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Abstract DNA is a remarkably precise medium for copying and storing biological information.

This high fidelity results from the action of hundreds of genes involved in replication, proofreading,

and damage repair. Evolutionary theory suggests that in such a system, selection has limited ability

to remove genetic variants that change mutation rates by small amounts or in specific sequence

contexts. Consistent with this, using SNV variation as a proxy for mutational input, we report here

that mutational spectra differ substantially among species, human continental groups and even

some closely related populations. Close examination of one signal, an increased TCC!TTC

mutation rate in Europeans, indicates a burst of mutations from about 15,000 to 2000 years ago,

perhaps due to the appearance, drift, and ultimate elimination of a genetic modifier of mutation

rate. Our results suggest that mutation rates can evolve markedly over short evolutionary

timescales and suggest the possibility of mapping mutational modifiers.

DOI: 10.7554/eLife.24284.001

Introduction
Germline mutations not only provide the raw material for evolution but also generate genetic load

and inherited disease. Indeed, the vast majority of mutations that affect fitness are deleterious, and

hence biological systems have evolved elaborate mechanisms for accurate DNA replication and

repair of diverse types of spontaneous damage. Due to the combined action of hundreds of genes,

mutation rates are extremely low–in humans, about one point mutation per 100 MB or about 60

genome-wide per generation (Kong et al., 2012; Ségurel et al., 2014).

While the precise roles of most of the relevant genes have not been fully elucidated, research on

somatic mutations in cancer has shown that defects in particular genes can lead to increased muta-

tion rates within very specific sequence contexts (Alexandrov et al., 2013; Helleday et al., 2014).

For example, mutations in the proofreading exonuclease domain of DNA polymerase � cause

TCT!TAT and TCG!TTG mutations on the leading DNA strand (Shinbrot et al., 2014). Mutational

shifts of this kind have been referred to as ‘mutational signatures’. Specific signatures may also be

caused by nongenetic factors such as chemical mutagens, UV damage, or guanine oxidation

(Ohno et al., 2014).

Together, these observations imply a high degree of specialization of individual genes involved in

DNA proofreading and repair. While the repair system has evolved to be extremely accurate overall,

theory suggests that in such a system, natural selection may have limited ability to fine-tune the effi-

cacy of individual genes (Lynch, 2011; Sung et al., 2012). If a variant in a repair gene increases or

decreases the overall mutation rate by a small amount–for example, only in a very specific sequence

context–then the net effect on fitness may fall below the threshold at which natural selection is effec-

tive. (Drift tends to dominate selection when the change in fitness is less than the inverse of effective

population size). The limits of selection on mutation rate modifiers are especially acute in
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recombining organisms such as humans because a variant that increases the mutation rate can

recombine away from deleterious mutations it generates elsewhere in the genome.

Given these theoretical predictions, we hypothesized that there may be substantial scope for

modifiers of mutation rates to segregate within human populations, or between closely related spe-

cies. Most triplet sequence contexts have mutation rates that vary across the evolutionary tree of

mammals (Hwang and Green, 2004), but evolution of the mutation spectrum over short time scales

has been less well described. Weak natural mutators have recently been observed in yeast

(Bui et al., 2017) and inferred from human haplotype data (Seoighe and Scally, 2017); if such muta-

tors affect specific pathways of proofreading or repair, then we may expect shifts in the abundance

of mutations within particular sequence contexts. Indeed, one of us has recently identified a candi-

date signal of this type, namely an increase in TCC!TTC transitions in Europeans, relative to other

populations (Harris, 2015); this was recently replicated (Mathieson and Reich, 2016). Here, we

show that mutation spectrum change is much more widespread than these initial studies suggested:

although the TCC!TTC rate increase in Europeans was unusually dramatic, smaller scale changes

are so commonplace that almost every great ape species and human continental group has its own

distinctive mutational spectrum.

eLife digest DNA is a molecule that contains the information needed to build an organism. This

information is stored as a code made up of four chemicals: adenine (A), guanine (G), cytosine (C),

and thymine (T). Every time a cell divides and copies its DNA, it accidentally introduces ‘typos’ into

the code, known as mutations. Most mutations are harmless, but some can cause damage. All cells

have ways to proofread DNA, and the more resources are devoted to proofreading, the less

mutations occur. Simple organisms such as bacteria use less energy to reduce mutations, because

their genomes may tolerate more damage. More complex organisms, from yeast to humans, instead

need to proofread their genomes more thoroughly.

Recent research has shown that humans have a lower mutation rate than chimpanzees and

gorillas, their closest living relatives. Humans and other apes copy and proofread their DNA with

basically the same biological machinery as yeast, which is about a billion years old. Yet, humans and

apes have only existed for a small fraction of this time, a few million years. Why then do humans

need to replicate and proofread their DNA differently from apes, and could it be that the way

mutations arise is still evolving?

Previous research revealed that European people experience more mutations within certain DNA

motifs (specifically, the DNA sequences ‘TCC’, ‘TCT’, ‘CCC’ and ‘ACC’) than Africans or East Asians

do.

Now, Harris (who conducted the previous research) and Pritchard have compared how various

human ethnic groups accumulate mutations and how these processes differ in different groups.

Statistical analysis of the genomes of thousands of people from all over the world did indeed

show that the mutation rates of many different three-letter DNA motifs have changed during the

past 20,000 years of human evolution. Harris and Pritchard report that when groups of humans left

Africa and settled in isolated populations across different continents, each population quickly

became better at avoiding mutations in some genomic contexts, but worse in others. This suggests

that the risk of passing on harmful mutations to future generations is changing and evolving at an

even faster rate than was originally suspected.

The results suggest that every human ethnic group carries specific variants of the genes which

ensure that DNA replication and repair are accurate. These differences appear to influence which

types of mutations are frequently passed down to future generations. An important next step will be

to identify the genetic variants that could be controlling mutational patterns and how they affect

human health.

DOI: 10.7554/eLife.24284.002
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Results
To investigate the mutational processes in different human populations, we classified each single

nucleotide variants (SNV) in the 1000 Genomes Phase 3 data (Auton et al., 2015) in terms of its

ancestral allele, derived allele, and 5’ and 3’ flanking nucleotides. We collapsed strand complements

together to obtain 96 SNV categories. Since the detection of singletons may vary across samples,

and because some singletons may result from cell-line or somatic mutations, we only considered var-

iants seen in more than one copy. We further excluded variants in annotated repeats (since read

mapping error rates may be higher in such regions) and in PhyloP conserved regions (to avoid selec-

tively constrained regions) (Pollard et al., 2010). From the remaining sites, we calculated the distri-

bution of derived SNVs carried by each Phase 3 individual. We used this as a proxy for the

mutational input spectrum in the ancestors of each individual.

To explore global patterns of the mutation spectrum, we performed principal component analysis

(PCA) in which each individual was characterized simply by the fraction of their derived alleles in

each of the 96 SNV categories (Figure 1A). PCA is commonly applied to individual-level genotypes,

in which case the PCs are usually highly correlated with geography (Novembre et al., 2008).

Although the triplet mutation spectrum is an extremely compressed summary statistic compared to

typical genotype arrays, we found that it contains sufficient information to reliably classify individuals

by continent of origin. The first principal component separated Africans from non-Africans, and the

second separated Europeans from East Asians, with South Asians and admixed native Americans

(Figure 1—figure supplement 2) appearing intermediate between the two.

Remarkably, we found that the mutation spectrum differences among continental groups are

composed of small shifts in the abundance of many different mutation types (Figure 1B). For exam-

ple, comparing Africans and Europeans, 43 of the 96 mutation types are significant at a p<10�5

threshold using a forward variable selection procedure. The previously described TCC!TTC signa-

ture partially drives the difference between Europeans and the other groups, but most other shifts

are smaller in magnitude and appear to be spread over more diffuse sets of related mutation types.

East Asians have excess A!T transversions in most sequence contexts, as well as about 10% more

*AC!*CC mutations than any other group. Compared to Africans, all Eurasians have proportionally

fewer C!* mutations relative to A!* mutations.

Replication of mutation spectrum shifts
One possible concern is that batch effects or other sequencing artifacts might contribute to differen-

ces in mutational spectra. Therefore we replicated our analysis using 201 genomes from the Simons

Genome Diversity Project (Mallick et al., 2016). The SGDP genomes were sequenced at high cover-

age, independently from 1000 Genomes, using an almost non-overlapping panel of samples. We

found extremely strong agreement between the mutational shifts in the two data sets (Figure 2).

For example, all of the 43 mutation types with a significant difference between Africa and Europe (at

p<10�5) in 1000 Genomes also show a frequency difference in the same direction in SGDP (compar-

ing Africa and West Eurasia). In both 1000 Genomes and SGDP, the enrichment of *AC!*CC muta-

tions in East Asia is larger in magnitude than any other signal aside from the previously described

TCC!TTC imbalance.

The greatest discrepancies between 1000 Genomes and SGDP involve transversions at CpG sites,

which are among the rarest mutational classes. These discrepancies might result from data process-

ing differences or random sampling variation, but might also reflect differences in the fine-scale eth-

nic composition of the two panels.

Evidence for a pulse of TCC!TTC mutations in Europe and South Asia
To investigate the timescale over which the mutation spectrum change occurred, we analyzed the

allele frequency distribution of TCC!TTC mutations, which are highly enriched in Europeans

(Figure 3A; p<1� 10
�300 for Europe vs. Africa) and to a lesser extent in South Asians. We calculated

allele frequencies both in 1000 Genomes and in the larger UK10K genome panel (Walter et al.,

2015). As expected for a signal that is primarily European, we found particular enrichment of these

mutations at low frequencies. But surprisingly, the enrichment peaks around 0.6% frequency in

UK10K, and there is practically no enrichment among the very lowest frequency variants (Figure 3B

and Figure 3—figure supplement 1). C!T mutations on other backgrounds, namely within TCT,
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B. Mutation spectrum differences between populations

A. PCA of human mutation spectra

p < 1e-5

Figure 1. Global patterns of variation in SNV spectra. (A) Principal component analysis of individuals according to the fraction of derived alleles that

each individual carries in each of 96 mutational types. (B) Heatmaps showing, for pairs of continental groups, the ratio of the proportions of SNVs in

each of the 96 mutational types. Each block corresponds to one mutation type; within blocks, rows indicate the 5’ nucleotide, and columns indicate the

3’ nucleotide. Red colors indicate a greater fraction of a given mutation type in the first-listed group relative to the second. Points indicate significant

contrasts at p <10�5. See Figure 1—figure supplements 1, 2 and 3 for heatmap comparisons between additional population pairs as well as a

description of PCA loadings and the p-valuesof all mutation class enrichments. Figure 1—figure supplement 4 demonstrates that these patterns are

unlikely to be driven by biased gene conversion. In Figure 1—figure supplement 5, we see that this mutation spectrum structure replicates on both

strands of the transcribed genome as well as the non-transcribed portion of the genome. Figure 1—figure supplements 6, 7 and 8 show that most of

this structure replicates across multiple chromatin states and varies little with replication timing.

DOI: 10.7554/eLife.24284.003

The following source data and figure supplements are available for figure 1:

Source data 1. This text file shows the number of SNPs in each of the 96 mutational categories that passed all filters in each 1000 Genomes continental

group.

DOI: 10.7554/eLife.24284.004

Figure supplement 1. Pairwise mutation spectrum comparisons among continental groups.

DOI: 10.7554/eLife.24284.005

Figure supplement 2. PCA of all 1000 Genomes continental groups.

DOI: 10.7554/eLife.24284.006

Figure supplement 3. Mutation spectrum comparison p-values.

DOI: 10.7554/eLife.24284.007

Figure supplement 4. The effects of biased gene conversion on mutation spectra.

DOI: 10.7554/eLife.24284.008

Figure supplement 5. Mutation spectra of transcribed vs non-transcribed DNA.

DOI: 10.7554/eLife.24284.009

Figure supplement 6. Mutation spectra of ChromHMM chromatin states (Part I of II).

DOI: 10.7554/eLife.24284.010

Figure supplement 7. Mutation spectra of ChromHMM chromatin states (Part II of II).

DOI: 10.7554/eLife.24284.011

Figure supplement 8. Variation of the mutation spectrum with DNA replication timing.

DOI: 10.7554/eLife.24284.012
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CCC and ACC contexts, are also enriched in Europe and South Asia and show a similar enrichment

around 0.6% frequency that declines among rarer variants (Figure 3C). This suggests that these four

mutation types comprise the signature of a single mutational pulse that is no longer active. No other

mutation types show such a pulse-like distribution in UK10K, although several types show evidence

of monotonic rate change over time (Figure 3—figure supplements 3, 4 and 5).

We used the enrichment of TCC!TTC mutations as a function of allele frequency to estimate

when this mutation pulse was active. Assuming a simple piecewise-constant model, we infer that the

rate of TCC!TTC mutations increased dramatically ~ 15,000 years ago and decreased again ~ 2000

years ago. This time-range is consistent with results showing this signal in a pair of prehistoric

SGDP

1000G SGDP
SGDP

SGDP

1000G

1000G 1000G

Figure 2. Concordance of mutational shifts in 1000 Genomes versus SGDP. Each panel shows natural-log mutation spectrum ratios between a pair of

continental groups, based on 1000 Genomes (x-axis) and SGDP (y-axis) data. Data points encoded by (+) symbols denote mutation types that are not

significantly enriched in either population in the Figure 1 1000 Genomes analysis (p<10�5). These heatmaps use the same labeling and color scale as in

Figure 1. All 1000 Genomes ratios in this figure were estimated after projecting the 1000 Genomes site frequency spectrum down to the sample size of

SGDP. See Figure 2—figure supplements 1 and 2 for a complete set of SGDP heatmaps and regressions versus 1000 Genomes.

DOI: 10.7554/eLife.24284.013

The following figure supplements are available for figure 2:

Figure supplement 1. Heatmap comparisons between continental groups in 1000 Genomes and the SGDP.

DOI: 10.7554/eLife.24284.014

Figure supplement 2. Regression of the SGDP heatmap coefficients versus the corresponding 1000 Genomes heatmap coefficients.

DOI: 10.7554/eLife.24284.015
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A. World map of TCC mutation signature intensity B. A TCC mutation pulse in Europe and South Asia

D. Estimated mutation pulse durationC. Other components of the TCC mutation signature

10,0001,000100

Time (years ago)

Model !t to UK10K

Figure 3. Geographic distribution and age of the TCC mutation pulse. (A) Observed frequencies of TCC!TTC variants in 1000 Genomes populations.

(B) Fraction of TCC!TTC variants as a function of allele frequency in different samples indicates that these peak around 1%. See Figure 3—figure

supplement 1 for distributions of TCC!TTC allele frequency within all 1000 Genomes populations, and see Figure 3—figure supplement 2 for the

replication of this result in the Exome Aggregation Consortium Data. In the UK10K data, which has the largest sample size, the peak occurs at 0.6%

allele frequency. (C) Other enriched C!T mutations with similar context also peak at 0.6% frequency in UK10K. See Figure 3—figure supplements 3,

4 and 5 for labeled allele frequency distributions of all 96 mutation types (most represented here as unlabeled grey lines). See Figure 3—figure

supplement 6 for heatmap comparisons of the 1000 Genomes populations partitioned by allele frequency, which provide a different view of these

patterns. (D) A population genetic model supports a pulse of TCC!TTC mutations from 15,000 to 2000 years ago. Inset shows the observed and

predicted frequency distributions of this mutation under the inferred model.

DOI: 10.7554/eLife.24284.016

The following figure supplements are available for figure 3:

Figure supplement 1. TCC!TTC mutation fraction as a function of allele frequency in all 1000 Genomes populations.

DOI: 10.7554/eLife.24284.017

Figure supplement 2. Fraction of TCC!TTC mutations as a function of allele frequency in ExAC.

DOI: 10.7554/eLife.24284.018

Figure supplement 3. Mutation type enrichment as a function of allele frequency in UK10K (Part I of III).

DOI: 10.7554/eLife.24284.019

Figure supplement 4. Mutation type enrichment as a function of allele frequency in UK10K (Part II of III).

DOI: 10.7554/eLife.24284.020

Figure 3 continued on next page
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European samples from 7000 and 8000 years ago, respectively (Mathieson and Reich, 2016). We

hypothesize that this mutation pulse may have been caused by a mutator allele that drifted up in fre-

quency starting 15,000 years ago, but that is now rare or absent from present day populations.

Although low frequency allele calls often contain a higher proportion of base calling errors than

higher frequency allele calls do, it is not plausible that base-calling errors could be responsible for

the pulse we have described. In the UK10K data, a minor allele present at 0.6% frequency corre-

sponds to a derived allele that is present in 23 out of 3854 sampled haplotypes and supported by

80 short reads on average (assuming 7x coverage per individual). When independently generated

datasets of different sizes are projected down to the same sample size, the TCC!TTC pulse spans

the same range of allele frequencies in both datasets (Figure 3—figure supplements 1 and 2), which

would not be the case if the shape of the curve were a function of low-frequency errors.

Fine-scale mutation spectrum variation in other populations
Encouraged by these results, we sought to find other signatures of recent mutation pulses. We gen-

erated heatmaps and PCA plots of mutation spectrum variation within each continental group, look-

ing for fine-scale differences between closely related populations (Figure 4 and Figure 4—figure

supplement 1 through 6). In some cases, mutational spectra differ even between very closely related

populations. For example, the *AC!*CC mutations with elevated rates in East Asia appear to be

distributed heterogeneously within that group, with most of the load carried by a subset of the Japa-

nese individuals. These individuals also have elevated rates of ACA!AAA and TAT!TTT mutations

(Figure 4A and Figure 4—figure supplement 4). This signature appears to be present in only a

handful of Chinese individuals, and no Kinh or Dai individuals. As seen for the European TCC muta-

tion, the enrichment of these mutation types peaks at low frequencies, that is, ~ 1%. Given the avail-

ability of only 200 Japanese individuals in 1000 Genomes, it is hard to say whether the true peak is

at a frequency much lower than 1%.

PCA reveals relatively little fine-scale structure within the mutational spectra of Europeans or

South Asians (Figure 4—figure supplements 5 and 6). However, Africans exhibit some substructure

(Figure 4—figure supplement 3), with the Luhya exhibiting the most distinctive mutational spec-

trum. Unexpectedly, a closer examination of PC loadings reveals that the Luhya outliers are enriched

for the same mutational signature identified in the Japanese. Even in Europeans and South Asians,

the first PC is heavily weighted toward *AC!*CC, ACA!AAA, and TAT!TTT, although this signa-

ture explains less of the mutation spectrum variance within these more homogeneous populations.

The sharing of this signature may suggest either parallel increases of a shared mutation modifier, or

a shared aspect of environment or life history that affects the mutation spectrum.

Mutation spectrum variation among the great apes
Finally, given our finding of extensive fine-scale variation in mutational spectra between human pop-

ulations, we hypothesized that mutational variation between species is likely to be even greater. To

compare the mutation spectra of the great apes in more detail, we obtained SNV data from the

Great Ape Diversity Panel, which includes 78 whole genome sequences from six great ape species

including human (Prado-Martinez et al., 2013). Overall, we find dramatic variation in mutational

spectra among the great ape species (Figure 5 and Figure 5—figure supplement 1).

As noted previously (Moorjani et al., 2016a), one major trend is a higher proportion of CpG

mutations among the species closest to human, possibly reflecting lengthening generation time

along the human lineage, consistent with previous indications that species closely related to humans

have lower mutation rates than more distant species (Goodman, 1961; Li and Tanimura, 1987;

Scally and Durbin, 2012). However, most other differences are not obviously related to known pro-

cesses such as biased gene conversion and generation time change. The A!T mutation rate appears

Figure 3 continued

Figure supplement 5. Mutation type enrichment as a function of allele frequency in UK10K (Part III of III).

DOI: 10.7554/eLife.24284.021

Figure supplement 6. Mutation spectrum comparisons partitioned by allele frequency.

DOI: 10.7554/eLife.24284.022
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A. PCA of East Asian mutation spectra B. Heat map of East Asian mutation spectrum differences

C. Mutation spectrum vs allele frequency in the Japanese (JPT) D. Mutation spectrum vs allele frequency in the Dai (CDX)

Figure 4. Mutational variation among east Asian populations. (A) PCA of east Asian samples from 1000 Genomes, based on the relative proportions of

each of the 96 mutational types. See Figure 4—figure supplement 2 through 6 for other finescale population PCAs. (B) Heatmaps showing, for pairs of

east Asian samples, the ratio of the proportions of SNVs in each of the 96 mutational types. Points indicate significant contrasts at p <10�5. See

Figure 4—figure supplement 1 for additional finescale heatmaps. (C) and (D) Relative enrichment of each mutational type in Japanese and Dai,

respectively as a function of allele frequency. Six mutation types that are enriched in JPT are indicated. Populations: CDX=Dai, CHB=Han (Beijing);

CHS=Han (south China); KHV=Kinh; JPT=Japanese.

DOI: 10.7554/eLife.24284.023

The following source data and figure supplements are available for figure 4:

Source data 1. This text file shows the number of SNPs in each of the 96 mutational categories that passed all filters in each finescale 1000 Genomes

population.

DOI: 10.7554/eLife.24284.024

Figure supplement 1. Mutation spectrum differences within Africa, Europe, East Asia, and South Asia.

DOI: 10.7554/eLife.24284.025

Figure 4 continued on next page
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to have sped up in the common ancestor of humans, chimpanzees, and bonobos, a change that

appears consistent with a mutator variant that was fixed instead of lost. It is unclear whether this

ancient A!T speedup is related to the A!T speedup in East Asians. Other mutational signatures

appear on only a single branch of the great ape tree, such as a slowdown of A!C mutations in

gorillas.

Discussion
The widespread differences captured in Figures 1 and 2 may be footprints of allele frequency shifts

affecting different mutator alleles. But in principle, other genetic and non-genetic processes may

also impact the observed mutational spectrum. First, biased gene conversion (BGC) tends to favor

C/G alleles over A/T, and BGC is potentially more efficient in populations of large effective size com-

pared to populations of smaller effective size (Galtier et al., 2001). However, despite the

Figure 4 continued

Figure supplement 2. PCA of American populations.

DOI: 10.7554/eLife.24284.026

Figure supplement 3. PCA of African populations.

DOI: 10.7554/eLife.24284.027

Figure supplement 4. PCA of East Asian populations.

DOI: 10.7554/eLife.24284.028

Figure supplement 5. PCA of South Asian populations.

DOI: 10.7554/eLife.24284.029

Figure supplement 6. PCA of European populations.

DOI: 10.7554/eLife.24284.030

Human Bornean 

Orangutan

Sumatran 

Orangutan

GorillaBonoboChimp

More A-to-T

 transversions 

More CpG

transitions and

 transversions 

Fewer A-to-C

 transversions 

More C-to-T

transitions at 

non-CpG sites

More CpG

and CpC

 transversions 

More 

CpC-to-CpA

 transversions 

More

CpC-to-CpT

 transitions

Fewer 

CpA-to-TpA

 transitions

More 

ApC-to-TpC

 transversions 

A. Mutation spectrum contrasts between great ape species B. Phylogeny of ape mutation spectra

Figure 5. Mutational differences among the great apes. (A) Relative abundance of SNV types in 5 ape species compared to Bornean Orangutan; data

from (Prado-Martinez et al., 2013). Boxes indicate labels in (B). For additional comparisons see Figure 5—figure supplement 1. (B) Schematic

phylogeny of the great apes highlighting notable changes in SNV abundance.

DOI: 10.7554/eLife.24284.031

The following figure supplement is available for figure 5:

Figure supplement 1. Mutation spectra of great apes.

DOI: 10.7554/eLife.24284.032
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bottlenecks that are known to have affected Eurasian diversity, there is no clear trend of an

increased fraction of C/G!A/T relative to A/T!C/G in non-Africans vs Africans, or with distance

from Africa (Figure 1—figure supplement 7), and previous studies have also found little evidence

for a strong genome-wide effect of BGC on the mutational spectrum in humans and great apes

(Do et al., 2015; Moorjani et al., 2016a). For these reasons, we think that evolution of the muta-

tional process is a better explanation than BGC or selection for differences that have been observed

between the spectra of ultra-rare singleton variants and older human genetic variation

(Carlson et al., 2017);

It is also known that shifts in generation time or other life-history traits may affect mutational

spectra, particularly for CpG transitions (Martin and Palumbi, 1993; Amster and Sella, 2016). Most

CpG transitions result from spontaneous methyl-cytosine deamination as opposed to errors in DNA

replication. Hence the rate of CpG transitions is less affected by generation time than other muta-

tions (Hwang and Green, 2004; Moorjani et al., 2016b; Gao et al., 2016). We observe that Euro-

peans have a lower fraction of CpG variants compared to Africans, East Asians and South Asians

(Figure 1B), consistent with a recent report of a lower rate of de novo CCG!CTG mutations in

European individuals compared to Pakistanis (Narasimhan et al., 2016). Such a pattern may be con-

sistent with a shorter average generation time in Europeans (Moorjani et al., 2016b), although it is

unclear that a plausible shift in generation-time could produce such a large effect. Apart from this,

the other patterns evident in Figure 1 do not seem explainable by known processes.

In summary, we report here that, mutational spectra differ significantly among closely related

human populations, and that they differ greatly among the great ape species. Our work shows that

subtle, concerted shifts in the frequencies of many different mutation types are more widespread

than dramatic jumps in the rate of single mutation types, although the existence of the European

TCC!TTC pulse shows that both modes of evolution do occur (Harris, 2015; Moorjani et al.,

2016b; Mathieson and Reich, 2016).

At this time, we cannot exclude a role for nongenetic factors such as changes in life history or

mutagen exposure in driving these signals. However, given the sheer diversity of the effects

reported here, it seems parsimonious to us to propose that most of this variation is driven by the

appearance and drift of genetic modifiers of mutation rate. This situation is perhaps reminiscent of

the earlier observation that genome-wide recombination patterns are variable among individuals

(Coop et al., 2008), and ultimate discovery of PRDM9 (Baudat et al., 2010); although in this case it

is unlikely that a single gene is responsible for all signals seen here. As large datasets of de novo

mutations become available, it should be possible to map mutator loci genome-wide. In summary,

our results suggest the likelihood that mutational modifiers are an important part of the landscape

of human genetic variation.

Materials and methods

Data availability
All datasets analyzed here are publicly available at the following websites:

1000 Genomes phase 3 http://www.1000genomes.org/category/phase-3/

UK10K http://www.uk10k.org/data-access.html

Simons Genome Diversity Panel https://www.simonsfoundation.org/life-sciences/simons-
genome-diversity-project-dataset/

Human mutation spectrum processing
Mutation spectra were computed using 1000 Genomes Phase 3 SNPs (Auton et al., 2015) that are

biallelic, pass all 1000 Genomes quality filters, and are not adjacent to any N’s in the hg19 reference

sequence. Ancestral states were assigned using the UCSC Genome Browser alignment of hg19 to

the PanTro2 chimpanzee reference genome; SNPs were discarded if neither the reference nor alter-

nate allele matched the chimpanzee reference. To minimize the potential impact of ancestral
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misidentification errors, SNPs with derived allele frequency higher than 0.98 were discarded. We

also filtered out regions annotated as ‘conserved’ based on the 100-way PhyloP conservation score

(Pollard et al., 2010), download from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phast-

Cons100way/, as well as regions annotated as repeats by RepeatMasker (Smit et al., 2013), down-

loaded from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/nestedRepeats.txt.gz. To

be counted as part of the mutation spectrum of population P (which can be either a continental

group or a finer-scale population from one city), a SNP should not be a singleton within population

P–at least two copies of the ancestral and derived alleles must be present within that population.

An identical approach was used to extract the mutation spectrum of the UK10K ALSPAC panel

(Walter et al., 2015), which is not subdivided into smaller populations. The data were filtered as

described in Field et al. (2016). The filtering procedure performed by Field et al. (2016) reduces

the ALSPAC sample size to 1927 individuals.

We also computed mutation spectra of the Simons Genome Diversity Panel (SGDP) populations

(Mallick et al., 2016). Four of the SGDP populations, West Eurasia, East Asia, South Asia, and Africa,

were compared to their direct counterparts in the 1000 Genomes data. Three additional SGDP pop-

ulations, Central Asia and Siberia, Oceania, and America, had no close 1000 Genomes counterparts

and were not analyzed here (although each project contained a panel of people from the Americans,

the composition of the American panels was extremely different, with the 1000 Genomes popula-

tions being much more admixed with Europeans and Africans). SGDP sites with more than 20% miss-

ing data were not utilized. All other data processing was done the same way described for the 1000

Genomes data.

The following table gives the same size of each population panel, as well as the total number of

SNPs segregating in the panel that are used to compute mutation type ratios:

Dataset Population Number of individuals Number of SNPs

1 kg Africa 504 16,870,400

1 kg Europe 503 8,508,040

1 kg East Asia 504 7,895,925

1 kg South Asia 489 9,552,781

SGDP Africa 45 6,569,658

SGDP West Eurasia 69 4,201,571

SGDP East Asia 49 3,312,645

SGDP South Asia 38 3,449,624

Great ape diversity panel data processing
Biallelic great ape SNPs were extracted from the Great Ape Diversity Panel VCF (Prado-

Martinez et al., 2013), which is aligned to the hg18 human reference sequence. Ancestral states

were assigned using the Great Ape Genetic Diversity project annotation, which used the Felsenstein

pruning algorithm to assign allelic states to internal nodes in the great ape tree. In the Great Ape

Diversity Panel, the most recent common ancestor (MRCA) of the human species is labeled as node

18; the MRCAs of chimpanzees, bonobos, gorillas, and orangutans, respectively, are labeled as

node 16, node 17, node 19, and node 15. We extracted the state of each MRCA at each SNP in the

alignment and used it to polarize the ancestral and derived allele at that site; a SNP was discarded

whenever the ancestral node was assigned an uncertain or polymorphic ancestral state. As with the

human data, SNPs with derived allele frequency higher than 0.98 were not used, and both repeats

and PhyloP-annotated conserved regions were filtered away.

Visual representation of mutation spectra
The mutation type of an SNP is defined in terms of its ancestral allele, its derived allele, and its two

immediate 5’ and 3’ neighbors. Two mutation types are considered equivalent if they are strand-
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complementary to each other (e.g. ACG!ATG is equivalent to CGT!CAT). This scheme classifies

SNPs into 96 different mutation types, each that can be represented with an A or C ancestral allele.

To compute the frequency fPðmÞ of SNP m in population P, we count up all SNPs of type m where

the derived allele is present in at least one representative of population P (which can be either a spe-

cific population such as YRI or a broader continental group such as AFR). After obtaining this count

CPðmÞ, we define fPðmÞ to be the ratio CPðmÞ=
P

m0 CPðm
0Þ, where the sum in the denominator ranges

over all 96 mutation types m0. The enrichment of mutation type m in population P1 relative to popula-

tion P2 is defined to be fP1
ðmÞ=fP2

ðmÞ; these enrichments are visualized as heat maps in Figures 1B,

3B and 4A.

To track changes in the mutational spectrum over time, we compute fPðmÞ in bins of restricted

allele frequency. This involves counting the number of SNPs of type m that are present at frequency

f in population P to obtain counts CPðm;fÞ and frequencies fPðm;fÞ ¼ CPðm;fÞ=
P

m0 CPðm
0fÞ. Devia-

tion of the ratio fPðm;fÞ=fPðmÞ from one indicates that the rate of m has fluctuated recently in the his-

tory of population P. To make the sampling noise approximately uniform across alleles of different

frequencies, alleles of derived count greater than five were grouped into approximately log-spaced

bins that each contained similar numbers of UK10K SNPs. More precisely, we defined a set of bin

endpoints b1; b2; ::: such that the total number of SNPs ranging in derived allele count between bi

and biþ1 � 1 is greater than or equal to the number of 5-ton SNPs, while the total number of SNPs

ranging in derived allele count from bi to biþ1 � 2 is less than the number of 5-ton SNPs.

In some cases, for example Figure 2, Figure 2—figure supplement 1B and Figure 3—figure

supplement 1, site frequency spectra were projected down to a smaller sample size before counting

SNPs in order to more accurately compare datasets of different sample sizes. A binomial sampling

approach was used to project a sample of N haplotypes does to a smaller sample size n. Letting

C
ðNÞ
P ðm;fÞ denote the SNP counts in the large sample of N haplotypes, effective SNP counts

C
ðnÞ
P ðm;fÞ in a sample of n haplotypes are computed as follows:

C
ðnÞ
P ðm;k=nÞ ¼

n

k

� �

X

N�1

‘¼1

ð‘=NÞkð1� ‘=NÞn�k
C
ðNÞ
P ðm; ‘=NÞ

Significance testing
One central goal of this paper is to test whether many mutation types differ in rate between human

populations or whether mutation spectrum shifts have been rare events affecting only a small pro-

portion of mutation types. A simple statistical method for answering this question would be to per-

form 96 separate chi-square tests, one for each triplet-context-dependent mutation type, as follows:

Let Si denote the total number of SNPs segregating in population Pi, and let S
ðmÞ
i denote the num-

ber of SNPs of mutation type m. If mutation type m is more prevalent in population P1 than in popu-

lation P2, a chi-square test provides a natural way of assessing the significance of this difference. As

described in Harris (2015), this test is performed on the following two-by-two contingency table:

S
ðmÞ
1

P1 � S
ðmÞ
1

S
ðmÞ
2

P2 � S
ðmÞ
2

It would be appealing to conclude that every mutation type ‘passing’ this chi-square test is a

mutation type that has changed in rate during recent human history. However, if we were to perform

the full set of 96 tests, they would not be independent. A sufficiently large increase in the rate of

one mutation type m1 in population P1 after divergence from P2 could cause another mutation type

m2, whose rate has remained constant, to comprise significantly different fractions of the SNPs from

P1 and P2. To minimize this effect, we formulate the following iterative procedure of conditionally

independent tests: first, compute a chi-square significance value punorderedðmÞ for each mutation type

m using the two-by-two chi-square table above. We then use these values to order the SNPs from

lowest p value to highest and compute a set of ordered p values porderedðmÞ. For the mutation type

m0 with the lowest unordered p value, punorderedðm0Þ ¼ porderedðm0Þ. For mutation type mi, which has
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the ith lowest unordered p value and i<96, porderedðmiÞ is computed from the following contingency

table:

S
ðmiÞ
1

P

96

j¼iþ1
S
ðmjÞ
1

S
ðmiÞ
2

P

96

j¼iþ1
S
ðmjÞ
2

For mutation type m96, which has the highest unordered p value, the ordered p value is computed

from the contingency table

S
ðm96Þ
1

S
ðm95Þ
1

S
ðm96Þ
2

S
ðm95Þ
2

This procedure is guaranteed to find fewer mutation types to differ significantly in rate between

populations compared to separate chi-square tests.

Principal component analysis
The python package matplotlib.mlab.PCA was used to perform PCA on the complete set of 1000

Genomes diploid genomes. First, the triplet mutational spectrum of each haplotype h was computed

as a 96-element vector encoding the mutation frequencies ðfhðmÞÞm of the non-singleton derived

alleles present on that haplotype. The mutational spectrum of each diploid genome was then com-

puted by averaging together the spectra of its two constituent haplotypes. In the same way, a sepa-

rate PCA was performed on each of the five continental groups to reveal finescale components of

mutation spectrum variation.

Dating of the TCC!T mutation pulse
We estimated the duration and intensity of TCC!T rate acceleration in Europe by fitting a simple

piecewise-constant rate model to the UK10K frequency data. To specify the parameters of the

model, we divide time into discrete log-spaced intervals bounded by time points t1; :::; td, assigning

each interval a TCC!T mutation rate r0; :::rd. In units of generations before the present, the time dis-

cretization points were chosen to be: 20, 40, 200, 400, 800, 1200, 1600, 2000, 2400, 2800, 3200,

3600, 4000, 8000, 12,000, 16,000, 20,000, 24,000, 28,000, 32,000, 36,000, 40,000. We assume that

the total rate r of mutations other than TCC!T stays constant over time (a first-order

approximation).

In terms of these rate variables, we can calculate the expected shape of the TCC!T pulse shown

in Figure 2B of the main text. The shape of this curve depends on both the mutation rate parame-

ters ri and the demographic history of the European population, which determines the joint distribu-

tion of allele frequency and allele age. To account for the effects of demography, we use Hudson’s

ms program to simulate 10,000 random coalescent trees under a realistic European demographic

history inferred from allele frequency data (Tennessen et al., 2012) and condition our inference

upon this collection of trees as follows:

Let Aðm; tÞ be the function for which
R tiþ1

ti
Aðm; tÞdt equals the coalescent tree branch length, aver-

aged over the sample of simulated trees, that is ancestral to exactly m lineages and falls between

time ti and tiþ1. Given this function, which can be empirically estimated from a sample of simulated

trees, the expected frequency spectrum entry k=n is

Eðk=nÞ ¼

Pd
i¼1

R ti
ti�1

Aðk; tÞdt
Pn

j¼1

Pd
i¼1

R ti
ti�1

Aðj; tÞdt

and the expected fraction of TCC!T mutations in allele frequency bin k=n is

EðfTCC!Tðk=nÞÞ ¼

Pd
i¼1

ri
R ti
ti�1

Aðk; tÞdt

r
Pd

i¼1

R ti
ti�1

Aðk; tÞdt
:

The expected value of the TCC!T enrichment ratio being plotted in Figure 2B is
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EðrTCC!Tðk=nÞÞ ¼

Pd
i¼1

ri
R ti
ti�1

Aðk; tÞdt �
Pn

j¼1

Pd
i¼1

R ti
ti�1

Aðj; tÞdt
Pd

i¼1

R ti
ti�1

Aðk; tÞdt �
Pn

j¼1

Pd
i¼1

ri
R ti
ti�1

Aðj; tÞdt

In Figure 2B, enrichment ratios are not computed for every allele frequency in isolation, but for

allele frequency bins that each contain similar numbers of SNPs. Given integers 1� km<kmþ1 � n, the

expected TCC!T enrichment ratio averaged over all SNPs with allele frequency between km=n and

kmþ1=n is:

EðrTCC!Tðkm=nÞÞ ¼

Pd
i¼1

ri
R ti
ti�1

Pkmþ1

k¼km
Aðk; tÞdt �

Pn
j¼1

Pd
i¼1

R ti
ti�1

Aðj; tÞdt
Pd

i¼1

R ti
ti�1

Pkmþ1

k¼km
Aðk; tÞdt �

Pn
j¼1

Pd
i¼1

ri
R ti
ti�1

Aðj; tÞdt

We optimize the mutation rates r1; . . . ; rd using a log-spaced quantization of allele frequencies

k1=n; . . . ;km=n defined such that all bins contain similar numbers of SNPs. The chosen allele count

endpoints k1; . . . ;km are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400,

500, 600, 700, 800, 900, 1000, 2000, 3000, 4000. Given this quantization of allele frequencies, we

optimize r1; . . . ; rd by using the BFGS algorithm to minimize the least squares distance Dðr0; . . . ; rdÞ

between EðrTCC!Tðkm=nÞÞ and the empirical ratio rTCC!Tðkm=nÞ computed from the UK10K data. This

optimization is subject to a regularization penalty that minimizes the jumps between adjacent muta-

tion rates ri and riþ1:

Dðr0; . . . ; rdÞ ¼
X

d

m¼1

EðrTCC!Tðkm=nÞÞ� rTCC!Tðkm=nÞð Þ2þ0:25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

i¼1

ðri�1 � riÞ
2

v

u

u

t

Although the underlying model of mutation rate change assumed here is very simple, it still repre-

sents an advance over the method used in (Harris, 2015) to estimate of the timing of the TCC!TTC

mutation rate increase. That method relied upon explicit estimates of allele age from a dataset of

less than 100 individuals, which are much noisier than integration of a joint distribution of allele age

and frequency across a sample of thousands of haplotypes.
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DM, Gibbs RA, Sander C, Pursell ZF, Wheeler DA. 2014. Exonuclease mutations in DNA polymerase epsilon
reveal replication strand specific mutation patterns and human origins of replication. Genome Research 24:
1740–1750. doi: 10.1101/gr.174789.114, PMID: 25228659

Smit A, Hubley R, Green P. 2013. RepeatMasker Open. 4.0. http://www.repeatmasker.org
Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012. Drift-barrier hypothesis and mutation-rate evolution.
PNAS 109:18488–18492. doi: 10.1073/pnas.1216223109, PMID: 23077252

Ségurel L, Wyman MJ, Przeworski M. 2014. Determinants of mutation rate variation in the human germline.
Annual Review of Genomics and Human Genetics 15:47–70. doi: 10.1146/annurev-genom-031714-125740,
PMID: 25000986

Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G, Kang HM,
Jordan D, Leal SM, Gabriel S, Rieder MJ, Abecasis G, Altshuler D, Nickerson DA, Boerwinkle E, Sunyaev S,
et al. 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes.
Science 337:64–69. doi: 10.1126/science.1219240, PMID: 22604720

Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, Perry JR, Xu C, Futema M, Lawson D, Iotchkova V,
Schiffels S, Hendricks AE, Danecek P, Li R, Floyd J, Wain LV, Barroso I, Humphries SE, Hurles ME, et al. 2015.
The UK10K project identifies rare variants in health and disease. Nature 526:82–90. doi: 10.1038/nature14962,
PMID: 26367797

Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, Debernardi S, Mott R, Dunham I, Carter
NP. 2004. Replication timing of the human genome. Human Molecular Genetics 13:191–202. doi: 10.1093/
hmg/ddh016, PMID: 14645202

Harris and Pritchard. eLife 2017;6:e24284. DOI: 10.7554/eLife.24284 17 of 17

Research article Genomics and Evolutionary Biology

http://dx.doi.org/10.1038/nrg3295
http://www.ncbi.nlm.nih.gov/pubmed/22965354
http://dx.doi.org/10.1371/journal.pgen.1006549
http://www.ncbi.nlm.nih.gov/pubmed/28095480
http://dx.doi.org/10.1101/gr.174789.114
http://www.ncbi.nlm.nih.gov/pubmed/25228659
http://www.repeatmasker.org
http://dx.doi.org/10.1073/pnas.1216223109
http://www.ncbi.nlm.nih.gov/pubmed/23077252
http://dx.doi.org/10.1146/annurev-genom-031714-125740
http://www.ncbi.nlm.nih.gov/pubmed/25000986
http://dx.doi.org/10.1126/science.1219240
http://www.ncbi.nlm.nih.gov/pubmed/22604720
http://dx.doi.org/10.1038/nature14962
http://www.ncbi.nlm.nih.gov/pubmed/26367797
http://dx.doi.org/10.1093/hmg/ddh016
http://dx.doi.org/10.1093/hmg/ddh016
http://www.ncbi.nlm.nih.gov/pubmed/14645202
http://dx.doi.org/10.7554/eLife.24284

