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Abstract Satiety-signaling, pro-opiomelanocortin (POMC)-expressing neurons in the arcuate

nucleus of the hypothalamus play a pivotal role in the regulation of energy homeostasis. Recent

studies reported altered mitochondrial dynamics and decreased mitochondria- endoplasmic

reticulum contacts in POMC neurons during diet-induced obesity. Since mitochondria play a crucial

role in Ca2+ signaling, we investigated whether obesity alters Ca2+ handling of these neurons in

mice. In diet-induced obesity, cellular Ca2+ handling properties including mitochondrial Ca2+ uptake

capacity are impaired, and an increased resting level of free intracellular Ca2+ is accompanied by a

marked decrease in neuronal excitability. Experimentally increasing or decreasing intracellular Ca2+

concentrations reproduced electrophysiological properties observed in diet-induced obesity. Taken

together, we provide the first direct evidence for a diet-dependent deterioration of Ca2+

homeostasis in POMC neurons during obesity development resulting in impaired function of these

critical energy homeostasis-regulating neurons.

DOI: 10.7554/eLife.25641.001

Introduction
Energy homeostasis is tightly regulated by highly dynamic neuronal networks in the hypothalamus.

These control circuits adapt food intake and energy expenditure to the needs of the organism and

the availability of fuel sources in the periphery of the body (Apovian, 2016; Gao and Horvath,

2007; Power, 2012). Dysregulation of this functional circuitry can cause metabolic disorders includ-

ing obesity and type two diabetes, whose prevalence is increasing in Western societies

(Schwartz and Porte, 2005). In the arcuate nucleus of the hypothalamus (ARH), satiety-signaling

(anorexigenic), pro-opiomelanocortin (POMC)-expressing, and hunger-signaling (orexigenic) agouti-

related peptide (AgRP)-expressing neurons integrate endocrine and metabolic factors to adapt neu-

ronal activity that ultimately generates neurosecretory output (Morton et al., 2006; Sohn et al.,

2013). This neurocircuitry not only regulates food intake and energy expenditure but also adapts

glucose homeostasis to the acutely changing needs of the organism (Belgardt et al., 2009;

Blouet and Schwartz, 2010; Könner et al., 2007; Steculorum et al., 2016).

Substantial progress has been made in identifying fuel-sensing endocrine and metabolic factors,

such as leptin, insulin, glucose, free fatty acids, and uridine diphosphate (Gao and Horvath, 2007;
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Jordan et al., 2010; Steculorum et al., 2015; Varela and Horvath, 2012), and many immediate

actions of these hormones and nutrient components on POMC and AgRP neurons are well under-

stood (Claret et al., 2007; Jo et al., 2009; Parton et al., 2007; Spanswick et al., 1997, 2000).

In contrast, we have only limited information about the effects of sustained extreme nutritional

states, such as high caloric intake and obesity, on the cellular electrophysiological properties and

performance of these cells. It is well documented that increased caloric intake causes leptin and insu-

lin resistance in ARH neurons (Könner and Brüning, 2012; Varela and Horvath, 2012), and that glu-

cose sensing of POMC neurons is impaired in obesity (Parton et al., 2007). In POMC neurons,

which are activated by reactive oxygen species (ROS), high-fat feeding promoted proliferation of

peroxisomes and in turn reduced ROS levels and action potential firing (Diano et al., 2011).

Increased expression of the suppressor of cytokine signaling (SOCS-3) has been shown to desensitize

neurons to the anorexigenic actions of leptin and insulin (Bjørbaek et al., 1998; Ueki et al., 2004),

and we and others have demonstrated that inflammatory signals activated by a high-fat diet cause

neuronal leptin and insulin resistance (Belgardt et al., 2010; Dietrich et al., 2013;
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Figure 1. Diet-induced obesity decreases the spontaneous activity and hyperpolarizes the membrane potential of

POMC neurons. Recordings were performed in the perforated patch-clamp configuration from eGFP expressing

POMC neurons in the arcuate nucleus. (A) Original recordings of POMC neurons of mice on NCD and in DIO. (B

and C) POMC neurons of DIO mice were hyperpolarized (B) and their action potential frequency was decreased

(C) (Mann-Whitney test). (D and E) The percentage of silent (F < 0.5 Hz) POMC neurons (D) and the percentage of

POMC neurons with strong SFA (SFA ratio >3 Hz) (E) was higher in DIO mice compared to controls. (F) The

GABAA receptor blocker PTX and the GABAB receptor blocker CGP54626 did not restore the membrane potential

of DIO mice to control (paired t-test). SFA, spike frequency adaptation. **p<0.01, ***p<0.001.

DOI: 10.7554/eLife.25641.002
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Kleinridders et al., 2009; Schneeberger et al., 2013; Tsaousidou et al., 2014). Correspondingly,

endoplasmic reticulum (ER) stress was recognized as an important causal factor for the development

of leptin resistance (Hosoi et al., 2008; Ramı́rez and Claret, 2015). Most recent studies have identi-

fied mitofusin-2 (MFN2) as a direct link between ER stress and leptin resistance in the hypothalamus

(Schneeberger et al., 2013). In anorexigenic POMC neurons diet-induced obesity (DIO) altered

mitochondrial network dynamics and decreased mitochondria-ER contacts by downregulation of

MFN2. It is important to note that this is a cell type-specific response, when compared to the func-

tionally antagonistic orexigenic AgRP neurons in the ARH (Dietrich et al., 2013;

Schneeberger et al., 2013). Since mitochondrial function is intimately linked to the dynamic behav-

ior of these organelles, and since mitochondria play a crucial role in intracellular Ca2+ signaling

(Szabadkai and Duchen, 2008), we asked if intracellular Ca2+-handling properties are modulated in

POMC neurons under DIO.

This question is especially interesting, since several lines of evidence suggest that age-dependent

changes in Ca2+ homeostasis may partially increase, or even cause, the susceptibility for age-depen-

dent impairment of neuronal function and neurodegeneration (Berridge, 2012; Marambaud et al.,

2009; Toescu and Verkhratsky, 2007). Here, increased Ca2+ load on the cell can result in neurotox-

icity and impaired neuronal function (Rizzuto et al., 2012; Rowland and Voeltz, 2012;

Surmeier et al., 2010). Thus, to assess whether Ca2+ handling and the function of satiety-mediating

POMC neurons are altered in diet-induced obesity, we analyzed the Ca2+-handling properties of

these neurons and their intrinsic electrophysiological characteristics in detail. We found that diet-

induced obesity impaired intracellular Ca2+ handling, including mitochondrial Ca2+ uptake. The

changes in Ca2+ handling were accompanied by a marked decrease in activity and excitability of

POMC neurons. Experimentally increasing or decreasing intracellular Ca2+ concentrations repro-

duced the electrophysiological properties observed in diet-induced obesity.

Results

High-fat diet decreases activity of anorexigenic POMC neurons
To investigate the effects of diet-induced obesity (DIO) on the intrinsic electrophysiological charac-

teristics of POMC neurons, we performed electrophysiological recordings on identified POMC neu-

rons of 18-week-old transgenic mice expressing GFP under the control of the Pomc promoter

(Cowley et al., 2001). The animals had been fed a normal chow diet (NCD) or a high-fat diet (HFD)

for 12 weeks, starting at an age of six weeks. In an independent experiment we measured increase

in body weight and body fat content during HFD exposure. Mice exposed to 11–13 weeks of HFD-

feeding (starting at an age of 6 weeks) showed an elevation in body weight (control: 29.3 ± 1.9 g,

n = 25; DIO: 38.6 ± 4.1 g, n = 25; p<0.0001, Mann-Whitney test) and body fat content (control: 12.7

± 4.2%, n = 25; DIO: 32.1 ± 4.0%, n = 25; p<0.0001, Mann-Whitney test) compared to NCD-fed

controls.

Using perforated patch recordings, the integrity of intracellular components was ensured. The

activity of POMC neurons of mice exposed to a HFD was clearly reduced, which is in line with previ-

ous results (Jo et al., 2009). The membrane potential was hyperpolarized (Figure 1A,B; control:

�58.8 ± 1.1 mV, n = 26; DIO: �64.0 ± 1.2 mV, n = 37; p=0.0046, Mann-Whitney test) and the spon-

taneous activity was decreased (Figure 1A,C; control: 3.4 ± 0.7 Hz, n = 26; DIO: 1.7 ± 0.4 Hz,

n = 37; p=0.037, Mann-Whitney test). Moreover, the percentage of POMC neurons without sponta-

neous action potential firing (NSAN, not spontaneously active neuron; F < 0.5 Hz) increased from

31% (8 of 26) in control mice to 51% (19 of 37) in DIO mice (Figure 1D). Likewise, the number of

POMC neurons with strong spike frequency adaptation was markedly enhanced, i.e., the percentage

of neurons with a spike frequency adaptation ratio (SFA, for details see Materials and methods) >3

increased from 21% (4 of 19) in the control group to 34% (10 of 29) in the DIO group (Figure 1E).

Previous studies reported changes in both glutamatergic and GABAergic synaptic innervation of

POMC neurons during a sustained HFD (Klöckener et al., 2011; Newton et al., 2013). Since all our

experiments were performed in the presence of ionotropic synaptic blockers (for details see Materi-

als and methods), it is unlikely that the observed hyperpolarization of the membrane potential in

POMC neurons was caused by changes in synaptic input. However, to define the effect of potentially

altered GABAergic input on POMC neurons in DIO, we performed two sets of experiments. Whole-
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cell voltage-clamp recordings revealed that the inhibitory postsynaptic current frequency was

increased in DIO. Application of picrotoxin (100 mM), a GABAA receptor antagonist, and CGP54626

(50 mM), a GABAB receptor antagonist, blocked GABAergic currents and eliminated IPSCs

completely (data not shown). However, neither picrotoxin nor CGP54626 restored the membrane

potential and firing rate to control levels (Figure 1F; PTX: n = 12, p=0.3590; CGP: n = 6; p=0.2052;

paired t-tests). The results show that the DIO-induced hyperpolarization and the decrease in firing

rate cannot be exclusively attributed to the increase in inhibitory input organization of these cells,

but are also a consequence of altered cell-intrinsic properties.

Overall, we found that POMC neurons without spontaneous activity had a two-fold higher SFA

ratio than spontaneously firing POMC neurons (Figure 2A–C; POMC firing: 2.0 ± 0.1, n = 27; POMC

silent: 3.6 ± 0.3, n = 22, p<0.0001, Mann-Whitney test). This was particularly reflected in a strong

reduction of the action potential number over the time course of the depolarizing stimulus
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Figure 2. Spike frequency adaptation of POMC neurons is stronger in DIO mice. (A and B) Original recording

(bottom) and the corresponding instantaneous spike frequency plot (top) of a spontaneously firing (A) and silent

(B) POMC neuron during a 10 s depolarizing current injection. (C and D) SFA ratios are higher in silent POMC

neurons (C) and, accordingly, the number of APs during the 10 s depolarization decreased (D) (Mann-Whitney

test). SFA, spike frequency adaptation; SAN, spontaneously active neuron; NSAN, not spontaneously active

neuron (F < 0.5 Hz). ***p<0.001.
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(Figure 2D; POMC firing: 188 ± 10, n = 25; POMC silent: 130 ± 11.0, n = 22; p=0.0009, Mann-Whit-

ney test).

Collectively, these data show that in DIO mice, the excitability of anorexigenic POMC neurons is

markedly reduced.

DIO alters Ca2+ handling of POMC neurons
Further, we compared the Ca2+-handling properties of POMC neurons, which represent a critical

determinant of neuronal activity, of control and DIO mice, by using ratiometric Ca2+ imaging with

fura-2 (Grynkiewicz et al., 1985). Surprisingly, these experiments revealed increased levels of free

intracellular Ca2+ in POMC neurons in DIO compared to control mice (Figure 3A; control: 19.3 ± 2.3

nM, n = 11; DIO: 45.8 ± 7.3 nM, n = 13; p=0.0007, Mann-Whitney test), which was not expected,

because of the DIO-induced hyperpolarization and decreased activity of the neurons.

Based on this finding, we next analyzed changes in Ca2+-handling properties of POMC neurons.

Since the dynamics of free intracellular Ca2+ concentrations strongly depend on the endogenous

Ca2+-buffering capacity and the Ca2+ extrusion rate, we also investigated whether DIO induces

changes in the Ca2+-handling parameters of POMC neurons by using the ‘added buffer approach’ in

combination with whole-cell patch-clamp recordings and optical Ca2+ imaging (Neher and Augus-

tine, 1992; Pippow et al., 2009). The added buffer approach is based on a single compartment

model with the rationale that for measurements of intracellular Ca2+ concentrations with Ca2+ chela-

tor-based indicators, the amplitude and time course of the signals depend on the concentration of

the Ca2+ indicator (here: fura-2). The indicator acts as an exogenous Ca2+ buffer and competes with

the endogenous Ca2+ buffer(s).

The kinetics of cytosolic Ca2+ signals strongly rely on the endogenous and exogenous (added)

Ca2+ buffers of the cell. The amplitude and decay rate of free intracellular Ca2+ changes with the

increasing exogenous buffer concentration; the amplitude of free Ca2+ decreases, and the time con-

stant ttransient of the decay increases, as shown in Figure 3C and D. If the buffer capacity of the

added buffer is known, the time constant of the decay (ttransient; Figure 3D) can be used to estimate,

by extrapolation, the Ca2+ signal to conditions, with only endogenous buffers are present (-kB = 1 +

kS). The model used for this study (see Equation 4) assumes that the decay time constants ttransient

are a linear function of the Ca2+-binding ratios (kB and kS) (Neher and Augustine, 1992). The ratio

kS was determined from the negative x-axis intercept of the plot shown in Figure 3E. The slope of

the fit is the inverse of the linear extrusion rate (g ). The point of intersection of the linear fit with the

y-axis denotes the endogenous decay time constant tendo (no exogenous Ca2+ buffer in the cell). To

estimate the variability of these parameters, which were determined by linear fits, we used a boot-

strap approach (n = 1000; as described in the Materials and methods). Using this method, we found

that the endogenous Ca2+-binding ratio (Figure 3F; control: 497 ± 18; DIO: 240 ± 5; p=0.0001,

unpaired t-test), and, simultaneously, the Ca2+ extrusion rate (Figure 3G; control: 150 ± 3 s�1; DIO:

111 ± 1 s�1; p<0.0001; unpaired t-test) were reduced in POMC neurons of DIO mice compared to

control mice.

DIO reduces mitochondrial Ca2+ content of POMC neurons
Since mitochondria play a crucial role in intracellular Ca2+ handling, we investigated whether the

mitochondrial capacity of POMC neurons to accumulate Ca2+ was affected in DIO mice (Santo-

Domingo and Demaurex, 2010; Szabadkai and Duchen, 2008). This was achieved by determining

the Ca2+ release induced by the protonophore FCCP, as a measure for the ability of the mitochon-

dria to contribute to the regulation of intracellular Ca2+. Brain slices were AM-loaded with fura-2,

and mitochondrial Ca2+ release was induced in GFP-expressing POMC neurons by bath application

of FCCP for 2 min (2 mM; Figure 4A). To monitor the Ca2+ release, we recorded the fluorescence

ratio (F340/F380) (Figure 4B), which is proportional to an increase in free cytosolic calcium ([Ca2+]i).

FCCP induced a lower elevation of free cytosolic Ca2+ in the DIO (D F340/F380 = 0.012 ± 0.001,

n = 72 cells, N = 11 brain slices) than in the control cohort (D F340/F380 = 0.020 ± 0.003, n = 46

cells, N = 10 brain slices) (Figure 4B,C; p=0.0406, unpaired t-test). This indicates a reduced mito-

chondrial capacity to accumulate Ca2+ in POMC neurons of DIO mice.
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Figure 3. Diet-induced obesity changes the endogenous Ca2+-handling properties of POMC neurons. Ca2+

handling was analyzed using a combination of patch-clamp recordings, ratiometric Ca2+ imaging, and the ‘added

buffer approach’. (A) Ca2+ resting level. The concentration of free cytosolic Ca2+ was increased in DIO mice. (B–G)

Ca2+-handling properties. (B) fura-2 loading curve. POMC neurons were loaded via the patch pipette with the

ratiometric Ca2+ indicator fura-2, which also serves as the added Ca2+ buffer. Fura-2 fluorescence was acquired at

360 nm excitation (isosbestic point of fura-2) every 30 s, and converted into fura-2 concentrations. (C) Decay

kinetics of voltage-induced Ca2+ transients of the POMC neuron in (B). The images (left panels) were acquired at

times indicated in (B) and demonstrate the increasing fura-2 concentration during loading. The graphs (right

panels) demonstrate the effect of increasing added Ca2+ buffer (fura-2) concentrations on the decay kinetics of

voltage-evoked Ca2+ transients. (C and D) Analysis of endogenous Ca2+-handling parameters in a single cell. With

Figure 3 continued on next page
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Spike frequency adaptation is increased in silent POMC neurons
Since the DIO-induced decrease in POMC neuron activity and excitability coincided with elevated

levels of free intracellular Ca2+, we hypothesized that both findings are linked and that the elevated

Ca2+ levels might cause the DIO-induced inhibition of POMC neurons. To verify this hypothesis, we

Figure 3 continued

increasing fura-2 concentrations, the amplitudes of transients decreased, and the time constants (ttransient) for

decay were prolonged (C and D). The decay time constants were plotted against the Ca2+-binding ratios of fura-2

(kB) (D). kB was calculated from the intracellular fura-2 concentration, the Kd of fura-2, and the resting

concentration of free intracellular Ca2+. The solid line represents the linear fit to the data. An estimate of kS was

obtained as the negative x-axis intercept. The Ca2+ extrusion rate is estimated from the slope of the fit and the

endogenous decay time constant from the intercept with the y-axis. (E) The decay time constants of all recorded

neurons were plotted as a function of kB for all POMC neurons of the control and DIO mice. The best linear fits

with 95% confidence bands are shown. (F and G) To estimate the variance of the endogenous Ca2+-binding ratio

(kS) and the extrusion rate (g), we used a bootstrap method (1000 samples), which provided bootstrap distributions

(n = 1000) of the parameters for the control and DIO mice. Vertical lines indicate the means. (F) Distributions of kS.

Sixteen counts for the control and one count for the DIO cohort between 2000 and 7500 are not shown. (G)

Distribution of g. Eighteen counts for the control and one count for the DIO cohort between 400 and 1350 are not

shown. Subsequently, the distributions were log-transformed to bring them closer to a Gaussian, before applying

unpaired t-tests. ***p<0.001.
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F380) / (F340/F380)0] in POMC neurons of control and DIO mice. (C) For better visualization and comparison between
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the right panel shows the release and uptake in higher resolution. Control, n = 46 cells, N = 10 brain slices. DIO,

n = 72 cells, N = 11 brain slices. *p<0.05; Mann-Whitney test.
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modified the intracellular Ca2+ concentration by changing the extracellular Ca2+ concentration and

tested if the changes in intrinsic electrophysiological properties observed in DIO can be reproduced

by changing the intracellular Ca2+ concentration.

To confirm that changes in extracellular Ca2+ concentration indeed affect free intracellular Ca2+

levels, we combined electrophysiological recordings and ratiometric Ca2+ imaging with fura-2. An

example experiment is shown in Figure 5A–C. To prevent indirect (activity-induced) changes in intra-

cellular Ca2+ concentrations, the neurons were clamped at �70 mV with low-frequency voltage-

clamp (implemented in an EPC10 patch-clamp amplifier, HEKA, Lambrecht, Germany). Elevating

extracellular Ca2+ concentrations from 2 mM to 4 mM increased intracellular Ca2+ levels and

decreased the hyperpolarizing holding current (Figure 5B). In contrast, reducing extracellular Ca2+

caused a drop in free intracellular Ca2+, increased the hyperpolarizing holding current, and even

induced the generation of action potentials (Figure 5A–C). Using this direct approach to decrease

or increase intracellular Ca2+ levels, we investigated if the DIO-induced changes in excitability can

be directly mimicked by adjusting the levels of free intracellular Ca2+.

As hypothesized, reducing intracellular Ca2+ depolarized the membrane potential and led to the

generation of spontaneous action potentials in silent POMC neurons (Figure 6A,C). Increasing intra-

cellular Ca2+ reduced the action potential frequency in neurons that were spontaneously active

(Figure 6B,D). It is important to note that this is not a general effect, that is, removing extracellular

Ca2+ did not change the intrinsic electrophysiological properties of hippocampal CA1 pyramidal

cells of rats (Penn et al., 2016; Su et al., 2001). Reducing intracellular Ca2+ concentrations in silent

POMC neurons decreased the elevated SFA ratios to control levels of spontaneously active POMC

neurons (Figure 7A–C). In neurons with spontaneous activity the SFA ratio decreased upon reducing

the intracellular Ca2+ concentration (Figure 7C). As a consequence of the reduced SFA, the number

of action potentials per 10 s depolarizing current pulse was larger with low [Ca2+]i (Figure 7D).

Moreover, we determined the current at which action potentials were generated (threshold cur-

rent, Ithreshold) by using ascending current ramps. In silent POMC neurons Ithreshold was higher com-

pared to spontaneously active neurons, reflecting the decreased excitability of these cells
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Figure 5. Ratiometric Ca2+ imaging with fura-2 shows that increasing or decreasing extracellular Ca2+

concentrations increases or decreases intracellular Ca2+ levels, respectively. (A,B,C) Removal of extracellular Ca2+

decreased intracellular Ca2+ levels concomitant with an increase in hyperpolarizing holding current (B) when cells

were clamped to �70 mV (low-frequency voltage-clamp). Note the generation of spontaneous action potentials in

low Ca2+ conditions. (C) Changes of intracellular Ca2+ levels (normalized fura-2 ratios) under normal, high, and low

Ca2+ conditions (n = 4).

DOI: 10.7554/eLife.25641.006

Paeger et al. eLife 2017;6:e25641. DOI: 10.7554/eLife.25641 8 of 21

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.25641.006
http://dx.doi.org/10.7554/eLife.25641


(Figure 8A,B). Decreasing [Ca2+]i reduced Ithreshold in both firing and silent POMC neurons to similar

values (Figure 8A,B). In line with these experiments, current-frequency relations were steeper in fir-

ing neurons compared to silent POMC neurons, and decreasing [Ca2+]i increased the current-fre-

quency relation to the same level in all cells (Figure 8C).

SK channels contribute to decreased excitability of POMC neurons in
DIO
Based on the findings that DIO increased the Ca2+ resting level and hyperpolarized the membrane

potential, we hypothesized that activation of Ca2+-dependent K+ currents (IK(Ca)) might contribute to

the observed hyperpolarization and decreased neuronal activity. To verify this hypothesis, we used

blockers for specific components of IK(Ca) and assessed if the changes in intrinsic electrophysiological

properties, which we observed in silenced neurons and which were accompanied by elevated

[Ca2+]i, can be reversed. We applied the toxins apamin, charybdotoxin, iberiotoxin, and paxilline,

which have been shown to block specific components of IK(Ca) in vertebrates (Bennett et al., 2000;

Blatz and Magleby, 1986; Faber and Sah, 2003; Fioretti et al., 2004; Galvez et al.,

1990; Ghatta et al., 2006; Giangiacomo et al., 1992; Kaczorowski et al., 1996; Pineda et al.,

1992; Wolfart et al., 2001; Sanchez and McManus, 1996; Li and Cheung, 1999; Zhou and Lingle,

2014). Apamin blocks SK (KCa 2.1, KCa 2.2, KCa 2.3) channels, and iberiotoxin and paxilline blocks BK
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(KCa 1.1) channels. Charybdotoxin not only blocks BK (KCa 1.1) channels but has also been shown to

block IK (KCa 3.1) and KV (KV 1.2; KV 1.3) channels.

Bath-application of the BK channel blockers charybdotoxin (100 nM, n = 17), iberiotoxin (100 nM,

n = 7) and paxilline (10 mM, n = 6) did not have reproducible effects on membrane potential, SFA or

threshold currents to generate action potentials in silent, hyperpolarized POMC neurons (data not

shown). In contrast, the SK channel blocker apamin (100–200 nM) had clear excitatory effects on

these neurons, inducing depolarization and action potential firing in most of the silent POMC
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neurons (Figure 9A–C). Likewise, it reduced the SFA (Figure 9D–F) and decreased the threshold

current for generation of action potentials in silent neurons, but not in spontaneously active control

neurons.

Taken together, these blocker experiments suggest that SK channels are an import link between

increased intracellular Ca2+ levels and decreased excitability of POMC neuron in DIO. It is not sur-

prising that the BK channel blockers did not depolarize silent neurons, since BK channels are highly

voltage dependence (Sah and Davies, 2000) and might not contribute to the resting membrane

potential. Interestingly, the SK channel blocker apamin, but not the BK channel blockers decreased

SFA in silent neurons, suggesting that SK channels contribute markedly to SFA in silent POMC neu-

rons, as shown for various cell types (Brenner et al., 2005; Vandael et al., 2012; Yen et al., 1999).

In summary, we show that DIO impairs the cellular Ca2+-handling properties of POMC neurons

and increases the resting level of free intracellular Ca2+. In agreement with these general functional

changes, we found the mitochondrial Ca2+ content to be diminished. The changes in intracellular

Ca2+ handling properties were accompanied by membrane hyperpolarization and a marked

decrease in excitability. By experimentally changing intracellular Ca2+ concentrations we could

reproduce the electrophysiological properties observed in DIO. Taken together, we provide the first
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direct evidence for a diet-dependent deterioration of Ca2+ homeostasis in POMC neurons during

obesity development.
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Discussion
Satiety-signaling anorexigenic POMC neurons in the ARH play a pivotal role in the regulation of

energy homeostasis. While the acute physiological role of various hormones and nutrients and their

signaling mechanisms in the CNS are increasingly well understood (Gao and Horvath, 2007;

Morton et al., 2006; Power, 2012; Schwartz and Porte, 2005), the effects of sustained high caloric

intake and obesity on these circuits remain elusive. However, defining diet-associated changes in

this network and elucidating their cellular and molecular mechanisms is critical to further unravel the

mechanisms leading to increased susceptibility to metabolic disorders. The present study has clearly

established that the intrinsic physiological state of anorexigenic POMC neurons is markedly altered

in DIO. The starting point for this study was recent work that reported POMC neuron-specific altera-

tions in mitochondrial morphology and decreased mitochondria-ER contacts in DIO by downregula-

tion of MNF2 expression (Schneeberger et al., 2013). Mitochondrial shape changes influence the

activity of mitochondria and can thus have dramatic effects on cellular signaling. Since mitochondria

play a crucial role in intracellular Ca2+ handling, we tested if Ca2+ handling of POMC neurons is

altered in DIO. DIO caused a reduction in Ca2+-buffer capacity, a reduction in Ca2+ extrusion rate,

and an elevation of levels of free intracellular Ca2+. These findings are in line with the decreased

Ca2+ content of mitochondria also found in these experiments, which indicates impaired mitochon-

drial Ca2+ handling. The changes in intracellular Ca2+ handling were accompanied by a hyperpolar-

ized membrane potential, a reduction in action potential frequency, and an increase in the number

of POMC neurons with no spontaneous activity. Since the recordings were performed in the pres-

ence of synaptic blockers, these alterations in electrophysiological activity were not caused by

changes in synaptic input, which have been described previously (Klöckener et al., 2011;

Newton et al., 2013).

Cowley et al. (2001) reported that leptin depolarizes POMC neurons and increases their firing

rate; hence, it is conceivable that DIO-induced reduction in intrinsic activity also contributes to leptin

resistance. Former studies had primarily focused on defining alterations in leptin-evoked signaling in

POMC neurons, revealing ER stress, reduced leptin-evoked Stat-3 phosphorylation, a-MSH secretion

in hypothalamic sections of HFD-fed obese mice (El-Haschimi et al., 2000), and increased expres-

sion of SOCS-3 or fatty acid-induced activation of inhibitory stress kinases (Belgardt et al., 2010;

Ernst et al., 2009; Kievit et al., 2006; Kleinridders et al., 2009; Hosoi et al., 2008; Ramı́rez and

Claret, 2015).

Given the results of these previous studies, it is likely that, from a mechanistic point of view, the

decreased activity of POMC neurons reflects the net effect of DIO on multiple pathways. Neverthe-

less, our experiments, in which altering the intracellular Ca2+ concentration could reproduce the

electrophysiological properties observed in DIO, identified the intracellular Ca2+ concentration as a

probable direct link between DIO-induced changes in mitochondrial morphology and function, and

the reduction in excitability of POMC neurons. Nevertheless, the downstream targets of Ca2+ signals

have yet to be revealed. Obvious candidates for mediating the observed changes are Ca2+ activated

K+ channels (Kaczorowski et al., 1996; Kimm et al., 2015; McManus, 1991; Pedarzani and

Stocker, 2008; Sah and Davies, 2000; Weatherall et al., 2010, Li and Bennett, 2007; Liu and Her-

bison, 2008). This notion is supported by our experiments which show that the SK channel blocker

apamin can, at least in part, revers the Ca2+ induced decrease in neuronal activity. Nevertheless,

there may well be other Ca2+-dependent pathways that can reduce neuronal excitability

(Ashcroft and Ashcroft, 1990; Ha et al., 2016).

On the systemic level, the clearly decreased activity of POMC neurons represents a critical reduc-

tion in, or even loss of, an important satiety signal, which raises questions regarding the etiology of

these dramatic changes. One can assume that POMC neurons initially respond to high-fat feeding

with an increase in activity in order to prevent a positive energy balance. Subsequently, chronic over-

activation could lead to compensatory adaptations to reestablish normal neuronal baseline activity,

as it has been demonstrated in numerous neuronal systems (Marder and Prinz, 2002). However, the

drastic decrease in neuronal activity of anorexic POMC neurons in a situation of sustained high calo-

ric intake clearly argues against a ‘controlled’ compensatory mechanism aiming at the reestablish-

ment of normal neuronal responses. Considerable Ca2+ entry into POMC neurons during sustained

activation by HFD might contribute to the impairment of Ca2+ homeostasis (Suyama et al., 2017).

Thus, it seems more likely that the sustained metabolic stress of HFD-feeding directly impairs Ca2+
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homeostasis (Fu et al., 2011). This notion is in line with previously described alterations in mitochon-

drial morphology and decreases in mitochondria-ER contacts, caused by downregulation of MNF2

(Bach et al., 2003; Guillet et al., 2011; Pich et al., 2005; Schneeberger et al., 2013). This is also

interesting in the context of previous work which indicates that an opposite caloric regimen, namely

caloric restriction, is an effective way to drastically delay the onset of age related neurodegenerative

diseases and age-related impairment of intrinsic neuronal properties (Hemond and Jaffe, 2005;

Murchison and Griffith, 2007). Since several lines of evidence suggest that age-dependent changes

in Ca2+ homeostasis may increase the susceptibility for age-dependent impairment of neuronal func-

tion (Berridge, 2012; Marambaud et al., 2009; Toescu and Verkhratsky, 2007), a compromised

Ca2+ homeostasis induced by high caloric intake might accelerate aging. Since age-related changes

in neuronal activity have also been observed in POMC neurons (Yang et al., 2012), the decreased

activity observed in our study may be associated with DIO-induced accelerated aging.

From a mechanistic point of view, additional mechanisms have to be taken into account. Since

the byproducts of nutrient oxidation are free radicals, and since satiety is associated with high levels

of ROS production in POMC neurons, oxidative stress is a likely candidate for modulating mitochon-

drial function (Barsukova et al., 2011). While ROS can act as a physiological signaling molecule at

low concentrations (Brookes et al., 2004; Zima and Blatter, 2006), and while acute increases in

ROS levels have been shown to activate POMC neurons (Diano et al., 2011), it is not unreasonable

to anticipate that sustained high ROS levels as a consequence of high-fat feeding impair mitochon-

drial function (Horvath et al., 2009). At high concentrations, ROS can induce mitochondrial perme-

ability transition, causing mitochondrial Ca2+ release and elevation of cytosolic Ca2+ levels

(Barsukova et al., 2011).

In summary, our study shows that DIO dramatically reduces the activity of satiety-mediating

POMC neurons. Our experiments suggest that impaired mitochondrial Ca2+ handling causes an

increase in free cytosolic Ca2+, which mediates membrane hyperpolarization. Our study thus pro-

vides direct evidence that besides altering hormonal responses, chronic HFD-feeding induces a

direct, profound impairment of cell-intrinsic properties, which are of critical importance for neuronal

excitability in energy balance-regulating circuits. Further defining the exact molecular pathways lead-

ing to impaired Ca2+ handling during the development of diet-induced obesity may thus set the

ground for novel therapeutic approaches to tackle the current obesity epidemic.

Materials and methods

Animals and brain slice preparation
All animal procedures were conducted in compliance with guidelines approved by local government

authorities (LANUV NRW, Recklinghausen, Germany) and were in accordance with NIH guidelines.

Experiments were performed on brain slices from 18-week-old male POMC-EGFP mice that

expressed green fluorescent protein (eGFP) selectively in pro-opiomelanocortin (POMC) neurons

(Cowley et al., 2001). Animals were kept under standard laboratory conditions, with tap water and

chow available ad libitum, on a 12 hr light/dark cycle. Animals were either fed normal chow diet

(NCD; Teklad Global Rodent 2018; Harlan, Madison, WI, USA) containing 53.5% carbohydrates,

18.5% protein, and 5.5% fat (12% of calories from fat) or a high-fat diet (HFD; C1057; Altromin,

Lage, Germany) containing 32.7% carbohydrates, 20% protein, and 35.5% fat (55.2% of calories

from fat) for 12 weeks (starting at an age of 6 weeks). The animals were lightly anesthetized with iso-

flurane (B506; AbbVie Deutschland GmbH and Co KG, Ludwigshafen, Germany) and subsequently

decapitated. Coronal slices (270–300 mm) containing the arcuate nucleus of the hypothalamus (ARH)

were cut with a vibration microtome (HM-650 V; Thermo Scientific, Walldorf, Germany) under cold

(4˚C), carbogenated (95% O2 and 5% CO2), glycerol-based modified artificial cerebrospinal fluid

(GaCSF) (Ye et al., 2006). The GaCSF contained (in mM): 250 Glycerol, 2.5 KCl, 2 MgCl2, 2 CaCl2,

1.2 NaH2PO4, 10 HEPES, 21 NaHCO3, and 5 Glucose adjusted to pH 7.2 with NaOH. If not men-

tioned otherwise, the brain slices were continuously superfused with carbogenated aCSF at a flow

rate of ~2 ml�min�1. The aCSF contained (in mM): 125 NaCl, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.2

NaH2PO4, 21 NaHCO3, 10 HEPES, and 5 Glucose adjusted to pH 7.2 with NaOH. To block synaptic

currents, it contained 10�4 M PTX, 5 � 10�5 M D-AP5, and 10�5 M CNQX.
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Electrophysiology
POMC neurons were recorded at room temperature under current- and voltage-clamp in the perfo-

rated patch and whole-cell patch-clamp configuration using an EPC10 patch-clamp amplifier (HEKA,

Lambrecht, Germany). Current clamp recordings in the perforated patch configuration were per-

formed using protocols modified from Horn and Marty (1988), Rae et al. (1991), and Akaike and

Harata (1994). The recordings were performed with ATP and GTP free pipette solution containing

(in mM): 128 K-gluconate, 10 KCl, 10 HEPES, 0.1 EGTA, 2 MgCl2, and adjusted to pH 7.3 with KOH.

The patch pipette was tip-filled with internal solution and back-filled with tetraethylrhodamine-dex-

tran (D3308; Invitrogen, Eugene, OR, USA) and amphotericin B (~200 mg�ml�1; A4888; Sigma-

Aldrich, Taufkirchen, Germany) or nystatin-containing (~200 mg�ml�1; N6261; Sigma-Aldrich) internal

solution to achieve perforated patch recordings. Whole-cell recordings were performed following

the methods of Hamill et al. (Hamill et al., 1981).

Spike frequency adaptation
For SFA ratios 10 s depolarizing stimuli were applied from a holding potential of ~�70 mV with initial

instantaneous AP frequencies between 30 and 40 Hz. Instantaneous frequencies were plotted (Y in

the next equation) over the 10 s time course and fit to a mono-exponential decay equation with Y0

set to the initial instantaneous frequency:

Y¼ ðY0 �PlateauÞ � expð�K �TÞþPlateau

where Plateau is the asymptotic frequency, K the inverse timeconstant and T the time.

Ca2+ imaging experiments
For Ca2+ imaging experiments, slices were superfused with carbogenated aCSF. To block synaptic

currents, it contained 10�4 M PTX, 5 � 10�5 M D-AP5, and 10�5 M CNQX. The pipette solution con-

tained (in mM): 135 K-gluconate, 10 KCl, 10 HEPES, 2 MgCl2, and 0.1 fura-2 (pentapotassium salt,

F1200, Molecular Probes, OR, USA) adjusted with KOH to pH 7.3.

Fluorimetric Ca2+ measurements
Intracellular Ca2+ concentrations and dynamics were measured with the Ca2+ indicator fura-2, a

ratiometric dye suitable to determine absolute Ca2+ concentration after calibration

(Grynkiewicz et al., 1985). The Ca2+-handling parameters were determined as described previ-

ously using the ‘added buffer’ approach (Neher and Augustine, 1992) in combination with whole-

cell patch-clamp recordings and fast optical imaging. The imaging setup consisted of an Imago/

SensiCam CCD camera with a 640 � 480 chip (Till Photonics, Gräfelfing, Germany) and a Polychro-

mator IV (Till Photonics) that was coupled via an optical fiber into the upright microscope. The

fura-2-loaded neurons were illuminated during data collection with 340 nm, 360 nm, or 380 nm.

Emitted fluorescence was detected through a 440 nm long-pass filter (LP440). Data were acquired

as 80 � 60 frames using 8 � 8 on-chip binning. Images were recorded in analog-to-digital units

(ADUs) and stored and analyzed as 12-bit grayscale images. For all calculations of kinetics, the

mean values of ADUs within regions of interest (ROIs) from the center of the cell bodies were

used.

Free intracellular Ca2+ concentrations were determined as in (Grynkiewicz et al., 1985):

Ca2þ
� �

i
¼Kd;Fura

F380;min

F380;max

�
R�Rminð Þ

Rmax �Rð Þ
(1)

Ca2þ
� �

i
is the free intracellular Ca2+ concentration for the background-subtracted fluorescence

ratio R from 340 nm and 380 nm excitation. Rmin and Rmax are the ratios at a Ca2+ concentration

of virtually 0 M and at saturating Ca2+ concentrations, respectively. Kd;Fura is the dissociation con-

stant of fura-2. F380;min=F380;max is the ratio between the emitted fluorescence of Ca2+-free dye and

the emitted fluorescence of Ca2+-saturated dye at 380 nm excitation, reflecting the dynamic range

of the indicator. The term Kd;Fura:ðF380;min=F380;maxÞ is substituted with the effective dissociation

constant Kd;Fura;eff , which is independent of the dye concentration and specific for each experimen-

tal setup:
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Kd;Fura;eff ¼ Ca2þ
� �

i

Rmax�Rð Þ

R�Rminð Þ
(2)

The free Ca2+ concentrations in the calibration solutions were determined using a Ca2+-selective

electrode (Kay et al., 2008; McGuigan et al., 1991). Calibration solutions contained (in mM): Rmax:

140 KCl, 2.5 KOH, 15 NaCl, 1 MgCl2, 5 HEPES, 10 CaCl2, and 0.05 fura-2; Rmin: 129.5 KCl, 13 KOH,

15 NaCl, 1 MgCl2, 5 HEPES, 4 EGTA, and 0.05 fura-2; Rdef: 129.5 KCl, 13 KOH, 10.3 NaCl, 4.7

NaOH, 1 MgCl2, 5 HEPES, 4 EGTA, 2.7 CaCl2, and 0.05 fura-2, yielding a free Ca2+ concentration of

0.35 mM. All solutions were adjusted to pH 7.2 with HCl.

Ca2+-handling parameters were determined by using the ‘added buffer’ approach originally intro-

duced by Neher and Augustine (Neher and Augustine, 1992). This method is based on a linear, sin-

gle compartment model, with the rationale that for measurements of intracellular Ca2+

concentrations with Ca2+ chelator-based indicators, the amplitude and time course of the signals are

dependent on the concentration of the Ca2+ indicator (here: fura�2), which acts as an exogenous

Ca2+ buffer (B), and the endogenous buffer (S). The ability of the experimentally introduced exoge-

nous buffer to bind Ca2+ is described by its Ca2+-binding ratio that is defined as the ratio of the

change in buffer-bound Ca2+ over the change in free Ca2+:

kB ¼
d½BCa�

d Ca2þ
� �

i

¼
BT½ �Kd;B

Ca2þ
� �

i
þKd;B

� �2
(3)

[BT] is the total concentration of the exogenous buffer B; and Kd;B is its dissociation constant for

Ca2+. In this model, the decay time constant (ttransient) of a Ca2+ transient induced by a brief Ca2+

influx is described as:

ttransient ¼
1þkB þkS

g� 1þkSð Þ
tloading

(4)

ttransient is proportional to kB, and a linear fit to the data has its negative x-axis intercept at 1þkS,

yielding the endogenous Ca2+-binding ratio of the cell. The slope of this fit is the inverse of the Ca2+

extrusion rate g. The y-axis intercept yields the time constant tendo for the decay of the Ca2+ transient

as it would appear in the cell without exogenous buffer. ttransient values were plotted as a function of

kB values and fit with a linear function Y ¼ b0 þb1 x, using the ‘R function’ lm (R Development Core

Team [2009]). To estimate the variance of the Ca2+-handling parameters, we used the bootstrap

method (Pippow et al., 2009) implemented in the boot library in R (fixed-x resampling, 1000 boot-

strap samples, boot: Bootstrap R Functions, R package version 1.2–36), which provided bootstrap

distributions (n = 1000) for each of the parameters. The distributions were log-transformed to bring

them closer to a Gaussian. To determine differences in means between the different cell types,

unpaired t-tests were performed.

To monitor calcium release from mitochondria into the cytoplasm, the calcium indicator fura-2

was AM-loaded into POMC neurons by incubating brain slices in carbogenated aCSF containing 10

mM fura-2 (fura-2 AM, F1221, Molecular Probes; 24˚C for 50–60 min). During the recordings, slices

were superfused with aCSF additionally containing 250 mM sulfinpyrazone (S9509, Sigma-Aldrich), to

inhibit fura-2 sequestration (Di Virgilio et al., 1990). Ca2+ release from mitochondria was induced

by bath application of 2 mM carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP, Sigma-

Aldrich) at a flow rate of 3 ml�min�1. Since the background fluorescence is not clearly determinable

in AM-loaded cells, no background was subtracted, and instead of reporting absolute changes in

free intracellular Ca2+, changes in calcium concentration were given as changes in the fura-2 ratio

(340/380 nm) (Bergmann and Keller, 2004; Jaiswal et al., 2009). For better visualization and com-

parison of the time courses of the fura-2 ratio between the two populations, we normalized the fluo-

rescence ratio to the baseline. Analysis was performed off-line using IGOR Pro 6 (Wavemetrics, Lake

Oswego, OR, USA).

Tools for data analysis and statistics
Electrophysiological data were analyzed using Pulse (version 8.63, HEKA-Elektronik) and Igor Pro six

software (Wavemetrics, including the Patcher’s Power Tools plug-in: http://www.mpibpc.mpg.de/
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groups/neher/index.php?page=software). All calculations for the determination of EGTA purity, its

dissociation constant, and the free Ca2+ concentrations in the calibration solutions were performed

in R (R Development Core Team [2009], http://www.R-project.org). All functions that were used to

fit the Ca2+ buffering-related data with a linearized one-compartment model were implemented in R

(R Development Core Team [2009]. If not stated otherwise, all calculated values are expressed as

means ± SEM (standard error of the mean). For pairwise comparisons of dependent and indepen-

dent normal distributions, paired and unpaired t-tests were used, respectively. For pairwise compari-

sons of independent, not normal distributions, Mann-Whitney U-tests were used. For multiple

comparisons, ANOVA with Bonferroni post hoc analysis was performed. Tests were executed using

GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA, USA). A significance level of 0.05 was

accepted for all tests. Significance levels were: *p<0.05, **p<0.01, ***p<0.001. In all figures, n-values

are given in brackets. Exact p-values are reported if p>0.0001.
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Barsukova A, Komarov A, Hajnóczky G, Bernardi P, Bourdette D, Forte M. 2011. Activation of the mitochondrial
permeability transition pore modulates Ca2+ responses to physiological stimuli in adult neurons. European
Journal of Neuroscience 33:831–842. doi: 10.1111/j.1460-9568.2010.07576.x, PMID: 21255127

Belgardt BF, Mauer J, Wunderlich FT, Ernst MB, Pal M, Spohn G, Brönneke HS, Brodesser S, Hampel B, Schauss
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