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A new way to build cell
lineages
A combination of single-cell techniques and computational analysis

enables the simultaneous discovery of cell states, lineage relationships

and the genes that control developmental decisions.

XIUWEI ZHANG AND NIR YOSEF

T
he identity or state of a cell depends on

numerous factors. Some of these factors

are transient in nature (such as the stage

the cell is at in the cell cycle), while others reflect

long-lasting commitments, such as those that

occur during the development of stem cells

(Novershtern et al., 2011, Graf and Enver,

2009). By making the entire transcriptome avail-

able, single-cell RNA sequencing is now allowing

researchers to systematically investigate these

factors (Wagner et al., 2016; Tanay and Regev,

2017). Specifically, single-cell technology opens

the way for developmental biologists who work

on the transitions between different cell states

to explore three outstanding questions: (1) What

are the cell states (both transitional and long

lasting or terminal) that comprise a developmen-

tal process of interest? (2) What transitions take

place between these states? (3) How are these

transitions regulated?

Now, in a pair of papers in eLife, researchers

at Harvard University and the Allen Institute for

Brain Science report a framework that uses

whole-genome mRNA expression profiling to

address these questions, which they then apply

to stem cell differentiation in mouse embryos

(Furchtgott et al., 2017; Jang et al., 2017). The

basic concept that underlies these two papers

concerns the second question, which is about

transitions between cell states that have already

been defined in advance. Previous attempts to

address this question mostly relied on the notion

that two cell states are ’close’ to each other in

their lineage tree if their gene expression pro-

files are similar (Qiu et al., 2011; Shin et al.,

2015). In the first of the papers Leon Furchtgott,

Samuel Melton, Vilas Menon and Sharad Rama-

nathan present an alternative strategy, which

was motivated by an investigation of gene

expression in B- and T-cells as they developed

(Furchtgott et al., 2017).

Combining this gene expression data with

what was already known about the lineage rela-

tionship between the different states of the B-

and T-cells, Furchtgott et al. identified triplets of

cell states that exhibited a consistent pattern.

Each triplet contained a precursor state and two

descendant states, and for many transcription

factor genes, the expression in one member of

the triplet was much less than in the other two
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members. Furthermore, the member of the trip-

let with low levels of gene expression was rarely

the ’central’ state, which can represent either a

common precursor for the two other states, or a

transitional state between them (see Figure 1).

This finding is consistent with previous work

which showed that cell differentiation involves

the selective silencing of certain transcription
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Figure 1. A framework for studying developmental processes with single-cell RNA sequencing. (A) The first

challenge is to identify the different cell states. Jang et al. used single-cell RNA sequencing and other techniques

to identify nine different cell states, based on them having similar mRNA profiles, during the early stages of

development in a mouse embryo. Here, for the purposes of illustration, we show a system in which there are seven

cell states (denoted by A–G), with two, three or four cells in each state. (B) The second challenge is to determine

how these states fit into a lineage tree. This process is helped by the fact that the states form triplets (such as

D-B-E or B-D-F, where the central state is B and D respectively), with one non-central member of the triplet having

low levels of expression for certain ’transitional’ transcription factor genes (see boxplot, where E has low levels of

gene expression, whereas B and D have high levels). Furchtgott et al. couple these two challenges by an iterative

process of first inferring cell sub-populations, then identifying a lineage tree over these sub-populations, and then

restarting the process, this time using only the transitional genes to define the cell sub-populations. (C) The third

challenge is to understand how transcriptional regulation controls cell development in this system. In the example

shown here it is assumed that a network of four transcription factor genes (or clusters of co-regulated genes) are

involved in regulation. By comparing many possible networks that can be formed by four genes (or clusters of

genes) and have seven steady states (one for each of the cell states identified in A), it is possible to make

predictions of the interaction between pairs of transcription factors. In this example the state A corresponds to

genes 2 and 3 being expressed (1) and genes 1 and 4 not being expressed (0), while state G corresponds to gene

1 being expressed and genes 2, 3 and 4 not being expressed. The expression of a gene is determined by

summing over the influences of its expressed neighbors: for example, under some parametrization, gene 3 in this

network will be determined as expressed if genes 1 and 4 are on.
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factors (Graf and Enver, 2009;

Novershtern et al., 2011), or that transcriptional

profiles often exhibit a ’single-pulse’ pattern dur-

ing development (Yosef and Regev, 2011).

Furchtgott et al. then developed a statistical

method to test whether a given triplet of states

reflects a true developmental progression and, if

so, in what order. The method is based on iden-

tifying ’transitional’ genes that are clearly

expressed at low levels in one of the states, and

testing whether the overall pattern of transitions

(while looking at the entire set of transcription

factor genes) is likely due to the presence of a

lineage relationship. All the triplets that ’pass’

this test are then merged into one global line-

age tree. This new strategy opened up the pos-

sibility of categorizing all the cells in a single-cell

RNA sequencing dataset into developmental

states, without knowing in advance what these

states were. To achieve this, which essentially

involves answering the first of our three ques-

tions, Furchtgott et al. developed an iterative

algorithm that seeks to partition the cells into

clusters (each representing a separate state),

such that the overall likelihood of lineage rela-

tionships between these clusters is high.

Ramanathan, Sumin Jang and co-workers –

including Jang and Sandeep Choubey as joint

first authors – then used this approach to do two

things: first, they identified nine cell states that

occur as embryonic stem cells undergo differen-

tiation and eventually become progenitor cells

for the different germ layers in a mouse embryo;

second, they organized these nine states into a

lineage tree (Jang et al., 2017). The next chal-

lenge was to find out how transcriptional regula-

tion controlled cell development in this system.

In the past researchers have focused

primarily on the transitions between states (see,

for example, Novershtern et al., 2011;

Shin et al., 2015). However, when Jang et al.

used flow cytometry and live-cell microscopy to

monitor various biomarkers for the cell state,

they found that the different cell states were rel-

atively stable, while the transitions between

them occurred more rapidly. This prompted

them to focus on the states themselves, rather

than the transitions between them. In particular

they looked for a network of interactions

between sets of transcription factors that could

converge to a number of different steady states

(Huang et al., 2009), with each of these steady

states representing a particular cell state.

Since the number of networks that exhibit

this property is extremely high, Jang et al. were

not able to explore all of them. Rather, they

explored a sample, looking for relationships

between transcription factors that were consis-

tent across many networks. This allowed them to

make predictions about the relationships

between various transcription factors, and how

these relationships depended on the cell state.

For example, they predicted (and then experi-

mentally verified) that the expression of Oct4 is

more sensitive to the over-expression of Sox2

when a cell is in an epiblast-like state than when

it is in a state that is like an embryonic stem cell.

While new tools, particularly single-cell RNA-

sequencing, are proving to be highly productive,

we could learn much more by measuring other

molecular profiles within the cells. For instance,

knowing more about the chromatin state of sin-

gle cells could help a lot when categorizing

them into cell states and trying to identify the

most active transcription factors (Wagner et al.,

2016; Tanay and Regev, 2017). Technologies

for lineage tracking can further provide direct

observations of cell state transitions

(Woodworth et al., 2017). Looking to the

future, the ability to collect multiple types of

data from single cells, combined with the ability

to integrate and interpret all these data in an

informative manner, is sure to lead to new

insights into how cells change and fate decisions

are made during development.
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