
*For correspondence: stephan.

geuter@colorado.edu

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 17

Received: 19 January 2017

Accepted: 18 May 2017

Published: 19 May 2017

Reviewing editor: Heidi

Johansen-Berg, University of

Oxford, United Kingdom

Copyright Geuter et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Functional dissociation of stimulus
intensity encoding and predictive coding
of pain in the insula
Stephan Geuter1,2,3*, Sabrina Boll1,4, Falk Eippert5, Christian Büchel1
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Abstract The computational principles by which the brain creates a painful experience from

nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus

intensity or additive effects of intensity and expectations, respectively. By contrast, predictive

coding theories provide a unified framework explaining how perception is shaped by the

integration of beliefs about the world with mismatches resulting from the comparison of these

beliefs against sensory input. Using functional magnetic resonance imaging during a probabilistic

heat pain paradigm, we investigated which computations underlie pain perception. Skin

conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the

response patterns hypothesized by the predictive coding model, whereas posterior insula encoded

stimulus intensity. This novel functional dissociation of pain processing within the insula together

with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain

processing as disturbed weighting of predictions and prediction errors.

DOI: 10.7554/eLife.24770.001

Introduction
Classic bottom-up views construe perception as a feedforward stream of sensory information that is

passed along the neural hierarchy from receptors to high-level brain regions (Hubel and Wiesel,

1959). Accordingly, neurons are thought of as feature detectors and cortical responses to sensory

stimuli are expected to scale with the presence of stimulus features, that is, activity in pain process-

ing brain regions should reflect the activation level of nociceptors. This basic account has been

extended by a wealth of findings demonstrating that top-down expectations play an important role

in modulating both the pain experience and the activity in pain processing brain regions

(Sawamoto et al., 2000; Koyama et al., 2005; Lorenz et al., 2005; Brown et al., 2008;

Atlas et al., 2010; Bingel et al., 2011; Wiech et al., 2014b). Other neuroimaging studies have

shown that stimulus-response functions differ between brain regions (Davis et al., 1998;

Coghill et al., 1999; Apkarian et al., 2001; Bornhövd et al., 2002; Davis et al., 2002; Porro et al.,

2004) and that brain activation is modulated by concurrent task demands (Bantick et al., 2002;

Valet et al., 2004; Wiech et al., 2005; Seminowicz and Davis, 2007; Villemure and Bushnell,

2009).

However, these theories cannot explain the reduction in sensory cortical activity for expected

compared to unexpected stimuli (Alink et al., 2010; Egner et al., 2010; Todorovic et al., 2011;
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Kok et al., 2012). In contrast, theories of Bayesian perceptual decision making, as formalized in pre-

dictive coding models (Knill and Pouget, 2004; Friston, 2005; Summerfield and de Lange, 2014),

can explain such expectation suppression effects. Their proposal is that perception arises from the

integration of sensory input with predictions about upcoming stimuli continuously generated by an

internal model. More formally, the percept is determined by the posterior probability as computed

by Bayes’ theorem from the predictions (prior) and the sensory input (likelihood of a given stimulus).

Within this framework, measurements of brain activity are composed of the activity of two distinct

neuronal populations – one population encoding the expected stimulus based on an internal model

of the world (prediction) and one population encoding the mismatch between sensory input and the

prediction (prediction error; PE) (Rao and Ballard, 1999; Friston, 2005).

A direct hypothesis derived from this framework is that sensory brain responses should be

reduced when the brain’s prediction was accurate. In this situation, the resulting PE is small and

regional brain activation is lower for accurate than for inaccurate predictions. This has been observed

for primary visual cortex (Alink et al., 2010; Kok et al., 2012), early auditory electrophysiological

responses (Todorovic et al., 2011), and the fusiform face area (Summerfield et al., 2008;

den Ouden et al., 2010; Egner et al., 2010). The organization of cortical pain processing differs

from other sensory modalities in that many cortical pain processing areas receive direct thalamic

input and thus avoid a clear hierarchical organization (Craig, 2002; Dum et al., 2009). It is therefore

unclear whether the same computational principles apply to pain as well. If pain processing is also

based on predictive coding principles, this framework would offer an elegant and general computa-

tional mechanisms of perception across modalities (Wiech, 2016) and could help explain several

expectation-related effects, including placebo effects (Petrovic et al., 2010; Büchel et al., 2014;

Tabor et al., 2017).

In order to arbitrate between possible mechanisms underlying pain perception, we used a proba-

bilistic heat pain task to formally compare a predictive coding model against a stimulus intensity

model and a stimulus plus expectation model, respectively (Figure 1A–C). Three different visual

cues manipulated expectations about an upcoming cutaneous heat stimulus (Figure 1D). Each cue

eLife digest All over the human body, there are receptors that help to alert the brain to

potential harm. For example, intense heat on the skin elicits a signal that travels to the brain and

activates many parts of the brain. Some of the same brain regions that are switched on by signals of

potential bodily harm also help the brain to form expectations about events. A person’s

expectations may have a strong influence on how they experience pain. For example, if a person

expects that taking a pill will reduce their pain, they may feel less pain even if the pill is a fake.

Exactly how the brain processes pain signals and expectations remains unclear. Does the brain

activity simply reflect how intense the heat is? Some scientists think there may be two separate

processes going on: one that predicts what will happen and another that calculates the difference

between the prediction and what the receptors actually detect. This difference is called a prediction

error. If every unpredicted sensory signal elicits a calculation of the prediction error that would help

improve the brain’s future predictions.

Now, Geuter et al. show that the predictions are a key part of how the brain perceives pain

induced by heat. In the experiments, 28 people had heat applied to skin on their forearm at

temperatures that were either noticeable but not painful or painful. Their brain activity was recorded

using functional magnetic resonance imaging (fMRI), and measurements were taken of the pupils in

their eyes and their skin’s response to heat. The fMRI scans showed that activity in the back part of a

brain region called the insular cortex reflects the intensity of the heat that is applied to the person’s

arm, while the front part of the same region signals pain predictions and the prediction error.

This suggests that scientists are correct that pain predictions and prediction error calculations are

an integral part of the pain response. More studies are needed to determine if these brain processes

might contribute to chronic pain and whether a similar process occurs in response to other types of

unpleasant experiences.

DOI: 10.7554/eLife.24770.002
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was associated with a different probability of receiving painful or non-painful heat on the forearm

(25, 50, or 75% chance of receiving pain and referred to as low, medium, and high cue, respectively;

Figure 1E). Using functional magnetic resonance imaging (fMRI) in combination with model-based

analyses in this task, we quantified evidence for all models in skin conductance responses (SCR),

pupil diameter, and across the brain.

Results
According to the predictive coding model (Egner et al., 2010; Büchel et al., 2014), responses to

cutaneous heat are the weighted sum of the prediction and the PE (Figure 1C). Under this frame-

work, pain-processing regions will increase their activity with increasing probability of pain. Further-

more, they will also signal a PE if the stimulation is more painful than expected, but are not

expected to show a PE for warm stimulation (Figure 1C). This pain PE is motivated by previous work

(Egner et al., 2010; Büchel et al., 2014; Summerfield and de Lange, 2014), by the observation

that PE for warm stimuli have topographies distinct from PE for pain (Ploghaus et al., 2000;

Zeidan et al., 2015), and findings suggesting that reward and aversive PE are encoded by different

neuronal populations (Yacubian et al., 2006; Belova et al., 2007; Seymour et al., 2007; Fio-

rillo, 2013). In addition to the pain PE, we later consider models using absolute and signed PEs,

respectively (see Comparing different PE types).

Figure 1. Hypotheses and design. (A) The stimulus intensity coding model is insensitive to predictive cues and

postulates only a main effect of temperature. (B) Expectation may have an additive effect on brain responses in

that a higher expectation of receiving pain results increased pain and increased physiological responses. (C) The

predictive coding model has two components; prediction and prediction error (PE). Pain processing regions

increase activity with increasing predictions of pain (from low to high pain probability). If the stimulus is painful, a

PE signaling the difference between sensory input and the prediction occurs. In accordance with previous studies,

we modeled the error for warm stimuli as zero (see Materials and methods, Results). The hypothesized predictive

coding response is a weighted sum of the two components. The model has two free weight parameters; both are

required to be positive. Solid lines represent equal weighting, while dashed lines represent a higher weighting for

the PE. (D) Subjects saw a central fixation dot during a 12 s inter-trial-interval (ITI). A cue indicating the probability

of a painful stimulus in the current trial appeared 300 ms before the heat stimulus started. Duration of heat

stimulation was 1.5 s during which the cue was still visible. After a variable delay of 3–5 s, a rating screen appeared

for 2 s and subjects reported whether the last stimulus had been painful or not. The fixation dot changed its color

in 12.5% of the trials and participants responded to this change with a button press. (E) Cues predicted pain with

25, 50, or 75% probability and were counterbalanced across subjects.

DOI: 10.7554/eLife.24770.003
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Alternatively, pain-processing regions could simply encode stimulus intensity (Figure 1A) or an

additive combination of intensity and expectation (Figure 1B). Each model makes different predic-

tions about the measured response profiles within the present paradigm, which we tested both in an

analysis of variance (ANOVA) framework and using formal Bayesian model comparison.

Behavioral results
Before comparing the different models against each other, we verified that the two stimuli were

clearly distinguishable. Pain ratings obtained after each run showed that the 28 participants distin-

guished between the two stimulus intensities (t(27) = 20.9; p<0.001), that intensity ratings were close

to the calibrated intensities of 30 and 75, respectively (mean warm: 29.0 ± 9.1 std.; mean pain:

75.0 ± 10.3 std.), and that warm stimuli were not perceived as painful (Figure 2A). Trial-by-trial rat-

ings classifying stimuli as either painful or non-painful matched the stimulus intensity with 94.3%

accuracy, further supporting the qualitative difference between the two stimuli. Target reaction

times to color changes of the fixation dot did also not differ between two stimulus intensities (warm

520.3 ± 94 ms; pain 516.1 ± 104.8 ms; t(27)=0.51; p=0.61; Figure 2B), suggesting a similar attention

allocation for both stimulation intensities.

Skin conductance and pupil responses
From an ANOVA perspective, the stimulus intensity model predicts a main effect of stimulus,

whereas the stimulus plus expectation model predicts an additional main effect of cue (Figure 1A,

B). By contrast, the summation of predictions and PE in the predictive coding model should result in

a cue � stimulus interaction (Figure 1C). We thus computed ANOVA’s for SCR, pupil dilation and

Figure 2. Behavioral and physiological results. (A) Intensity ratings reported at the end of each block for warm

and painful stimuli, respectively. Intensity ratings were significantly higher for pain stimuli (t(27) = 20.9; p<0.001)

and correspond well to the stimulation levels chosen during calibration (30 and 75). ‘Pain threshold’ was marked at

the center (50) of the visual analogue scale (VAS) used for these ratings. Error bars in all plots show the standard

error of the mean. (B) Target reaction time did not differ between stimulation intensities (t(27)=0.51; p=0.61). (C)

Skin conductance responses (SCR) for pain (red) and warm (blue) stimuli. SCR responses reflect the pattern

hypothesized by the predictive coding model. (D) Pupil dilation amplitudes shows the same response pattern as

SCR, also supporting the predictive coding model. (E) Evoked skin conductance responses (SCR) for warm (blue)

and painful (red) stimuli are plotted for each condition and followed the rank order hypothesized by the predictive

coding model. (F) Pupil diameter responses plotted using the same groupings as in (D). SCR and pupil traces are

aligned to cue onset at 0 s, stimulus onset is at 300 ms (unlabeled tick mark), and shaded areas indicate standard

errors.

DOI: 10.7554/eLife.24770.004
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brain data before conducting formal model comparisons. Peak amplitudes of both SCR and pupil

dilation showed the expected interaction effect (SCR: F(2,40)=27.7; p<0.001; pupil: F(2,38)= 9.5;

p<0.001). Responses of both measures increased with higher probability for pain when the stimulus

Figure 3. Parameter estimates for regions of interest. (A) Mean parameter estimates (± standard error) are plotted for left (L) and right (R) hemispheres

in each panel, except for the midline structure PAG. Blue indicates warm stimuli, red indicates painful stimuli. Cues are on the x-axis, with ‘l’

designating low, ‘m’ designating medium, and ‘h’ designating high probability of pain. PAG = periaqueductal gray. (B) Pattern expression for the

neurological pain signature (NPS; Wager et al., 2013). *interaction effect significant FDR corrected q < 0.05. #interaction: p<0.05, uncorrected.

DOI: 10.7554/eLife.24770.005

Table 1. ANOVA results for brain ROI and NPS.

Stimulus Cue Cue X stimulus

Region F(1,27) P F(2,54) P F(2,54) P

ACC L 13.93 0.0009* 1.21 0.3053 1.23 0.3017

R 15.99 0.0004* 0.95 0.3923 1.11 0.3372

anterior insula L 8.3 0.0077* 0.41 0.6651 5.46 0.0069*

R 9.69 0.0043* 1.58 0.2155 7.48 0.0014*

posterior insula L 15.73 0.0005* 0.28 0.7538 1.58 0.2145

R 12.12 0.0017* 0.15 0.8637 0.09 0.9111

parietal operculum L 18.3 0.0002* 1.2 0.3089 0.02 0.9779

R 23.35 <0.0001* 0.17 0.8408 0.72 0.4918

post central gyrus L 6.14 0.0198 1.1 0.3409 0.18 0.839

R 2.57 0.1206 0.18 0.8387 0.41 0.6675

amygdala L 0.1 0.7506 0.1 0.9046 4.94 0.0107

R 0.83 0.369 0.51 0.6033 5.39 0.0074*

thalamus L 8 0.0087* 0.39 0.6761 1.4 0.2545

R 7.6 0.0104* 1.32 0.275 2.62 0.0823

PAG 0.02 0.9027 1.02 0.3675 4.34 0.0178

NPS 47.73 <0.0001* 0.14 0.8708 2.18 0.1228

ACC: anterior cingulate cortex, PAG: periaqueductal gray, NPS: neurological pain signature.

*FDR q<0.05.

DOI: 10.7554/eLife.24770.006
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was non-painful, but responses were lower expected pain compared to unexpected pain (Figure 2C,

D). This response profile mirrors the profile hypothesized by the predictive coding model

(Figure 1C). Plotting the grand means of the evoked SCR and pupil responses confirmed the rank-

order of conditions observed in the peak amplitude analyses (Figure 2E,F).

In addition to the interaction effects, the main effect of stimulus was also significant for SCR (F

(1,20)=7.5; p=0.012) and pupil dilation (F(1,19)=32.5; p<0.001). In both cases the overall response

was stronger for the painful than for the non-painful stimuli (Figure 2C,D). The main effect of cue

was also significant for the SCR (F(2,40)=4.6; p=0.015), but was not significant for the pupil dilation

(F(2,38)=2.7; p=0.078). Hence, the ANOVA results are compatible with both the predictive coding

and stimulus intensity model, while the SCR cue effect is also predicted by the stimulus plus expecta-

tion model. However, a post-hoc t-test comparing SCRs to painful and warm stimuli following a high

cue did not reveal the difference proposed by the stimulus plus expectation model (t(20)=1.54;

p=0.14; Figures 1B and 2C).

Region of interest results
We next computed ANOVA’s on brain activity extracted from anatomically defined a priori regions

of interest (ROI). Among those ROIs, bilateral anterior insula (left: F(2,58)=5.5; p=0.007; right: F

(2,58)= 7.5; p=0.001) and right amygdala (F(2,58)=5.4; p=0.007) showed the expected cue � stimu-

lus interaction (Figure 3A, Table 1). Importantly, the response pattern matched the pattern

expected by the predictive coding model, that is, responses in anterior insula and amygdala

increased with pain expectation for warm stimuli and decreased for pain stimuli. Furthermore, all

regions except for the postcentral gyrus, amygdala and PAG showed a significant main effect of

stimulus (Table 1), but no ROI showed a significant main effect of cue.

Although the above ROIs are associated with pain processing, a recently developed multivariate

pattern, termed neurological pain signature (NPS; Wager et al., 2013), provides a more specific and

sensitive estimate of heat pain intensity (Wager et al., 2013; Krishnan et al., 2016). We thus com-

puted an ANOVA on the pattern expression values as indicators of overall pain intensity for the NPS

(Figure 3B). Stimulus intensity had an effect on NPS expression (F(1,27)=47.7; p<0.001), but neither

cue nor the interaction were significant (both p>0.12; Table 1). Since NPS responses are strongly

correlated with experimental heat pain reports (Wager et al., 2013; Krishnan et al., 2016), they can

potentially serve as an indicator of trial-by-trial pain reports in this context to test for effects of cor-

rect predictions on pain reports. A post-hoc t-test revealed that unexpected pain tended to elicit

stronger responses than expected pain (t(27)=2.2; p=0.036).

Voxel-wise statistical maps
In order to test for the proposed effects in brain regions outside of the a priori defined ROIs, we

computed a whole brain analysis for the effects of stimulus (pain > warm), effects of cue (cue high >

cue low), and for the interaction contrast ((cue high, warm) > (cue low, warm)) > ((cue high, pain) >

Figure 4. Whole brain results. (A) A main effect of stimulus was observed in pain processing regions including insula, parietal operculum, and

midcingulate cortex. (B) Anterior insula showed a significant interaction between cue and stimulus. Maps are displayed at p<0.05, whole brain FWE

corrected using nonparametric permutation testing resulting in pseudo-t maps.

DOI: 10.7554/eLife.24770.007
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(cue low, pain)). The stimulus intensity contrast revealed activations in classical pain processing areas,

including posterior and mid-insula, secondary somatosensory cortex, parietal operculum, and mid-

cingulate cortex (Figure 4A). A cue � stimulus interaction was observed again in left (peak MNI

coordinates: x=�30, y = 24, z=-4) and right (x = 46, y = 20, z=�8) anterior insula (Figure 4B). No

other brain region showed the interaction effect at a family wise error rate of p<0.05. Testing for the

main effect of cue did not reveal any significant voxels.

Formal model comparisons
After observing that the response profiles of SCR, pupil, bilateral anterior insula, and right amygdala

were as expected by a concurrent representation of predictions and PE, we conducted formal model

comparisons using Bayes factors (BF) (Kass and Raftery, 1995; Rouder and Morey, 2012) to iden-

tify the best explanatory model. Bayes factors are computed as the ratio of marginal likelihoods of

the data under each of two models and thus quantify the evidence for one model over the other

given the data. This metric thus allows the identification of the best model while implicitly controlling

for the number of free parameters. Following Kass and Raftery (1995), we consider log-BF >3 as

strong evidence for the predictive coding model and values of log-BF < �3 as strong evidence for

the alternative model.

Figure 5. Formal model comparison. (A) log-BF comparing the predictive coding model against the stimulus

intensity model for SCR, pupil, NPS, and ROIs. SCR, pupil and right anterior insula show strong evidence for

predictive coding (log-BF >3), while NPS and posterior insula favor the stimulus intensity model (log-BF < �3). (B)

log-BF comparing the predictive coding model against the stimulus plus expectation model. Results are similar to

(A), but evidence for the stimulus plus expectation model is weaker. (C) Voxel-wise log-BF comparing the

predictive coding model against the stimulus intensity model and in (D) against the stimulus plus expectation

model. Maps are thresholded at |log-BF|>3. Warm colors indicate support for the predictive coding model, cold

colors indicate support for the alternative model. Surface projections of unthresholded log-BF insula maps reveal

an anterior-posterior gradient. AI, anterior insula; PI, posterior insula; PO, parietal operculum; PCG, post-central

gyrus; ACC, anterior cingulate cortex; amy, amygdala; thal, thalamus; PAG, periaqueductal gray.

DOI: 10.7554/eLife.24770.008
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Comparing the predictive coding model against the stimulus intensity model revealed strong evi-

dence in favor of the predictive coding model for both SCR and pupil responses (log-BFSCR = 6.65;

log-BFpupil = 6.75; Figure 5A). Comparing it against the stimulus plus expectation model revealed

similarly decisive evidence in favor of the predictive coding model (log-BFSCR = 8.05; log-BFpu-

pil = 6.09; Figure 5B). These log-BF values indicate that the predictive coding model was at least

400 times more likely than each of the two alternatives.

In contrast, NPS expression was better explained by the stimulus intensity model compared to

the predictive coding model (log-BF = �3.98), mirroring the previously observed main effect of stim-

ulus (Figure 5A). Computing log-BF’s for the individual ROIs confirmed the results of the ANOVA

interaction tests in that the anterior insula showed strong evidence for the predictive coding model

compared to the two alternative models (Figure 5). Generally, the right hemisphere yielded a clearer

picture in terms of model evidence, potentially because of stronger signal in the hemisphere contra-

lateral to the heat stimulation on the left arm. For example, evidence for the predictive coding

model against the stimulus intensity model in the left anterior insula ROI was below threshold, while

the evidence was above threshold for the right anterior insula (Figure 5A,B). Interestingly, the right

parietal operculum ROI showed strong evidence for the stimulus intensity model (log-BF = �3.02;

Figure 5A).

Comparing the stimulus intensity against the stimulus plus expectation model did not reveal deci-

sive evidence for one over the other model on the ROI level. Although no comparison reached the

threshold of |log-BF|>3, all ROIs and physiological measures weakly supported the simpler, stimulus

intensity model (log-BF range: 0.12–2.16).

In order to obtain a spatially more detailed picture of the computational processes of pain proc-

essing across the brain, we computed voxel-wise log-BF’s comparing the predictive coding model

against the stimulus intensity model and the stimulus plus expectation model, respectively. Again,

responses in bilateral anterior insula strongly supported the predictive coding model (Figure 5C,D).

Within the posterior insula and parietal operculum, this more fine-grained analyses revealed bilateral

evidence for the simpler, stimulus-intensity model, which was less evident on the ROI level. Similar

results were obtained when comparing the predictive coding model against the stimulus plus expec-

tation model (Figure 5D), but evidence for the stimulus plus expectation model was weaker. Directly

comparing the stimulus intensity model against the stimulus plus expectation model revealed mod-

est support for the stimulus intensity model (log-BF >2) in midcingulate cortex, posterior insula, and

parietal operculum.

A surface projection of the non-thresholded, voxel-wise log-BF maps comparing the predictive

coding model against the two alternative models within the insula, demonstrated a gradual change

in evidence from anterior to posterior insula (Figure 5C,D). This gradient is also evident when the

average log-BF from the insula is plotted over the anterior-posterior dimension (Figure 6A). Impor-

tantly, and in line with anatomical considerations, the gradient is also steeper in the right hemisphere

Figure 6. Insula results. (A) Plotting the average log-BF for left and right insula against y-coordinates shows the

anterior-posterior gradient from predictive coding to stimulus intensity coding. (B) Weight parameters are positive

for prediction and PE terms, as postulated. The PE contributes approximately two times as much to the anterior

insula signal as the prediction does.

DOI: 10.7554/eLife.24770.009
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(contralateral to stimulation) based on the more decisive evidence in both anterior and posterior

insula.

Since we expect both predictions and PEs to contribute positively to the measured brain signal,

we extracted the weight parameters for predictions and PEs from the left and right anterior insula

regions in which log-BF >3. Firstly, the weights for both predictions and PEs were positive as postu-

lated by the model. Interestingly, the weight for the PE was approximately two-times as strong as

the prediction (left anterior insula: 1:2.1; right: 1:2.2), which is very similar to the ratio of 1:2 reported

in a previous study in the fusiform face area (Egner et al., 2010). A stronger weighting of the PE

results in reduced responses for expected compared to unexpected painful stimuli as illustrated in

Figure 1C and observed here in SCR (Figure 2C), pupil dilation (Figure 2D), and anterior insula and

amygdala activation (Figure 3A) as well as in other studies (Alink et al., 2010; Todorovic et al.,

2011).

Comparing different PE types
While neuronal coding of reward prediction errors is well understood (Schultz et al., 2015), the spe-

cifics of aversive PE coding are currently debated (Belova et al., 2007; Seymour et al., 2007;

Boll et al., 2013; Fiorillo, 2013; Klavir et al., 2013; Roy et al., 2014; Matsumoto et al., 2016). We

therefore compared three versions of the predictive coding model that differed in their PE specifica-

tion. The original model, presented above, builds on a pain PE in which a warm stimulus does not

Figure 7. Comparing different PE types. (A) Different variants of the predictive coding model. All variants share

the same prediction term (as in Figure 1A), but differ in the computation of the PE. The original model used here,

specifies a pain PE, which equals zero for warm stimuli (second panel, solid lines). An alternative model specifies

an absolute PE (third panel, dotted lines). The third alternative model uses a signed PE (fourth panel, dash-dot

lines). Please note that all three alternatives result in the same PE for painful stimuli. They only differ in the PE for

warm stimuli. The right-most panel shows the expected response profile for each of the three PE definitions when

prediction and PE are equally weighted, i.e. simple sum of both terms. Please note that the signed PE (dash-dot

line) model does not capture any factorial interactions between cues and stimuli. (B) log-BF comparing the

absolute PE model against the original, pain PE model for ROIs and autonomic measures. No evidence stronger

than log-BF < �3 is available for the absolute PE model. (C) log-BF comparing the signed PE model against the

pain PE model shows no decisive evidence for the signed PE model.

DOI: 10.7554/eLife.24770.010
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elicit a PE within pain regions (Figures 1A and 7A). Alternative models incorporated an absolute PE

(i.e., the absolute difference between stimulus and prediction) and a signed PE (i.e., the difference

between stimulus intensity and prediction), respectively (Figure 7A). All models share the same pre-

diction term.

The original, pain PE model provided a better fit of the pupil, NPS, and ROI responses when com-

pared against the absolute PE model (Figure 7B). Only the PAG and bilateral amygdala tended to

favor the absolute PE model, but the model evidence did not pass the threshold of log-BF < �3.

The pain PE model also provided a better fit than the signed PE model for SCR and pupil diameter

(Figure 7C). For the ROIs, the pain PE also provided better fits, while the signed PE tended to fit

the NPS response slightly better. But again, none of the ROI comparisons revealed above threshold

evidence. In summary, neither the absolute nor the signed PE model provided compelling evidence

for a better fit than the pain PE model. In fact, the pain model explained the responses better than

the alternatives in most of the ROIs.

Discussion
Combining a probabilistic heat pain paradigm and Bayesian model comparison, we identified a func-

tional dissociation between anterior and posterior insula suggesting that these regions implement

different computations supporting pain perception. While posterior insula and parietal operculum

employ stimulus intensity coding, activity in the anterior insula reflects the summation of pain expec-

tation and prediction errors resulting from unexpected pain, thus conforming to a predictive coding

account (Egner et al., 2010; Büchel et al., 2014). This functional dissociation was evident at a ROI

level as well as on a voxel-wise analysis. The combination of expectation and prediction error was

also by far the best model explaining SCR and pupil diameter responses to painful and non-painful

heat stimuli. By contrast, the response profile of a multivariate brain pattern predictive of pain rat-

ings (NPS; Wager et al., 2013) reflected only stimulus intensity.

The insula as a whole is involved in a multitude of different processes – at least 20 according to

one review (Nieuwenhuys, 2012) – from somatosensory to emotional and conflict processing

(Kurth et al., 2010; Chang et al., 2013; Wiech et al., 2014a). Interestingly, the cytoarchitectonic

organization of the insula and its functional connectivity with other brain regions vary smoothly along

an anterior-posterior gradient (Cerliani et al., 2012; Nieuwenhuys, 2012). A similar functional gradi-

ent was evident in the present study, thereby linking the underlying cytoarchitectonic and connectiv-

ity gradients to distinct pain processing modes.

The posterior insula is strongly involved in somatosensory and pain perception (Mazzola et al.,

2012; Nieuwenhuys, 2012), it receives direct spinothalamic input (Craig, 2002; Dum et al., 2009),

and it is functionally and structurally connected to somatosensory cortices (Wiech et al., 2014a).

This connectivity pattern is well suited to support a stimulus intensity coding role of the posterior

insula as observed here using phasic pain stimuli and as also indicated by a more tonic model of

pain (Segerdahl et al., 2015). It should be noted that the sensory role of the posterior insula

includes non-painful stimuli, too (Davis et al., 1998).

By contrast anterior insula activity represents a combination of pain prediction and PE. Its predic-

tive function fits nicely with previous reports that pre-stimulus activity in the anterior insula modu-

lates the perception of subsequent stimuli (Ploner et al., 2010; Wiech et al., 2010). Furthermore,

the anterior insula flexibly connects to emotional and attentional brain regions (Taylor et al., 2009;

Ploner et al., 2010) and integrates information from a diverse set of prefrontal and limbic brain

regions (Critchley, 2005; Seminowicz and Davis, 2007; Kurth et al., 2010; Cerliani et al., 2012;

Wiech et al., 2014a). In addition to its predictive function, the anterior insula also encodes mis-

matches between predictions and aversive outcomes during reinforcement learning (Seymour et al.,

2004; Pessiglione et al., 2006; Boll et al., 2013) and other concurrent task demands

(Seminowicz and Davis, 2007). The strong connections between anterior insula and prefrontal

regions involved in contextual processing as well as its ‘hub-like’, evaluative function (Baliki et al.,

2009; Chang et al., 2013; Uddin et al., 2014) render the anterior insula particularly suitable for the

evaluation of predictions against sensory input. The anterior insula could thus represent a mediator

between somatosensory signals in posterior insula and contextual representations in prefrontral cor-

tex, integrating those representations for perceptual decisions and behavioral responses

(Kong et al., 2006; Seminowicz and Davis, 2007; Baliki et al., 2009). Integration of multiple
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information streams in this brain region could thus be crucial for the construction of pain experiences

that are shaped by learning and external feedback (Wiech, 2016; Geuter et al., 2017).

In addition to the anterior insula, both SCR and pupil diameter in this study – and reaction times

in a similar paradigm (Wiech et al., 2014b) – showed a pattern predicted by our model. Expecta-

tions of certain visual stimuli can also sharpen their cortical representation (Kok et al., 2012), but it

is unknown how this would translate to pain reports — whether predicted pain would be more or

less intense. A recent study did observe no difference in pain ratings between correctly and incor-

rectly cued pain stimuli (Zeidan et al., 2015). Here, we opted for a time-efficient design and did not

collect trial-by-trial pain ratings to address this question. However, investigating potential indicators

for perceived pain, responses of the NPS (Wager et al., 2013; Krishnan et al., 2016) and autonomic

measures (Geuter et al., 2014), can offer insights. All three measures – NPS, SCR, and pupil –

showed stronger responses to unexpected compared to expected pain, hinting at a potential

enhancement of unexpected pain stimuli that needs to be investigated more thoroughly in futures

studies. Taken together, the results show that principles of predictive coding are relevant for behav-

ioral responses in the context of pain.

Other stimulus attributes than painfulness, e.g. general aversiveness, salience, or motivational

demands, co-vary with stimulus intensity. Previous studies have correlated brain activity with pain

reports and stimulus intensity in order to dissociate the two (Coghill et al., 1999; Büchel et al.,

2002; Davis et al., 2002, 2004; Porro et al., 2004; Baliki et al., 2009). Interestingly, anterior insula

activity correlated with perceived heat even in the absence of heat stimulation (Davis et al., 2004).

Studies by Downar and colleagues (Downar et al., 2000, 2003) also found that anterior insula and

anterior cingulate cortex responded to unexpected or novel stimuli. Within a predictive coding

framework, the overall response is decomposed into two distinct functional components – a predic-

tion term and PE term – that are key components of learning theory. Interestingly, the anterior insula

also showed a prediction error response in the present study in line with previous work

(Downar et al., 2000, 2002; Seymour et al., 2004; Boll et al., 2013). From a psychological per-

spective, the decomposition is important because directing attention towards expected aversive

events (high probability of pain, prediction term) and towards unexpected events (PE) is adaptive.

The prediction error is assumed to drive learning (Rescorla and Wagner, 1972) and is thus critical

for adaption to the environment. By contrast, salience – understood as the difference to preceding

sensory events (Mouraux et al., 2011) – emerges after stimuli have been processed and the elicited

surprise or PE has been computed. Salience can thus be considered a secondary stimulus property

resulting from a high PE that in turn can modulate subsequent updating of beliefs. This process is

formalized in the Pearce-Hall model of reinforcement learning in which a surprising, salient outcome,

affects the learning rate in the next trial (Pearce and Hall, 1980; Boll et al., 2013; Atlas et al.,

2016).

Predictive coding theories offer a parsimonious computational implementation of cross-modal,

Bayesian perceptual decision making (Knill and Pouget, 2004; Friston, 2005; Summerfield and de

Lange, 2014). These accounts can explain several effects within a single framework including extra-

classical receptive field effects in visual cortex (Rao and Ballard, 1999), repetition suppression

(Summerfield et al., 2008; Todorovic et al., 2011), and have been suggested as a framework to

understand placebo effects (Büchel et al., 2014). In support of a domain general integration process

of expectations and PEs, the ratio of the contributions of both processes to physiological signals

observed here, mirrored the ratio previously reported for the fusiform face area in visual perception

(Egner et al., 2010). Interestingly, in both studies, the PE was weighted stronger than the predic-

tion, which suggests that learning and updating of the internal model are crucial for perception. In

addition, the observation that the anterior insula also processes PEs in other modalities

(Downar et al., 2000; Iglesias et al., 2013) hints towards a cross-modal role of the anterior insula

within a predictive coding framework.

Another feature of predictive coding models is their hierarchical organization: At each level of the

neural hierarchy, predictions and PEs will be computed for the specific features encoded in this

region (Rao and Ballard, 1999; Friston, 2005). For example, early visual and auditory areas process

multimodal stimuli under the assumption of independent physical sources and only higher areas

form joint representations using Bayesian inference (Rohe and Noppeney, 2015). Although anterior

insula activity matched the response pattern proposed by the predictive coding model, other brain

regions and the NPS followed a stimulus intensity model. This discrepancy could be either due to
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inherently distinct computations implemented in those regions or due to the fact that the nature of

predictions and PEs changes across regions (Iglesias et al., 2013). Because pain is an inherently

multi-faceted experience that includes sensory-discriminative, emotional, and motivational compo-

nents, the present predictive coding model could capture certain aspects of this multi-faceted expe-

rience better than others. The computational difference observed between anterior and posterior

insula could, at least in part, reflect such functional differences. In fact, studies investigating visual

processing within a predictive coding framework also observed regionally restricted effects based

on the manipulated stimulus features. For example, activity of the fusiform face area and parahippo-

campal place area is well described by a predictive coding model, but each region responds selec-

tively to their respective preferred stimuli, i.e. faces and houses (den Ouden et al., 2010;

Egner et al., 2010; Jiang et al., 2013). Similarly, expectations of certain low-level visual features

such as grating orientation, selectively attenuate primary visual cortex activity, but not activity in

higher visual areas (Alink et al., 2010; Kok et al., 2012). Based on these results, the observed

computational differentiation between anterior and posterior insula indicates that both regions pro-

cess distinct features of painful stimuli and these could be related to different psychological and

behavioral outcomes in healthy and patient populations.

The representation of aversive prediction errors in the brain is still not fully understood. Important

open questions include whether aversive PE are represented on a continuous dimension along with

reward prediction errors and whether particular brain regions represent absolute, signed, or pain

PE. Activity reflecting absolute aversive PE has been observed in the amygdala (Boll et al., 2013;

McHugh et al., 2014), while signed aversive PE have been observed in the striatum and PAG

(Seymour et al., 2005, 2007; Roy et al., 2014; Zhang et al., 2016). Within sensory cortices, unex-

pected omissions of visual or auditory stimuli lead to enhanced activity in auditory or visual areas,

reminiscent of absolute prediction errors (den Ouden et al., 2009, 2010; Todorovic et al., 2011;

Todorovic and de Lange, 2012). Comparing models incorporating different PE specifications,

showed that the model based on an asymmetric, pain PE explained brain responses in the present

study best. Our results thus suggest that PE encoding in the anterior insula differs between situa-

tions when the outcome is more pain than expected compared to unexpected pain omissions. The

differentiation of PEs observed here is similar to a distinction observed in visual processing: in two

studies, activity in the fusiform face area, a face-selective brain region, reflected prediction errors for

face stimuli, but not for house stimuli (den Ouden et al., 2010; Egner et al., 2010).

In summary, the observed responses in SCR, pupil dilation, and anterior insula activation demon-

strate that at least part of the pain experience can be explained by a domain general predictive cod-

ing framework. The parallels observed between pain and visual processing (Egner et al., 2010) hint

towards a general processing principle based on internal predictions and PE. An interesting question

for future research is how the contributions of predictions and PE shift in states of altered or chronic

pain conditions that are also related to altered learning processes (Vlaeyen, 2015). As anterior

insula structure and function changes profoundly in chronic pain conditions (Bushnell et al., 2013;

Ceko et al., 2013; Hong et al., 2014; Flodin et al., 2015), it is possible that the precision or influ-

ence of the prediction is strongly enhanced in chronic pain conditions or that PEs are incorrectly

computed (Edwards et al., 2012). If the underlying computations are domain general, this would

also explain the hyper-sensitivity observed in certain chronic pain populations to non-painful tactile

and visual stimuli (López-Solà et al., 2014). This framework could hence open up new ways to inves-

tigate pain processing in clinical populations.

Materials and methods

Sample
Twenty-eight healthy subjects (17 female) with an average age of 25.9 years (range: 21–33 years)

participated in this study. No subject reported any psychiatric, neurological, dermatological, or pain

conditions. Due to equipment malfunction, skin conductance data from seven subjects could not be

analyzed (resulting in a sample size of N = 21 for SCR analyses) and technical issues prohibited pupil

data collection for eight subjects (leaving N = 20 for pupil analyses); only one participant had neither

SCR nor pupil data. Other behavioral and fMRI data analyses are based on the full sample of 28 par-

ticipants. The sample size was determined as 1.5 times the sample of a seminal fMRI study on pain
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expectations that tested 19 subjects (Atlas et al., 2010). The Ethics committee of the Medical

Chamber Hamburg approved the study.

Procedure
After arrival at the laboratory, subjects were informed about the procedures of the experiment and

provided written informed consent. The experiment was divided into three parts – a temperature

calibration phase, a behavioral training session, and the functional magnetic resonance imaging

(fMRI) experiment.

First, we calibrated the temperatures to be used in the experiment individually for each subject

(outside of the MR-scanner). For calibration, subjects rated 36 cutaneous heat stimuli (total duration:

1.5 s, ramp-up: 70˚C/s, ramp-down: 40˚C/s) with temperatures ranging from 42˚C to 49.5˚C (in steps

of 0.5˚C) in a pseudo-randomized order using a computerized visual analogue scale (VAS). Sixteen

different temperatures between 42˚C and 49.5˚C in steps of 0.5˚C were presented two times each

during calibration (except for 44, 45, 46, and 47˚C, which were repeated three times each), resulting

in a total of 36 stimuli. The stimulus interval was 13–17 s plus the time participants needed for their

VAS rating (mean: 5.04 s, standard deviation: 1.01 s). Heat stimuli were applied to the left volar fore-

arm and different skin sites were used for calibration, behavioral training and fMRI scanning. The

extremes of the VAS were labeled ‘no sensation at all’ and ‘unbearable pain’. The center of the VAS

was labeled ‘pain threshold’. This VAS partition was necessary because we needed to determine one

painful and one non-painful, but clearly noticeable level of stimulation for the main experiment. Sub-

jects were instructed to only rate stimuli as above the pain threshold if the stimulus induced any

painful sensation. For stimuli that were perceived as different from baseline but not painful, subjects

rated the intensity of the warmth on the lower half of the VAS. ‘Unbearable pain’ was explained to

the subjects as the intensity at which they would have to lift the thermode from the arm. VAS ratings

were converted to numerical values ranging from 0 to 100. Intensity ratings did not differ between

men and women (t(26) = 1.32; p=0.2). The average correlation across subjects between temperature

and rating was high: �r = 0.78 (standard deviation: 0.13). We used linear regression to determine one

temperature that was clearly noticed by the subject but not painful (VAS 30) and a second tempera-

ture that was perceived as painful but tolerable (VAS 75). We next applied the selected tempera-

tures to the subjects’ forearm to ensure that the warm stimulus was not painful, but clearly

distinguishable from baseline and that the painful stimulus was bearable – this was the case for every

subject. The average temperature for the warm stimulus was 45.0˚C (standard deviation: 1.2˚C) and
the average temperature for the painful stimulus was 49.4˚C (standard deviation: 1.3˚C) with a maxi-

mum temperature of 49.5˚C.
Following calibration, subjects were informed about the cues and the contingencies between

cues and heat stimuli (Figure 1E). The explicit information and the training block ensured that sub-

jects knew the contingencies. The training also minimized learning taking place during the fMRI ses-

sion. Cue-intensity contingencies were counterbalanced across subjects and subjects were shown

their respective pairings on a computer screen. The behavioral training session consisted of one

block of 48 trials (see Task, below). After the training block, subjects were presented with each of

the cues separately on the screen and reported which cue was associated with high, medium, and

low probability of pain, respectively. All subjects associated each cue with its correct probability of

receiving pain.

After training, subjects were positioned in the MRI scanner and completed 4 blocks of the experi-

ment for a total of 192 trials. The design was identical to the training session, except that each block

had a different, pseudo-randomized trial order. The order of blocks was randomized across subjects.

The thermode was moved to a different position after each block to prevent sensitization of the

skin. During each block, we measured BOLD responses, skin conductance, and pupil diameter. After

the end of the fMRI experiment we acquired a high-resolution anatomical image of each subject’s

head. The whole experiment lasted about 2 h per subject.

Task
During each trial, a fixation dot was presented centrally on the screen. One of three cues then

appeared 300 ms before the heat stimulus started. Heat stimulus duration was 1500 ms

(including ~200 ms ramp up and down, respectively). The cue was visible during heat stimulation and
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remained on display until the end of the heat stimulation. After a variable interval of 3–5 s, a rating

screen appeared asking subjects whether the last stimulus had been painful. Subjects answered ‘yes’

or ‘no’ by pressing either the left or right arrow key of a button-box (Figure 1D). A fixation dot was

presented again during the inter-trial interval (ITI) of 12 s duration. At the end of the training block

and after each fMRI block, subjects rated the perceived intensity of the warm and the painful stimuli

(on the same VAS as used during calibration). Ratings were in good agreement with the calibrated

target ratings of VAS 30 and VAS 75, respectively (Figure 2A).

Each cue was presented 16 times in each experimental block. The high pain probability cue was

followed by the painful stimulus in 75% of the 16 trials and by the warm stimulus in 25% of the trials.

Probabilities for the medium cue were 50% for each stimulus. For the low pain probability cue, the

chance for a painful stimulus was 25% and 75% for a warm stimulus (Figure 1E). Gray-scale versions

of abstract symbols (kindly provided by Dr. Philippe Tobler [Tobler et al., 2006]) served as cues

(Figure 1E).

We included a basic target detection task to ensure that subjects paid attention to the task

(Egner et al., 2010). In 12.5% of the trials, the fixation dot changed its color to red at the beginning

of the somatosensory stimulation. Subjects were asked to respond to the color change by pressing a

third key. They were informed that the color change was completely unrelated to the main experi-

mental task. Cues were not related to the color change, as target trials were evenly distributed

across cues. During the fMRI experiment, subjects were rewarded with 50 cents for each correct tar-

get hit. Detection performance was at ceiling with a minimum of 23 out of 24 correct detections

(mean: 23.8). Importantly, the main effect of stimulus on target reaction time was non-significant

(F(1,27) = 0.295; p=0.591), indicating that subjects were similarly attentive during pain and warm

trials.

Data acquisition
Stimulus presentation, response logging and thermode triggering were carried out using the Psycho-

physics Toolbox 3 (http://www.psychtoolbox.org). Thermal stimulation was delivered via a MRI com-

patible 3 cm diameter Peltier thermode (CHEPS Pathway, Medoc, Israel). Skin conductance was

recorded using a Biopac EDA100C MRI system (Biopac Systems, Inc., Goleta, CA, USA) and a

CED1401 A/D converter (Cambridge Electronic Design, Cambridge, UK) at a sampling rate of 100

Hz. Electrodes were attached to the thenar and hypothenar eminences of the left hand. Pupil diame-

ter was recorded from the right eye using an MR-compatible EyeLink 1000 system (SR Research,

Ottawa, ON, Canada) at a sampling rate of 1000 Hz. The lights in the MRI room were dimmed and

luminance was kept constant across subjects. This setup provided a balance between eye-tracking

quality and participant comfort.

Functional magnetic resonance imaging (fMRI) data were acquired on a Siemens Trio 3 Tesla sys-

tem equipped with a 32-channel head coil (Siemens, Erlangen, Germany). Thirty-eight transversal sli-

ces (voxel size 2 � 2 � 2 mm, 1 mm inter-slice gap) were acquired within each volume using a T2*

sensitive echo planar imaging (EPI) sequence (TR = 2.34 s, TE = 26 ms, flip angle: 80˚, field of view:

220 � 220 mm, parallel acceleration factor = 2). Slices were tilted about 30˚ relative to the AC–PC

line to improve coverage in the brainstem. Additionally, T1 weighted structural images (1 � 1 � 1

mm resolution) were obtained using a MPRAGE sequence (TR = 2300 ms, TE = 9 ms, flip-

angle = 9˚).

Data analyses
Skin conductance responses (SCR)
The search window for SCRs was constrained to physiologically plausible response onset delays of 1

s or more after cue onset (Boucsein et al., 2012), that is, the local minimum at beginning of the SCR

had to have a delay of at least 1 s after cue onset and a peak within 10 s after cue onset. We then

determined the response amplitudes as the difference between the maximum in the search window

the first local minimum. SCR amplitudes were then log-transformed to improve normality before fur-

ther analyses (Boucsein et al., 2012).
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Pupil diameter
Pupil diameter was recorded in epochs of 3 s before stimulus onset to 10 s after stimulus onset to

reduce file sizes. Pupil data-recording and analyses followed standard methods previously used

(Einhäuser et al., 2008; Kietzmann et al., 2011; Geuter et al., 2014). Pupil data were down-sam-

pled offline from 1000 Hz to 250 Hz. Periods of ±100 ms around blinks automatically detected by

the EyeLink software were removed. Additionally, we removed blinks not detected by the EyeLink

software (including the intervals ± 100 ms around blinks). Trials with more than 50% of the samples

missing were excluded from further analyses; 10.8% of trials had to be discarded. Missing data due

to blinks were then linearly interpolated and pupil diameter traces were smoothed with a low-pass

filter using a cutoff frequency of 2 Hz. Interpolating over all missing samples and analyzing all trials

revealed almost identical results to the original results. The pupil results are thus independent of the

eye blinks and other artifacts. Response amplitudes were computed as the difference between the

maximum following stimulus onset and a 1 s pre-stimulus baseline. Amplitudes were also log-trans-

formed before further analyses.

fMRI data preprocessing and subject-level models
Functional imaging data were analyzed using Matlab (v8.1) and SPM8. The first five volumes of each

run were discarded and the remaining images were spatially realigned for motion correction before

non-linear spatial normalization using DARTEL, a high-dimensional warping algorithm available in

SPM (Ashburner, 2007). The functional images were spatially smoothed using a Gaussian kernel

with a full-width-half-maximum of 6 mm, which is three times the voxel-size.

Subject-level models included separate regressors for each of the six experimental conditions (2

temperatures � 3 cues). The predictive coding model assumes the fMRI signal to be a weighted sum

of the prediction and prediction error (PE). Furthermore, PE are expected to continuously update

the internal model generating the predictions (Egner et al., 2010; Büchel et al., 2014;

Summerfield and de Lange, 2014). Predictions and PEs are thus not separable with the temporal

resolution of standard fMRI and are hence modeled over the whole period from cue onset to stimu-

lus offset (1.8 s duration) before convolution with the canonical hemodynamic response function

(Egner et al., 2010). Additional regressors modeled the rating period and the responses to color-

changes of the fixation dot. In addition, each subject-level model included six motion parameters

estimated during realignment as well as the first two principal components of the time-series

extracted from white matter and cerebro-spinal fluid masks as nuisance regressors.

Contrasts testing the two main effects of stimulus (painful stimulus > warm stimulus) and cue (cue

high > cue low) as well as the interaction effect ((cue high, warm) > (cue low, warm)) > ((cue low,

pain) > (cue high, pain)) were computed on the subject level. For group-level inference, we tested

the subject level contrasts using nonparametric permutation tests (Holmes et al., 1996; Nichols and

Holmes, 2002) as implemented in Statistical Non-Parametric Mapping (SnPM; http://www.warwick.

ac.uk/snpm) with 6 mm variance smoothing (Nichols and Holmes, 2002). This tests makes less

assumptions about the fMRI data than parametric analyses, while adequately controlling the whole

brain family wise error rate (Eklund et al., 2016).

To fit the competing psychological models to the fMRI data, we used the contrast estimates for

the six experimental conditions (either averaged within region of interest [ROI] or across voxels).

Model details and fitting techniques are described below. Note that we did not carry out any corre-

lational analyses between ratings and fMRI data, as the additional variance in the ratings (on whether

a stimulus was perceived as warm or painful) is minimal when compared to the actual stimulation:

only 5% of the responses did not match the stimuli and 18% of these mismatching responses were

given on the first trial of an fMRI run.

Neurological pain signature analyses
The Neurological Pain Signature (NPS) is a multivariate pattern of brain activity with high sensitivity

and specificity in distinguishing experimental pain from other conditions like pain anticipation, pain

rating periods, or vicarious pain (Wager et al., 2013; Krishnan et al., 2016). The NPS expression as

a surrogate for heat pain intensity associated with a given fMRI image is computed by taking the

dot-product of the NPS and the image, resulting in a scalar value. We computed NPS expression val-

ues for each of the six experimental conditions based on the regressors described above separately
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for each participant (Wager et al., 2011, 2013; Krishnan et al., 2016). The resulting NPS values

were then plotted and submitted to further analyses the same way as the ROI averages (see below).

Region of interest masks
Anatomical masks for pain processing regions of interest were generated using the Harvard-Oxford

Atlas (Desikan et al., 2006) freely distributed with the FSL software (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/Atlases). For each hemisphere, we thresholded the probability maps for insula, parietal oper-

culum (SII), post-central sulcus (SI), anterior cingulate, amygdala, and thalamus at 50%. Anterior and

posterior insula masks were created by splitting the insula mask at MNI y = 0. The anterior cingulate

mask of this atlas includes BA24 and BA32, but excludes subgenual portions at the set threshold of

50%. The thalamic mask covers the entire thalamus. The division of insular cortex at y = 0 mm was

chosen because no probabilistic atlas includes separate maps for anterior and posterior insula. The

division at y = 0 mm is close to the sulcus centralis insulae (Nieuwenhuys, 2012) and has been used

previously (Ploner et al., 2011). For the periaqueductal gray (PAG), we manually created a mask

based on the mean anatomical image of all subjects (Stein et al., 2012). For this, we first identified

the central aqueduct on the mean anatomical image (shown in Figures 4 and 5). We then manually

marked the gray matter surrounding the aqueduct and validated the resulting mask using a brain-

stem atlas (Naidich et al., 2009).

Models of pain processing
The first model tested here is a pure stimulus intensity-coding model in which physiological

responses are a simple function of the stimulus input:

ŷ ¼ wS (1)

where S is the stimulus intensity (dummy-coded with 0 for warm and one for pain stimuli) and w is a

free scaling parameter. Please note, that we do not make assumptions about the stimulus response

function here. Due to the dummy-coding, the free parameter w describes the mean distance

between the responses to warm and painful stimuli. The distance can be determined by an arbitrary

stimulus-response function, since only two stimulus intensities are used here. Expectation

(Figure 1A; cues on the x-axis) has no effect on the measured response.

The second – stimulus intensity plus expectation – model (Figure 1B) assumes that pain

responses are based on two additive effects of the expected pain plus the actual stimulation inten-

sity and is described by the following formula:

ŷ ¼ w1Sþw2P (2)

where S is again the stimulus intensity, dummy-coded as in Equation (1) and P is the expected pain

as determined by the pain probability following each of the three cues (i.e., 0.25, 0.5, or 0.75). The

weights w1 and w2 are free parameters controlling the weighting of input parameters. Parameter w1

controls the distance between the two lines denoting warm and pain stimuli and accommodates any

stimulus-response function in the current design with two intensities (due to the dummy coding).

The expectation to receive a painful stimulus is assumed to have an additive, linear effect on the

measured response. Hence, the basic relationship between stimulus intensity and response could

have any form, but would be subject to linear modulation based on expectations.

Finally, the predictive coding model states that the physiological responses (fMRI parameter esti-

mates or SCR or pupil dilation) are the weighted sum of the prediction (P) and the prediction error

(PE; Figure 1C):

ŷ ¼ w1P þ w2PE (3)

where P is the expected pain (corresponding to the actual probabilities used in the experiment,

that is, 0.25, 0.5, and 0.75), and w1 and w2 are free parameters. PE is the difference between pain

outcome and prediction (i.e., 1-P), if the outcome is painful. In the case of non-painful warmth, the

PE is 0. We chose this PE formulation based on (1) previous studies in the visual system (den Ouden

et al., 2010; Egner et al., 2010), (2) the assumption that pain specific populations will only encode

prediction errors for painful stimuli (Belova et al., 2007; Büchel et al., 2014), and (3) the

Geuter et al. eLife 2017;6:e24770. DOI: 10.7554/eLife.24770 16 of 22

Research article Neuroscience

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
http://dx.doi.org/10.7554/eLife.24770


observation that prediction errors for painful and non-painful warmth have different topographies

(Ploghaus et al., 2000; Zeidan et al., 2015).

In addition to this PE definition, we considered a signed PE in which PE ¼ S� P and an absolute

PE model in which PE ¼ jS� Pj (i.e., high prediction error for both, unexpected pain and unex-

pected non-painful stimuli). Again, S being the dummy-coded stimulus intensity and P being the

expected probability of receiving pain as above. Those PE definitions are based on observations in

the visual (Kok et al., 2014) and auditory (Todorovic et al., 2011; Todorovic and de Lange, 2012)

systems.

Model comparison
We used Bayes Factors (BF) for pairwise comparisons testing which model offers the best explana-

tion of the data (Jeffreys, 1961; Kass and Raftery, 1995; Lee and Wagenmakers, 2014). Bayes

Factors formulate evidence for one model over the other as the ratio of the two marginal likelihoods;

that is the likelihood of the data under each of the models integrated over the model’s parameter

space, respectively. A Bayes Factor can be interpreted as ‘how much more likely is model A com-

pared to model B?’ For example, a Bayes Factor of four indicates that model A is four times as likely

as B to have generated the data, whereas a Bayes Factor of 0.1 indicates that B is ten times as likely

as A. Furthermore, Bayes Factors select the most predictive model and implicitly penalize model

complexity. Another benefit of using Bayes Factors is their ability to compare non-nested models

(Lee and Wagenmakers, 2014). We used the BayesFactor package (v. 0.9.11) for R by Rouder and

Morrey (Rouder and Morey, 2012) to compute Bayes Factors (two chains, each with 80,000 samples

with thinning factor of four for each estimation). This implementation uses default mixture-of-vari-

ance (Cauchy) priors on the weight parameters that have desirable properties of the resulting Bayes

factors (location and scale invariance, consistency, and consistent in information) (Rouder and

Morey, 2012). We use log-BF throughout the manuscript to ease the interpretation, because log-BF

favoring one or the other model have different signs, but the same scaling: A log-BF of four indicates

the same amount of evidence for model A, as a log-BF of �4 does for model B. A value of jlogBFj>3

indicates that one model is ~20 times more likely than the alternative model and is conventionally

labeled as ‘strong support’ for a given model (Kass and Raftery, 1995; Stephan et al., 2010;

Lodewyckx et al., 2011). Multiple model comparisons using Bayes factors do not need an explicit

correction as is necessary in frequentist approaches (Scott and Berger, 2006).

Bayes Factors were computed for the log-transformed amplitudes of SCR and pupil responses, as

well as for the average parameter estimates extracted from our anatomical ROIs. To achieve better

spatial resolution, we also computed Bayes Factors for brain voxels within a mask defined by an

omnibus F-test for a non-zero effect of any condition (thresholded at p<0.005, uncorrected). Follow-

ing the above introduced convention for strong model support by log-BF, we display voxels with

jlogBFj>3.

Log-BF maps were overlaid on the group-mean anatomical image using Matlab functions from

Tor D. Wager’s group (https://github.com/canlab). We used Caret 5 (v. 5.65, http://brainmap.wustl.

edu/caret.html) for surface visualization of the log-BF insula map.
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