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Abstract How the immune system affects tissue regeneration is not well understood. In this

study, we used an emerging mammalian model of epimorphic regeneration, the African spiny

mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are

necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury

during regeneration (Acomys cahirinus) and scarring (Mus musculus), we found that both species

exhibited an acute inflammatory response, with scarring characterized by stronger

myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during

regeneration. By depleting macrophages during injury, we demonstrate a functional requirement

for these cells to stimulate regeneration. Importantly, the spatial distribution of activated

macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing

to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for

inflammatory cells to regulate a regenerative response.

DOI: 10.7554/eLife.24623.001

Introduction
Over the past three decades, regenerative biology has merged its rich historical practice with new

genetic tools to discover how animals are capable of regenerating tissue and organs. Regeneration

biologists commonly investigate organ regeneration in a range of metazoans including hydra, planar-

ians, crickets, zebrafish, salamanders, newts, lizards and even some mammals. Conventional studies

perturb cellular functions or genetic pathways to inhibit the normal regenerative response and thus

seek to identify key cellular and molecular mechanisms underlying the regenerative response to

injury. Alternatively, some investigators have employed a comparative approach to discover key

mechanisms underlying regeneration. In this framework, two related species undergo different

responses to injury in identical tissues and exhibit either a regenerative or a scarring response

(Gawriluk et al., 2016; Sánchez Alvarado, 2000; Sikes and Bely, 2010; Wagner and Misof, 1992).

This comparative approach may be particularly useful for unraveling complex interactions such as

how inflammation and immunity permit, instruct or inhibit local cells to initiate and undergo func-

tional regeneration in lieu of scarring.

Exactly how cellular inflammation and immunity affect regeneration remains controversial. One

perspective posits that inflammation impedes regeneration (Harty et al., 2003; Mescher et al.,

2017), a view supported by reports of less robust immune responses in animals and tissue that

regenerate when compared to those that cannot (Brant et al., 2016; Mak et al., 2009;

Mescher et al., 2013; Redd et al., 2004). Similarly, chronic inflammation leads to compromised

healing and fibrotic disease (Martin and Leibovich, 2005; Riches, 1988; Wynn, 2004). However,
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physical injury elicits inflammation during regeneration and scarring. Specifically, cytokines and che-

mokines produced by neutrophils, macrophages and T-cells recruit fibroblasts, promote granulation

tissue formation, activate myofibroblasts, and promote collagen production and deposition

(Aliprantis et al., 2007; Lakos et al., 2006; Mori et al., 2008; Ong et al., 1999; Smith et al.,

1995). Dampening the inflammatory response by depleting leukocytes creates better healing out-

comes following damage to skin, skeletal muscle, and liver (Dovi et al., 2003; Duffield et al., 2005;

Martin et al., 2003; Novak et al., 2014). Thus, when one considers that injury-mediated inflamma-

tion and immunity is an ancient process shared by animals (and plants) that can and cannot regener-

ate, a more nuanced relationship between regeneration and immunity emerges.

Mounting evidence suggests that certain immune cells may be necessary to induce and sustain

regeneration. Depletion of phagocytic cells (e.g. macrophages and dendritic cells) inhibits regenera-

tion in axolotl limbs, zebrafish fins, and neonatal mouse hearts (Aurora et al., 2014; Godwin et al.,

2013; Petrie et al., 2014). Furthermore, the timing of leukocyte depletion has a major impact on

regenerative outcomes (Arnold et al., 2007; Duffield et al., 2005; Varga et al., 2016) supporting

an important role for changing immune cell phenotypes (Gensel and Zhang, 2015; Koh and DiPie-

tro, 2011; Mantovani et al., 2013). Although these findings support a positive function of certain

immune cells on regeneration, they also simplify important differences across species. For instance,

salamanders lack important T-cell phenotypes and utilize primarily IgM rather than IgG antibodies

while mounting an adaptive immune response (Chen and Robert, 2011; Cotter et al., 2008). While

this diversity is of interest to biologists, it may obscure the goal of regenerative medicine – to induce

regeneration in humans. This makes mammalian models of tissue regeneration especially relevant to

questions regarding what role immune cells play during regeneration.

eLife digest The cells of the immune system are essential to defend an organism from disease.

In addition, some of them are also thought to play an important role in helping injured tissues heal

or even regrow. For example, when an animal is injured, immune cells such as macrophages rush to

the wounded site to clear debris and help repair the damage. Macrophages come in different forms

and subtypes, and express different protein markers on their surface, depending on where in the

body they reside.

Few mammals can completely renew or regrow a damaged tissue – a process known as tissue

regeneration. Instead, humans and most other mammals repair injuries by producing scar tissue,

which has different properties compared to the original tissue it replaces. One exception is the

African spiny mouse, which, unlike other rodents studied, can regrow skin and fur, nerves, muscles,

and even cartilage. It has been shown that in highly regenerative animals such as salamanders and

zebrafish, macrophages are necessary to initiate tissue regeneration. Documented cases of tissue

regeneration in mammals are rare and therefore less understood. Until now, it was not clear why

two species as closely related as spiny mice and house mice would heal identical injuries in different

ways.

To better understand how new tissue regenerates, Simkin et al. compared the healing abilities of

spiny mice and house mice after they received an injury to their ear and showed that macrophages

appeared to be important for both the regeneration of new tissue and the formation of scar tissue.

When Simkin et al. removed all macrophages in the ear of spiny mice, their ear tissue could not heal

and regrow. When the macrophages were allowed to re-invade the injured site, the tissue in the ear

regenerated. Further experiments showed that during tissue regeneration and scarring, different

subtypes of macrophages appeared to be active.

The findings suggest that specific subtypes of macrophages could be a key element in helping

tissue to regenerate. An important next step will be to further explore the different types of

macrophages and whether the injury site determines what types of cells are active. A deeper

understanding of how tissues can regrow in mammals will be essential to advancing our ability to

stimulate tissue regeneration in humans.

DOI: 10.7554/eLife.24623.002
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Since first described by Markelova (cited in Vorontsova and Liosner, 1960), ear pinna regenera-

tion has remained an interesting example of musculoskeletal regeneration in mammals

(Gawriluk et al., 2016; Goss and Grimes, 1975; Joseph and Dyson, 1966; Matias Santos et al.,

2016; Seifert et al., 2012a; Williams-Boyce and Daniel, 1980). Recent work in African spiny mice

species (Acomys cahirinus, A. kempi and A. percivali) supports ear pinna regeneration as an epimor-

phic process (Gawriluk et al., 2016) aligning it with appendage regeneration in other vertebrate

regenerators such as salamanders, newts, zebrafish and lizards. Importantly, not all mammals can

regenerate ear tissue providing variation to compare regeneration and scarring in identical tissue

(Gawriluk et al., 2016; Williams-Boyce and Daniel, 1986). Spiny mice are able to regenerate full-

thickness skin, blood vessels, nerves, cartilage, adipose tissue and some muscle, whereas the same

injury in Mus musculus (outbred and inbred strains) leads to incomplete ear hole closure and scar for-

mation (Gawriluk et al., 2016; Matias Santos et al., 2016; Seifert et al., 2012a). Here, we report

how the two main orchestrators of inflammation, neutrophils and macrophages, respond to injury

during epimorphic regeneration in Acomys cahirinus compared to scarring in Mus musculus. Acomys

and Mus exhibit the same circulating leukocyte profiles, and we demonstrate a robust acute inflam-

matory response in both species. We demonstrate higher neutrophil activity in the scarring system

compared to higher ROS activity in the regenerative system. We show that macrophages between

the two species display similar in vitro properties providing a comparable baseline prior to and fol-

lowing injury. We also observed distinct differences in the spatiotemporal distribution of macro-

phage subtypes during regeneration and scarring. Finally, depletion of macrophages, prior to and

during injury, inhibited blastema formation and regeneration, thus demonstrating a necessity for

these cells.

Results

Circulating leukocyte profiles are similar between Acomys and Mus
We first set out to test if baseline differences in circulating peripheral white blood cell (WBC) profiles

existed prior to injury in Acomys and Mus. Using a Sudan Black B modified Giemsa-Wright stain, we

quantified monocytes, lymphocytes, neutrophils and eosinophils from Acomys and Mus whole blood

(Figure 1A–D). Both species exhibited similar profiles and typical morphologies for all four cell types

(Figure 1A–E). For instance, monocytes were distinguishable by their kidney-shaped nucleus and dif-

fuse cytoplasmic stain (Figure 1A), while lymphocytes were similar in size to RBCs and their compact

nucleus filled the entire cell (Figure 1B). Polymorphonuclear neutrophils stained strongly with

Sudan-Black B and displayed multi-lobed nuclei (Figure 1C). In contrast, while eosinophils displayed

multi-lobed nuclei and dark pink granules in the cytoplasm they contained few if any Sudan-Black-

stained granules (Figure 1D). In Mus and Acomys, the percentage of circulating lymphocytes was

significantly higher than other leukocyte populations, and eosinophils comprised the smallest popu-

lation of circulating leukocytes (Figure 1E) (Tukey’s Multiple comparison, simple effect p<0.05, Fig-

ure 1—source data 1). These data are consistent with other leukocyte profiles from outbred CD1

mice showing that lymphocytes comprise the highest percentage of circulating WBCs

(Hedrich, 2004). Importantly, while we identified differences in the percentage of leukocyte sub-

types within each species, leukocyte profiles were the same between Acomys and Mus (two-way

ANOVA, species effect F = 0.01, p=0.92, and leukocyte subtype effect F = 97.04, p<0.0001, n = 8

Acomys; n = 4 Mus). Our data demonstrate these two rodent species possess the same circulating

leukocyte profiles prior to injury and provide a baseline to ask if local differences arise following

injury.

The kinetics of inflammatory cell accumulation are generally similar
between regeneration and scarring
Building on our observation that circulating leukocyte populations are similar in Acomys and Mus,

we next assessed the acute inflammatory reaction to injury during epimorphic regeneration and scar-

ring using our 4 mm punch assay through the ear pinna (Gawriluk et al., 2016; Seifert et al.,

2012a) (Figure 2—figure supplement 1A–C). To quantify the influx of myeloid cells into the injured

ear tissue, we performed fluorescence-activated cell sorting (FACS) using CD11b (Figure 2A–C).

CD11b (aka ITGAM) is a broad-spectrum marker used to isolate mammalian macrophages and
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neutrophils across a range of species from mouse to humans (Figueiredo et al., 2013;

Sawano et al., 2001; Tamatani et al., 1991; Venneri et al., 2007; Venosa et al., 2015). Using our

recently published regeneration transcriptome for Acomys, we found Cd11b was upregulated after

injury (Gawriluk et al., 2016). Alignment of Acomys and Mus Cd11b revealed 88% nucleotide iden-

tity compared to a 79% identity between Mus and Human (Table 1). FACS analysis using CD11b iso-

lated a specific cell population in Acomys and Mus (Figure 2A–B). While we observed a significant

increase in CD11b+ cells in response to injury in both species (two-way ANOVA with main effect

Figure 1. Circulating leukocyte profiles from uninjured animals are the same in A. cahirinus and M. musculus. (A–D) Sudan-Black B modified Giemsa

Wright stain helps identify leukocyte subtypes based on morphology and stain in blood smears of A. cahirinus. Monocytes (A) show kidney shaped

nucleus and diffuse cytoplasmic stain; lymphocytes (B) show round nuclei encompassing most of the cell with very little cytoplasm; polymorphonuclear

neutrophils (C) show dense black staining of cytoplasmic granules and a banded, multi-lobed nucleus; and eosinophils (D) show dense pink staining of

cytoplasmic granules and multi-lobed nucleus. Scale bar = 10 mm. (E) Counts of white blood cell subtypes as a percentage of total white blood cells

(two-way ANOVA for main effects species F = 0.01, p=0.92; and leukocyte subtype effect F = 97.04, p<0.0001. *Tukey’s multiple comparison test for

simple effect leukocyte subtype p<0.05 indicating significant differences when comparing neutrophils versus lymphocytes, neutrophils versus

eosinophils, lymphocytes versus monocytes, and lymphocytes versus eosinophils within each species; S.E.M.; n = 8 Acomys; n = 4 Mus).

DOI: 10.7554/eLife.24623.003

The following source data is available for figure 1:

Source data 1. Statistical values are reported for comparing circulating leukocytes between and within species.

DOI: 10.7554/eLife.24623.004
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Figure 2. Acute infiltration of neutrophils and macrophages is a hallmark of regeneration and scarring. (A–B). Single-cell suspensions of whole tissue

isolates from injured ears at D5 subjected to flow cytometry using CD11b show two distinct populations of cells, one CD11b- and one CD11b+ (red

boxes) in Acomys (A) and Mus (B). (C) Quantifying cells over time using flow cytometry shows a peak increase of CD11b+ cells in Mus at D3 and a

broader but smaller peak of CD11b+ cells in Acomys between D3 and 5 (two-way ANOVA main effect time F = 31.86, p<0.0001, main effect species,

Figure 2 continued on next page
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time F = 31.86, p<0.0001 and species F = 17.06, p=0.0002), the acute increase at D3 was signifi-

cantly greater in Mus than Acomys (Sidak’s multiple comparison test p<0.05) (Figure 2C).

Because CD11b isolates macrophages and neutrophils, we next sought to individually quantify

neutrophil and macrophage influx at the injury site in Acomys and Mus. We first used the well-char-

acterized cell surface Ly6G antigen to separate neutrophil and macrophage populations in Mus

(Bain et al., 2014; Mirza et al., 2009; Rose et al., 2012) and detected a clear population of Ly6G+

cells (Figure 2—figure supplement 2A). This population of Ly6G+ cells was significantly elevated in

healing tissue between D1-D7, with peak numbers occurring at D3 (Figure 2—figure supplement

2B). Whereas Ly6G+/CD11b+ cells dominated the injury site at D3 in Mus (Figure 2—figure supple-

ment 1C -blue dots), these cells were replaced by a Ly6G-/CD11b+ population at D7 (Figure 2—fig-

ure supplement 2C - red dots). Thus, during the initial wave of leukocyte recruitment in Mus (D1-5),

CD11b+ cells are primarily neutrophils and at later stages of inflammation (D7-D15) CD11b+ cells

are primarily macrophages (Figure 2—figure supplement 2D). Interestingly, we did not detect a

clear Ly6G+ population of CD11b+ cells from either tissue or circulating blood isolated from Acomys

(Figure 2—figure supplement 2A).

The failure to resolve a discrete population of Ly6G+ cells in Acomys suggested neutrophils might

more closely resemble rat and human neutrophils which lack Ly6G (Lee et al., 2013). The mouse Ly6

Figure 2 continued

F = 17.02, p=0.0002, *Sidak’s multiple comparison test p<0.05, n = 4 animals combined left and right ear/species per timepoint). (D) Representative

images of immunohistochemistry for myeloperoxidase (brown) in M. musculus (top panel) and A. cahirinus (bottom panel) 24 hr post injury. Nuclei (blue)

were counterstained with Mayer’s Hematoxylin. Magnification 200x, Scale bars = 50 mm. Inset images highlight polymorphonuclear appearance of

positively stained cells (red arrows). Scale bars = 20 mm. (E) Cell counts of polymorphonuclear/MPO+ cells in healing tissue per field of view (FOV)

(n = 5 animals/species, D1; n = 6 animals/species, D3, D5; n = 4 animals/species, D10, two-way ANOVA, main effect time and species F = 11.12,

p<0.0001, F = 8.229, p=0.007 respectively, *p<0.05 Sidak’s multiple comparisons test at time points indicated). (F) Myeloid protein IBA1 (red) reactivity

in Acomys ear tissue at D5 showing distinct positive cells (yellow arrow) and negative cells with multi-lobed nuclei characteristic of neutrophils (green

arrows). DAPI = grey, IBA1 = red. (G) Quantification of the total IBA1+ area in Acomys and Mus ears at D5, D10 and D20 normalized to total DAPI+

area (n = 3/species, two-way ANOVA, main effect time and species F = 0.132, p=0.723, F = 0.438, p=0.655, respectively) (H–K) Representative images

of the IBA-1+ area quantified in (G) at D15. IBA-1+ cells localize proximal and distal to the injury site in Acomys and Mus and within the blastema in

Acomys. IBA-1 = red, DAPI = grey, autofluorescent red blood cells (RBC) = orange. Scale bars (H,J) = 100 mm. Scale bar (I,K) = 50 mm Distal = left,

Dorsal = top of image.

DOI: 10.7554/eLife.24623.005

The following figure supplements are available for figure 2:

Figure supplement 1. Timeline of regeneration following 4 mm ear punch injury in Acomys compared to scar-formation in Mus.

DOI: 10.7554/eLife.24623.006

Figure supplement 2. Isolation of monocytes using flow cytometry.

DOI: 10.7554/eLife.24623.007

Table 1. Nucleotide comparisons for protein targets used in this study. Comparison is between Mus

and Acomys and Mus and Human.

Mus gene name Acomys Human

Ly6g (lymphocyte antigen 6 complex, locus G) No homolog No homolog

Ly6e (lymphocyte antigen 6 complex, locus E) 100% 69%

Cd11b (integrin alpha M) 88% 79%

Iba1/Aif1 (allograft inflammatory factor 1) 86% 85%

Cd86 (CD86 antigen) 78% 76%

Cd206 (mannose receptor, C type 1) 90% 81%

Arg1 (arginase 1) 81% 78%

Cd3e (CD3 antigen, epsilon polypeptide) 80% 74%

Mpo (myeloperoxidase) 94% 85%

Adgre1 (adhesion G protein-coupled receptor E1), (F4/80) 86% 79%

DOI: 10.7554/eLife.24623.008
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gene complex is composed of 11 known Ly6 genes. Of these, the subcluster Ly6b, c, g and e are

most highly expressed by mouse neutrophils, whereas rat and human lack all these genes except

Ly6e (Lee et al., 2013). While we identified the genomic sequence and expressed transcript for the

Acomys homolog of Ly6e (Table 1), examination of the Ly6 gene complex using our preliminary A.

cahirinus genome revealed no homologs for Ly6b, Ly6c or Ly6g (Table 1). These data reveal that the

genomic structure for the Ly6 complex in Acomys is similar to rat and human suggesting that

Acomys neutrophils more closely resemble rat and human neutrophils which also lack Ly6g

(Lee et al., 2013).

Given these results, we turned to the neutrophilic marker MPO which reliably detects polymor-

phonuclear cells in tissue sections across species (Bradley et al., 1982; Petrie et al., 2014;

Seifert et al., 2012b). We assessed MPO reactivity at D1, D3, D5 and D10 to compare neutrophil

accumulation and clearance in Mus and Acomys (Figure 2D,E). Neutrophils were readily identified

as MPO+ with multi-lobed nuclei (Figure 2D), and Mus displayed a significantly higher number of

neutrophils 24 hr after injury when compared to Acomys (two-way ANOVA with main effects, species

F = 8.229, p=0.007 and time F = 11.12, p<0.0001; Sidak’s multiple comparison test for simple effect

between species, p<0.05 at D1) (Figure 2E). After D1, Mus and Acomys showed comparable num-

bers of neutrophils at the site of injury with a return to baseline levels by D10 (Figure 2E, Sidak’s

multiple comparison test for simple effect between species, p>0.05 at D3-10). In both species, neu-

trophils initially accumulated distal to the cut in the dermis and periodically exhibited signs of cell

death (e.g. pyknotic nuclei and reduction in cell size). We also observed neutrophils within the scab

at all timepoints analyzed (Figure 2D). Taken together, our results show that both species exhibit

neutrophil infiltration, accumulation and clearance in response to injury, although neutrophils accu-

mulate faster, at higher levels and appear to be more active 24 hr after injury in Mus.

Concomitant with neutrophil invasion, circulating and tissue-specific macrophages are activated

in response to injury and are recruited to the injury site at the outset of regenerative and scarring

responses (Godwin et al., 2013; Li et al., 2012; Nguyen-Chi et al., 2015; reviewed in Novak and

Koh, 2013; Petrie et al., 2014; Varga et al., 2016). To ascertain total macrophage abundance in

healing tissue, we employed the pan-macrophage marker, ionized calcium-binding adaptor molecule

1 (IBA-1), to quantify the spatiotemporal pattern of macrophage infiltration in Acomys and Mus. IBA-

1 is an actin-binding protein active in macrophages and microglia and has been used to label cells in

mouse, dog, cat, human and other primates (Imai et al., 1996; Köhler, 2007; Pierezan et al., 2014;

Sasaki et al., 2001; Schmidt et al., 2016). In Acomys, we found IBA-1+ cells in the mesenchyme

and the epidermis, but IBA-1 was specifically absent from polymorphonuclear neutrophils

(Figure 2F, arrows). We found no significant difference in the amount of IBA-1+ cells between Mus

and Acomys at D5, D10 or D15 (Figure 2G, two-way ANOVA main effect species F = 0.132

p=0.723, and main effect time F = 0.438 p=0.655). Accumulation of IBA1+ cells occurred at similar

levels in both species within 200 mM proximal to and distal to the site of injury (Figure 2H–K). Nota-

bly, IBA-1+ cells were present within the blastemal region of D15 ears in Acomys (Figure 2H,I) as

well as within the central granulation tissue region of D15 ears in Mus (Figure 2J,K). These data

demonstrate that macrophages persist at the injury site during regeneration and scarring up to 2

weeks after injury.

Acute inflammation during regeneration is characterized by high ROS
production
To determine the extent of the inflammatory reaction in vivo, we measured myeloperoxidase (MPO)

activity and reactive oxygen species (ROS) production (Tseng and Kung, 2012). To track MPO activ-

ity in vivo we used luminol, a chemiluminescent compound that exhibits specific and high sensitivity

for phagocyte-mediated MPO activity from neutrophils (Gross et al., 2009). Due to its larger size

and reduced cell permeability (compared to luminol), we used lucigenin to measure ROS production

by NADPH oxidase. Lucigenin chemiluminescence is primarily attributed to macrophage activation,

and to a lesser extent from endothelial cell and neutrophil populations (Tseng and Kung, 2012).

Tracking luminol chemiluminescence, Mus displayed peak MPO activity between 24–48 hr after

injury (Figure 3A, repeated measures ANOVA F = 5.095, p<0.001). This finding was congruent with

our immunohistochemical cell count data using MPO (Figure 2E). While Acomys displayed a similar

peak in MPO activity, the magnitude was significantly muted compared to Mus (Figure 3A, *Sidak’s

multiple comparison test p<0.05 for time points indicated). Conversely, Acomys exhibited a much
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Figure 3. Acute myeloperoxidase activity is elevated during scarring, while reactive oxygen species production is elevated during regeneration. (A–B) In

vivo imaging of the chemiluminescent compounds luminol and lucigenin, showing myeloperoxidase activity (A) or ROS production (B) in the injured

ears of Mus (red bars) and Acomys (blue bars). Images below graphs are representative for each timepoint. Chemiluminescence is measured in

radiance [photons (p) per second (s) emitted from a square centimeter of tissue (cm2) and radiating into a solid angle of one steradian (sr)]. For luminol

experiments: n = 7 Mus (14 ears) and n = 6 Acomys (12 ears) repeated measures ANOVA, F = 5.095, p<0.001 and for lucigenin experiments: n = 8 Mus

(16 ears) and n = 6 Acomys, (12 ears), repeated measures ANOVA F = 4.536, p<0.001, *p<0.05 Sidak’s multiple comparison test between species at the

time indicated.

DOI: 10.7554/eLife.24623.009
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more robust production of ROS compared to Mus during the entire inflammatory phase (Figure 3B,

repeated measures ANOVA F = 4.536, p<0.001). Lucigenin chemiluminescence peaked 24 hr after

injury in Acomys and remained significantly elevated compared to Mus through D5 (Figure 3B,

*Sidak’s multiple comparison test p�0.05 for the time indicated). Throughout the inflammatory

phase, lucigenin chemiluminescence was significantly muted in Mus (Figure 3B). Together, these

data suggest a bias toward strong neutrophilic MPO activity during scarring and early and pro-

longed macrophage-produced ROS during regeneration.

Macrophage depletion inhibits blastema formation and regeneration
Persistence of macrophages at the injury site, coupled with stark differences in ROS production sug-

gested that macrophages might positively affect regeneration consistent with observations during

Xenopus tail regeneration (Love et al., 2013). In vivo depletion of macrophages using clodronate

liposomes during axolotl limb regeneration and via genetic ablation in zebrafish caudal fins supports

a requirement for these cells to stimulate a regenerative response (Godwin et al., 2013;

Petrie et al., 2014). Clodronate liposomes have been widely used to deplete systemic and local

populations of phagocytes, the majority of which are macrophages (reviewed in van Rooijen and

Hendrikx, 2010). In order to test if macrophages also regulate epimorphic regeneration in spiny

mice, we depleted these cells by injecting clodronate liposomes (Clo-Lipo) at the base of the ear

immediately prior to injury (D0), at D2, and at D5 (Figure 4A). Control animals received similar injec-

tions of PBS liposomes (control) (Figure 4A). Whereas control ear holes initiated a regenerative

response and began closing at D5, Clo-Lipo injected animals did not initiate ear hole closure until

D20 (Figure 4B–C). In contrast to control ears, which showed complete ear hole closure by D34, all

Clo-Lipo injected ears remained open past D44 (Figure 4B,C). Complete hole closure and regenera-

tion among Clo-Lipo-treated ears was delayed, with 3/12 closed by D53, 8/12 ears closed by D60

and 11/12 ears closed by D70 (Figure 4B–C). Although blastema formation and expansion occurred

in PBS-Lipo-treated ears, examination of Clo-Lipo-treated ears showed a sharp reduction in cell

accumulation past the original cut site anda delay in blastema formation at D20 (Figure 4D–E). The

early stages of blastema formation were evident in 50% of macrophage-depleted ears (4/8) begin-

ning at D20 (Figure 4D–E, dotted line denotes original plane of biopsy).

In Clo-Lipo-treated ears, we noted a slight expansion of ear hole area and residual scabbing at

D10 suggesting defects in re-epithelialization following macrophage depletion (Figure 4B–C).

Indeed, examining macrophage-depleted ear pinna at D5 we observed a lack of cartilage histolysis

(Figure 4F, green arrow) and a delay in re-epithelialization (Figure 4F, blue arrows). This delay in re-

epithelialization was coincident with an accumulation of neutrophils (Figure 4G yellow arrowheads)

when compared to control ears (Figure 4H–I). Monocytic cells were apparent throughout the tissue

in control ears (Figure 4H green arrowheads) but were absent in Clo-Lipo treated ears (Figure 4F).

We confirmed effective depletion of macrophages from the injury site by staining for the pan macro-

phage marker IBA-1 (Figure 4J–L). Macrophage populations can be restored within 2 weeks of the

final Clo-Lipo injection (Ames et al., 2016; Li et al., 2013; Summan et al., 2006;

Sunderkötter et al., 2004), and IBA-1+ cells at D20 reveals a return of macrophages in Clo-Lipo-

treated ears, concurrent with re-epithelialization and initiation of blastema formation (Figure 4M–N).

Together, these data support the important activity of macrophages to facilitate histolysis and re-

epithelialization during the early phase of regeneration. Furthermore, our data suggests that macro-

phages directly or indirectly are necessary for blastema formation during regeneration in spiny mice.

Activated CD86+ macrophages are restricted from the regeneration
blastema
Macrophages maintain an interesting duality as professional phagocytes and as coordinators of the

local immune response. Because macrophages were present and persistent during regeneration and

scarring, it was possible that macrophage phenotype might contribute to the different healing out-

comes. First, we asked whether spiny mice macrophages could undergo classical (M1) and alterna-

tive (M2) activation under stereotypical conditions (Figure 5). We isolated spiny mouse bone marrow

as previously described for Mus (Edwards et al., 2006) and activated these cells using Macrophage-

Colony Stimulating Factor (M-CSF) to produce activated bone-marrow-derived macrophages

(BMDM) (Figure 5). After 1 week in culture, all BMDM were CD11b+ (Figure 5A).
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Figure 4. Macrophage depletion with clodronate liposomes inhibits regeneration. (A) Ears were injected with clodronate liposomes (Clo-Lipo) or PBS

liposome controls (PBS-Lipo) at D0 immediately before injury, D2 after injury and at D5. Ears were allowed to regenerate and tissue collected at later

time points. (B) Wound size was measured over time. PBS-lipo ears close completely by D34 (black line, graph, bottom panel images). Clo-Lipo ears

remain open until D70 (grey dotted line, graph, top panel images, n = 6 animals, 12 ears per treatment). (C) Representative ear from Clo-Lipo (top

panel) and PBS-Lipo (bottom panel) followed over time. (D–E) H & E stained Clo-Lipo ear at D20 shows variable reduction in cell accumulation past the

injury site (black dotted line) with relatively little new growth compared to PBS-Lipo ears. Scale bar = 100 mm. (F–I) H & E stained Clo-Lipo ear at D5 (F)

shows a delay in epidermal closure (blue arrows) and loss cartilage plate histolysis (green arrow) compared to PBS-Lipo ears (H). Scale bar = 200 mm.

(G) Boxed region in (F) showing accumulation of polymorphonuclear cells (yellow arrowheads). (I) Boxed region in (H) with monocytic cells evident

(green arrowheads) and few polymorphonuclear cells present (yellow arrowhead). Scale bar = 10 mm. (J–N) IBA-1 immuno-positive area following

macrophage depletion compared to control. Total IBA-1+ area normalized to total DAPI+ area at D5 after the final treatment (J, n = 3 animals per

treatment, *unpaired Student’s t-test p<0.05). IBA-1+ cells in PBS-lipo tissue at D5 (K) compared to Clo-lipo tissue at D5 (L). IBA1+ cells in PBS-Lipo

Figure 4 continued on next page
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Next, we tested if Acomys macrophages could undergo classical and alternative activation (polari-

zation) toward an M1 or M2 phenotype, respectively. Classic activation assays stimulate BMDMs

with the pro-inflammatory molecules interferon gamma (IFNg) and lipopolysaccharide (LPS) which

specifically increase the expression of CD86 among other pro-inflammatory cell surface markers and

cytokines (Edwards et al., 2006; Hathcock et al., 1994; Inaba et al., 1994). In response to IFNg

and LPS, Acomys BMDMs remained CD11b+ and upregulated CD86 compared to un-stimulated

and M2 stimulated macrophages (Figure 5B–F). Alternative activation with interleukin 4 (IL4)

increases the expression of CD206 (Stein et al., 1992) and Arginase 1 among other pro-reparative,

cytoprotective genes. In response to IL-4, Acomys BMDMs remained CD11b+ and expressed CD206

(Figure 5C,I). In contrast, most unstimulated and classically activated BMDMs were CD206-

(Figure 5G–H). In addition to CD206, stimulation with IL-4 also elicited Arginase 1 reactivity in

BMDMs (Figure 5F). We also isolated and activated BMDMs from Mus and confirmed they display a

similar pattern of protein regulation in response to polarization (Figure 5J–R). In addition to these

phenotypic markers, we also tested the mouse pan macrophage marker F4/80 (Austyn and Gordon,

1981) for its reactivity to Acomys macrophages (Figure 5—figure supplement 1). Using unstimu-

lated BMDMs, we only found a small subset of F4/80+ cells in Acomys compared to ubiquitous

labeling in Mus (Figure 5—figure supplement 1A,D). Following IFNg+LPS stimulation, we observed

an increase in F4/80+ Acomys macrophages, whereas IL-4 stimulation did not increase F4/80 label-

ing compared to unstimulated BMDMs (Figure 5—figure supplement 1B–C). Examining F4/80

staining in vivo, we found that F4/80+ cells were distinct from CD206+ cells in Acomys (Figure 5—

figure supplement 1G). In contrast, we found that F4/80+ cells were mostly CD206+ in Mus sup-

porting its localization as a pan macrophage marker in Mus (Figure 5—figure supplement 1H).

Thus, our in vitro and in vivo findings suggest that F4/80 only marks a subset of macrophages in

Acomys (most likely M1). Despite this difference in F4/80 reactivity, our in vitro results show intrinsic

similarities between Acomys and Mus macrophages supporting a general capacity to activate and

change phenotype given specific wound contexts and stimuli.

Next, we addressed whether differences in the spatiotemporal distribution of macrophage sub-

types might promote regeneration in lieu of scarring. First, we quantified accumulation of classically

activated macrophages in healing tissue by staining for CD86 (Figure 5E and Figure 6A–B). Using

immunohistochemistry to localize CD86+ cells in Acomys and Mus, we determined these cells were

rare in uninjured ear tissue (Figure 6—figure supplement 1A–F). Although rare, in Mus, we did find

CD86+-positive cells in the epidermal layer reminiscent of human Langerhan’s cells (Boltjes and van

Wijk, 2014) and in the perichondrium (Figure 6—figure supplement 1A–F), whereas in uninjured

Acomys tissue CD86+ cells were restricted to the dermis (Figure 6—figure supplement 1D–E).

These cells had long, thin projections and a spindle-like shape characteristic of dermal dendritic cells

found in humans (Boltjes and van Wijk, 2014).

We next assessed the distribution of CD86+ cells during regeneration and scarring. Comparing

CD86+ cells distal to the injury between species, we found a significant effect of time (two-way

ANOVA F = 131.8, p<0.0001) and species (two-way ANOVA F = 220.0, p<0.0001) whereby injury eli-

cited a strong increase in CD86+ cells per unit area in Mus, but not in Acomys at D3 (Sidak’s multiple

comparison test p<0.05) (Figure 6A). Examining the spatial distribution of CD86+ cells in Mus, we

found that they accumulated in the connective tissue distal to the cut cartilage (Figure 6B). Co-stain-

ing with the T-cell surface marker CD3 revealed interactions between CD86+ and CD3+ cells in this

region as well as in the epidermis, consistent with the role of CD86 as a co-stimulatory molecule for

T-cell activation (Figure 6B). In contrast to Mus, CD86+ macrophages behaved very differently in

Acomys during regeneration. Following injury, we did not observe CD86+ cells accumulating in the

blastema (Figure 6B and Figure 6—figure supplement 1J). Instead, at D15 we observed clusters of

CD86+ cells located almost exclusively lateral to the cut cartilage (Figure 6B). Thus, while CD86+

cells are present in Acomys, they remain proximally restricted and do not infiltrate the blastema,

Figure 4 continued

tissue at D20 (M) and Clo-lipo treated tissue at D20 (N) show a return of positive cells.. Scale bar = 100 mm. Box delineates area of high-magnification

images, Scale bar = 50 mm. IBA-1 = red, DAPI = grey, autofluorescent red blood cells (RBC) = orange. Distal = left, Dorsal = top.

DOI: 10.7554/eLife.24623.010
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Figure 5. In vitro activation assays shows Acomys macrophages can be polarized to express different markers. (A–

I) Bone-marrow-derived macrophages isolated from Acomys femurs are cultured with no cytokines (unstimulated,

A, D, G) with IFNg+LPS (M1, B, E, H) or with IL-4 (M2, C, F, I). Immunocytochemistry for the pan-macrophage

marker CD11b (green) (A–C), for the M1 macrophage marker CD86 (green) and the M2 macrophage marker

Arginase 1 (red) (D–F), or CD206 (red) (G–I). (J–R). Bone-marrow-derived macrophages were isolated from Mus

femurs and cultured with no cytokines (J, M, P) with IFNg and LPS (K, N, Q) or with IL4 (L, O, R) as above.

Immunocytochemistry was performed for CD11b (green) (J–K), for CD86 (green) and Arginase 1 (red) (M–O), and

Figure 5 continued on next page
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whereas these same cells in Mus accumulate in newly deposited connective tissue (granulation

tissue).

Although alternatively activated (M2) macrophages are usually associated with pro-regenerative

outcomes, this concept remains largely untested for epimorphic regeneration (Campbell et al.,

2013; Kigerl et al., 2009; Wang et al., 2014). Using our comparative system, we tested for an asso-

ciation between CD206+ (M2) macrophages and a regenerative response. Prior to injury, CD206+

cells were spatially distributed throughout the ear in similar numbers in both species (Figure 6—fig-

ure supplement 2A–D). These cells were present in the dermis between the epidermis and elastic

cartilage of the ear (Figure 6—figure supplement 2A–D). We did not detect CD206+ cells in the

epidermis in either species. Quantifying CD206+ cells distal to the injury in Mus and Acomys, we

observed no significant difference across time (two-way ANOVA, F = 2.330, p=0.125) or between

species (two-way ANOVA, F = 1.540, p=0.23) (Figure 6C). After D3, CD206+ cell numbers remained

constant in Acomys and Mus and showed no significant change distal to the injury site (Figure 6C).

Unlike CD86+ cells that localize proximal to the injury in Acomys, CD206+ cells were observed distal

to the injury site in Acomys (and Mus) (Figure 6D and Figure 6—figure supplement 2E–H). How-

ever, the distal distribution of these cells in Acomys appeared regionalized with a CD206+ dense

region directly beneath the epidermis and a CD206+ sparse region in the central blastema region of

the injury (Figure 6D). In Mus, CD206+ cells were evenly distributed throughout the connective tis-

sue distal to the injury (Figure 6D). Together with our data for IBA-1, our results show that

while macrophages infiltrate the injury area during regeneration, the blastema is relatively free of

classically activated macrophages.

Discussion
A popular hypothesis to explain why most mammals heal injuries with scar tissue is that they evolved

a strong inflammatory and adaptive immune response that induces intense fibrosis in lieu of regener-

ation (Godwin, 2014; Mescher et al., 2017). Yet, the fact that some mammals exhibit epimorphic

regeneration (e.g. rodent and primate digit tips, rabbit and spiny mice ear punches and skin) (Bor-

gens, 1982; Gawriluk et al., 2016; Goss and Grimes, 1975; Han et al., 2008; Joseph and Dyson,

1966; Neufeld and Zhao, 1993; Seifert et al., 2012a; Singer et al., 1987) suggests that regenera-

tion can occur despite a complex adaptive immune system. Different immune system components

and inherent physiological differences between mammals and traditional regeneration models like

salamanders, newts and zebrafish (e.g. homeothermy versus poikilothermy, high versus low meta-

bolic rates, etc.) make it difficult to extrapolate how inflammation and immunity might act to affect

regeneration in mammals. There have been few studies detailing how the immune system responds

during epimorphic regeneration and thus how it compares to immune mediated fibrosis. In this

study, we have begun to address how inflammatory cells behave during complex tissue regeneration

in African spiny mice (Acomys). We identified key differences in the spatiotemporal infiltration of

inflammatory cells in regenerating and scar-forming systems and demonstrated that reactive oxygen

species (ROS) catalyzed through NADPH oxidation were significantly increased at the injury site dur-

ing regeneration. Importantly, we showed that macrophages were required for regeneration to pro-

ceed. These results support a role for inflammatory cell signals polarizing the injury response toward

two very different outcomes.

Our characterization of circulating leukocyte profiles in Acomys and Mus, demonstrate that inher-

ent differences in myeloid cell numbers do not explain intrinsic differences in regenerative ability.

This contradicts a recent report suggesting that spiny mouse blood is neutropenic and that lower

numbers of circulating neutrophils are responsible for a muted inflammatory response to injury

Figure 5 continued

CD206 (red) (P–R). Nuclei were counterstained with DAPI (grey) in all panels. Scale bars = 50 mm. Images are

representative of n = 3 technical replicates.

DOI: 10.7554/eLife.24623.011

The following figure supplement is available for figure 5:

Figure supplement 1. Immunofluorescent staining for macrophage marker F4/80 in Acomys and Mus.

DOI: 10.7554/eLife.24623.012

Simkin et al. eLife 2017;6:e24623. DOI: 10.7554/eLife.24623 13 of 26

Research article Cell Biology Developmental Biology and Stem Cells

http://dx.doi.org/10.7554/eLife.24623.011
http://dx.doi.org/10.7554/eLife.24623.012
http://dx.doi.org/10.7554/eLife.24623


(Brant et al., 2016). In fact, our immunohistochemical data comparing neutrophil infiltration in

Acomys and Mus show that while neutrophils accumulate faster during scarring, peak neutrophil

numbers are equivalent 3 days after injury in both species. In general agreement with this data, we

observed differences in the intensity of myeloperoxidase activity via luminol chemilumenscence per-

sisting until D4 after which time there was no difference across species. While neutrophil invasion in

response to injury is apparent across all regenerating vertebrates (Jordan and Speidel, 1924;

Li et al., 2012; Seifert et al., 2012b), our results suggest that precise activity levels could lead to

Figure 6. Activated CD86+ macrophages are restricted from the blastema in Acomys. (A) Immunofluorescent

staining for the cell surface marker CD86 in Acomys and Mus at specific time points after injury as a percent of

total area analyzed (n = 4 per time point; two-way ANOVA main effect time and species F = 131.8, p<0.0001,

F = 220.0, p<0.0001 *Sidak’s multiple comparison test p<0.05 at time point indicated). (B) Left panels 10x

magnification, CD86 (red), DAPI (grey). Scale bar = 100 mm. White lines delineate cartilage. Middle panel, 40x

magnification, CD86 (red), DAPI (grey). Scale bar = 20 mm. Right panel, diagram with the general overview of

CD86+ localization at D15 and delineating high-magnification area (box). (C) Immunofluorescent staining for the

cell surface marker CD206 in Acomys and Mus as a percent of total area analyzed (n = 4 per time point per

species, two-way ANOVA main effect time and species, F = 2.33, p=0.125, F = 1.54, p=0.230 respectively). (D) Left

panel magnification 10x. CD206 (red), DAPI (grey). Scale bar = 100 mm. White lines delineate cartilage. Middle

panel 20x magnification. CD206 (red), DAPI (grey). Scale bar = 50 mm. Right panel, Schematic depicting the

general trends for CD206+ cell localization in Acomys and Mus at D15. Box delineates the location of the high-

magnification images.

DOI: 10.7554/eLife.24623.013

The following figure supplements are available for figure 6:

Figure supplement 1. Immunofluorescent staining for CD86+ cells at D0, D3 and D7 post injury in Mus and

Acomys.

DOI: 10.7554/eLife.24623.014

Figure supplement 2. Immunofluorescent staining for CD206+ cells at D0, D3, D7 post injury in Mus and Acomys.

DOI: 10.7554/eLife.24623.015
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different injury outcomes. While prolonged inflammation can antagonize regeneration

(Margalit et al., 2005; Mescher et al., 2013), our data supports an initial wave of cell-based inflam-

mation as a shared feature of any injury response, including regeneration.

Along with neutrophils, monocytes also infiltrate local tissue after injury, and converging evidence

suggests that macrophages are required in some capacity for epimorphic regeneration

(Godwin et al., 2013; Petrie et al., 2014). Our results extend these vertebrate studies by demon-

strating a similar requirement during epimorphic regeneration in mammals. Acute depletion of

phagocytic monocytes with clodronate liposomes delayed the initiation of ear hole closure and blas-

tema formation by up to 2 weeks. Importantly, re-commencement of blastema formation was con-

current with the return of macrophages into the injured tissue. Examination of ear tissue at D5

revealed that phagocyte depletion delayed re-epithelialization and histolysis, two key events that

are themselves required for regeneration. It is possible that macrophages provide an initiating signal

for regeneration or remove subpopulations of local cells secreting inhibitory signals (e.g. senescent

cells). In support of the first idea, ROS production has been suggested as an essential early signal for

regeneration based on studies in Xenopus and zebrafish tail models of regeneration (Gauron et al.,

2013; Love et al., 2013). Macrophages are a major source of ROS after injury, and we observed sig-

nificantly stronger and prolonged ROS production during regeneration compared to scarring

(Weber et al., 2016). Understanding the functional consequences of balanced ROS production

through NADPH oxidation versus myeloperoxidase activity will require a more complete understand-

ing of what cell types are responsible for ROS production and how ROS more specifically can affect

local cellular phenotypes.

In support of the idea that macrophages may limit inhibitory signals through selective removal of

senescent cells, recent work in salamanders suggested that clearance of senescent cells is important

for limb regeneration (Yun et al., 2015) and persistence of senescent cells during liver regeneration

leads to excessive fibrosis (Krizhanovsky et al., 2008). Furthermore, the accumulation of senescent

cells with age has been suggested to shorten lifespan, degrade tissue function, and increase the

expression of pro-inflammatory cytokines in mammals (Baker et al., 2016, 2011). These and other

studies suggest that proper clearance of senescent cells from damaged tissues may promote regen-

erative outcomes. Interestingly, as the induction of cellular senescence occurs during normal wound

healing when a scar forms, it is possible that clearance of senescent cells is less important than the

secretory phenotype of these cells which in some contexts can promote regeneration. For instance,

short exposure to factors secreted by senescent cells in response to injury decreases fibrosis and

promotes stem cell gene expression (Chiche et al., 2017; Jun and Lau, 2010; Ritschka et al.,

2017). These studies underscore the importance of analyzing how senescent cells regulate regenera-

tion and scarring and provide evidence that the phenotype of senescent cells and their timely

removal by macrophages could be an important factor in Acomys ear regeneration.

While our data demonstrates that macrophages as a total population are required for regenera-

tion in mammals, a requirement for macrophage subtypes and how these cells interact with other

immune cells during epimorphic regeneration is not known. Because the activation of macrophages

is generally associated with collagen production and fibrotic disease (Duffield et al., 2005;

Gibbons et al., 2011; Wynn, 2008), the question remains as to how these immune cells orchestrate

both regeneration and scar-formation in different species. Previous studies suggest a temporal com-

ponent to macrophage function as a major factor for determining the outcome to skin, liver and

bone injury (Alexander et al., 2011; Arnold et al., 2007; Duffield et al., 2005; Mirza et al., 2009).

While we did not observe temporal differences in total macrophage accumulation between Acomys

and Mus in the ear pinna, we did observe distinct differences in the spatial distribution of macro-

phage subtypes. For instance, while M2 (CD206+) macrophages were present at comparable levels

in Acomys and Mus, we observed a zone dense in CD206+ macrophages in Acomys that were asso-

ciated with de novo hair follicle development and a zone sparse in CD206+ cells that were associ-

ated with an area of decreased collagen production and blastema formation. Whereas CD206+ cells

were absent from the blastema in Acomys, in Mus, we observed CD206+ cells throughout the colla-

gen-rich granulation tissue, a situation similar to fibrosis observed during skin wound repair

(Mirza and Koh, 2011; Song et al., 2000; Willenborg et al., 2012). The spatial restriction of CD206

+ cells suggests unique interactions between macrophages and surrounding cells may drive differen-

ces in a pro-regenerative or pro-fibrotic environment.
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On the other hand, it is possible that the local environment (cells and/or ECM) in regenerating

systems drives immune cell profile instead of immune cells driving injury outcomes. We noted an

accumulation of M1 macrophages (CD86+ cells) in injured Mus tissue, and the ability of CD86+ cells

to interact with CD3+ T-cells is consistent with the role of CD86 as a co-stimulatory molecule that

promotes T-cell activation and production of pro-inflammatory cytokines (Hathcock et al., 1994;

Lanier et al., 1995; Peng et al., 2013). Conversely, the Acomys blastema was mostly devoid of M1

macrophages and we did not observe CD86+/CD3+ interacting cells. This was not due to an inability

to detect M1 macrophages in Acomys, as we readily observed these cells at the boundary between

injured and uninjured tissue. Moreover, we found that Acomys macrophages up-regulated CD86 in

vitro when classically activated in response to IFNg and LPS stimulation (Ding et al., 1993;

Freedman et al., 1991). This shows that Acomys macrophages possess the intrinsic ability to

express M1 markers (e.g. CD86) in response to pro-inflammatory stimuli, but may be inhibited from

doing so within the blastema in vivo.

A recent report suggested that spiny mice regenerate skin because they lack a robust inflamma-

tory response (Brant et al., 2016). While our findings contradict their primary conclusions, careful

re-interpretation of their data supports the idea that inflammation occurs during regeneration and

scarring, and that different inflammatory cell phenotypes polarize the response to injury. Brant et al.

based their conclusions on three primary findings. First, they presented circulating leukocyte profiles

showing spiny mice with lower neutrophils and higher lymphocytes in circulation when compared to

CD1 mice and suggested this would lead to fewer neutrophils in spiny mice wounds. As we have

shown, neutrophils indeed arrive at the wound bed and numbers are not significantly different three

days post injury. Interestingly, our data for myeloperoxidase activity suggests that differences in neu-

trophil activity, rather than simple numerical differences, likely play a more important role during the

injury response. Second, they were unable to detect macrophages in spiny mice wounds using F4/80

and concluded no macrophages infiltrated regenerating skin wounds. Using a cross-species marker

for total macrophages (IBA1), we show that macrophages indeed infiltrate an injury site. More

importantly, we demonstrate that macrophages are required for regeneration. Instead, differential

infiltration of macrophage subtypes exists between regeneration and scarring. While F4/80 may be a

pan-macrophage marker in mice, studies have shown that this is not the case for humans

(Hamann et al., 2007), and it remains unclear if this is the case for other mammals. Our data shows

that F4/80 marks a subset of macrophages with pro-inflammatory characteristics in Acomys (i.e. F4/

80+ cells are increased with M1 stimulation in vitro and F4/80+ cells do not colocalize with the M2

marker, CD206, in vivo). When re-interpreted with this knowledge, their results align with our find-

ings that reduced numbers of pro-inflammatory macrophages enter the wound site during regenera-

tion or are present, but not activated toward a pro-inflammatory phenotype. Thirdly, using a

cytokine array designed against mouse antigens they detected 30 cytokines during acute inflamma-

tion (D0-D7 post injury) in Mus, but only detected 12 of these cytokines in spiny mice during the

same period. They interpreted the absence of 18 cytokines as an absence of these signals in spiny

mice wounds. However, without validation of epitopes, failure to detect particular spiny mouse cyto-

kines on a Mus-specific cytokine array does not reflect an absence of spiny mouse antigen. More-

over, of the 12 spiny mouse cytokines they did detect, 5 are classic pro-inflammatory markers (e.g.

IL-1a, IL-1ß, IL-1ra, CXCL13 and IFNg ) that were upregulated in response to injury and present at

similar levels to Mus. Thus, their spiny mouse cytokine data demonstrates strong acute inflammation

in response to injury. Although nuances between regenerating dorsal skin wounds and complex tis-

sue of the ear pinna are likely to exist, fine-tuning inflammatory responses is key to promoting scar-

free outcomes.

Of the mammalian models of epimorphic regeneration that exist, very few have investigated how

inflammatory cells affect blastema formation and regeneration. A forthcoming study on digit tip

regeneration lends support to our conclusion that macrophages are required to help initiate regen-

eration (Muneoka et al., 2017). Autoimmune-prone MRL mouse strains and their parent strain LgJ

have been promoted as a mammalian regeneration model (Clark et al., 1998). Paradoxically, while

these strains possess enhanced rates of healing, published reports across most injury models have

demonstrated that they do not regenerate (Colwell et al., 2006; Gawriluk et al., 2016;

Moseley et al., 2011; Smiley et al., 2014). Studies have documented that the healing response of

the MRL mouse differs depending upon the type of injury, be it the ear pinna or other tissues

(Beare et al., 2006; Colwell et al., 2006; Davis et al., 2007; Kench et al., 1999; Rajnoch et al.,
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2003; Tolba et al., 2010). In the ear specifically, although 2 mm biopsy punches close and form new

cartilage nodules (Clark et al., 1998), larger holes and a 2 mm crush injury heal with excessive colla-

gen deposition producing a scar (Gawriluk et al., 2016; Rajnoch et al., 2003). In our view, the use

of MRL strains as purported regeneration models has obscured their potential utility for studying

inflammation and fibrosis. Of interest, MRL mice have been extensively studied for their aberrant

macrophage profiles (Dang-Vu et al., 1987; Donnelly et al., 1990; Santoro et al., 1988). Bone mar-

row and peritoneal macrophages proliferate without CSF stimulation (Hamilton et al., 1998), a rare

observation among other strains of mice, and accumulation of macrophages is commonly observed

in MRL tissues (Bloom et al., 1993; Davis and Lennon, 2005; Yui et al., 1991). Macrophages in

strains of MRL mice show higher production of H2O2 suggesting higher pro-inflammatory activity

(Dang-Vu et al., 1987) and show increased expression of Tgfb1, a growth factor implicated during

increased fibrosis (reviewed in Border and Noble, 1994; Kench et al., 1999). Thus, MRL macro-

phages and their response to injury are unique in many respects. A detailed study of the immune

response in MRL mice could instruct how inflammation guides fibrotic repair based on intrinsic and

environmental tissue differences.

Macrophage phenotypes change based on environmental cues (Stout et al., 2005) and macro-

phages that infiltrate injured tissue exhibit temporal changes in gene and protein expression

(Arnold et al., 2007; Varga et al., 2016). In addition, cancer and mesenchymal stem cells (MSCs)

can drive macrophage phenotypes dampening the production of pro-inflammatory cytokines

(reviewed in Gao et al., 2016). These observations underscore the fluid nature of macrophage phe-

notypes in response to injury and disease and support a model where different subtypes differen-

tially affect healing outcomes. Although further work is needed to clarify macrophage activation

phenotypes during regeneration, our results support the initial inflammatory environment as a

potential source of pro-regenerative signals. Future studies in spiny mice will need to determine how

specific immune cell types signal to local cells, whether macrophages induce change in the ECM and

if these cells can be manipulated in a non-regenerative system. Future studies into the role of spe-

cific macrophage and other immune cell phenotypes will resolve the role of these cells in scar forma-

tion and regeneration.

Materials and methods

Animal care, 4 mm ear punch and tissue collection
Acomys cahirinus and Mus musculus (Swiss Webster Envigro_Harlan Hsd:ND4) were housed at the

University of Kentucky, Lexington, KY. A. cahirinus were housed at a density of 10–15 individuals in

metal wire cages (24 in. x 18 in. x 16 in., height x width x depth) (Quality Cage Company, Portland,

OR) and fed a 3:1 mixture by volume of 14% protein mouse chow (Teklad Global 2014, Harlan Labo-

ratories, Indianapolis, IN) and black-oil sunflower seeds (Pennington Seed Inc., Madison, GA) 1x/day

(Haughton et al., 2016). Mus were fed mouse chow only. Acomys and Mus mice were exposed to

natural light, and all animals used were sexually mature. Experiments used a combination of male

and female animals matched between species. For ear punch, animals were anesthetized with 3%

vaporized isoflurane (v/v) (Henry Schein Animal Health, Dublin, OH) at 1 psi oxygen flow rate. A 4

mm biopsy punch (Sklar Instruments, West Chester, PA) was used to create a through-and-through

hole in the center of the right and left ear pinna. Ear tissue was collected at specified time points

with an 8 mm biopsy punch (Sklar Instruments, West Chester, PA) circumscribing the original injury.

All animal procedures were approved by the University of Kentucky Institutional Animal Care and

Use Committee (IACUC) under protocol 2013–1119.

Flow cytometry
Healing ear tissue was harvested as outline above at D0, 1, 3, 5, 7, 10 and 15. To create a single-cell

suspension, both ears were combined into one tube for each animal, and we used enzymatic and

mechanical digestion as previously described with modifications (Jensen et al., 2010). Briefly, tissue

was digested with a 1:1 trypsin, dispase solution for 1 hr at 37˚C allowing for subsequent mechanical

separation of the epidermis. Separated epidermis and dermis were incubated with a solution of col-

lagenase (1 mg/mL, VWR RLMB120-0100), hyaluronidase (0.5 mg/mL, VWR IC1512780), and elastase

(0.015 U/mL, VWR IB1753-MC) in HBSS (VWR 45000–456) for 1 hr at 37˚C. Following digestion, cell
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suspensions were washed with PBS and filtered through a 70 mm cell strainer. Single-cell suspensions

were incubated with an FcgR block (CD16/32 block, 20 mg/mL, BD Pharmingen Cat# 553141) fol-

lowed by incubation with directly conjugated primary antibodies at 4˚C for 1 hr. Antibodies included

APC-conjugated Ly6G (BD Pharmingen Cat# 580599, 3 mg/mL), PE-conjugated CD11b (BD Pharmin-

gen, Cat# 557397, 3 mg/mL), diluted in FBS-staining buffer (BD Pharmingen, Cat# 554656). Fluores-

cent-activated cell sorting (FACS) was carried out by trained experts in the University of Kentucky

Flow Cytometry Core using the iCyt Synergy sorter system (Sony Biotechnology Inc., San Jose, CA).

Laser calibration and compensation was performed for each experiment using unstained, single fluo-

rescent, and fluorescent minus one (FMO) control samples. Dot plots were created using FloJo (ver-

sion 10) (n = 4 animals per timepoint).

Analysis of circulating leukocytes
Blood was collected from the submandibular venous bed of age and gender matched Acomys

(n = 8) and Mus (n = 4). Individuals were anesthetized with 4% (v/v) isoflurane and gently scruffed so

that the skin covering the submandibular venous bed was taut. A 5 mm lancet (Medipont Inc., Mine-

ola, NY) was inserted quickly into the venous bed and one drop of blood was collected per slide,

with a total of 3 drops per animal. Slides were allowed to air dry and were prepared for a Sudan

Black B modified Giemsa-Wright staining as described by (Sheehan and Storey, 1947) using formal-

dehyde vapor fixation for 10 min. Slides were incubated for 1 hr in a filtered Sudan Black B (3 mg/

mL, Sigma Aldrich, St. Louis, MO) disodium hydrogen phosphate solution. Slides were incubated

with Giemsa-Wright (Sigma Aldrich, St. Louis, MO) stain followed by a 1 min wash in 0.5% acetic

acid. Slides were allowed to air dry and coverslipped with CytoSeal XYL. Images were collected on

an Olympus BX51 upright microscope at 40x magnification. Ten fields of view were acquired per

slide for an average 9224 total cells per animal and an average 42 total white blood cells per animal.

White blood cells were hand counted based on granular staining and nuclear morphology. Cell sub-

type is reported as a percent of total WBC per animal (n = 4 Mus, n = 8 Acomys).

Intra-vital ROS measurements
On the days indicated, animals with 4 mm wounds were anesthetized using 2.5% (v/v) isoflurane and

injected I.P. with lucigenin (5 mg/kg in PBS; M8010 Sigma-Aldrich, St. Louis, MO) or luminol (100

mg/kg in PBS; A4685 Sigma-Aldrich). After approximately 10 min of incubation, the animals were

imaged with a chemiluminescent, in vivo imaging-system (IVIS 200 Spectrum; Perkin Elmer, Waltham,

MA). We determined that the peak activity occurs within 20 min post injection, and thus, measured

luminescence during the first 25 min post injection. We acquired 15 images with a 60 s exposure,

f-stop equal to 1, binning factor equal to 8, and a 21.6 cm field of view. To analyze the radiance

emitted from the wounds, a circular region of interest with a diameter of 6 mm was placed around

each ear wound and the total flux in the regions was measured. The maximum value for each wound

over the 15 images was used for subsequent analyses.

Histology and immunohistochemistry
Harvested tissue was placed into 10% (v/v) neutral buffered formalin (American Master Tech Scien-

tific Inc., Lodi, CA) and incubated at 4˚C overnight. Tissue was washed three times with PBS, three

times with 70% (v/v) ethanol and stored at 4˚C in 70% (v/v) ethanol. All tissue processings were com-

pleted using a rapid microwave histoprocessor (Micron Instruments, Inc. Carlsbad, CA). Tissues were

embedded in paraffin (Leica Biosystems, Buffalo Grove, IL) and 5-mm sections were placed onto

Superfrost Plus slides (Fisher Scientific). Immunohistochemical and H & E staining were performed

on deparaffinized and rehydrated sections. Immunohistochemical staining for rabbit anti-human

MPO (Dako, Cat #A0398) was carried out as previously described (Gawriluk et al., 2016) using

heat-mediated antigen retrieval in a Tris-EDTA buffer at pH9.0. For, secondary detection of the pri-

mary antibody, we used biotin-conjugated goat anti-rabbit antibody followed by HRP-conjugated

streptavidin for 3,3’-diaminobenzidine conversion according to Vector Elite ABC staining kit (Vector,

Burlingame, CA). Nuclei were counterstained with Mayer’s hematoxylin for brightfield visualization

and coverslips mounted with Cytoseal XYL (ThermoFischer, Waltham, MA).

Immunofluorescent staining was performed on flash frozen tissue collected in Tissue-Tek OCT

(Sakura, Torrance, CA) and frozen on dry ice. 8 mm sections were collected on a Leica CM1900
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cryostat at 20˚C. Tissue was subsequently fixed to slides with ice-cold acetone for 15 min and

washed in PBS. Slides were incubated with primary antibodies overnight: rat anti-mouse CD86

(1:100, BD Biosciences, Cat #553698), goat anti-mouse CD206 (1:1000, R and D Systems, Cat

#AF2535), rabbit anti-human CD3 (1:400, Dako, Cat #A0452), rabbit anti-mouse IBA1

(Wako, Cat #019–19741). Secondary detection of antibodies was carried out using donkey antibod-

ies conjugated to Alexa Fluor 488, 594 (1:500, Invitrogen, Carlsbad, CA) Nuclei were counterstained

with 10 mg/ml DAPI and coverslips were mounted using ProLong Gold mounting medium (Invitro-

gen, Carlsbad, CA) for fluorescence.

To quantify the total area of positive signal for fluorescent images, three photomicrographs within

the center of the injury were obtained at 40x magnification using an Olympus BX53 fluorescent

deconvolution microscope (Olympus America Inc). Quantification of positive signal was performed

on four separate samples (one ear per animal) per time point (unless otherwise noted) by threshold-

ing fluorescent signal and mask subsampling with Metamorph Imaging software (Molecular Devices,

Sunnyvale, CA). The ratio of total immuno-positive area per total area of the region of interest was

then calculated. To quantify total number of DAB-positive cells, two photomicrographs within the

center of the injury were obtained at 20x magnification using an Olympus BX53 microscope. Counts

were calculated using the Cell Counter plugin for ImageJ (version 1.51d). Cells included in counts

were based on both nuclear morphology and immuno-positive staining. Total positive cells were

reported as a percent of total area (pixels) in a region of interest that excluded scab, epidermis, and

cartilage plate. The ID of the samples being run was blinded from the user until the end of the

analysis.

In vitro macrophage analysis
Macrophage progenitors were isolated from femur and tibia of Acomys and Mus. After sacrifice,

femur and tibia were surgically removed, and mechanically cleared of all skin, muscle and tendon.

Marrow was aspirated from bones by flushing the marrow with 10 mL of RPMI +10% FBS through a

28 gauge syringe. Red blood cells were lysed with a hypotonic solution and remaining cells were

plated at a density of 1 � 106 cells/mL in T-75 culture flasks. For the first 7 days, bone marrow cells

were grown in complete RPMI media supplemented with 20% L929 media containing M-CSF, 10%

FBS, 1% PenStrep. After 7 days in culture, BMDM were split using cold PBS and a cell scraper,

plated onto coverslips in 24-well plates at a density of 5 � 105 cells/mL and allowed to settle for 24

hr in complete RPMI media supplemented with 10% FBS and 1% PenStrep. For macrophage activa-

tion, cells were stimulated with either 500 mL of IFNg (20 pg/mL) and LPS (200 ng/mL) in cRPMI

media 10% FBS or 500 uL of IL-4 (20 ng/mL) in cRPMI media 10% FBS. 24 hr after activation, media

was removed, cells washed once with cold PBS and fixed with 10% neutral buffered formalin for 10

min at room temperature. After three washes with PBS to remove excess formalin, cells were per-

meabilized with 1% Triton x100 in PBS for 10 min. Immunocytochemistry was performed by first

blocking non-specific binding sites using 5% goat serum in PBS block. Cells were washed once with

PBS and incubated with primary antibody overnight at 4˚C. Primary antibodies include rabbit anti

mouse Arginase 1 (1:500 GeneTex, Cat #113131), goat anti mouse CD206 (1:1000, R and D Systems,

Cat #AF2535), rat anti-mouse CD86 (1:100, BD Biosciences, Cat #553689), rat anti-mouse Cd11b

(1:500, Abd Serotec, Cat #MCA74G), rabbit anti-mouse IBA1 (1:1000, Wako, Cat #019–19741), rat

anti-mouse F4/80 (1:400, clone BM8, eBiosciences, Cat #14-4801-82). Detection of primary antibod-

ies was accomplished by incubating cells with secondary antibody conjugated to Alexa Fluor fluoro-

phores (1:1000, Invitrogen, Carlsbad, CA) as follows: Donkey anti-Goat AF546, Goat anti-Chicken

AF488, Donkey anti-Rat 488, and Donkey anti-Rabbit 546. Cell nuclei were counterstained with DAPI

and after air-drying, coverslips were mounted to slides using ImmunoMount (Invitrogen, Carlsbad,

CA).

Clodronate-liposome injections
Following previously reported protocols (Barrera et al., 2000; Li et al., 2013; van Rooijen and Hen-

drikx, 2010), we inject 20 mL of 50 mg/mL clodronate liposomes- or PBS liposomes (www.clodro-

nate-liposomes.org, (van Rooijen and Hendrikx, 2010)) as vehicle control. Injections were

performed using a Hamilton syringe (Hamilton Company, Reno Nevada) at the base of each ear at

D0, 2 and 5 after injury. Tissue was collected at D5 (n = 3 Acomys/treatment) and D20 (n = 4
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Acomys/treatment) for immunohistochemical and histological examination. Ear hole closure was

measured over time using a digital micrometer (n = 6 Acomys, 12 ears per treatment).

Statistics
For analyzing immuno-positive cells, observations within the same mouse were averaged so analysis

could be on the level of the experimental unit. For each marker, we analyzed the percentage of

immune-positive signal as a fraction of total DAPI positive area using a two-way ANOVA with spe-

cies, day and the species*day interaction). When noted, Sidak’s or Tukey’s multiple comparison tests

were conducted where appropriate using Prism 6 Data analysis software (Graphpad Software Inc, La

Jolla, CA). Sample size was determined by calculating power from previous immunohistochemical

studies. These calculations show with appropriate transformation of percentages and a standard

deviation of 0.07, groups of n = 4 animals should be sufficient to detect a species effect with a size

of 0.16395 with 80% power and alpha = 0.05. To calculate sample size for repeated measures, we

used previous wounding studies to determine maximum standard deviation of 2.21. These tests

show groups of n = 5 animals, 10 ears should be sufficient to detect a treatment effect of 2.77 with

80% power and alpha = 0.05. To analyze the chemiluminescent data, we performed a repeated-mea-

sure, two-way ANOVA with time and species as main effects and Sidak’s post-hoc tests to compare

the species x time effect. Graphs were created using Prism and annotated in Illustrator (Adobe Crea-

tive Suite 6, San Jose, CA). Graphs display standard error of mean (S.E.M.) with statistical signifi-

cance values indicated in figure legends. Sample size (n) is stated in each figure legend and refers to

biological replication size (n = number of distinct animals) with the exception of in vitro studies in

which n = number of technical replicates for BMDM activation.
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