower reporter activity than expression of 462 
YAP or TAZ alone (Fig. 6D1 and 6D2). Intriguingly, mutants of YAP or TAZ that are insensitive to 463 
negative regulation by the Hippo pathway (YAP-5SA and TAZ-4SA; (Zhao et al. 2008)) remained 464 
sensitive to suppression of transcriptional activity by TRAF2 and C-REL, indicating that the 465 
negative relationship we identified may be independent of canonical upstream Hippo pathway 466 
signals (Fig. 6D3 and 6D4). 467 

 468 

Discussion 469 

We conclude that connections among genes can be profitably analyzed using morphological 470 
profiling of overexpressed genes via the Cell Painting assay. In a single inexpensive experiment, 471 
we were able to rediscover a remarkable number of known biological connections among the 472 
genes tested. Further, we found that morphological data from the Cell Painting assay, together with 473 
novel subpopulation visualization methods, can be used to flesh out the functionality of particular 474 
genes and/or clusters of interest.  475 

By adopting a two-pronged approach, merging this Cell Painting morphological analysis with 476 
transcriptional data, we were able to identify an unexpected relationship in human cells between 477 
two major signaling pathways, Hippo and NF-κB, both under intense study recently for their 478 
involvement in cancer. Through validation of these clustered genes, we have identified that 479 
YAP/TAZ-directed transcription is negatively regulated by NF-κB pathway effectors and our data 480 
suggests a novel regulatory mechanism that is independent of upstream Hippo kinases.  481 

To date, there has been little evidence of the intersection between these important signaling 482 
pathways. Recent work examining osteoclast-osteoblast differentiation has suggested that Hippo 483 
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pathway kinases, such as Mst2, may affect the NF-κB pathway through phosphorylation of IkB 484 
proteins, thereby promoting nuclear translocation of NF-κB transcription factors (Lee et al. 2015). 485 
TAZ was found to be a direct target of NF-κB transcription factors and its expression is regulated 486 
via NF-κB signaling (Cho et al. 2010). Our work, however, supports a possible additional mode of 487 
interaction, whereby regulators of NF-κB signaling directly regulate the function of Yap and Taz as 488 
transcriptional co-factors. Recent work has demonstrated, in Drosophila, that NF-κB activation via 489 
Toll receptor signaling negatively regulates the transcriptional activity of Yorkie, the homolog of 490 
YAP/TAZ, through activation of canonical hippo pathway kinases (B. Liu et al. 2016). The work 491 
described here identifies, for the first time in a mammalian system, that a negative regulatory 492 
relationship exists between NF-κB activation and YAP/TAZ transcriptional function. Furthermore, 493 
we have identified that this regulation of YAP/TAZ occurs in a manner that is independent of Hippo 494 
pathway-mediated phosphorylation events on YAP/TAZ, suggesting a more direct relationship 495 
between NF-κB and YAP/TAZ signaling. 496 

In this work, we tested quantitatively and explored qualitatively the connections among genes 497 
revealed by morphological profiling. Our underlying hypothesis was that functionally similar genes 498 
would generally yield morphologically similar cells when overexpressed, and indeed we found this 499 
to be the case. Still, some discussion of this point is warranted. Most commonly, gene 500 
overexpression will result in activation of the corresponding pathway via amplification of the 501 
endogenous gene’s function. However, it is important to note that the profiling strategy to discover 502 
functional relationships does not assume or require this. For example, overexpression could also 503 
disrupt a protein complex, producing a trans-dominant negative effect that results in precisely the 504 
opposite phenotypic effect (Veitia 2007). In still other cases, overexpression of a particular gene 505 
may not affect any of the normal functions of the gene (producing a false negative signal), or 506 
trigger a stress response (yielding a confounded profile), or produce a complicated response, due 507 
to feedback loops. Further, artifactual phenotypes could be seen, e.g., if overexpression yields a 508 
non-physiological interaction among proteins or toxic aggregates. Nevertheless, despite these 509 
caveats and complications, our results indicate that valuable information could be gleaned from the 510 
similarity and dissimilarity of the morphological perturbations induced by gene overexpression. 511 
Using overexpression avoids the complications of RNAi off-target effects (often due to seed 512 
effects), which were far more prevalent (impacting 90% of constructs in our recent study (Singh et 513 
al. 2015)). 514 

In addition to functionally annotating genes, as demonstrated here, one particularly appealing 515 
application enables personalized medicine: it should be feasible to use morphological profiling to 516 
predict the functional impact of various disease alleles, particularly rare variants of unknown 517 
significance. This has recently been successful using mRNA profiles (Berger et al. 2016). Thus, an 518 
even more exciting prospect would be to combine mRNA profiles with morphological profiles to 519 
better predict groups of alleles of similar mechanism, and ultimately to predict effective 520 
therapeutics for each group of corresponding patients. 521 

We make all raw images, extracted cellular features, calculated profiles, and interpretive 522 
visualizations publicly available, providing an initial morphological map for several major signaling 523 
pathways, including several unexplored connections among genes for further study (see 524 
Supplementary file 2). Expanding this map to full genome scale could prove an enormously fruitful 525 
resource. 526 
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 527 

Materials and Methods 528 

cDNA constructs used for expression  529 

The Reference Set of human cDNA clones utilized here has been previously described (E. Kim et 530 
al. 2016); ~90% of these constructs induce expression of the intended gene greater than 2 531 
standard deviations above the control mean. Briefly, wild-type ORF constructs were obtained as 532 
Entry clones from the human ORFeome library version 8.1 (http://horfdb.dfci.harvard.edu) with 533 
additional templates generously provided by collaborating laboratories, and cloned into the 534 
pDONR223 Gateway Entry vector.  In addition, here, to maximize coverage of cellular pathways, 535 
we included additional clones with minimal sequence deviations from the intended templates. 536 
Sanger sequencing of Entry clones verified the intended transcripts and, if applicable, the intended 537 
mutation. Entry constructs and associated sequencing data will be publicly available via 538 
www.addgene.org and may also be available via members of the ORFeome Collaboration 539 
(http://www.orfeomecollaboration.org/), including the Dana-Farber/Harvard Cancer Center 540 
(DF/HCC) DNA Resource Core DNA Repository (http://www.dfhcc.harvard.edu/core-facilities/dna- 541 
resource/) and the DNASU Plasmid Repository at ASU Biodesign Institute 542 
(http://dnasu.asu.edu/DNASU/Home.jsp). Clone requests must include the unique clone identifier 543 
numbers provided in the last column of Supplementary file 1A (e.g. ccsbBroadEn_12345 as an 544 
example for a specific entry clone and ccsbBroad304_12345 as an example for a specific 545 
expression clone). ORFs were transferred to the pLX304 lentiviral expression vector (Yang et al. 546 
2011) by LR (attL x attR) recombination. 547 

For simplicity, throughout this paper “wild-type” refers to ORFs found in the original collection 548 
without a particular known mutation intentionally engineered. Due to natural human variation, and 549 
occasional cloning artifacts, there are often non-identical matches of such constructs to reference 550 
sequence; these differences are fully documented for each construct and sequence data will be 551 
publicly available through AddGene, in addition to the sequencing data for the original Entry clones 552 
for the genome-scale library (Yang et al. 2011). 553 

Cell lines 554 

U-2 OS cells (human bone osteosarcoma cells), RRID:CVCL_0042, were obtained from ATCC and 555 
propagated in the William Hahn lab; they were not additionally authenticated prior to this 556 
experiment. The cell line tested negative for mycoplasma prior to this experiment. HEK293T cells, 557 
RRID:CVCL_0063, were obtained from ATCC. The cell line was validated by STR profiling 558 
(Genetica DNA Laboratories) and was negative for mycoplasma as measured by MycoAlert 559 
Mycoplasma Detection Kit (Lonza). 560 

Lentiviral transduction for morphological profiling 561 

We followed our previously described protocol (E. Kim et al. 2016; Berger et al. 2016) except for 562 
durations of some steps. Briefly, cells were plated in 384-well plates and transduced with lentiviral 563 
particles carrying ORF constructs the next day. Viral particles were removed 18–24 hr post-564 
infection and cells cultured for 48 hr until staining and imaging (72 hr total post-transduction). The 565 
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experiment was conducted in five replicates, each in a different plate. The number of replicates 566 
being five was decided based on prior experiments (Bray et al. 2016). 567 

Cell staining and imaging 568 

The Cell Painting assay followed our previously published protocol (Bray et al. 2016). Briefly, eight 569 
different cell components and organelles were stained with fluorescent dyes: nucleus (Hoechst 570 
33342), endoplasmic reticulum (concanavalin A/AlexaFluor488 conjugate), nucleoli and 571 
cytoplasmic RNA (SYTO14 green fluorescent nucleic acid stain), Golgi apparatus and plasma 572 
membrane (wheat germ agglutinin/AlexaFluor594 conjugate, WGA), F-actin 573 
(phalloidin/AlexaFluor594 conjugate) and mitochondria (MitoTracker Deep Red). WGA and 574 
MitoTracker were added to living cells, with the remaining stains carried out after cell fixation with 575 
3.2% formaldehyde. Images from five fluorescent channels were captured at 20x magnification on 576 
an ImageXpress Micro epifluorescent microscope (Molecular Devices): DAPI (387/447 nm), GFP 577 
(472/520 nm), Cy3 (531/593 nm), Texas Red (562/624 nm), Cy5 (628/692 nm). Nine sites per well 578 
were acquired, with laser based autofocus using the DAPI channel at the first site of each well.  579 

Image processing and feature extraction  580 

The workflow for image processing and cellular feature extraction has been described elsewhere 581 
(Bray et al. 2016), but we describe it briefly here. CellProfiler (Carpenter et al. 2006) software 582 
version 2.1.0 was used to correct the image channels for uneven illumination, and identify, 583 
segment, and measure the cells. An image quality workflow (Bray et al. 2012) was applied to 584 
exclude saturated and/or out-of focus wells; six wells containing blurry images were excluded, 585 
retaining 1,914 plate/well combinations in the experiment. Cellular morphological, intensity, textural 586 
and adjacency statistics were then measured for the cell, nuclei and cytoplasmic sub-587 
compartments. The 1,402 cellular features thus extracted were normalized as follows: For each 588 
feature, the median and median absolute deviation were calculated across all untreated cells within 589 
a plate; feature values for all the cells in the plate were then normalized by subtracting the median 590 
and dividing by the median absolute deviation (MAD) times 1.4826 (Chung et al. 2008). Features 591 
having MAD = 0 in any plate were excluded, retaining 1,384 features in all. The image data along 592 
with the extracted morphological features at the per-cell level were made publicly available in the 593 
Image Data Repository under DOI http://dx.doi.org/10.17867/10000105. 594 

Profiling and data preprocessing 595 

The code repository for the profiling and all the subsequent analysis will be made publicly available 596 
at https://github.com/carpenterlab/2016_rohban_submitted. We will next explain details of each 597 
analysis step implemented in the code. Single cell measurements in each well and plate position 598 
are summarized into the profiles by taking their median and median absolute deviation 599 
(abbreviated as “MAD” or “mad” in some tables) over all the cells. Although this method does not 600 
explicitly capture population heterogeneity, no alternate method has yet been proven more 601 
effective (Ljosa et al. 2013). We also include the cell count in a sample as an additional feature. 602 
This results in a vector of 2,769 elements describing the summarized morphology of cells in a 603 
sample. We then use the median polishing algorithm immediately after obtaining the summarized 604 
profiles, to remove and correct for any plate position artifacts. For each feature, the algorithm de-605 
trends the rows, i.e. by subtracting the row median from the corresponding feature of each profile 606 
in that particular row. Next, it de-trends the columns in a similar way using column medians. The 607 
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row and column de-trending is repeated until convergence is reached in all the features. For the 608 
rest of the analysis we considered only the constructs which have more than 99% sequence 609 
identity to both the intended protein and gene transcript, to avoid testing uncharacterized 610 
mutations/truncations. 611 

Not all of the morphological features contain useful reproducible information. We first filter out 612 
features for which their replicate correlation across all samples (except the negative controls) is 613 
less than 0.30, retaining 2,200 features. Subsequently, a feature selection method is used (Fischer 614 
et al. 2015). Briefly, starting with features (measurements) that we identify as essential, a new 615 
feature that contributes the most information with respect to those that have been chosen, is added 616 
to the set. The contribution of each feature to the already-selected features is measured by the 617 
replicate correlation of the residue when the feature is regressed on the already selected features. 618 
This is repeated until the incremental information added drops below a threshold. The original 619 
method proposed in (Fischer et al. 2015) overfits in its regression step when the original data is 620 
very high dimensional. As a remedy, in the regression step we only use features that have a 621 
Pearson correlation of more than 0.50 with the selected features thus far. This prevents overfitting 622 
of regression when the dimensionality of selected features grows. We stop feature selection when 623 
the maximum replicate correlation of residue is less than 0.30.  624 

The feature selection method greatly removes redundancy, but because of the non-optimal 625 
“greedy” strategy, some redundancy remains. Principal component analysis is then applied to keep 626 
99% of variance in data, resulting in 158 principal components being selected.  627 

Feature interpretation 628 

The features measured using CellProfiler follow a standard naming convention. Each feature name 629 
is made up of several tokens separated by underscores, in the following order: 630 

● Prefix which could be either empty or “mad”. This means that the feature is calculated 631 
either by taking median (no prefix) or median absolute deviation (“mad” prefix) of the 632 
relevant measurement over all the cells in a sample.  633 

● Cellular compartment in which the measurement related to the feature is made, i.e., 634 
“Cells”, “Cytoplasm”, or “Nuclei”. Note that features labeled “Nuclei” are based on 635 
segmentation of nuclei using Hoechst staining, “Cells” are based on segmentation of the 636 
cell edges using the RNA channel, and “Cytoplasm” is the subtraction of the 637 
aforementioned compartments. 638 

● Measurement type, which can be either “Intensity”, “Texture”, “RadialDistribution”, 639 
“AreaShape”, “Correlation_Correlation”, “Granularity”, and “Neighbors”. Note that 640 
“Correlation_Correlation” measures, within a cellular compartment, the correlation between 641 
gray level intensities of corresponding pixel pairs across two channels (specified in the next 642 
tokens in the feature name). Note also that the relative positioning of a cell is measured in 643 
the “Neighbors” category. 644 

● Name(s) of channels in which the measurement is made, if appropriate (omitted for 645 
AreaShape and Neighbors). 646 

● Feature name. The precise measurement name appears at the end. A description of each 647 
metric can be found in the CellProfiler manual 648 
(http://d1zymp9ayga15t.cloudfront.net/CPmanual/index.html) 649 
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Identifying ORF constructs that are distinguishable from negative controls  650 

Our method to identify which genes produce a discernable profile involves first normalizing each 651 
profile to the negative controls, such that a treatment’s median replicate correlation becomes a 652 
surrogate for phenotype strength. In the case that a treatment does not show a phenotype different 653 
from the negative control, its replicates would center around the origin in the feature space. This 654 
would consequently decrease the median replicate correlation. On the other hand, a phenotype 655 
which is consistently observed in the replicates and is significantly different from the controls 656 
results in the replicates to concentrate in a region far from the origin in the feature space, and 657 
hence a high median replicate correlation value. 658 

The cutoff for “discernible” is set based on the top 5th percentile of a null distribution. The null 659 
distribution is defined based on the correlations between non-replicates (that is, different 660 
constructs) in the experiment. Treatments whose replicate correlations are greater than the 95th 661 
percentile of the null distribution are considered as “hits” that have a morphological phenotype that 662 
is highly reproducible (Fig. 2A).  663 

At this point, for strong treatments, all profiles of the replicates are collapsed by taking the average 664 
of individual features. 110 out of the 112 selected ORFs were significantly different from the 665 
untreated profiles in the feature space. That is, their average Euclidean distances to the untreated 666 
profiles were higher than 95th percentile of untreated profile distances to themselves. This shows 667 
these two alternative notions of phenotype strength–replicate reproducibility and distance to 668 
negative control–are consistent. We restrict all the remaining analyses to the 110 ORFs. 669 

Comparison of morphological connections between genes to protein-protein 670 
interaction data and pathway annotations  671 

In this analysis, mutant alleles were removed and we considered only one wild-type allele for each 672 
gene with a detectable phenotype, retaining 73 genes. We calculated a threshold to identify 673 
significantly correlated gene pairs. We picked the threshold to minimize the probability of error in 674 
classifying wild-type clone pairs versus different-gene pairs. To do so, we found the value at which 675 
the probability density functions of the two groups intersect; this value (here, 0.43) can be proved 676 
to have the desired property (Duda, Hart, and Stork 2012). This approach results in about 5% of 677 
the gene pairs being categorized as highly correlated. We next formed a 2 by 2 contingency table, 678 
where the rows correspond to two groups of gene pairs, determined by whether they have high 679 
profile correlation or not. Similarly, the columns also correspond to two groups of gene pairs, 680 
determined by whether the corresponding proteins have been reported to interact in BioGRID (or 681 
alternatively have been annotated to be in the same pathway; Supplementary files 1C and 1D). 682 
This table was then used to perform a one-tailed Fisher’s exact test. 683 

Creation of a dendrogram relating genes to each other, and agglomerative 684 
clustering by cutting the dendrogram  685 

A dendrogram was created based on the Pearson correlation distance and average linkage, using 686 
the hclust function in R (Fig. 3). 687 

Gene clusters were formed by cutting the dendrogram at a fixed correlation level, 0.522, which was 688 
chosen using a stability-based measure. The measure is defined as follows: the local clustering 689 
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stability is measured for a range of candidate cutoffs, from 0.43 (used earlier to test consistency to 690 
protein interaction data) to 0.70. The point with highest stability was chosen (Fig. 3-figure 691 
supplement 2), and the stability measure was defined as the proportion of treatments whose 692 
clusters do not change if the cutoff is slightly changed by a small amount, ߳ = .002. 693 

Subpopulation extraction 694 

In order to extract cell categories (subpopulations) and subpopulation enrichment laid over the 695 
dendrogram in Fig. 3, we applied k-means clustering on the normalized single cell data for each 696 
gene cluster and the control. Data normalization was carried out on a plate-wise basis by z-scoring 697 
each feature using the control samples as reference. In order to avoid curse of dimensionality, we 698 
restricted the dataset to the features obtained from the feature selection step mentioned earlier. 699 
We set k=20 to be the number of subpopulations. The algorithm was run for at most 5000 700 
iterations. Each cell was assigned to the subpopulation for which it has the shortest Euclidean 701 
distance to its center. Then, the number of cells belonging to each cell subpopulation was counted 702 
and the proportion in each subpopulation for genes in the cluster was compared against that of the 703 
control. If the change in proportion of a cell category was consistent across the genes in the 704 
cluster, the cell category is shown in the Supplementary file 2-type B PDFs. To quantify this 705 
consistency, we used the inverse coefficient of variation of the change in a category proportion. If 706 
this quantity exceeded 1, we called the change consistent and included the corresponding cell 707 
category in the PDFs. Images of cells which have highest similarity to the category center in the 708 
feature space are then used to interpret and give name to each cell category (Fig. 3-figure 709 
supplement 3) 710 

Identifying targets of a gene using a data-driven approach  711 

For this purpose, we used a replicate of the original experiment but with L1000 gene-expression 712 
readouts, which is provided in the supplemental data; i.e. cell line, time point, and ORF constructs 713 
are the same. This data is different from the data used in creating GSEA plots, which entails 714 
multiple cell lines and time points. The mRNA levels are all normalized with respect to the negative 715 
control. For each replicate of the overexpression construct, we sort the expression levels of 716 
landmark genes and take the list of top and bottom 50 landmark genes. Then, to find targets of the 717 
gene related to the construct, we find the landmark genes among this list which has shown up at 718 
least in p% of replicates/clones of the gene. In particular, we set p to 33% for YAP1, 50% for 719 
WWTR1, TRAF2, and REL. Then, we simply take the intersection of predicted targets of YAP1 and 720 
WWTR1 (and similarly TRAF2 and REL, separately) to get their common targets. These targets 721 
are then used to produce Fig. 6-figure supplements 1-2. 722 

Gene Set Enrichment Analysis  723 

In order to produce Fig. 6C, we specified the three known targets of YAP/WWTR1 (CYR61, CTGF, 724 
and BIRC5) and queried for ORFs resulting in down-regulation of these genes. This scores each 725 
ORF (out of the 430 in the dataset) based on the observed change in mRNA level of the specified 726 
YAP/WWTR1 targets, across between four to nine different cell lines and between one to four time 727 
points. For each ORF, we then sought the summarized score which takes the mean of 4 largest 728 
scores across time point/cell line combinations. Finally, the ORFs were sorted based on the 729 
summarized score, and top 30 ORFs were tested for enrichment in different pathways 730 
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(Supplementary file 1I). We used the “clusterProfiler” package in R and the KEGG pathway 731 
enrichment analysis implemented in it for creating the GSEA plot (Yu et al. 2012). 732 

Luciferase Reporter assay  733 

Wild-type and mutant sequences of WWTR1 (TAZ) (4SA: S66A, S89A, S117A, and S311A) and 734 
YAP1 (5SA: S61A, S109A, S127A, S164A, and S397A) were previously generated and cloned into 735 
the pCMV5 backbone; these constructs are distinct from those used in the original Cell Painting 736 
data set. TRAF2 and REL were cloned from the original constructs (using Broad ID# 737 
ccsbBroadEn_01710 and ID# ccsbBroadEn_11094, respectively), into pCMV5 expression vectors. 738 
These were sequenced and confirmed to BLAST against the appropriate Broad clone ID. The 739 
empty pCMV5 backbone was used as the control condition. The Tead luciferase reporter construct, 740 
8xGTIIC-luciferase was a gift from Stefano Piccolo (Addgene plasmid # 34615).  741 

HEK293T cells, RRID:CVCL_0063, were transfected using Turbofect (ThermoFisher Scientific) 742 
according to manufacturer’s protocol. All cells were co-transfected with a β-galactosidase reporter 743 
plasmid (pCMV-LacZ from Clontech) as a transfection control. Cells were lysed 48 hours following 744 
transfection. Lysates were mixed with firefly luciferase (Promega) according to the manufacturer’s 745 
protocol and luminescence was measured using a luminometer (BioTek). Lysates were mixed with 746 
o-nitrophenyl-β-D-galactoside (ONPG) and β-galactosidase expression was determined 747 
spectrophotometrically by measurement of absorbance at 405nm following ONPG cleavage. All 748 
luciferase readings were normalized to β-galactosidase expression for the sample. Statistical 749 
analysis was conducted using a two tailed unpaired Student’s t test. The data shown in Fig. 6D are 750 
from triplicate samples within a single experiment and is representative of replicate experiments.  751 
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 1012 

Figure 2-figure supplement 1: Position artifacts do not contribute to the hit rate seen in the 1013 
experiment. We were concerned that position artifacts may result in overestimating the replicate correlations 1014 
because replicates of the same treatment are assigned to the same well location across different plates in 1015 
the experiment (that is, it was infeasible to scramble well locations). We ruled out this possibility by taking an 1016 
alternative pessimistic null distribution which takes well position into account. In contrast to Figure 2A, which 1017 
shows a 51% hit rate, a more pessimistic alternative null distribution is shown here (left), calculated based on 1018 
the replicate correlation of pairs of negative controls in the same position only. We consider this less reliable 1019 
because the number of such pairs is small (26) and we excluded edge wells; nevertheless the hit rate 1020 
increases slightly, to 60%. 1021 
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 1023 
Figure 2-figure supplement 2: Strength of morphological phenotypes, according to annotated 1024 
pathway. Morphological phenotype strength is calculated as the average replicate correlation for genes that 1025 
experts manually annotated genes as belonging to each pathway. The number of genes tested in each 1026 
category is shown in parentheses after the pathway name (two wild-type clones of the same gene are only 1027 
counted once, but a mutant allele is counted separately). The red line shows the threshold beyond which an 1028 
individual gene’s profile would be considered to yield a distinguishable phenotype. Error bars indicate the 1029 
deviation in the replicate correlation among the genes associated with the pathway.  1030 
 1031 
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 1032 
Figure 3-figure supplement 1: Correlation among the 110 genes/alleles with a detectable 1033 
morphological phenotype. The rows and columns are ordered based on a hierarchical clustering algorithm 1034 
such that each blue submatrix on the diagonal shows a cluster of genes resulting in similar phenotypes. The 1035 
scale bar depicts Pearson correlation. 1036 
 1037 
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 1039 
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 1041 
Figure 3-figure supplement 2: Smoothed stability score across different cutoffs, in order to choose a 1042 
threshold for cutting the dendrogram to form clusters. The maximum occurs at threshold = 0.522. 1043 
Smoothing is done by taking the moving average of order 0.02. The stability score is defined as the 1044 
proportion of treatments whose clusters are not affected if the cutoff is increased or decreased by a small 1045 
amount (߳ = .002). 1046 
 1047 
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 1050 

Figure 3-figure supplement 3: Common cell subpopulations seen across more than one cluster. 1051 
These names are used to annotate clusters of genes in Fig. 3. Example images shown are taken from 1052 
individual clusters. Scale bar is 63 ݉ߤ and image intensities are log normalized. References to size and 1053 
shape in the subpopulation legends refer to both the nucleus and cell borders, unless otherwise noted. 1054 
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 1060 

 1061 
Figure 6-figure supplement 1: Gene Set Enrichment Analysis (GSEA) reveals that overexpression 1062 
constructs sorted based on their similarity to YAP1/WWTR1 overexpression (in terms of impact on 1063 
particular mRNA targets), are enriched for regulators of the NF-κB pathway (Enrichment Score p-1064 
value = 0.0019). mRNA targets common to both YAP1 and WWTR overexpression include INPP4B, MAP7, 1065 
LAMA3, STMN1, and TRAM2, which are positively regulated, and SPP1, IER3, RAB31, and GPR56, which 1066 
are negatively regulated. 1067 
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 1069 
 1070 

 1071 
Figure 6-figure supplement 2: Gene Set Enrichment Analysis (GSEA) reveals that overexpression 1072 
constructs sorted based on their similarity to TRAF2/REL overexpression (in terms of impact on 1073 
particular mRNA targets), are weakly enriched for regulators of the Hippo pathway (Enrichment Score 1074 
p-value = 0.024). mRNA targets common to both TRAF2 and REL overexpression include NFKBIA, IKBKE, 1075 
AKAP8, and BIRC2, which are positively regulated and RPA3 which is negatively regulated. As compared to 1076 
Fig. 6C and Fig. 6-figure supplement 1, this is a weaker/lower-confidence enrichment - note the lower 1077 
maximum height (~ 0.44 compared to > 0.6) and higher p-value (0.024 compared to < 0.002). Still, we note 1078 
that WWTR1 and PPP1CA are the top two matches among those annotated as related to the Hippo pathway 1079 
in KEGG; PPP1CA (also known as PP-1A) activates TAZ (C.-Y. Liu et al. 2011). 1080 
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Supplementary Files 1082 
 1083 

Supplementary File 1  1084 
 1085 
We have released the data tables related to graphs and analyses presented in the paper in the ZIP format. 1086 
This file includes several PDFs listed below: 1087 

• 1A: List of all the 323 constructs used in the experiment along with the target transcript and their 1088 
public clone ID.  1089 

• 1B: Replicate correlation is higher in the constitutively active mutant allele compared to the wild-type 1090 
allele, except for AKT3_E17K. Constitutively active mutant annotations were obtained by literature 1091 
search for all the mutants in the experiment showing a detectable phenotype. Genes shown here 1092 
are only those where either the wild-type gene or its constitutively activating allele yielded a 1093 
phenotype distinct from controls.  1094 

• 1C: Pathways sorted based on proportion of their associated gene showing a detectable phenotype.  1095 

• 1D: Highly correlated proteins (according to morphology in the Cell Painting assay) that have also 1096 
been reported to interact physically.  1097 

• 1E: Highly correlated genes (according to morphology in the Cell Painting assay) that have also 1098 
been annotated to be related to the same pathway.  1099 

• 1F: Gene Ontology terms associated with each gene cluster.  1100 

• 1G: Rank ordered list of distinctive features based on their z-scores for Cluster 19.  1101 

• 1H: All genes/alleles in Cluster 8 and 10 induce cell rounding.  1102 

• 1I: The NF-‐B signaling pathway is the most enriched when searching for gene overexpressions 1103 
that downregulate known YAP/TAZ targets (CYR61, CTGF, and BIRC5).  1104 

Supplementary File 2  1105 

Type A and B PDFs are collected in a ZIP file in supplementary file 2. The details of the contents have been 1106 
described in Fig. 5. 1107 

 Supplementary File 3  1108 

The CellProfiler pipeline used to process the images is released as the supplementary file 3.  1109 
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