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Abstract Sequences of events are ubiquitous in sensory, motor, and cognitive function. Key

computational operations, including pattern recognition, event prediction, and plasticity, involve

neural discrimination of spatio-temporal sequences. Here, we show that synaptically-driven

reaction-diffusion pathways on dendrites can perform sequence discrimination on behaviorally

relevant time-scales. We used abstract signaling models to show that selectivity arises when inputs

at successive locations are aligned with, and amplified by, propagating chemical waves triggered

by previous inputs. We incorporated biological detail using sequential synaptic input onto spines in

morphologically, electrically, and chemically detailed pyramidal neuronal models based on rat data.

Again, sequences were recognized, and local channel modulation downstream of putative

sequence-triggered signaling could elicit changes in neuronal firing. We predict that dendritic

sequence-recognition zones occupy 5 to 30 microns and recognize time-intervals of 0.2 to 5 s. We

suggest that this mechanism provides highly parallel and selective neural computation in a

functionally important time range.

DOI: 10.7554/eLife.25827.001

Introduction
Activity sequences have long been recognized as a fundamental constituent of neural processing.

Lorente de No suggested that reverberatory activity sequences in small networks could sustain activ-

ity (Lorente de No, 1938). Hebb’s idea of cell assemblies suggested that ensembles of cells

encoded a particular neuronal concept, but also that there was sequential activation within the

group of cells forming the assembly (Hebb, 1949).

Many sensory systems process sequential stimuli, and these are typically mapped to ensembles of

sequentially active neurons (Bouchard and Brainard, 2016; Broome et al., 2006; Carrillo-

Reid et al., 2015). Deeper in the brain, hippocampal place cells represent a higher-order cognitive

map of space, yet here too sequences occur when the animal moves through spatial locations repre-

sented by the place cells (Wilson and McNaughton, 1994). The hippocampus exhibits other forms

of sequential activity in the form of fast replay events (Jadhav et al., 2012; Wilson and McNaugh-

ton, 1994) and stimulus-bridging activity that emerges during associative learning

(MacDonald et al., 2011) and trace conditioning (Modi et al., 2014). Thus, there are numerous neu-

ral correlates both of sequences, and of processing steps that recognize them.

The idea of synfire chains examines conditions for self-sustaining sequential activity to occur in

multiple layers of a network (Abeles, 1982). This is non-trivial, as excessive activation can lead to

runaway epileptiform activity, whereas insufficient activation causes decay of the activity wave

(Kumar et al., 2008; Mehring et al., 2003). Neural networks that can recognize such sequences are

well-established. For example, events may be run through a delay line, so that the oldest event is

delayed more, the next event less, and so on, so that they all arrive at the neural network at the
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same time. Thus, the time-sequence is flattened in time and classical attractor networks can recog-

nize patterns in the sequence (Tank and Hopfield, 1987). Time-varying attractor networks have also

been shown to be able to implement and recognize sequences (Lee, 2002). Time-invariance is a

desirable feature of sequence recognition circuits, since the same order of events may take place at

different speeds. Recursive networks using supervised learning, and short-term synaptic plasticity

have been shown to be implement time-invariance (Barak and Tsodyks, 2006; Goudar and Buono-

mano, 2015; Laje and Buonomano, 2013).

While networks can carry out sequence recognition, they make limited use of the rich dynamics of

biological neurons. The theory of Hierarchical Temporal Memory builds on the idea of sequence-rec-

ognizing neurons and networks as a way to perform complex temporal computation (George and

Hawkins, 2009; Hawkins and Ahmad, 2016). Even the ability to recognize simultaneous closely-

localized synaptic input has interesting computational implications (Hawkins and Ahmad, 2016),

The current study extends this to patterns of input both in time and space.

One of the first biophysical proposals for subcellular sequence recognition was made by Rall, who

showed theoretically that synaptic events propagate down the dendritic tree with a small delay. By

timing synaptic inputs to coincide with this delay, Rall predicted that ordered input should yield a

larger response than reversed input (Rall, 1964). A stronger version of this mechanism was experi-

mentally demonstrated by Branco et al. (2010) who used glutamate uncaging to provide sequential

input along a pyramidal neuron dendrite. They showed that NMDA receptor amplification of

’inward’ sequences (distal to proximal) gave rise to about 40% larger somatic depolarization than

’outward’ sequences, for rapid (~40 ms) sequences. However, many interesting neural sequences

occur at slower time-scales.

At least three attributes should converge for single neurons to achieve and report sequence rec-

ognition in the noisy context of neural activity. First, the neurons should recognize inputs coming in

the correct order in space and time. Second, the selectivity for the correct input over scrambled

input and background noise should be strong enough for there to be reliable discrimination. Third,

recognized sequences should trigger activity changes either by way of changed firing, or by way of

plasticity. In the current study, we use theory and reaction-diffusion modeling to show how the first

condition may be achieved, and develop detailed multi-scale models to address the second and

third.

Results
As the setting for this study, we considered a network in which ensembles of neurons are active in

sequence, for example, place cells in the hippocampus as an animal moves along a linear track (Fig-

ure 1). We assumed that a single neuron from each of these ensembles projects onto a given post-

synaptic cell, which is the focus of our analysis. The projections are ordered such that they converge

onto a succession of spines located on a short stretch of dendrite on this cell, in the same spatial

and temporal order as the activation of the ensembles. We ignored all other network context. We

first treated this system in the abstract, as sequentially ordered activation of segments of a one-

dimensional reaction-diffusion system with abstract chemistry. We asked if the reaction system could

discriminate sequential from scrambled input. We then mapped the discrimination mechanism to a

signaling pathway modeled as mass-action reaction-diffusion chemistry in a similar cylindrical geom-

etry, but ornamented with dendritic spines. We then tested discrimination when we embedded

mass-action chemistry into a morphologically and electrically detailed neuronal model receiving

sequential input on a series of synapses, through ligand-gated ion channels. Finally, we asked if ion

channel modulation by sequence discrimination chemistry in small dendritic zones, could affect neu-

ronal firing.

Abstract reaction-diffusion systems support sequence recognition
We first analyzed the requirements for chemical reaction-diffusion systems to achieve selectivity for

spatially and temporally ordered inputs. In doing these calculations, we utilized ’spherical cow’ mod-

els of chemistry: highly reduced formulations with just two diffusive state variables A and B, inter-

preted as molecules undergoing 1-dimensional diffusion (Figure 2A,B). The reaction system

received input from a third molecule, designated as Ca (Figure 2A,B). In all cases, molecule B inhib-

ited A.
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The abstract models were initially formulated to implement reaction-diffusion wave propagation

at a speed that matched the arrival of sequential input. We implemented two models with this prop-

erty: the FitzHugh-Nagumo form, which is a known stimulus-triggered, oscillating, and propagating

wave system (Fitzhugh, 1961; Nagumo et al., 1962); and a bistable reaction-diffusion system, which

again is a known substrate for propagating waves (Keener and Sneyd, 1998). To the bistable switch

system, we added inhibitory feedback to restore the switch to baseline after a delay. In addition to

these models with complex dynamics, we implemented a system with feedback inhibition, and a sys-

tem with feedforward inhibition. These simpler models were designed to test if inhibitory feedback

or feedforward systems, coupled with diffusion, could achieve selectivity in the absence of an ampli-

fying positive feedback process.

Our criterion for sequence recognition was that ordered inputs should elicit high total activity of a

signaling molecule A, whereas scrambled inputs should elicit low levels of activity. Total activity here

means the sum of activity of A over the duration and spatial extent of the stimulus.

To investigate the temporal responses of these ’reaction’ systems, we first delivered impulse (red

dot) and step-function (green line) input to non-spatial versions of the models (Figure 2C). Each

model exhibited a large impulse response. Two of the models (feedforward inhibition and state-

��

�� ��
�� ��

�

Figure 1. Sequential activity, from behavior to dendrite. Top: Linear arena in which a rat moves, with indicated locations of 5 place cells (color coded

green, yellow, orange, red, and maroon in order.). The place cells are representatives of 5 neuronal ensembles (colored clouds), each active in one of

the five locations on the arena. The neuronal ensembles each send a single axonal projection in spatial order to a small dendritic segment on a

postsynaptic neuron, with an average spacing S between connected spines. Note that spines need not be immediately adjacent to each other. Below,

buildup of reactant following input activity with the appropriate timing, corresponding to the rat moving at a speed which the dendritic chemistry

recognizes.

DOI: 10.7554/eLife.25827.002
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Figure 2. Responses and sequence selectivity of four abstract models involving molecules A and B. Columns are the respective models. (A) Model

equations. (B) Model schematics. Arrows indicate excitation, plungers indicate inhibition. In the FHN model, A has a fast self-excitation and a slow self-

inhibition. In the Switch model, we indicate a multiplicative inhibition of A by an arrow from B onto the self-inhibition arrow of A. (C) Response of point

(non-spatial) model to a 1 s wide Gaussian input of Ca2+ (red dot) and a steady pulse of Ca2+ (green line). Input amplitudes: 1, 10, 0.4, and 1

respectively. (D-G) Response of molecule A in one-dimensional reaction-diffusion form of model to sequential input at five locations. (D) Time-course of

response at five locations to ordered input. Locations are color-coded in the sequential order blue, green, red, cyan, purple. (E) Time-course of

response at five locations to scrambled input. Note that the FHN and Switch models have much lower responses to scrambled as compared to ordered

input. The Neg. FF model has a lower response at two of its locations. (F, G) Snapshot of spatial profile of response to ordered (F) and scrambled (G)

input. Snapshot is at time 18.4, 14.2, 16.3 and 18.4 s respectively.

DOI: 10.7554/eLife.25827.003
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switching) exhibited only a transient response to the sustained input. The negative feedback model,

as expected, had a transient strong response followed by a shallow sustained response. The Fitz-

Hugh-Nagumo model, again as expected, oscillated.

We then implemented 1-dimensional reaction-diffusion versions of these models (Figure 2, meth-

ods). We delivered Ca2+ stimuli at five equally spaced points on the reaction system. Each Ca2+ stim-

ulus followed a Gaussian time-profile:

Ca¼ expð�ððphase� tÞ2Þ=ð2 width2ÞÞ (1)

Here, phase defines the timing of each input, t is time, and width is the duration of the Ca2+

pulse.

The only difference between the sequential and scrambled stimuli was their order ([0,1,2,3,4] and

[2,1,4,3,0], respectively (methods)).

The results of these simulations are compared in Figure 2D–G. First, we found that the simple

feedback inhibition model showed no input sequence-dependent difference in total activity. This can

be seen in terms of time-response at the five stimulus points (Figure 2D,E), and also in terms of spa-

tial profile of A at the end of the stimulus (Figure 2F,G, Video 1).

Then, we observed that the feedforward inhibition model showed a small amount of selectivity

(Figure 2D–G). This arose because the A response was diminished at two of the input points when

the input was scrambled (Video 2).

The FitzHugh-Nagumo (FHN) model was strongly selective, with a large buildup of response only

when the input was sequential (Figure 2 third column, Video 3). We interpret this as arising when

the propagating wave from the FHN equation arrived at successive input points just when the input

was also present.

The switching model was the most selective (Figure 2 last column, Video 4). This was because it

built up to a large, sustained response lasting several seconds, provided the successive inputs were

in the same position as the diffusively propagating activity of A.

Thus, this set of simulations showed that several reaction-diffusion like systems were capable of

sequence selectivity. Strong selectivity emerged from a supralinear buildup of responses when diffu-

sively propagating activity was aligned with successive inputs, and suppression due to inhibition

when the alignment was off.

Reaction systems select for distinct speeds and length-scales of
sequential input
We next asked how the different reaction systems were tuned to different spatial and temporal inter-

vals. We devised a scalar metric, Q, of the degree of sequential ordering of stimuli, as a first step.

We plotted the ordinal position of the input against the ordinal value of its arrival time. Thus, a per-

fect sequence would arrive at positions [0,1,2,3,4] at times [0,1,2,3,4]. We used the quantity

Q¼mR2 (2)

as the measure of how ordered the sequence was. Here, m = slope and R = regression coefficient of

best-fit line. R2 provides a measure of linearity of the sequence, and m assigns it a magnitude and

Video 1. Time-and-space series of response of

negative feedback model to sequential (blue) and

scrambled (red) input.

DOI: 10.7554/eLife.25827.004

Video 2. Time-and-space series of response of

negative feedforward model to sequential (blue) and

scrambled (red) input.

DOI: 10.7554/eLife.25827.005
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sign. With this measure, the sequence [0,1,2,3,4] has Q = 1; [4,3,2,1,0] has Q = �1, and [4,0,2,1,3]

has Q = �0.001. Examples of regression plots used to generate Q for different sequences are pre-

sented in Figure 3A,B.

We then compared our reaction readout A with the metric Q, to see how well each of our four

reaction systems could discriminate sequence order (Figure 3C,E,G,I). Here, we ran simulations with

each of the possible permuted input sequences. In each run, we summed the level of A over all five

stimulus points, and from the time of the first stimulus till the end of the run, in order to obtain a

cumulative estimate of the response. This total A value (Atot) was plotted against the Q metric for

each of these permuted sequences (Figure 3C,E,G,I). If the chemical system was highly selective, we

expected that only one or two points in the scatter plot should have a high value of Atot, and these

should be the points with Q around +1 or �1. Chemical systems that did not exhibit sequence dis-

crimination should have similar values of Atot for all sequences.

The results were as expected from the individual runs from Figure 2. Specifically, the inhibitory

feedback system had poor tuning, there was a small amount of selectivity for the feedforward inhibi-

tion case, and strong selectivity for the FitzHugh-Nagumo and switching cases. Each of these out-

comes had been observed in Figure 2 for just the sequential and a single scrambled stimulus, and in

Figure 3 we found that it generalized to the entire set of sequence permutations. Note that the

modeled reaction-diffusion system was spatially symmetric and did not distinguish between forward

and backward sequences. An analysis of symmetry breaking arising from incorporation of biological

detail is out of the scope of the current paper.

We next asked how selective each reaction system became, when the inputs were delivered at

different time and space intervals. The time and space intervals were specified as parameters for

each simulation run. We devised a metric for reaction network sequence selectivity, based on a com-

parison of responses to sequential vs. scrambled inputs:

Selectivity¼ ðAsequential�meanðAtotÞÞ=maxðAtotÞ (3)

Provided the system responds more strongly to sequential input than to any other order, selectiv-

ity should be in the range from zero (unselective) to one (highly selective). Asequential is Atot for

the sequential stimulus, mean(Atot) is the mean of Atot over all permutations of the stimulus order,

and max(Atot) is the maximum value of Atot for all permutations of stimulus order.

To compute Selectivity, we carried out simulations of the model for all possible non-repeating

patterns of input, and obtained Atot in each case (Figure 3, first column). Selectivity was then esti-

mated as per Equation 3. We repeated these calculations for each point in the matrix of timing and

spacing values, to obtain a grid of selectivity values (Figure 3D,F,H,J). As already seen from Fig-

ure 2, the feedback inhibition model had low selectivity in all cases. The feedforward inhibition

model showed a diagonal band of weak selectivity such that rapid stimuli in close proximity as well

as slower stimuli at greater distances were preferred. The FitzHugh-Nagumo case was much more

strongly selective, but also had a similar diagonal band. In both these cases we interpret this as there

being an intrinsic propagation speed of the chemical activity wave, and if the inputs were timed and

spaced accordingly, the response built up. The switching model was strongly selective, and had a

large diffuse zone of strong selectivity centred around (2 s, 4 mm).

Video 3. Time-and-space series of response of

FitzHuge-Nagumo model to sequential (blue) and

scrambled (red) input.

DOI: 10.7554/eLife.25827.006

Video 4. Time-and-space series of response of bistable

switch model to sequential (blue) and scrambled (red)

input.

DOI: 10.7554/eLife.25827.007
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Figure 3. Sequence selectivity for different models. (A, B) Regression plots for sample sequences. (A) Perfect forward sequence [0,1,2,3,4] (red, Q = 1)

and reverse sequence [4,3,2,1,0] (blue, Q = �1). (B) Scrambled sequence [4,0,2,1,3] (red, Q = �0.001) and [0,1,3,2,4] (blue, Q = 0.729). (C, E, G, I) Scatter

plots of chemical system selectivity (measured as total activation of molecule A over time and space) against Q. There are 5! = 120 points, each being

the outcome of a single simulation with a different sequence. In each plot the blue cross is the perfect forward sequence (whose timeseries is shown in

Figure 3 continued on next page
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Thus, each of the three sequence-selective reaction systems had a preferred range of stimulus

timing and spacing, but the FHN and switch forms had much higher selectivity.

Sequence speed selectivity scales with reaction rates and diffusion
constants
As a further analysis on our abstract models, we asked how sequence speed selectivity scaled with

rates and diffusion parameters. This scaling is important because it determines the spatial extent of

the sequence selective zones that we propose to exist in the dendritic tree. It is also important as it

defines the time-scales of sequential events that may be recognized by such reaction-diffusion

mechanisms.

We first tested the most straightforward assumption, that sequence propagation speed was pro-

portional to chemical rate and diffusion constants. To do this, we scaled all rates and the diffusion

constants by the same factor, and reduced the stimulus width by the same factor. We ran the same

grid of stimulus space and time intervals as above. As expected, scaling all the chemical and diffu-

sion rates also scaled the sequence speed to which the network had the strongest response. As the

rates were increased, the best tuning was at shorter time intervals but roughly the same spatial inter-

vals. (Figure 4A–E). However, different stimulus strengths were needed to obtain strong tuning in

these runs. We therefore also examined dependence of tuning on stimulus strength, and observed

that the tuning zone also depended on stimulus strength (Figure 4F,G). This is because the selectiv-

ity occurs when the stimulus is strong enough that the ordered sequence leads to pathway activa-

tion, but not so strong that the stimulus overrides the inhibitory reactions and produces

indiscriminate activation. To better understand the range of sequence selectivity, we varied each of

the parameters of the model one at a time with respect to the reference model. We carried out this

1-dimensional parameter sensitivity sweep for the FHN and switching models (Figure 4—figure sup-

plements 1 and 2). In each case we computed Asequential (blue traces), and compared it to mean

(Atot) averaged over 12 input patterns, 11 of which were scrambled (green traces, methods). We

also computed sequence selectivity as per Equation 3 (red traces). We found that selectivity was

robust to some parameters, such as diffusion constants, but fragile (range ~20%) with respect to

some rate constants and stimulus amplitude. These models were intended to be illustrative and to

explore the properties of sequence-selective systems. Hence, we did not optimize the models for

robustness.

Thus, by varying rates for reactions and diffusion, we were able to achieve good sequence selec-

tivity over a broad range of time-intervals (0.5–4 s between stimuli) and spatial intervals (2–6 mm

between stimuli).

Mass-action reaction-diffusion system based on MAPK feedback
discriminates sequences
We next asked if above design principles for sequence selectivity could be applied to a mass-action

reaction-diffusion system. We based our mass-action model on a published, reduced model of

MAPK feedback and bistability (Bhalla, 2011). The model already exhibited the switch-like turnon

behavior of our abstract ’switch’ model. The other key aspect of the abstract model was delayed

turnoff of activity. There are several known inhibitory feedback turnoff mechanisms for the MAPK

pathway (Lake et al., 2016). We therefore added a MAPK-activated protein phosphatase to cause

delayed turnoff of the kinase. The other changes we made to the published MAPK model were (a) to

Figure 3 continued

Figure 2D), and the red cross is the scrambled sequence [2,1,4,3,0], whose timeseries is shown in Figure 2E. (D, F, H, J) Matrix of selectivity as a

function of total length of stimulus zone and interval time between successive stimuli. In each plot, the asterisk is placed on the matrix entry obtained

from the spacing and interval parameters used for the scatter plot to its left. In other words, the selectivity value for that matrix entry is obtained from

Equation 3 using the Atot scores from the scatter plot. (C,D) Feedback model. This shows no selectivity. (E, F) Inhibitory feedforward model. Scatter

plot in E represents calculations performed at time/distance values of (3 s, 4 mm). This shows low selectivity, as seen by slightly higher Atot for Q values

of +1 and �1. (G,H) FitzHugh-Nagumo, scatter plot at (2 s, 2 mm). The model is selective in a narrow, diagonal range of time and distance. Its score is

somewhat reduced because of the high baseline of Atot. (I,J) Switching model, scatter plot at (3 s, 4 mm). This is highly selective over a wide range of

time and distance. Only the perfect forward and reverse sequences have high values of Atot.

DOI: 10.7554/eLife.25827.008
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Figure 4. Sequence tuning ranges in space and time. (A-D) tuning for rates of 1, 2, 3 and 4 times basal, respectively. (E) Plot of speed of sequence as a

function of the rate scale factor. (F, G) Preferred space/time of tuning shifts with stimulus amplitude. (F) 90% basal. (G) 110% basal.

DOI: 10.7554/eLife.25827.009

Figure 4 continued on next page
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remove the synaptic signaling leading to receptor turnover in the spine and (b) to add diffusible

CaM as a Ca2+ buffer. With the exception of active PKC, Raf, and the ion channels, all molecules

were diffusible. The model schematic is shown in Figure 5A, and the full model specification is pre-

sented in supplementary material. This model formulation is a semi-quantitative map to the far more

detailed and tightly constrained models of this pathway in the literature (Bhalla and Iyengar, 1999;

Resat et al., 2003). Ca2+ stimuli were delivered in the PSD and diffused into the dendrite (Methods).

Model responses to brief (1 s) and square step function (100 s) Ca2+ inputs are shown in Figure 5B,

C, both measured in the dendrite. As expected, there is a strong switch-like turnon to Ca2+ stimuli,

followed by delayed inhibition. We ran this model in a cylindrical geometry ornamented with spines

at ~1.1 mm intervals (Materials and methods, Figure 5D). We provided sequential and scrambled

Ca2+ input to 5 of the spines separated by ~3 mm each, and observed good sequence selectivity

(Figure 5E,F).

Thus, we showed that a mass-action reaction-diffusion system exhibited sequence selectivity

when it had switch-like turnon with delayed turnoff by negative feedback. This configuration had

been predicted by the abstract models.

Sequence selectivity works in a biologically detailed multiscale neuronal
model with noisy input
We then asked whether biochemical sequence recognition would ’work’ in the more complex con-

text of active neurons receiving background activity in a network. We brought in biological detail at

the following levels: (a) Model neuron morphology based on anatomical reconstructions (>3000 seg-

ments), including >5700 spines spaced at ~1 mm. (b) Voltage-gated ion channels distributed

throughout the cell, based on published models. (c) Background glutamatergic Poisson synaptic

input at 0.1 Hz on all spines. (d) Background GABAergic synaptic input with an 8 Hz theta modula-

tion on proximal dendritic compartments. Due to the background synaptic input, the model exhib-

ited theta-modulated sub-threshold oscillations, with spiking activity at ~1 Hz (Figure 6B). (e) Stimuli

in the form of spike trains arriving on AMPA and NMDA receptors on subsets of spines. (f) Ca2+

dynamics following synaptic ion flux, including diffusion between spine and dendrite, and buffering

by calmodulin, in all spines and dendrites (Video 5). (g) The reduced MAPK model described above,

was distributed throughout the dendritic tree in ~6000 diffusive compartments (Figure 6A). (h)

Chemical calculations in the spines were carried out using a stochastic method (Gillespie Stochastic

Systems Algorithm, methods) for the runs used to calculate selectivity.

We first ran a direct comparison of a sequential input train [0,1,2,3,4] compared with a scrambled

train with sequence [4,0,3,1,2]. We picked time and space intervals of (3 s, 4 mm) based on prelimi-

nary calculations for tuning. We delivered the input sequence on a basal dendritic branch

(Figure 6A). We selected a set of 5 spines, spaced at ~3 mm. Each spine was stimulated with a Pois-

son spike burst lasting 2 s at 20 Hz on the AMPA and NMDA receptors. With these parameters, the

[Ca2+] reached ~40 mM in the PSD, ~35 mM in the spine head, and ~1 mM in the region of dendrite

immediately below the stimulated spine (e.g., Figure 6C). Similar Ca2+ levels were obtained when

stimuli were delivered in other regions of the dendrite. The exception was the primary apical den-

drite, in which dendritic Ca2+ only reached ~0.5 mM. This is an expected outcome of diluting out the

Ca2+ arriving from the spine, since the diameter of the primary dendrite was ~2 mm as compared

to ~1.0 mm in the other stimulus regions. With these parameters, we observed strong selectivity in

MAPK activity for sequential stimuli as compared to scrambled in the basal dendrite (Figure 6D,

solid lines for sequential vs. dashed for scrambled).

We then asked how this multiscale model responded to a range of time and space intervals in

each of the stimulated zones. Because the calculations were expensive, we used a modified version

Figure 4 continued

The following figure supplements are available for figure 4:

Figure supplement 1. Parameter sensitivity for FHN (FitzHugh-Nagumo) reaction-diffusion model.

DOI: 10.7554/eLife.25827.010

Figure supplement 2. Parameter sensitivity for switch (Propagating bistable switch) reaction-diffusion model.

DOI: 10.7554/eLife.25827.011
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Figure 5. Mass action model of a MAPK switch exhibits sequence selectivity. (A) Schematic of model chemistry. Black arrows indicate binding or

activation reactions, plunger indicates inhibition, and bent arrow indicates enzyme activity. Broad cyan arrows indicate diffusion of Ca2+ and CaM

between PSD, spine head, and dendrite. CaM buffers the incoming Ca2+ from the PSD. (B) Ca2+ responses seen at the dendrite, to input delivered at

PSD. PSD stimulus was two pulses of 1 s, 160 mM Ca2+, separated by 50 s. After a delay of 100 s, a step of 160 mM Ca2+ was delivered for 50 s. (C)

Figure 5 continued on next page
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of the selectivity metric (Equation 3) in which we computed outcomes of only 12 stimulus patterns

rather than the exhaustive 120 possible permutations (Materials and methods). In each case, we

used MAPK-P in place of the molecule ‘A’ for calculating selectivity (Equation 3). For efficiency, we

delivered the stimulus patterns simultaneously in the 4 zones of the cell (Figure 6A). Similar tuning

was observed in test simulations where stimuli were delivered only in a single zone.

We observed strong sequence selectivity in the basal dendrite zone, for a restricted range of

space and time intervals, as expected from the earlier calculations (Figure 6E–G). We repeated the

calculations using different random seeds to generate different background and stimulus spiking

input to the model neuron. We found that the responses of individual runs, and hence selectivity,

were somewhat noisy (Figure 6E–G).

We next investigated whether the response selectivity was manifested in different regions of the

cell. We found that there were indeed strongly sequence selective responses in oblique dendrites

and distal apical dendritic regions, but these required stronger stimuli (Figure 6H,I; Videos 6 and

7). In these runs, we had to increase the diameters of spine heads and spine shafts by 40% and 20%

respectively to obtain sufficient dendritic Ca2+ influx, and hence selectivity. The reference spine

models had a shaft of 1 mm length x 0.2 mm diameter, and a head of length and diameter 0.5 mm.

We did not observe sequence recognition in the primary apical dendrite (Figure 6J). Even the stron-

gest stimuli applied in this location elicited only small Ca2+ elevations, with weak downstream MAPK

responses, and no pattern selectivity.

We performed a limited parameter sensitivity analysis for the detailed cell model, focusing on

biophysical and biochemical parameters involved in triggering or responding to Ca2+. We chose

these parameters since stimulus range had been one of the most sensitive parameters for the

abstract models. We individually varied stimulus strength, L-type Ca2+ channel density, Ca2+ diffu-

sion, and the activation of Raf by Ca2+. Each of these runs was performed with distinct random seeds

and stochasticity in spike-trains and in chemical kinetics in spines. Even though we had not fine-

tuned the model for robustness, we found that the model retained selectivity (at least 50% of best

selectivity) over a factor of ~2 or more for all parameters except the Raf affinity for Ca2+ (Figure 6—

figure supplement 1). The latter parameter could be varied by ±15% about its reference. While this

list is not exhaustive, it does suggest that the sequence selectivity of the detailed model is fairly

robust, and somewhat more so than the abstract models.

Thus, we showed that intracellular signaling pathways exhibited selectivity for ordered synaptic

input, even when considerable morphological and electrical detail and noisy input were incorpo-

rated. Selectivity became noisier with this additional detail, and different zones of the cell required

different synaptic efficacies to achieve selectivity. With the current parameters the selectivity was on

the time-scale of seconds, with successive inputs spaced apart by a few microns.

Sequence-signaling triggered channel modulation may influence cellular
firing
There are multiple possible outcomes of local sequential activity-triggered chemical signaling. These

include synaptic plasticity, dendrite remodeling, and electrical changes through channel modulation.

For the purposes of the current study, we focused on the third, namely channel modulation leading

to changes in electrical activity, since this defines how the neuron may report the presence of a

sequence to other cells in the neuronal network. Similar brief, strong synaptic input on small sections

of distal dendrites has been reported to cause strong changes in activity of striatal spiny neurons by

triggering a transition to an ‘up’ state (Plotkin et al., 2011).

Figure 5 continued

MAPK-P response to the Ca2+ stimulus. Note strong inhibition of the response to the second pulse, and rapid decline of response to the 50 step

stimulus. (D) Geometry of 1-D reaction-diffusion model, with 49 spines. Dendrite diameter was 1 mm and length was 60 mm. The five stimulated spines

are in red, each identified by a color coded number. (E) Response of system to sequential input [0,1,2,3,4] on indicated spines spaced ~3 mm apart, at

intervals of 3 s. Each input was delivered to the PSD of the stimulated spine, at 160 mM, for 2.9 s. MAPK-P was recorded from the dendrite subdivision

attached to each of the stimulated spines. Plot colors indicate stimulated spine from D. (F) Response to scrambled input, in the order [4,0,3,1,2]. The

response to scrambled input had a smaller amplitude and lasted for a shorter time. Plot colors are as per spine numbers in D.

DOI: 10.7554/eLife.25827.012
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A

Figure 6. Sequence selectivity in detailed electrical+chemical signaling model. (A) Morphology of model. Dendrite diameters are scaled up by 2, and

spine diameters and lengths by four for visualization. Stimulus was given in four zones on the cell, indicated in red and by diameters scaled up by 10x.

(B) Example somatic intracellular potential and spike train of model neuron. (C) Ca2+ responses to Poisson synaptic volley at mean rate 20 Hz, measured

in PSD (blue), spine head (green) and dendrite (red). (D) Sequence selectivity in the distal apical zone. Heavy solid lines are P-MAPK-P levels under the

Figure 6 continued on next page
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We utilized the same morphologically detailed pyramidal neuron model as above, and asked if

local channel modulations over the length scale of about 20 mm could alter somatic spiking. We

assumed that MAPK activity, or other signaling events downstream of sequence selective chemistry,

could perform channel modulation through phosphorylation or triggering of channel insertion. For

example, MAPK phosphorylates and modulates KA (Yuan et al., 2002) Kir6.2 (Lin and Chai, 2008),

and Na(v) 1.7channels (Stamboulian et al., 2010). MAPK is also implicated in control of trafficking of

AMPA receptors (Keifer et al., 2007). We did not simulate these modulation events explicitly since

the computations were very lengthy and we wished to perform many repeats to estimate the distri-

bution of the firing rates following channel modulation. Instead we ran just the electrical cell model

for an initial settling period of 1 s, and then used the simulation script to modify the selected channel

conductance to represent its modulation. Following this we ran the model for another 3 s in each

case. We applied these channel modulations to the same four regions of the cell which we had

tested for sequence discrimination. We examined modulation of KA, Na, nonselective leak, NMDAR

and AMPAR channels.

We estimated the statistics of firing following these modulatory changes through repeated simu-

lations of the control condition (100 repeats) and each modulation condition (40 repeats), each with

different random number seeds. We found that modulation of the Na channel, and increase in non-

selective leak conductance in the apical and primary dendrites could increase firing rates by large

factors (Figure 7A,B).

In initial runs, modulation of NMDA and AMPA receptors had no effect. This was because the ran-

dom background synaptic input to these receptors was low, at 0.1 Hz. Since the receptors were acti-

vated at this low rate, their effect on cell firing was minimal. However, in these calculations, we had

omitted the synaptic input that triggered the chemical cascades. Based on the time-course of build-

up of MAPK-P (Figure 5E, Figure 6D), the MAPK-P activity was already high by the time of the last

synaptic burst in the sequence of inputs. We therefore repeated the calculations, and additionally

incorporated a single burst of synaptic input to the NMDA and AMPA receptors for the same dura-

tion and frequency as in the full multiscale cell model (Figure 6).

With this change, we found that a 10x increase in AMPAR conductance in the 20 mm zone in the

apical dendrite led to a doubling in cell firing (Figure 7C). A similar manipulation in the primary den-

drite led to a shallower increase, about 1.5x.

Thus, chemical signaling, even in rather small regions of the apical dendrite, may lead to a rapid

change in cell firing by local channel modulation. However, large channel modulations were needed

to elicit sufficiently large (e.g., 50%) changes in in firing rate that could be detected over the noisy

background.

Discussion
We postulate that recursive sequence recognition is a fundamental computational operation in the

brain, and that this operation may be implemented by neurons able to recognize spatially and tem-

porally sequential input on behavioral time-scales (seconds). In this study, we have examined three

key parts of such a hypothesis. (1) At the chemical level, we have examined a set of abstract rate

equations coupled by linear diffusion, and identified key motifs that support sequence recognition.

(2) At the dendrite level, we have shown that these abstract principles of reaction-diffusion mediated

Figure 6 continued

stimulated spines, for sequential input. Strong buildup occurs for three of the spines. Dashed lines are corresponding MAPK-P levels for scrambled

input. Only the sequential input responses lead to build up. (E-G) Matrix of sequence selectivity in basal dendrite zone, for different input spacing in

time and space. Three different runs are shown, with the same morphology but different random number seeds for the background and stimulus

synaptic input. (H) Selectivity in proximal oblique dendrite zone, using 40% larger spine dimensions. (I) Selectivity in distal apical dendrite using 20%

larger spines. (J) Selectivity matrix in proximal primary apical dendrite shows no sequence selectivity even with 40% larger spines.

DOI: 10.7554/eLife.25827.013

The following figure supplement is available for figure 6:

Figure supplement 1. In each plot, the blue trace is the summed concentration of MAPK-P for the sequential stimulus, and the green plot is the mean

of summed MAPK-P over 12 permutations of the stimulus.

DOI: 10.7554/eLife.25827.014
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sequence recognition carry over to much more detailed and biologically motivated neuronal models.

These models are multiscale composite models, and explore the length-scales and physiological

detail relevant to the current hypothesis. (3) At the cell level, we have shown that local, 20 mm chan-

nel modulation can elicit changes in somatic spiking. 20 mm is within the range of our predicted

sequence-activated signaling that could lead to channel modulation by phosphorylation or insertion.

Video 5. Calcium influx into spines and dendrites due

to random background and sequential stimulation in

detailed single-neuron model.

DOI: 10.7554/eLife.25827.015

Video 6. MAPK-P activity in apical dendrite zone

following sequential synaptic input. Note high and

sustained buildup of MAPK-P activity in a small zone

of ~25 microns.

DOI: 10.7554/eLife.25827.016
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We envision a network configuration where at

the input level, there are ensembles of neurons

that are active in a defined sequence in some

sensory, motor or other context. We focus our

analysis on a specific postsynaptic neuron, which

receives a projection from each of the preceding

ensembles, such that each synapse is located

within a few mm of the next.

Firing change, synaptic plasticity,
and morphological change may
result from biochemical sequence
recognition
There are several synaptically activated pathways

that may fit the profile of state switching with

feedback inhibition. Based on our abstract mod-

els (Figure 2), these are candidates for imple-

menting sequence selectivity. These include four

major kinases (PKA, PKC, MAPK, CaMKII) and a

variety of second-messenger and metabotropic

pathways (Bhalla and Iyengar, 1999; Kim et al.,

2011; Lisman and Zhabotinsky, 2001). Thus,

though we illustrate our findings using the MAPK

pathway, we suggest that other mechanisms may

also apply. Biochemical events have multiple out-

comes on cell physiology, and even with the one

example of MAPK pathway output we suggest

that these may (at least) include firing rate

changes, plasticity, and morphological change.

On the rapid time-scale of seconds, MAPK

modulates multiple ion channels in the cell. These

include KA (Yuan et al., 2002), Kir6.2 (Lin and

Chai, 2008), Na(v)1.7 channels

(Stamboulian et al., 2010), and MAPK also influ-

ences trafficking of AMPA receptors

(Keifer et al., 2007). As analyzed in Figure 7,

modulation of some of these target channels can

lead to immediate changes in cell firing. While

the amount of modulation required for an effect

is quite large in some cases, we stress that these

were proof-of-principle calculations. A more

exhaustive calculation would require better cellu-

lar physiology including more channel types, full

multiscale calculations of the biochemistry lead-

ing up to channel modulation, and multiple simul-

taneous targets. Similar small length-scale events

have been shown to affect cellular firing in striatal

neurons (Plotkin et al., 2011), suggesting that

this outcome of sequence selection may also be

plausible. It has also been shown that local signal-

ing can lead to changes in dendritic excitability, again modulating cell-wide firing (Narayanan and

Johnston, 2010).

On a slightly longer time-scale, MAPK is upstream of numerous plasticity events (Smolen et al.,

2006). These include phosphorylation and insertion of receptors (Keifer et al., 2007), modulation of

dendritic protein synthesis (Tsokas et al., 2007), and transcriptional control (Rosenblum et al.,

2002). The computational outcome of synaptic plasticity has been extensively analyzed, but to our

Video 7. MAPK-P activity in apical dendrite zone

following scrambled synaptic input. Note that the

activity is low and short-lasting.

DOI: 10.7554/eLife.25827.017
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knowledge there are no learning rules that factor in sequential activity. It is intriguing to note that

our analysis of dendrite-based local chemical activation has parallels with the phenomenon of synap-

tic tagging (Frey and Morris, 1997). In both cases, synaptic input can amplify events in nearby,

weakly-stimulated synapses. We speculate that sequence recognition and its conversion to plasticity

events may share mechanisms with synaptic tagging.

Finally, MAPK activation is known to play a role in learning-associated morphological change in

neurons (Tyler et al., 2002). This raises the possibility that its activation through sequence-selectivity

rules may lead to addition of new synapses, or reconfiguration of dendrite geometry and spine

placement. Such changes would affect the same reaction-diffusion events that underlie sequence

selectivity, leading to interesting multiscale feedback dynamics.

�

�

�

�

�

0

5

10

15

20

25

1 10 100

F
ir

in
g

 r
a
te

 (
H

z
)

Modulation: fold increase

A
Apical

Basal

Oblique

Primary

��

0

2

4

6

8

10

12

14

16

1 10 100 1000

F
ir

in
g

 r
a
te

 (
H

z
)

Leak conductance (S/m^2)

B Apical

Basal

Oblique

Primary

����

0

1

2

3

4

5

6

1 10 100

F
ir

in
g

 r
a
te

 (
H

z
)

Modulation: fold increase

C Apical

Basal

Oblique

Primary

����

�

Figure 7. Firing rate changes in response to channel modulation in small zones on the dendritic tree. Error bars are standard deviation. (A) Modulation

of Na current. (B) Adding nonselective Leak current. (C) Modulation of GluR in the presence of the same synaptic input as was used as a stimulus for the

sequential input. (D) Schematic of convergence of inputs from different ensembles onto one dendritic zone. The numbered clouds represent input

ensembles from which a single neuron projects to the indicated location on the dendrite.
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Sequence recognition confers substantial computational capabilities on
single cells
Our model of sequence recognition in the neuron implements a potentially powerful form of cellular

computation, leading to multiple possible outcomes as discussed above. It is interesting to estimate

how much computation this represents. For simplicity, we consider computation in terms of immedi-

ate firing rate changes (discussed above), though plasticity and morphological change are also

computational outcomes.

If we take a 5-stage sequence, a perfect sequence recognizer would distinguish 1 from 5! possible

sequences, or 1 in 120. Longer sequences would have exponentially steeper discrimination ratios,

but this places increasingly stringent constraints on network connectivity due to the requirement of

having the inputs close to each other. Based on our simulations, biochemical reactions in the pres-

ence of noisy input are not as clean in their sequence selectivity as the abstract models (Figure 6 vs.

Figure 3) but nevertheless do achieve good discrimination. In addition to being able to discriminate

an ordered sequence from among many others, it is desirable that there be a large difference in

chemical signal amplitude between ordered and scrambled sequences. Figures 2, 3 and 5 suggest

that ratios in the range of 1:5 may be achievable, and 1:2 should be common.

Next, we estimate how many such sequence recognition blocks there might be in a neuron. For

this analysis, we draw on the results of the biochemical calculations for an estimate of a sequence

recognition zone, of ~10 mm (Figure 6), and the result that sequence discrimination should happen

over most of the dendritic tree except for the trunk of the primary apical dendrite (Figure 6J). Say

the set of spines occupies 10 mm. The most conservative calculation requires that these blocks do

not overlap, so in a pyramidal neuron with about 10000 mm of dendritic length we have ~1000

blocks. If we permit blocks to slide by one input at a time, there are five times as many sequence

recognition blocks, i.e., ~5000. If the sequence lasts 10 s, a single block performs 0.1 sequence rec-

ognitions per second. Thus, the neuron may perform 500 sequence discriminations each second.

Calcium-induced Calcium release (CICR) based sequence logic (discussed below) is much faster, and

may be able to increase this by a factor of 10. It is out of scope of the current study to estimate how

many of the 500 possible sequential inputs would be active and in order at any given instant, but it

is clear that the outcome of such sequence discrimination across the cell would be much more selec-

tive than a simple sum of the synaptic inputs that underlie the sequences. Leaving aside the plasticity

effects, the readout of these sequence discriminations could be an ongoing modulation of cellular

firing.

A still more speculative calculation suggests that single-neuron sequence recognition may provide

a way to handle the combinatorial explosion of possible input sequences. Assume that sequential

inputs converge to 10 mm stretches of dendrite, having spine spacing s = 0.5 mm. Assume that the

sequence-recognition biochemistry tolerates a spatial slop of ±1.5 mm, or ±3 synapses, for each

input. Then there are ~7 possible synaptic inputs for each stage of the sequence, and the overall

block of 5 inputs may receive 75, or ~17000 sequences of length 5. Using our calculation above,

each neuron has ~5000 blocks, and so can recognize ~8.5�107 sequences. Thus, with many assump-

tions about connectivity and sparsity, this mechanism of single-neuron sequence recognition sug-

gests that single neurons may recognize very large numbers of input patterns through the

combinatorics of synaptic convergence.

The key distinction between these two calculations is that the first indicates the computational

capacity of a neuron, whereas the second considers the diversity of inputs it can act upon. Overall,

our study suggests that sequence computation in the time domain, coupled with the combinatorics

of spatially organized input along dendrites, result in extremely parallel and efficient computation at

the single-neuron level.

Single-cell sequence recognition may act on a continuum of timescales
Neural activity sequences occur at a range of timescales. A striking example of this is the mapping

of behaviorally-driven place-cell sequences (seconds) to rapid, 100 ms time-scale replay sequences

(Wilson and McNaughton, 1994). The distinctive aspect of our current analysis is that it works for

slow behavioral time-scales of seconds, which is typically challenging for electrical network computa-

tions (but see [Barak and Tsodyks, 2006; Goudar and Buonomano, 2015]). Our analysis suggests

that chemical mechanisms can also support faster sequence recognition on the same length-scales

Bhalla. eLife 2017;6:e25827. DOI: 10.7554/eLife.25827 18 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.25827


(Figure 4). One way this might be implemented in the cell could be a faster kinase cascade than

MAPK, such as PKA or PKC (Bhalla, 2002). Another might be local CICR, which has already been

proposed to support propagating wave activity in dendrites (Hagenston et al., 2008; Kapur et al.,

2001; Larkum et al., 2003; Lee et al., 2016; Plotkin et al., 2013; Ross, 2012) These have faster

dynamics, of the order of 100 mm/s. Further, dendritic Ca2+ imaging suggests that the length-scale

of dendritic CICR is similar (~10–20 mm) to that envisaged for sequence recognition in our study

(Hagenston et al., 2008; Kapur et al., 2001; Larkum et al., 2003). Simulation studies have previ-

ously suggested that CICR may be a mechanism for integration of inputs and resulting in graded,

persistent activity (Loewenstein and Sompolinsky, 2003). This study has some parallels with our

analysis, in particular the presence of a propagating wavefront of chemical (Ca2+) activation. How-

ever, in the earlier CICR model the wavefront propagation was modulated by the summed synaptic

input to the neuron rather than local and specific sequential synaptic input, which is the basis of our

study.

Individual chemical implementations of sequence recognition in our study operate over a range

of about 2–5 mm and 1.5–4 s (Figures 4 and 6). While this is fairly robust as seen from a parameter

sensitivity viewpoint, it falls far short of time-invariance. Rate modulation or stimulus amplitude may

shift this to some extent (Figure 4) but a given cell, in a given state of modulation or activity, will rec-

ognize sequences only within a relatively small range. One possible way to extend the range is to

have multiple chemical pathways each carry out sequence discrimination in parallel. It would be

interesting to see how the chemistry of multiple sequence recognizers may interact. Alternatively,

time-invariance may not be a feature of single neurons, but may arise in a network where different

neurons recognize different time-ranges. Different cell-types with different chemical mechanisms for

sequence-recognition would be likely to operate in substantially different time regimes. It is interest-

ing to speculate that there may be useful computational implications of having different cells ‘tuned’

to different sequence speeds.

Still faster sequence recognition (~40 ms) has been demonstrated in the electrical domain, where

forward sequences can be discriminated from backward (Branco et al., 2010). This electrical mecha-

nism has been shown to have ~40% discrimination between forward and backward patterns, rather

than the strong selectivity among permutations of patterns shown by our chemical system. Thus this

form of electrical sequence recognition is likely to operate in different network contexts than our

proposed chemical recognition mechanism.

Together, we suggest that chemical and CICR-based sequence recognition may span the range

of timescales from 200 ms to 10 s. It is interesting to speculate that these may coexist, thus permit-

ting the same segment of dendrite to recognize slow behaviorally-driven sequences and also much

faster replays of the same sequence.

Sequence recognition is testable
Our hypothesis of single-cell sequence recognition is readily testable using current technology. Its

chemical basis may be examined in brain-slice using local agonist application or sequential gluta-

mate uncaging followed by microscopic readouts of activity reporters for candidate pathways. Such

experiments have already been done to examine CICR triggered by synaptic inputs converging to

adjacent synapses (Hagenston et al., 2008; Plotkin et al., 2013). These show that there is indeed a

buildup of Ca2+ along small, 20 mm stretches of dendrite, under suitable stimulus conditions. If local

biochemical signaling leads to changes in cellular firing-rate (e.g., Figure 7, [Plotkin et al., 2011]),

then sequential uncaging along with patch recordings should report these. Further, pharmacological

experiments in the slice would readily be able to tease apart possible mechanisms.

Another implication of the proposed reaction-diffusion mechanism for sequence recognition is

that it suggests mechanisms for coupling genetic polymorphisms and mutations to a specific aspect

of neuronal computation. For example, small changes in reaction rates may shift the preferred time-

scale of recognized sequences (Figure 4), but large changes may eliminate tuning altogether. It

would be interesting to see if there is a correlation between specific dendritic signaling genes and

psychophysical measures of sequence computation.

In summary, we propose a novel computational function of single neurons, to recognize slow

sequences on behavioral timescales, and to exploit combinatorics of input projections to carry out

such recognition in a massively parallel manner. We have used simulations of abstract chemistry and

detailed multiscale neuronal physiology to understand implications and constraints for such
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computation to occur. We suggest that this multiscale cellular signaling process may underlie com-

putationally powerful sequence recognition mediated by single neurons.

Materials and methods
All modeling was carried out using MOOSE, the Multiscale Object-Oriented Simulation Environment

(Ray and Bhalla, 2008). MOOSE is freely available, open source, and licensed under the GNU Public

License version 3. It can be downloaded from moose.ncbs.res.in and GitHub https://github.com/

BhallaLab/moose (Bhalla et al., 2016). MOOSE utilizes the GNU Scientific Library (GSL) Runge-

Kutta-Fehlberg fifth order method for chemical computations, and a custom-written branching 1-D

diffusion solver using the backward Euler (implicit) method. Stochastic chemical calculations were

carried out using a custom-written optimized version of the Gillespie Stochastic Systems Algorithm.

Pseudo-random numbers were generated by the Mersenne twister (Matsumoto and Nishimura,

1998). Electrical computations utilized a custom version of the branched nerve equation solution

methods described by Hines (Hines, 1984). This has been validated by comparison with other simu-

lators (Gleeson et al., 2010). Interfaces between chemical and electrical signaling components of

the model utilized adaptor classes in MOOSE, which average over spatial and temporal discretiza-

tion differences between the two methods. For example, electrical calculations (yielding Ca2+ values)

utilize a much smaller timestep (~50 ms; 5 mm) but typically employ a larger spatial step than chemi-

cal calculations (~1 ms, 1 mm). The adaptors synchronized the chemical and electrical models every

millisecond using first-order corrections to each model system. Electrical model morphologies were

either geometrical (cylindrical) or derived from published cell reconstructions available on Neuro-

Morpho.org (Ascoli et al., 2007; Dougherty et al., 2012). Spines were positioned along dendrites

using Poisson statistics with a specified mean spacing between spines (1 mm in the full cell model).

Spines were modeled as a cylindrical head (0.5 mm length and diameter) on a cylindrical shaft (1 mm

length, 0.2 mm diameter). In some simulations the spine dimensions were scaled up by 20% or 40%.

Channel kinetics were derived from Traub et al. (1991). Analysis and plotting was done using

Python, NumPy, and MatPlotLib. Simulations were carried out on a variety of Linux workstations,

and large calculations were carried out on Linux clusters. Figure generation code for Figures 2,

5 and 6 is available as supplementary material.

Abstract reaction-diffusion calculations (Figures 2–4) were carried out in a 1-dimensional geome-

try with spatial discretization of 1 mm. In order to represent reactions occurring in a spatially

restricted region in or under dendritic spines, the reaction systems were active only in five equally

spaced 1 mm patches, but diffusion took place throughout the 100 mm length of the model.

Selectivity calculations were performed according to Equation 3. In this equation, Atot is com-

puted for each permutation of the sequence. This is expensive as there are 120 permutations for a

sequence of length 5. Therefore exhaustive permutations were only performed for Figures 3 and

4. In order to generate sequence selectivity matrices for Figure 6 and for all the sensitivity analyses,

we took every tenth permutation (including the first one, [0,1,2,3,4]), for a total of 12 permutations.

The order of permutations was as generated by the Python library call itertools.permutations. The

resultant sequences were: [0,1,2,3,4], [0,2,4,1,3], [0,4,2,1,3], [1,2,0,3,4 , 1,3,4,0,2 , 2,0,3,1,4 , 2,3,0,1,4

, 2,4,3,0,1 , 3,1,2,0,4 , 3,4,0,1,2 , 4,0,3,1,2 , 4,2,1,0,3]. Here [0,1,2,3,4] means that synapse 0 fires

first, then synapse 1, then synapse two and so on. In Figure 6—figure supplement 1 we modified

Equation 3 slightly by computing Asequential as the mean of 5 runs with the same, sequential stim-

uli. This was done because the stochastic spiking and chemical calculations introduced considerable

variability in the estimate of Asequential. In this figure the mean(Atot) term in Equation 3 took this

mean value of Asequential, and Atot for the other 11 permutations, as the set over which the mean

was computed.

Chemical models are available in the supplementary material in tabular form and as GENESIS/kkit

files, and will be hosted on http://doqcs.ncbs.res.in and ModelDB. Electrical models are available in

supplementary material in tabular form and as MOOSE scripts. The morphology file is from Neuro-

Morpho.org (Ascoli et al., 2007; Dougherty et al., 2012) and attached in the supplementary mate-

rial as the file VHC-neuron.CNG.swc.
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