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Abstract The coordinated control of Ca2+ signaling is essential for development in eukaryotes.

Cyclic nucleotide-gated channel (CNGC) family members mediate Ca2+ influx from cellular stores in

plants (Charpentier et al., 2016; Gao et al., 2016; Frietsch et al., 2007; Urquhart et al., 2007). Here,

we report the unusual genetic behavior of a quantitative gain-of-function CNGC mutation (brush) in

Lotus japonicus resulting in a leaky tetrameric channel. brush resides in a cluster of redundant

CNGCs encoding subunits which resemble metazoan voltage-gated potassium (Kv1-Kv4) channels

in assembly and gating properties. The recessive mongenic brush mutation impaired root

development and infection by nitrogen-fixing rhizobia. The brush allele exhibited quantitative

behavior since overexpression of the cluster subunits was required to suppress the brush

phenotype. The results reveal a mechanism by which quantitative competition between channel

subunits for tetramer assembly can impact the phenotype of the mutation carrier.

DOI: https://doi.org/10.7554/eLife.25012.001

The legume-rhizobium symbiosis offers an excellent model system to study the role of Ca2+ signaling

in eukaryotic cell development. Rhizobia produce lipochitooligosaccharides (LCOs) which stimulate

signal transduction processes involving not only oscillations of [Ca2+] in the nucleus and perinuclear

region but also rapid influx of calcium ions into the cytoplasm of legume root hairs (Felle et al.,

1999; Cardenas et al., 1999; Ehrhardt et al., 1996; Harris et al., 2003; Miwa et al., 2006), pre-

ceeding rhizobial entry and organ development. The Lotus japonicus mutant brush was previously

isolated in a screen of an ethyl-methanesulfonate (EMS)-mutagenised population for plants defective

in symbiotic cell development (Maekawa-Yoshikawa et al., 2009). At 26˚C, brush roots are stunted

and root hair infection threads do not progress into the root cortex, resulting in the formation of

non-infected (‘empty’) nodules. The evidence suggested that the recessive mutation was negatively

interfering with infection thread progression and cell expansion in the root apical meristem. The

brush mutation was mapped to the short arm of chromosome 2 at 8.8 cM (Maekawa-

Yoshikawa et al., 2009), linked to the marker TM0312. Subsequently, a large-scale recombinant

screen for fine-mapping was undertaken. In total, 20 of 1148 tested F2 individuals showed recombi-

nation events between the flanking markers TM2432 and TM0348 (Figure 1—figure supplement 1).

F2 genotyping and subsequent F3 phenotyping refined the target region to 37 kb. One EMS-

induced mutation was detected in the first exon of BRUSH, a predicted CNGC of unknown function.

Because the brush mutant phenotype could not be complemented with the genomic region contain-

ing BRUSH including its native promoter (see below), we searched for additional possible missed

mutations. The genome of brush was sequenced and aligned with the reference genome. Within the

already delineated target interval the mutation in BRUSH was confirmed and no additional polymor-

phisms relative to the Gifu wild-type were detected.
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The predicted genomic sequence of BRUSH carried a guanine to adenine (G401A) transition in

the first exon in brush (Figure 1A). Amplification of brush cDNA revealed an open-reading frame

encoding a protein containing 773 amino acids with an amino acid exchange from glycine to gluta-

mic acid (G134E). The genome of the model plant Arabidopsis thaliana contains 20 predicted CNGC

genes, which can be classified into four distinct groups (I, II, III, IV) (Mäser et al., 2001). Phylogenetic

and synteny analysis revealed that BRUSH (CNGC.IVA1) is orthologous to the Group IVA members

AtCNGC19 and AtCNGC20 (Figure 1B). Similar to other Group IVA CNGCs, BRUSH contains a rela-

tively long N-terminal extension followed by six predicted transmembrane domains and a cyclic

nucleotide-binding domain (Figure 1C). The brush mutation is located in a conserved region previ-

ously identified as a putative sorting signal in Group IVA CNGCs (Yuen and Christopher, 2013).

Sequencing coupled with gene prediction of the brush target region revealed that BRUSH resides in

a cluster containing five CNGC loci (Figure 1—figure supplement 2). Analysis of syntenic genomic

regions in legumes and non-legumes revealed that the CNGC.IVA cluster expansion occurred early

in the legume lineage and was retained. Transcripts for three of the loci could be amplified (CNGC.

IVA3, CNGC.IVA4, CNGC.IVA5) and encode proteins which are closely related to BRUSH (Figure 1—

figure supplement 3). No transcript was detected for CNGC.IVA2 which contains a large transposon

insertion in the seventh intron (Figure 2A).

To confirm that brush carried the causative mutation, the BRUSH genomic sequence was

expressed in brush transgenic hairy roots driven by its native 2 kb promoter. Surprisingly, we did not

observe rescue of either the root or infection thread phenotype (Figure 2—figure supplement 1A–

C). However, when brush was transformed with the BRUSH genomic sequence driven by the L. japo-

nicus constitutive polyubiquitin promoter, we observed restoration of the root and infection thread

eLife digest Plants constantly monitor and respond to changes in their environment. Central to

this surveillance system is the movement of calcium ions into and out of cells. Calcium ions are

normally kept at very low levels inside of cells and subtle changes in these levels relay information

about the external environment. In the case of plant roots, changes in the concentration of calcium

ions herald essential information about soil conditions and the presence of microorganisms, and in

turn trigger appropriate responses.

Calcium ion signals are essential for peas, beans and other members of the legume family to form

close relationships (known as symbioses) with soil bacteria called rhizobia. As such, many studies of

calcium signalling have focused on root symbioses, particularly in a model legume called Lotus

japonicus. Previous studies have identified one mutant version of this plant, called brush, which

develops abnormal roots with brush-like arrays of root hairs near the tip. The brush mutant was also

unable to form a symbiosis with rhizobia, and structures that allow the bacteria to enter the plant

stopped developing before they were complete. However, the gene responsible had not been

identified.

Chiasson, Haage et al. set out to identify the responsible mutation. At first the brush mutation

escaped identification because a key experiment gave an unexpected result. The introduction of a

normal, or wild type, copy of the proposed gene – referred to as BRUSH – into the brush mutant did

not correct the problems with its roots. Further analysis revealed that it was actually the ratio

between BRUSH and brush expression levels that was critical for determining how the plant’s roots

developed.

The mutation in brush causes a small change in a protein belonging to the CNGC family. These

proteins act as channels and allow ions to move across cell membranes. Further experiments found

that the channel formed by the mutated CNGC protein is leaky and allows calcium ions to enter the

cell in the absence of any cue from the environment. The leaky entry of calcium ions likely confuses

the plant’s surveillance system, which disturbs the normal development of the root. It is also likely

that the brush mutation’s effects on calcium signaling also interfere with the entry of rhizobia into

the roots. These findings provide important insights into the function of CNGCs and reveal how a

small change in a channel protein can have far reaching effects on an organism.

DOI: https://doi.org/10.7554/eLife.25012.002
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Figure 1. brush contains a point mutation in CNGC.IVA1 (BRUSH). (A) Schematic of the intron-exon structure of BRUSH highlighting the brush

mutation in the first exon (red asterisk). (B) Phylogenetic tree of BRUSH (red node end) in relation to Arabidopsis thaliana CNGC proteins. BRUSH is

orthologous to the Group IVA members AtCNGC19 and AtCNGC20. (C) Overview of the BRUSH protein domain structure highlighting the conserved

Group IVA domain (CD, green), transmembrane domains (T, light blue), putative filter region (F, orange), and the predicted cyclic nucleotide-binding

domain (CNBD, purple). Shown below is the CD sequence in brush (G134E mutation, asterisk) relative to BRUSH, AtCNGC19, and AtCNGC20 and the

Group IVA CNGC consensus (Yuen and Christopher, 2013). Numbers at the branch points in (B) indicate the percentage bootstrap values (100

iterations) for the inferred tree. Scale bar in (B) indicates the number of amino acid substitutions per site.

DOI: https://doi.org/10.7554/eLife.25012.003

The following source data and figure supplements are available for figure 1:

Source data 1. Figure 1B source data.

DOI: https://doi.org/10.7554/eLife.25012.007

Figure supplement 1. Map-based cloning of the brush mutation on chromosome 2.

DOI: https://doi.org/10.7554/eLife.25012.004

Figure supplement 2. Syntenic chromosomal locations of CNGC.IVA genes in selected plant species.

DOI: https://doi.org/10.7554/eLife.25012.005

Figure supplement 3. Protein sequence comparison of Group IVA CNGCs from Lotus japonicus.

DOI: https://doi.org/10.7554/eLife.25012.006
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Figure 2. Genetic complementation of brush. (A) Genomic region surrounding BRUSH on L. japonicus chromosome 2 showing a cluster of five CNGC.

IVA genes (red asterisk, brush causative mutation). CNGC.IVA2 contains a large transposon (Tn) insertion. CNGC.IVA2 contains a large transposon

insertion (shown as a gap). (B) Complementation assay of brush roots by overexpression (ubiquitin promoter, UBQ) of the four expressed CNGC.IVA

cluster members (bright field, top panel). The presence of red fluorescent nodules (arrow) colonized by Mesorhizobium loti expressing the red

fluorescent protein DsRED (lower panel) indicates successful bacterial infection and thus complementation. (C) Number of nodules per transformed

plant from (B) (n = 10 for all constructs). (D) Quantitative reverse-transcription PCR analysis of brush transcript levels after RNAi targeting either the

5’UTR or 3’ UTR of brush. The normalized fold expression of brush is shown relative to empty vector control roots (n = 6 for all constructs). (E)

Figure 2 continued on next page
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phenotypes, including infected nodules (Figure 2B,C and Figure 2—figure supplement 2A,B).

These results suggested that expression level of brush is critical for phenotype manifestation. To fur-

ther analyze the relationship between brush expression levels and the observed phenotypes, we

generated RNA interference (RNAi) constructs to target the untranslated regions (3’UTR or 5’UTR)

of the brush transcript in the brush mutant. Transformation of each RNAi construct specifically

silenced brush (Figure 2D, Figure 2—figure supplement 3A) and restored rhizobial infection of

root cells (Figure 2E,F). We then overexpressed the brush allele in wild-type Gifu hairy roots to reca-

pitulate the brush phenotype and observed that ectopic overexpression of brush impaired hairy root

emergence (Figure 2—figure supplement 3B). Collectively, these results suggest that the expres-

sion level of brush is critical for the observed phenotypes and that the phenotypic penetrance of the

allele appears to be dosage-dependent. An EMS mutant (SL1484-1) was then obtained by TILLING

(Perry et al., 2009; Perry et al., 2003) containing a point mutation (W119stop) early in the BRUSH

open-reading frame. Analysis of homozygous mutant plants did not reveal any phenotypic root or

infection abnormalities after inoculation with rhizobia (Figure 2—figure supplement 3C). The find-

ing that the null mutant of BRUSH is not recapitulating the brush phenotype indicates that brush is

an interfering allele and that the loss of BRUSH is compensated by potential redundancy of other

CNGCs within the cluster.

To determine if the other CNGC.IVA cluster genes are redundant with respect to BRUSH, we

overexpressed CNGC.IVA3, CNGC.IVA4, CNGC.IVA5 in the brush mutant by hairy root transforma-

tion. Analysis of transgenic roots revealed that expression of each gene complemented brush, as evi-

denced by colonized root nodules (Figure 2B,C). Further, we found that overexpression of the

predicted Arabidopsis orthologs AtCNGC19, or AtCNGC20 in brush also restored nodulation

Figure 2 continued

Complementation analysis of brush expressing RNAi fragments targeting either the 5’UTR or 3’UTR of brush in the brush mutant. Panels are the same

as (B). (F) Number of nodules per transformed plant (n = 10 for all constructs) from (E). Roots for both complementation experiments were observed 6

weeks after inoculation with rhizobia. Scale bars in (B) and (E) represent 1 mm. Letters in (C), (D), and (F) indicate different statistical groups (ANOVA

followed by Tukey’s HSD test). F(4, 45)=10.86, p < 0.001 (C), F(2, 15)=20.82, p < 0.001 (D), F(2, 27)=22.72, p < 0.001 (F).

DOI: https://doi.org/10.7554/eLife.25012.008

The following source data and figure supplements are available for figure 2:

Source data 1. Figure 2C source data.

DOI: https://doi.org/10.7554/eLife.25012.015

Source data 2. Figure 2D source data.

DOI: https://doi.org/10.7554/eLife.25012.016

Source data 3. Figure 2F source data.

DOI: https://doi.org/10.7554/eLife.25012.017

Source data 4. Figure 2—figure supplement 1B source data.

DOI: https://doi.org/10.7554/eLife.25012.018

Source data 5. Figure 2—figure supplement 3A,C source data.

DOI: https://doi.org/10.7554/eLife.25012.019

Source data 6. Figure 2—figure supplement 4B source data.

DOI: https://doi.org/10.7554/eLife.25012.020

Source data 7. Figure 2—figure supplement 5A source data.

DOI: https://doi.org/10.7554/eLife.25012.021

Figure supplement 1. Expression of the BRUSH native genomic sequence in brush.

DOI: https://doi.org/10.7554/eLife.25012.009

Figure supplement 2. Complementation of brush by overexpression of BRUSH.

DOI: https://doi.org/10.7554/eLife.25012.010

Figure supplement 3. RNAi off-target controls and phenotypes associated with either overexpression of brush or a null BRUSH allele.

DOI: https://doi.org/10.7554/eLife.25012.011

Figure supplement 4. Complementation of brush by overexpressing AtCNGC19 or AtCNGC20.

DOI: https://doi.org/10.7554/eLife.25012.012

Figure supplement 5. CNGC.IVA gene expression in Lotus japonicus roots after rhizobial inoculation.

DOI: https://doi.org/10.7554/eLife.25012.013

Figure supplement 6. BRUSH expression in roots during nodulation.

DOI: https://doi.org/10.7554/eLife.25012.014
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(Figure 2—figure supplement 4A,B). To assess if each L. japonicus gene is expressed in roots, RT-

qPCR was performed before and after inoculation with rhizobia. Transcripts were detected for

BRUSH, CNGC.IVA3, CNGC.IVA4, and CNGC.IVA5, the levels of which did not show significant

changes (<2 fold) after inoculation with the rhizobial symbiont (Figure 2—figure supplement 5A).

Spatial expression analysis of promoter:b-glucuronidase (GUS) fusions revealed BRUSH expression in

root hairs and developing nodules after inoculation with rhizobia and that CNGC.IVA3, CNGC.IVA4,

and CNGC.IVA5 are expressed in similar domains (Figure 2—figure supplement 5B). Closer investi-

gation of the BRUSHpromoter:GUS activity revealed a lack of expression in roots prior to inoculation

and subsequent activity associated with infected root hairs and nodule primordia after inoculation

(Figure 2—figure supplement 6). The overlapping expression pattern of the Group IVA CNGCs

together with their ability to dampen the brush phenotype indicate that these genes are redundant.

Given that plant CNGCs are anticipated to form both homomeric and heteromeric tetramers

(Ma and Berkowitz, 2011), an interaction between BRUSH and redundant CNGCs is conceivable.

We initially utilized the yeast split-ubiquitin interaction assay to determine the location of the BRUSH

termini (Xing et al., 2016). The assay utilizes the N-terminal (Nub) and C-terminal (Cub) fragments

of yeast ubiquitin (Ubi4) (Stagljar et al., 1998). Reconstitution of ubiquitin in the cytoplasm leads to

proteolytic release of Cub (fused to LexA-VP16) and activation of genetic reporters. We observed

that BRUSH-Cub interacted with both NubI-BRUSH and BRUSH-NubI fusions demonstrating that

both BRUSH termini are located in the cytoplasm (Figure 3—figure supplement 1). Since voltage-

gated ion channel subunits interact via their soluble domains (Barros et al., 2012), we focused on

the CNGC.IVA soluble termini for yeast two-hybrid interaction assays. We observed a self-interaction

for the BRUSH N-terminus (NT) as well as interaction with the NTs of brush, CNGC.IVA3, CNGC.

IVA4, CNGC.IVA5 (Figure 3A) along with AtCNGC19 and AtCNGC20 (Figure 2—figure supple-

ment 4C). To further substantiate the interaction observed in yeast, we co-injected full-length subu-

nits into Xenopus laevis oocytes for bimolecular fluorescence complementation (BiFC) assays.

Expression of BRUSH-BRUSH, BRUSH-brush, and brush-brush combinations resulted in successful

complementation (Figure 3—figure supplement 2A,B). The yeast and oocyte interaction assays

demonstrate that CNGC.IVA channels potentially form homo- and hetero-complexes in vivo, which

may be mediated in part by their NT domains.

To characterize their channel properties, we injected either BRUSH or brush into Xenopus oocytes

for two-electrode voltage clamping. Expression was confirmed for both BRUSH-YFP and brush-YFP

by confocal microscopy (Figure 3B,C). Oocytes expressing BRUSH (Figure 3B,D) or BRUSH-YFP

(Figure 3—figure supplement 2C,E) failed to yield significant inward currents at negative voltages

in the presence of up to 30 mM CaCl2. In contrast, under the same experimental conditions, oocytes

expressing brush (Figure 3C,D) or brush-YFP (Figure 3—figure supplement 2D,E) produced volt-

age- and time-dependent inward currents at negative voltages. The currents were evident starting

from 15 mM external CaCl2 and increased in a dose-dependent manner with the external CaCl2 con-

centration (Figure 3E). Exchange of Ca2+ as a charge carrier to K+ abolished the voltage-dependent

inward currents mediated by brush-YFP (Figure 3—figure supplement 2D,F), indicative of a hyper-

polarization-activated Ca2+-permeable channel.

Since an N-terminal missense mutation leads to activation of brush, the conserved CNGC.IVA

cytoplasmic domain may mediate channel gating (Figure 4A). The expression of brush alone in

oocytes induces Ca2+ influx, therefore assembly of a brush homocomplex leads to deregulated activ-

ity (Figure 4B). As brush is recessive we speculate that brush is mainly positioned in silent heterote-

trameric complexes in the heterozygous state, but assembles into a population of homocomplexes

in homozygous plants triggering the phenotype (Figure 4C). Given that brush is expressed in root

hairs and nodule primordia after inoculation with rhizobia and that Ca2+ spiking in brush is intact

(Maekawa-Yoshikawa et al., 2009), the deregulated Ca2+ influx activity may impair rhizobial infec-

tion progression by interfering with downstream signaling events.

brush is a rare recessive gain-of-function missense mutation and exhibits an unusual quantitative

genetic behavior. We pinpointed the CNGC tetrameric complex in combination with the expanded

gene family as the causative factors for the unusual genetics. Although definitive evidence demon-

strating that plant CNGCs form tetramers is required, their inclusion in the superfamily of voltage-

gated ion channels predicts they will form such complexes. In support of this conclusion, the recent

cryo-electron microscopy structures of the TAX-4 CNG channel from Caenorhabditis elegans

(Li et al., 2017), the prokaryotic LliK CNG channel from Leptospira licerasiae (James et al., 2017),
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Figure 3. Interaction of CNGC.IVA N-termini in yeast and channel activity in Xenopus oocytes. (A) Yeast two-hybrid interaction of the soluble BRUSH

N-terminus (NT) fused to the GAL4-binding domain (BD) and the NT of the indicated CNGC.IVA proteins fused to the GAL4 activation domain (AD).

Yeast cells were resuspended in water (OD600= 0.5 and 0.05) and spotted onto -LW (leucine, tryptophan) and -LWAH (leucine, tryptophan, adenine,

histidine) solid media. (B) Confocal fluorescence images of oocytes expressing either BRUSH-YFP or brush-YFP fusion proteins. (C) Plasma membrane

currents of oocytes expressing BRUSH or brush in the presence of 30 mM CaCl2. Voltage steps ranged from +60 to �160 mV in 20 mV increments,

starting from a holding potential of �40 mV. Dashed lines indicate 0 mA. (D) Current-voltage relations of oocytes injected with water or YFP (~, n=15),

BRUSH or BRUSH-YFP (5, n=17), and brush or brush-YFP (., n=26) . (E) Relative current-voltage relations for oocytes expressing brush and brush-YFP in

the presence of 5 mM CaCl2 (^ , n = 3), 15 mM CaCl2 (&, n = 3), and 30 mM CaCl2 (., n = 6). Currents are shown relative to the current at �120 mV in

the presence of 30 mM CaCl2. Data in (D) and (E) represent mean values ± standard deviations. Scale bars in images (B) represent 250 mm.

DOI: https://doi.org/10.7554/eLife.25012.022

The following source data and figure supplements are available for figure 3:

Source data 1. Figure 3D source data.

DOI: https://doi.org/10.7554/eLife.25012.025

Figure 3 continued on next page
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and the human hyperpolarization-activated cyclic nucleotide-gated (HCN1) channel (Lee and MacK-

innon, 2017) all disclose a tetrameric assembly. Therefore, we speculate that quantitative competi-

tion amongst redundant subunits for tetramer inclusion clarifies why a BRUSH null is phenotypically

wild type and why overexpression is required to suppress the brush phenotype.

Expression of brush in oocytes revealed that the mutation renders the channel permeable to Ca2+

influx under hyperpolarizing conditions. Evidence obtained from Arabidopsis (Gao et al., 2016;

Wang et al., 2017; Zhang et al., 2017), Medicago truncatula (Charpentier et al., 2016), and the

moss Physcomitrella patens (Finka et al., 2012) CNGCs also supports the inward rectification of

Ca2+ by plant CNGCs, while numerous physiological studies have implicated CNGCs as being inti-

mately linked to Ca2+ (Wang et al., 2013; Guo et al., 2010; Chan et al., 2003; Urquhart et al.,

2007). Although brush was impermeable to K+ in our assay, evidence exists that some plant CNGCs

are permeable to other cations (K+ and Na+) in heterologous systems (Gobert et al., 2006;

Ali et al., 2006; Leng et al., 2002; Leng et al., 1999). Collectively, the evidence demonstrates that

plant CNGCs inwardly rectify cations.

Our results demonstrate that plant CNGC.IVAs may share more in common with metazoan Kv1-

Kv4 K+ channels relative to typical mammalian CNGs. Similar to BRUSH, Kv1-Kv4 channel gating and

subunit interactions are mediated by an N-terminal T1 domain (Barros et al., 2012; Zagotta et al.,

1990). In contrast, human CNGs assemble via C-terminal interactions and are gated by binding of

cyclic nucleotides (Barros et al., 2012; Giorgetti et al., 2005). In addition to CNGCs, plants contain

a family of shaker-type K+ channels with cyclic nucleotide-binding domains. Similar to BRUSH, these

channels are not gated by cyclic nucleotides, but instead are regulated by voltage and relative ion

concentrations (Hedrich, 2012). Since plant CNGCs have been difficult to assess in heterologous

systems (Ma and Berkowitz, 2011), the discovery that a single residue substitution in a conserved

domain is sufficient for activation represents a significant advance towards understanding their

regulation.

Materials and methods

Plant material and transformations
Lotus japonicus Gifu (wild-type, accession B-129) (Handberg and Stougaard, 1992), Miyakojima

(accession MG-20) (Kawaguchi et al., 2001) and brush (EMS mutant SL0979-2, Gifu) (Perry et al.,

2003) plants were used. The BRUSH TILLING line SL1484-1 was obtained from the L. japonicus TILL-

ING facility (John Innes Centre, Norwich, UK). The seed bag numbers of critical lines are listed in

Supplementary file 3. Seeds were scarified with sandpaper, sterilized for 10 min in 4% sodium

hypochlorite, and imbibed overnight in sterile water at 4˚C. Hairy roots were generated using the

Agrobacterium rhizogenes strain AR1193 (Stougaard et al., 1987). Nodulation experiments were

carried out by inoculating plants grown in pots or weck jars containing a sand-vermiculite mixture

and Fåhraeus (Fahraeus, 1957) media with Mesorhizobium loti MAFF303099 expressing DsRed

(Markmann et al., 2008). Transgenic roots were visualized with either a stereomicroscope (Leica

M165FC) or confocal laser scanning microscope (Leica SP5). Hairy roots were stained for GUS and

sectioned as described previously (Chiasson et al., 2014). Plants were cultivated in growth cabinets

at 22˚C (16 hr light/8 hr dark). All complementation and GUS experiments were carried out a

Figure 3 continued

Source data 2. Figure 3E source data.

DOI: https://doi.org/10.7554/eLife.25012.026

Source data 3. Figure 3—figure supplement 2E source data.

DOI: https://doi.org/10.7554/eLife.25012.027

Source data 4. Figure 3—figure supplement 2F source data.

DOI: https://doi.org/10.7554/eLife.25012.028

Figure supplement 1. BRUSH topology determination in yeast.

DOI: https://doi.org/10.7554/eLife.25012.023

Figure supplement 2. Brush interaction in oocytes and permeability to Ca2+ and K+.

DOI: https://doi.org/10.7554/eLife.25012.024
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Figure 4. Model for brush activity in planta. (A) The predicted two-dimensional topology of a brush monomer embedded in a lipid bilayer. (B) Model

explaining the mechanistic connection between the relative abundance of the brush mutant channel with the unusual quantitative genetic behavior of

the brush phenotype. Based on complementation and interaction studies, BRUSH engages in a tetrameric complex along with 3 other CNGC.IVA

proteins. From the segregation analysis, plants heterozygous for brush exhibit a wild-type phenotype. Expression of brush in oocytes mediates leaky

Ca2+ influx, indicating that a homotetramer is inappropriately active. (C) Probability-based overview of brush homotetramer formation assuming that

each of the 4 CNGC.IVA subunits participates with equal likelihood in complex formation. Shown is a grid containing 8 � 8 tetramers with CNGC.

IVA WT (grey dots) and brush (red dots) subunits. Both wild-type and heterozygous plants do not exhibit a phenotype (indicated by green background).

Figure 4 continued on next page
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minimum of three times and displayed similar results. Crossings were performed as described previ-

ously (Jiang and Gresshoff, 1997). Primers and plasmids used for all experiments are listed in

Supplementary file 1 and Supplementary file 2, respectively.

Map-based cloning of the brush mutation
F2 plants from a cross between brush and MG-20 were used for fine mapping using SSR markers as

described (Groth et al., 2013). Primer sequences were obtained from the Kazusa DNA Research

Institute website (http://www.kazusa.or.jp/lotus/markerdb_index.html). The region was further

refined using identified SNPs. The brush target interval between TM2432 and SNP3 (approximately

103 kb) was sequenced by Sanger sequencing. The brush genome was also reassembled after next-

generation sequencing to identify mutant-specific polymorphisms. Nuclear DNA (see below) of brush

seedlings was subjected to next-generation sequencing at Eurofins MWG, Germany, using an Illu-

mina HiSeq 2000 (Illumina, USA) with a read length of 2 � 100 bp. Genes in the brush target region

were annotated after sequencing using Genscan (Burge and Karlin, 1997) and Artemis

(Rutherford et al., 2000). CLC Genomics Workbench (CLC bio, Denmark) was used to analyze the

sequencing data.

Nuclear DNA extraction for next-generation sequencing
Four-week-old brush seedlings were transferred to the dark for 2 days before leaf material was

harvested. Approximately 2 g of ground powder was resuspended in 20 ml ice-cold HB buffer (10

mM Tris, 80 mM KCl, 10 mM EDTA, 1 mM spermine, 1 mM spermidine, 0.5 M sucrose, 0.5% triton

X-100, 0.15% b-mercaptoethanol, pH 9.4 with NaOH) by gentle shaking on ice. The solution was fil-

tered through two layers of Miracloth (Calbiochem, Merck, Germany). The flow-through was trans-

ferred to a 15-ml Falcon tube and the nuclei were pelleted at 4˚C by centrifugation (1800 x g)

and washed two times by resuspension in HB buffer. The final pellet was resuspended in 500 ml

CTAB buffer (55 mM cetyltrimethylammonium bromide, 1.4 M NaCl, 20 mM EDTA, 100 mM Tris, pH

8), and incubated at 60˚C for 30 min. 500 ml chloroform:isoamylalcohol (24:1) was added and mixed

by inverting the tube several times. After a centrifugation step at 8000 x g (4˚C) for 10 min, the

upper phase was transferred to a new tube. 5 ml of RNase (10 mg/ml stock concentration) was added

and incubated at 37˚C for 30 min. 0.6 volumes ice-cold isopropanol was added and mixed by invert-

ing the tube several times. The nuclear DNA was then precipitated at �20˚C overnight and centri-

fuged for 10 min at 16,000 x g and 4˚C. The supernatant was discarded and the pellet was washed

with 70% ethanol and resuspended in 55 ml TE buffer.

Yeast two-hybrid and split-ubiquitin assays
Yeast two-hybrid interaction assays were conducted with the haploid yeast strain AH109 (Clontech).

Split ubiquitin interaction assays were carried out in the haploid strain THY.AP4 (Obrdlik et al.,

2004). THY.AP4 and plasmids for split-ubiquitin were obtained from the Arabidopsis Biological

Resource Center (http://abrc.osu.edu/). Plasmids used for both interaction assays are shown in

Supplementary file 2. Bait and prey plasmids were introduced via double transformation using the

lithium acetate method (Gietz and Schiestl, 2007) and selected on media lacking leucine and tryp-

tophan (-LW). The interacting protein pair of CCaMK and CYCLOPS was used as a control for yeast

two-hybrid (Yano et al., 2008). Positive transformants were restreaked on -LW, then used to inocu-

late overnight cultures in liquid -LW media. Overnight cultures were diluted to OD600 of 0.5 in sterile

water and diluted 10-fold. 5 ml was spotted on –LW or solid media lacking leucine, tryptophan, ade-

nine, and histidine (-LWAH). Yeast plates were incubated at 28˚C for 3–5 days. All interaction assays

were independently conducted a minimum of three times.

Figure 4 continued

The probability of forming brush homotetramer is 1:4096 for a heterozygous and 1:256 for a brush homozygous genotype. A brush homotetramer

(shown inside yellow star) is required to trigger the phenotype (red background). This frequency-dependent assembly of the leaky brush tetramer

explains the phenotypic differences observed in plants harboring different allele frequencies.

DOI: https://doi.org/10.7554/eLife.25012.029
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Clone preparation for Xenopus oocyte experiments
BRUSH and brush coding sequences were cloned for Xenopus expression with a custom Golden

Gate cloning strategy using a modified backbone obtained from the Standard European Vector

Architecture 2.0 database (Martinez-Garcia et al., 2015). The backbone (with flanking bacterial tran-

scriptional terminators) was derived from pSEVA191 (http://wwwuser.cnb.csic.es/~seva/) and was

chosen to alleviate toxicity issues uncovered while cloning CNGC.IVA sequences into pUC-based

Golden Gate backbones and pGEMHE (Liman et al., 1992). A ccdB cassette compatible with

Golden Gate cloning (Binder et al., 2014) was amplified and inserted into the AvrII/SacI sites of

pSEVA191 to create the LII backbone pSEVA191 1–2. The coding sequences of BRUSH and brush

were then combined in a BsaI cut-ligation with modules containing the T7 promoter as well as the

5’UTR and 3’UTR sequences of b-globin mRNA (amplified from pEMHE). The same backbone was

used to express the constructs for BiFC analysis, where LI Golden Gate B-C or D-E parts encoding

for the N-terminal (VN) or C-terminal (VC) portions of mVenus (Offenborn et al., 2015) were

inserted. Plasmids were assembled in a 15 ml reaction containing 100 ng of each LI plasmid and

backbone, 1.5 ml CutSmart buffer (NEB, Germany), 1.5 ml 10 mM ATP, 0.75 ml BsaI (NEB), 0.75 ml T4

ligase (NEB). The reaction was then cycled 6 times (10 min at 37˚C, 10 min 16˚C) in a PCR machine,

followed by incubation at 37˚C (10 min) and 65˚C (20 min).

Functional analysis in Xenopus laevis oocytes
Capped RNA (cRNA) synthesis, oocyte injection, and voltage-clamp recordings were performed as

described (Becker et al., 2004; Müller-Röber et al., 1995). cRNA was synthesized

with a mMESSAGE mMACHINE T7 Transcription Kit (ThermoFisher, Germany) and oocytes were

injected (General Valve Picospritzer III, Parker Hannifin Corp.) with approximately 25 ng cRNA or

with RNase-free water as a control. Injected oocytes were stored at 18˚C in ND96 solution (96 mM

NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, 10 mM sorbitol, pH 7.4 with NaOH)

adjusted to 220 mOsm/L with sorbitol and supplemented with 25 mg/ml gentamycin until use. Meas-

urements were recorded 2 to 3 days after injection using the two-electrode voltage-clamp technique

with a Turbo Tec-10Cx amplifier (NPI electronic GmbH). During two-electrode voltage clamp meas-

urements, oocytes were constantly perfused with bath solution composed of 30 mM CaCl2, 10 mM

MES-Tris pH 7.4, adjusted to 220 mOsm/L with mannitol and supplemented with either 100 mM 8-

Bromo-cAMP (Sigma) or 100 mM 8-CPT-cAMP (BioLog). For analysis of channel permeabilities, CaCl2
was exchanged as indicated in the figure legends with 5 mM CaCl2, 15 mM CaCl2, or 60 mM KCl.

Starting from a holding potential of �40 mV, voltage steps from +60 to �160 mV in 20 mV incre-

ments were applied (PatchMaster, HEKA Electronics Inc.). For localization, YFP was fused to the

C-terminus of BRUSH or brush. Oocytes were imaged by confocal microscopy 2 to 3 days after injec-

tion with BRUSH-YFP and brush-YFP cRNA (Leica TCS SP5, excitation: 488 nm, detection: 525–575

nm) to confirm expression. The same protocol was used for BiFC experiments, except that cRNAs

were mixed 1:1 prior to injection.

Gene expression analysis
For analysis of gene expression after rhizobial inoculation, Lotus japonicus Gifu seeds were germi-

nated and grown on half-strength B5 agar plates for 14 days. Six plants were planted per weck jar

containing sand/vermiculite with Fåhraeus media. After 7 days, root tissue from a single jar was col-

lected and pooled (represents a biological replicate) for the Day 0 time point. Mesorhizobium loti

MAFF303099 expressing DsRed was added to the remaining jars and tissue was collected in the

same manner after 12 days. To analyze gene expression after RNAi, positive hairy roots were iso-

lated from individual plants 6 weeks after inoculation with Mesorhizobium loti MAFF303099 DsRed.

For both experiments, root tissue was ground in liquid nitrogen and RNA was extracted with a Spec-

trum Plant Total RNA Kit (Sigma). Genomic DNA was removed using a Turbo DNA-free Kit (Ambion)

and total RNA (1 mg for the time course and 200 ng for RNAi) was used for cDNA synthesis with

Superscript III (ThermoFisher). cDNA was then checked for genomic DNA contamination by PCR.

Expression of CNGC.IVA cluster genes after rhizobia inoculation was analyzed by qPCR using SYBR

Select Master Mix (Applied Biosystems) with a CFX96 real-time PCR machine. brush expression after

RNAi was analyzed by qPCR using mi-real-time EvaGreen Master Mix (Metabion) with a QuantStudio

5 Real-Time PCR System (ThermoFisher). In both cases, the plotted data point for each biological
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replicate represents the mean of three technical replicates. The relative expression was calculated

with the 2-DDCT method (Schmittgen and Livak, 2008) using eEF-1Aa (GenBank: BP045727) as the

reference.

Bioinformatics and statistics
Arabidopsis thaliana protein sequences were obtained from The Arabidopsis Information Resource

(TAIR). A multiple sequence alignment was generated using MUSCLE in CLC Main Workbench (CLC

bio, Denmark). A Maximum Likelihood phylogenetic tree was calculated using UPGMA (100 boot-

strap iterations were performed). One-way ANOVA statistical analysis of data followed by a post-

hoc Tukey’s multiple comparisons test and t-tests were calculated using GraphPad Prism.

Acknowledgements
This work was supported by funding from European Research Council (MP; Project No:340904),

Deutsche Forschungsgemeinschaft (MP, PD; Forschergruppe 964), and the Alexander von Humboldt

Foundation (DC). We would like to thank C Korbmacher (FAU Erlangen) for providing Xenopus laevis
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