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Abstract Streptococcus pneumoniae is a leading cause of invasive disease in infants, especially
in low-income settings. Asymptomatic carriage in the nasopharynx is a prerequisite for disease, but
variability in its duration is currently only understood at the serotype level. Here we developed a
model to calculate the duration of carriage episodes from longitudinal swab data, and combined
these results with whole genome sequence data. We estimated that pneumococcal genomic
variation accounted for 63% of the phenotype variation, whereas the host traits considered here
(age and previous carriage) accounted for less than 5%. We further partitioned this heritability into
both lineage and locus effects, and quantified the amount attributable to the largest sources of
variation in carriage duration: serotype (17%), drug-resistance (9%) and other significant locus
effects (7%). A pan-genome-wide association study identified prophage sequences as being
associated with decreased carriage duration independent of serotype, potentially by disruption of
the competence mechanism. These findings support theoretical models of pneumococcal
competition and antibiotic resistance.
DOI: https://doi.org/10.7554/eLife.26255.001

Introduction
Streptococcus pneumoniae is a human pathogen that can cause diseases such as pneumonia, otitis
media and meningitis. Pneumococcal disease burden is highest in children ( O'Brien et al., 2009 ).
For disease to be caused pneumococci must first transmit to the host, colonise the nasopharynx and
finally cross into a normally sterile site. The pneumococcus spends most of the transmission cycle in
the nasopharynx, and so understanding and predicting the amount of time spent in this niche is criti-
cal for understanding this bacterium's epidemiology, and therefore controlling transmission
(Abdullahi et al., 2012a ; Melegaro et al., 2007 ).

The nasopharynx is a complex niche in which each pneumococcal genotype must tackle a wide
range of factors including host immune defence ( McCool et al., 2002 ), other bacterial species
(Pericone et al., 2000 ), and other pneumococcal lineages (Auranen et al., 2010 ; Cobey and Lip-
sitch, 2012 ) in order to maintain the genotype's population. The average nasopharyngeal duration
period is therefore affected by a large number of factors, which may, themselves, interact.

One factor that is known to strongly associate with carriage duration is serotype: as capsular poly-
saccharides are important in bacterial physiology and determining host immune response, different
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serotypes have different clearance and acquisition rates (Abdullahi et al., 2012a ; Hill et al., 2010 ;
HoÈgberg et al., 2007 ; Melegaro et al., 2004 ; Turner et al., 2012 ). Additionally, a range of other
proteins have been identified as critical to the colonisation process ( Kadioglu et al., 2008 ), some of
which exhibit similar levels of diversity to the capsule polysaccharide synthesis locus (Iannelli et al.,
2002 ; Jedrzejas et al., 2001 ). However, the overall and relative contributions of these sequence var-
iations to carriage rate have not yet been characterised. In addition variation of pathogen protein
sequence, accessory genes and interaction effects between genetic elements may also have as yet
unknown effects on carriage duration.

Changes in average carriage duration have been shown to be linked with recombination rate
(Chaguza et al., 2016 ), which has been found to correlate with antibiotic resistance ( Hanage et al.,
2009 ) and invasive potential (Chaguza et al., 2016 ). The carriage duration by different serotypes is
widely used in models of pneumococcal epidemiology, and consequently is important in evaluating
the efficacy of the pneumococcal conjugate vaccine (PCV) (Melegaro et al., 2007 ;
Weinberger et al., 2011 ). Additionally, modelling work has proposed that if alleles exist which alter
carriage duration, these explain the long standing puzzle of how antibiotic-resistant and sensitive
strains stably coexist in the population ( Lehtinen et al., 2017 ). Measurement of carriage duration
and the analysis of its variance beyond the resolution of serotype will have important consequences
for these models.

We sought to determine the overall importance of the pathogen genotype in carriage duration in
a human population, and to identify and quantify the elements of the genome responsible for the
variation in carriage duration. By combining epidemiological modelling of longitudinal swab data
with and genome wide association study methods on the connected sequences ( Figure 1 ), we made
heritability estimates for carriage duration. We further partitioned the heritability into contributions

eLife digest Microorganisms live in most parts of our body, including the inside of our nose.
Most of the microbes are harmless and can even be beneficial to our health. However, some
microbes can cause diseases ± although they often go unnoticed, as our immune system can remove
them before we show any symptoms. For example, the bacterium Streptococcus pneumoniae can
cause diseases such as pneumonia and meningitis, but generally, it lives harmlessly in the nose, and
is particularly common in children and the elderly.

The longer the bacteria live in the nose before being killed by the immune system, the more
likely they are to be transmitted to another person. The amount of time it takes for the immune
system to clear the bacteria depends on various factors, such as the age of the person or the
bacterium's defense mechanism and its genetic material. A particularly important aspect is to what
subtype, also known as serotype, a bacterium belongs to, which is characterized by differences in
the structure of the sugar coating that surrounds the microbe. However, until now, it was not known
how much each of these factors contributes.

Now, Lees et al. have developed a mathematical model to calculate how long the bacteria are
carried in the nose before they are cleared away, and compared it with the genomic data of the
bacteria. For this, over 14,000 nose swabs from almost 600 children were collected over a two-year
period. In their model, Lees et al. calculated that the bacteria's genetics explained over 60% of the
variability in survival time. They also found that the serotype was the most important individual
factor that influenced how long a bacterium could survive. The age of the child was less important
and only accounted for 5%. In addition, Lees et al. also found that when viruses infected some S.
pneumoniae, the bacteria died sooner.

A next step will be to confirm the effect of a viral infection on the bacteria's survival time in a
controlled model system, and also replicate the findings in separate population study.Understanding
how long people can carry bacteria and transmit them to others may help to develop new
vaccination or treatment strategies to control infections. Moreover, the discovery that viruses can
negatively affect how long a bacterium lives, could motivate studies to investigate these findings
further.
DOI: https://doi.org/10.7554/eLife.26255.002
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from lineage and locus effects (Earle et al., 2016 ) to quantify the variation caused by each individual
factor.

Results

Ascertainment of carriage episode duration using epidemiological
modelling
We first estimated carriage duration from longitudinal swab data available for the study population.
For 598 unvaccinated children up to 24 swabs taken over a two year period were available, an exten-
sion on the previous study (Turner et al., 2012 , 2013a ). We only considered swabs from infants in
the study, as mothers did not have sufficient sampling resolution relative to their average length of
carriage to determine carriage duration. Furthermore, the immune response of mothers to bacterial
pathogens is different to children ( MaroÂdi, 2006 ), leading to shorter carriage durations
(Gritzfeld et al., 2014 ).

To estimate carriage duration from the longitudinal swab data we constructed a set of hidden
Markov models (HMMs) with hidden states corresponding to whether a child was carrying a serotype
at a given time point, and observed states corresponding to whether a positive swab was observed
for this serotype at this time point.

The most general model for the swab data would be a vector with an entry of 0 or 1 for every
possible serotype (of 56 observed in the population), corresponding to whether each serotype was
observed in the swab at each time point. However, the number of parameters to estimate in this
model (with over 6 million states) is much larger than the number of data points (around 14000), and
in particular some serotypes have very few positive observations. Instead, we modelled each sero-
type separately.
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Figure 1. Swabbing and sequencing study design. We start with serotype swab data on 598 children from two cohorts, taken every month after birth
for two years. For all samples we fitted the transition and emission probabilities of a continuous time hidden Markov model for each serotype. Then, for
each child, we used these parameters were then used to infer the most likely carriage durations. We matched carriage episodes with resistance and
genomic data for 2157 episodes to draw conclusions on the basis of variation in this epidemiological parameter.
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The models fitted, and their permitted transitions and emissions are shown in Figure 2 . In model
one, observation i emits state 2 if positively swabbed for the serotype, and state 1 otherwise. The
unobserved states correspond to the child `carrying' and being `clear' of the serotype respectively.
We assume swabs have a specificity of one, so do not show positive culture when the child is clear of
the carried serotype; we therefore set the coefficient for the chance of observing positive culture
when no bacteria are present to zero ( e21 ˆ 0 in the emission matrix). Model two adds a third state
of `multiple carriage' which is occupied when the serotype and at least one other are being carried.
Both models were compared with a version which allows the parameters to covary with whether the
child has carried pneumococcus previously. Model three accounts for this explicitly by having sepa-
rate states and emissions based on whether carriage has previously been observed.

We applied all the models to 19F carriage episodes, as these had the most data available, and
calculated the Akaike information criterion ( Akaike, 1974 ) for each model that converged. Only the
simplest model (model one) converged, as judged by having a positive-definite Hessian and a con-
verged BOBYQA run. The more complex models had lower log-likelihoods: as extensions of the sim-
pler model they should have higher log-likelihoods, so this results was not consistent with model
convergence. We tried fitting models two and three using a fixed false positive values slightly
greater than zero, this lead to better log-likelihoods, but the models still didn't converge. This failure
of the more complex models is probably because most children in the study immediately enter the
carrying state, and episodes of dual carriage (when split up by serotype) are rare. Therefore there
were not enough events between these carriage states to estimate to the transition and emission
intensities, without sensitivity to initial conditions during the fitting.
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Figure 2. Hidden Markov models of swab time series, and their goodness-of-fit. We fitted three different models to the processed time-series data with
states, allowed transitions and emissions as shown. We refitted each model allowing the transitions probabilities to covary with the age of the child and
whether the child had carried pneumococcus previously. For the converged model the Akaike information criterion (AIC) is shown for the original fit,
and when including these covariates (AICcovar).
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We then fitted the best performing model in this test for all serotypes separately. 6A and 6C
were treated as a single serotype, as they were not always distinguished in the course of the study.
The models for 19F, 23F, 6A/C, 6B, 14 and non-typable (NT) converged, but other serotypes did not
have enough observations to successfully fit the parameters of the model. For these less prevalent
serotypes we used the transition and emission parameters from the 19F model fitted with the correct
observations when reconstructing the most likely route taken through the hidden states. Results
were inspected to ensure this did not cause systematic overestimation when compared with previous
studies.

We found that the fit for NT swabs produced results which overestimated carriage duration when
compared to previously reported estimates. The best fit to the model overestimated the e21 parame-
ter, which measures the false negative rate of swabbing, in favour of reduced transition intensities.
We therefore fitted the model again, fixing this rate at 0.12. We based this figure on non-typable
Streptococcus pneumoniae abundance as defined by 16S survey sequencing. At 1% proportional
abundance in the sample, 12% came out as culture negative (Table 1).

From all the swab data, we estimated that there were a total of 4382 carriage episodes (7.3 per
child), of which 2254 had a complete set of AMR data available ( Figure 3 ). After removing ten outlier
observations from swabs taken accidentally during disease, we were able to match 2157 sequenced
genomes with a carriage duration. Duration was positively skewed due to some observations of very
long carriage times. We therefore took a monotonic transform of the carriage duration using
warped-lmm to maximise the study's power to discover associations and estimate heritability ( Fig-
ure 3 ). This uses a sum over three nonlinear step functions, plus a linear term, to transform the resid-
uals into Gaussians (Snelson et al., 2004 ).

Overall heritability of carriage duration is high
The variation in carriage duration s 2

P is partly caused by variance in pneumococcal genetics, and vari-
ance in other potentially unknown factors such as host age and host genetics. It is common to write
this sum as two components: genetic effects s 2

G and environmental effects s 2
E. The proportion of the

overall variation which can be explained by the genetics of the bacterium is known as the broad-

sense heritability H2 ˆ s 2
G

s 2
G‡ s 2

E
. Variants which are directly associated with carriage duration indepen-

dently of other variants (non-epistatic effects) contribute to the narrow-sense heritability h2, which is
smaller than the overall broad-sense heritability ( Visscher et al., 2008 ).

H2 can be estimated by linear regression on the phenotype of donor-recipient pairs which nearly
share their genetics (Fraser et al., 2014 ). However in this dataset we were only able to confidently
identify five transmission events, which was not enough to apply this method. Alternatively, analysis
of variance of the phenotype between pathogens with similar genetics can be used to estimate heri-
tability ( Anderson et al., 2010 ). By applying this to phylogenetically similar bacteria ( Figure 4 ), we
estimated that H2 ˆ 0:634 (95% CI 0.592±0.686). This implies that the genetics of S. pneumoniae is
an important factor in determining carriage duration in this population. If environmental conditions
are associated with streptococcal genotype between populations (such as host vaccination status)
the heritability estimate may differ.

A lower bound on h2 can be calculated by fitting a linear mixed model through maximum likeli-
hood to common SNPs (h2

SNP) (Lee et al., 2011 ; Manolio et al., 2009 ). We used the model in

Table 1. Success of culturing unencapsulated S. pneumoniae.
Based on having >1% abundance of 16S reads showing the bacteria as being present, 44/361 true
positive swabs were not successfully cultured.

Abundance Culture positive Number

>1% Cultured 361

>1% Not cultured 44

<1% Cultured 56

<1% Not cultured 54

DOI: https://doi.org/10.7554/eLife.26255.005
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warped-lmm (Fusi et al., 2014 ) to estimate h2
SNP for carriage duration data, yielding an estimate of

0.445, consistent with our estimate for H2.
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Figure 3. Distribution of carriage duration, and effect of monotonic transformation. Panel ( a) shows a histogram of the inferred carriage duration, (b)
shows this result after the natural logarithm is taken, and (c) after the warping function is applied.

DOI: https://doi.org/10.7554/eLife.26255.006

The following source data and figure supplements are available for figure 3:

Source data 1. Sequenced isolates and their untransformed inferred carriage durations.

DOI: https://doi.org/10.7554/eLife.26255.010
Source data 2. Sequenced isolates and their warped carriage durations.

DOI: https://doi.org/10.7554/eLife.26255.011
Figure supplement 1. Regression diagnostics and outlier removal.

DOI: https://doi.org/10.7554/eLife.26255.007
Figure supplement 2. Monotonic warping function from warped-lmm. x-axis shows the centred and normalised input phenotype; y-axis shows
corresponding warped value.

DOI: https://doi.org/10.7554/eLife.26255.008
Figure supplement 3. Normal quantile-quantile plot of carriage length, and effect of monotonic transformation.

DOI: https://doi.org/10.7554/eLife.26255.009
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Figure 4. Mapping of carriage duration onto phylogeny. Using the carriage duration as a continuous trait, the ancestral state at every node of the
rooted phylogeny was reconstructed. Red branches are carriage for a short time, blue for a long time. Clusters identified in previous analysis have been
labelled.

DOI: https://doi.org/10.7554/eLife.26255.012

The following source data and figure supplements are available for figure 4:

Source data 1. Phylogenetic tree in Newick format.

DOI: https://doi.org/10.7554/eLife.26255.017
Figure supplement 1. Mapping of warped carriage duration onto phylogeny.

DOI: https://doi.org/10.7554/eLife.26255.013
Figure supplement 2. Histogram of pairwise patristic distances on the inferred phylogeny.

DOI: https://doi.org/10.7554/eLife.26255.014
Figure supplement 3. Change in carriage duration associated with capsule switching events.

DOI: https://doi.org/10.7554/eLife.26255.015
Figure supplement 4. Lasso regression plots for lineage effects.

Figure 4 continued on next page
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Serotype and drug resistance explain part of the narrow-sense
heritability
After calculating the overall heritability, we wished to determine the amount that the specific varia-
tion in the pathogen genome contributes to changing carriage duration. In the context of genome
wide association studies (GWAS) in bacteria strong linkage-disequilibrium (LD) is present across the
entire genome, making it difficult to pinpoint variants associated with carriage duration and not just
present in the background of longer or shorter carried lineages ( Chen and Shapiro, 2015 ). In S.
pneumoniae, serotype and antibiogram are correlated with the overall genome sequence
(Brueggemann et al., 2003 ; Chewapreecha et al., 2014a ; Enright and Spratt, 1998 ). If these fac-
tors are associated with carriage duration, large sets of variants which define long-carried and short-
carried lineages will be correlated with carriage duration in a naive association test ( Chen and Sha-
piro, 2015 ; Read and Massey, 2014 ).

A distinction has therefore been made between variants which evolve convergently and affect a
phenotype independently of lineage ± termed locus effects ± to those which are collinear with a
genotype which is associated with the phenotype, termed lineage effects ( Earle et al., 2016 ). Locus
effects may be associated with a change in carriage duration due to convergent evolution (which
may occur through recombination between lineages). In such regions, the causal loci and corre-
sponding phenotypic effects are easier to identify ( Power et al., 2017 ). Linear mixed models can be
used to find these variants which are associated with a bacterial phenotype independent of lineage;
discovery of homoplasic and polygenic variation associated with the phenotype across the entire
tree is well powered ( Earle et al., 2016 ).

While the high heritability suggests many pathogen variants do affect carriage duration, it does
not give information on how many of these will be locus or lineage effects. We mapped carriage
duration onto the phylogeny, reconstructing the ancestral state at each node. Consistent with the
high heritability of carriage duration we found that carriage length was clearly stratified by lineage
(Figure 4 ): we calculated Pagel's lambda as 0.56 (p<10� 10). We also modelled the evolution of car-
riage duration along the tree using an Ornstein-Uhlenbeck model, and found that lineage genetics
was significantly correlated with the trait (LRT = 952; p<10� 10)

We first tested for the association of serotype with carriage duration using lasso regression and
with a linear-mixed model (LMM). Serotype is correlated with sequence type ( Croucher et al., 2011 )
and has previously been associated with differences in carriage duration ( Abdullahi et al., 2012a ;
Turner et al., 2012 ). We also included resistance to six antibiotics, the causal element to some of
which are known to be associated with specific lineages ( Lees et al., 2016 ). These are therefore pos-
sible lineage effects which would be unlikely to be found associated under a model which adjusts for
population structure ( Chen and Shapiro, 2015 ).

Not all serotypes and resistances may have an effect on carriage duration, or there may not be
enough carriage episodes observed to reach significance. As including extra predictors in a linear
regression always increases the variance explained, we first performed variable selection using lasso
regression (Efron et al., 2004 ) to obtain a more reliable estimate of the amount of variation
explained. Where a resistance and serotype are correlated and both associated with a change in car-
riage duration, this will produce a robust selection of the predictors ( Hebiri and Lederer, 2012 ).

The selected predictors and their effect on carriage duration are shown in Table 2 . The total vari-
ance explained by these lineage factors was 0.19, 0.178 for serotype alone and 0.092 for resistance
alone. When we used genomic partitioning of variance components these were instead estimated to
be 0.253, 0.135 and 0.113, respectively. We applied the covariance test ( Lockhart et al., 2014 ) to
determine which lineage effects were significantly associated with carriage duration and found that
19F, erythromycin resistance, 23F, 6B caused significant (a<0:05) increase in carriage duration and
being non-typable caused a significant decrease.

Previous studies have used isogenic strains to look for effects of serotype of colonisation and car-
riage duration independent of genetic background. Resistance to killing ( Weinberger et al., 2009 ),
growth phenotype ( Hathaway et al., 2012 ) and resistance to complement (Melin et al., 2010 ) have

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.26255.016
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all been shown to affect carriage through serotype rather than genetic background. Conversely,
some bacterial genetic variation has been shown to be able to affect colonisation independent of
serotype (Khan et al., 2014 ).

We therefore wished to test whether the detected effect of serotype and resistance on carriage
duration was entirely mediated through their covariance with lineage, or whether they are indepen-
dently associated with carriage duration. We first looked for differences in duration over three recent
capsule gain/loss events; if there is an effect of serotype independent of genetic background, these
would be predicted have the largest difference between serotypes while controlling for the

Table 2. Coefficients from lasso regression model of carriage duration.
The mean (intercept) corresponds to a sensitive 6A/C carriage episode, and different serotypes and
resistances are perturbations about this mean. Positive effects are expected to have a greater magni-
tude, due to the positive skew of carriage duration. Rows in bold were significant predictors in the
covariance test.

Factor Effect on carriage duration (days)

Mean (intercept) 59.5

Erythromycin resistance +7.5

Tetracycline resistance +3.0

Trimethoprim resistance +2.9

Clindamycin resistance +1.8

Penicillin intermediate resistance +1.3

Serotype 19F +46.9

Serotype 23F +21.0

Serotype 6B +16.2

Serotype 14 +7.2

Serotype 21 +1.6

Serotype 19B � 0.1

Serotype 18C � 1.9

Serotype 29 � 4.3

Serotype 3 � 4.5

Serotype 4 � 7.2

Serotype 24F � 8.5

Non-typable (NT) � 12.3

Serotype 5 � 18.6

DOI: https://doi.org/10.7554/eLife.26255.018

Table 3. Mean length of carriage, and expected number of carriage episodes within the first two
years of life.
Only serotypes with enough data for the HMM fit to converge are shown. Starred observations have a
standard error which is larger than the estimated value, indicating low confidence in the estimate.

Serotype Sojourn time (days) Expected number of infections

19F 292* 0.85

23F 112 0.83

6A/C 76.4 0.88

6B 114 0.75

14 137* 0.58

NT 40.6 2.05

DOI: https://doi.org/10.7554/eLife.26255.019
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relatedness of isolates. No significant difference in duration was seen between isolates with or with-
out capsule within the same lineage (p ˆ 0:39; Figure 4 ).

However, as these events were limited in number, assumed genetic independence within the
clade and occurred only in part of the population, we also performed the same regression as above
while also including lineage (defined by discrete population clusters) as a predictor. This therefore
allows serotypes which appear in different population clusters to distinguish whether lineage or sero-
type had a greater effect on carriage duration. The covariance test found that 19F, erythromycin
resistance and being non-typable had significant effects on the model (in that order). As these terms
enter the model before any lineage specific effect, this suggested these serotypes and resistances
are associated with variation in carriage duration independent of background genotype

This lasso-based analysis may be vulnerable to confounding from unmeasured variables which
may be associated with the explanatory variables (serotype and resistance). To fully account for the
effect of the bacterial genome rather than relying on discrete clusters as covariates in the regression,
we performed regression of these lineage effects under an LMM where the relatedness between
strains was instead included as a random effect. The predictors had the same order of significance,
but only serotype 19F reached genome-wide significance ( p ˆ 3:8 � 10� 7).

Together, this suggests that the main lineage effect on carriage duration is the serotype, but only
some serotypes (19F) have an association independent of genetic background. We also found that
erythromycin resistance may be significantly associated with an increased carriage duration. While
being a relatively uncommon treatment in this setting (3% of treatments captured), we did not find
that other antibiotics were associated. This may be because erythromycin resistance would be
expected to cause an almost four order magnitude increase in minimum inhibitory concentration
(MIC), whereas other resistance acquisitions have a much smaller effect.

Additionally, we calculated the mean sojourn times (average length of time children are expected
to remain in the carrying state of the model with the given serotype) and mean number of carriage
episodes from the fit to the HMM for commonly carried serotypes (), which gave results similar to
the regression performed above. These estimates are comparable to the previous analysis on a sub-
set of these samples. The majority of carriage episodes were due to five of the seven paediatric
serotypes (Shapiro and Austrian, 1994 ), or non-typeable isolates. The results show 19F, 23F and 14
were carried the longest, 6A/C and 6B for intermediate lengths, and NT the shortest.

The overall picture of the first two years of infant carriage is one containing one or two long (over
90 day) carriage episodes of a common serotype (6A/C, 6B, 14, 19F, 23F) and around two short
(under a month) carriage episodes of non-typable S. pneumoniae. Colonisation by other serotypes
seem to cause slightly shorter carriage episodes, though the relative rarity of these events naturally
limits the confidence in this inference. That some serotypes are rarer and carried for shorter time
periods may be evidence of competitive exclusion ( Hardin, 1960 ; TrzcinÂski et al., 2015 ), as fitter
serotypes quickly replace less fit serotypes thus leading to reduced carriage duration. The calculated
mean carriage duration of NT pneumococci is similar to the minimum resolution we were able to
measure by the study design, which suggests carriage episodes may actually be shorter than one
month. Unfortunately the only existing study with higher resolution did not check for colonisation by
NT pneumococci (Abdullahi et al., 2012a ).

These estimates are similar to previous longitudinal studies in different populations ( Hill et al.,
2010 ; HoÈgberg et al., 2007 ; Melegaro et al., 2007 ), though against the Kilifi study our estimates
are systematically larger. This may be due to the lower resolution swabbing we performed, or may
be because the previous study was unable to resolve multiple carriage (11% of positive swabs).
While our heritability estimates are specific to this population due to differences in host, vaccine
deployment and transmission dynamics, the similarity of the estimates of serotype effect to those
from different study populations suggests our results may be somewhat generalisable.

Additional loci identified by genome-wide association
To search for locus effects as discussed above, we applied an LMM to all the common SNPs and
k-mers in the dataset. The results for SNPs are shown in Figure 5 and Table 4 , with 14 loci reaching
suggestive significance and two reaching genome-wide significance (top hit b ˆ 0:17; p ˆ 2:1 � 10� 7;
MAF = 1%). We also found that 424 k-mers reached genome-wide significance (top hit b ˆ 0:11;

p ˆ 2:1 � 10� 12; MAF = 2%), which we filtered to 321 k-mers over 20 bases long to remove low
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specificity sequences (Figure 5 ). To determine their function, we mapped these k-mers to the coor-
dinates of reference sequences.

The only genome-wide significant SNP hits are synonymous changes (MAF = 1%) in the replica-
tion module of the prophage in the ATCC 700669 genome ( Croucher et al., 2009 ), a highly variable
component of the pneumococcal genome ( Croucher et al., 2014a ) (Figure 5 ). The LD structure sug-
gested there were two separate significant signals found in this region. We therefore performed
another GWAS conditioning on the top hit to test if there was a second independent signal, but

found that the second hit in this region was no longer significant (position 1526024; p ˆ 2:2 � 10� 4).
The current data is therefore consistent with only a single significant hit to prophage.

The most significant k-mer hits were also located in phage sequence (MAF 2%) and were associ-
ated with a reduced duration of carriage. As these mobile genetic elements are less weakly popula-
tion stratified than other regions of the genome, they are easier to find as locus effects. The LD in

trcF pepS

pbp1a

transposase

padR family protein
transposase pseudogene

aroA

SPRITE

fms

phage

pbp2b

thioesterase family protein

Figure 5. Manhattan plot of SNPs associated with carriage duration. The significance of each SNP's association with carriage duration against its
position in the ATCC 700669 genome is shown. The red line denotes genome-wide significance (a<0:05 Bonferroni corrected with 92487 unique tests),
and the blue line suggestive significance (2.3 orders of magnitude below significant, following convention). Loci reaching suggestive significance are
labelled with their nearest annotation, as in Table 4.

DOI: https://doi.org/10.7554/eLife.26255.020

The following source data and figure supplements are available for figure 5:

Source data 1. Plot file for Manhattan plot, with coordinates and -log10 transformed p-values of all tested SNPs.

DOI: https://doi.org/10.7554/eLife.26255.026
Figure supplement 1. Possible SNPs associated with lineage and carriage duration.

DOI: https://doi.org/10.7554/eLife.26255.021
Figure supplement 2. Distribution of lengths of significant k-mers.

DOI: https://doi.org/10.7554/eLife.26255.022
Figure supplement 3. Quantile-quantile plot of association p-values.

DOI: https://doi.org/10.7554/eLife.26255.023
Figure supplement 4. Manhattan plots of phage-associated SNPs associated with carriage duration.

DOI: https://doi.org/10.7554/eLife.26255.024
Figure supplement 5. Identification of phage in assemblies by blastn hit length.

DOI: https://doi.org/10.7554/eLife.26255.025
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this region is less than in the rest of the genome, as prophage sequence is highly variable within S.
pneumoniae lineages (Croucher et al., 2014a ). Multiple independent phage variants may therefore
affect carriage duration, which will increase their significance using a LMM. Indeed, the significant
results from the LMM (top SNP p ˆ 2:1 � 10� 7; top k-mer p ˆ 2:1 � 10� 12) are not significant (top
SNP p ˆ 5:1 � 10� 6; top k-mer p ˆ 5:7 � 10� 8) under a model of association using a linear regression
with the first 30 principal components as fixed effects to control for population structure rather than
random effects, and are strongly associated with the population structure components of the model

(highest association p ˆ 5:2 � 10� 75 with PC 2).
We postulated that presence of any phage in the genome may cause a reduction in carriage dura-

tion. By using the presence of phage as a trait under the same linear mixed model, we however
found no evidence of association when correcting for population structure (p=0.35). These results
are therefore evidence that infection with a specific phage sequence is associated with a slight
decrease in carriage duration. A similar result has previously been found in a genome-wide screen in
Neisseria meningitidis , where a specific phage sequence was found to affect the virulence and epi-
demiology of strains ( Bille et al., 2005 ; Bille et al., 2008 ). Additionally, previous in vivo tests have
shown phage elements to cause a fitness decrease of S. pneumoniae during carriage
(DeBardeleben et al., 2014 ).

The genetic polymorphisms in the prophage associated with changes in carriage duration, found
in 2% of viral sequences, are found within coding sequences inside the phage replication module
(Romero et al., 2009 ). It is unlikely the specific variants of these proteins cause a significant differ-
ence in cell phenotype, because they are only highly expressed after the prophage is activated, and
cell lysis is typically imminent. One explanation for these results is that a subpopulation of prophage
do not cause a significant decrease in their host bacterium's carriage duration, which could be due
to beneficial `cargo' genes. Yet previous surveys of pneumococcal prophage have found little

Table 4. SNP Locus effects at genome-wide and suggestive significance.
Co-ordinates are with respect to the ATCC 700669 reference genome, and are for the lead SNP in each locus after LD-pruning. Effect
sizes are for the warped phenotype.

Co-ordinate Nearest annotation Effect size P-value Significance level

6753 trcF � 0.12 6:2 � 10� 5 Suggestive

254312 pepS � 0.11 6:4 � 10� 5 Suggestive

303239 IS630-Spn1 transposase 0.078 9:2 � 10� 5 Suggestive

333632 pbp1a 0.079 2:5 � 10� 5 Suggestive

971849 SPRITE repeat region 0.078 9:4 � 10� 5 Suggestive

1013978 IS630-Spn1 transposase 0.11 3:7 � 10� 5 Suggestive

1073185 FM211187.3435 (pseudogene) 0.086 3:3 � 10� 5 Suggestive

1308604 aroA � 0.27 3:8 � 10� 5 Suggestive

1472933 Upstream of fms � 0.23 5:3 � 10� 5 Suggestive

1473700 putative glutathione S-transferase � 0.16 8:8 � 10� 5 Suggestive

1515497 hypothetical phage protein � 0.099 5:2 � 10� 5 Suggestive

1516293 putative phage Holliday junction resolvase � 0.10 5:1 � 10� 6 Suggestive

1516350 putative phage Holliday junction resolvase � 0.12 2:1 � 10� 7 Genome-wide significant

1517063 phage protein � 0.11 3:3 � 10� 7 Genome-wide significant

1613197 pbp2b � 0.21 4:8 � 10� 5 Suggestive

1813192 thioesterase superfamily protein � 0.12 4:8 � 10� 6 Suggestive

DOI: https://doi.org/10.7554/eLife.26255.027

The following source data available for Table 4:

Source data 1. Association results for SNPs, from fast-lmm. DOI: https://doi.org/10.7554/eLife.26255.028
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evidence of these elements carrying such sequences (Croucher et al., 2014a ; Romero et al., 2009 ).
One phage protein that has been found to alter the bacterial phenotype is PblB, a phage structural
protein that can also mediate bacterial adhesion to human cells ( Loeffler and Fischetti, 2006 ). How-
ever, pblB is within the morphology module ( Romero et al., 2009 ) and as an adhesin might be
expected to increase carriage duration. Hence the detected association is unlikely to represent
expression of viral machinery or cargo genes in the host cell while the prophage is dormant.

Alternatively, the association with only a subset of prophage may be the consequence of sam-
pling. Using a monthly swabbing approach, it was only possible to robustly infer changes in the car-
riage duration of genotypes that colonise hosts for long periods. Therefore any prophage locus that
enhances a virus' ability to infect long carriage duration pneumococci may have an elevated correla-
tion with the variation in the observed phenotype. As phage commonly exhibit high levels of strain
specificity (Duplessis and Moineau, 2001 ), this is a plausible mechanism, although the role of the
replication module in such host preference is unclear.

An additional mechanism by which prophage can affect host phenotype is by inserting into, and
thereby disrupting, functional genes. Pneumococcal prophage frequently insert into comYC, thereby
preventing the host cell undergoing transformation ( Croucher et al., 2011 ; Croucher et al., 2014b ).
Using previous categorisation of the comYC gene in this collection into intact versus interrupted or
missing (Croucher et al., 2016 ), we found that having an intact comYC gene (23% of isolates) was
significantly associated with an increased carriage duration using the LMM
(b ˆ 0:29; p ˆ 1:4 � 10� 44). The effect size is similar to the associated phage k-mers, but has at a
higher allele frequency (hence the increased significance of the result). An interpretation consistent
with these findings would be that the effect of phage k-mers is actually through interrupting comYC.
The k-mers themselves were spread out to lower frequencies due to their sequence variability, and
no references used allowed mapping to find the comYC interruption directly.

Signals at the suggestive level include pbp1a and pbp2b , which suggest as above that penicillin
resistance may slightly increase carriage duration, but there are not enough samples in this analysis
to confirm or refute this. Other signals near genes at a suggestive level included SNPs in trcF (tran-
scription coupled DNA repair), padR (repressor of phenolic acid stress response), pepS (aminopepti-
dase), aroA (aromatic amino acid synthesis), fms (peptide deformylase) and a thioesterase
superfamily protein. K-mers from erythromycin resistance genes ( ermB, mel, mef) were expected to
reach significance from the above analysis, but did not: it has however previously been shown that
the power to detect these elements in a larger sample set taken from the same population is limited
due to the multiple resistance mechanisms and stratification of resistance with lineage ( Lees et al.,
2016 ).

The test statistic from fast-lmm roughly followed the null-hypothesis, with the exception of the
significant phage k-mers (Figure 5 ). However there is limited power to detect effects associated
with both the lineage and phenotype. This effect has been previously noted, and while LMMs have
improved power for detecting locus specific effects they lose power when detecting associated var-
iants which segregate with background genotype ( Earle et al., 2016 ).

To search for candidate regions which may be independently associated with both a lineage and
increased carriage duration, we ran an association test using a set number of fixed effects as the
population structure correction. This is expected to have higher power than an LMM for true associ-
ated variants on ancestral branches, but will also increase the number of false positives (variants co-
occurring on these branches which do not directly affect the carriage duration themselves). We also
tested SNPs for their association with those principal components which were themselves signifi-
cantly associated with carriage duration, and therefore may be driving the lineage associations
(Earle et al., 2016 ).

The most highly associated SNPs were in all three pbp regions associated with b-lactam resis-
tance, the capsule locus, recA (DNA repair and homologous recombination), bgaA (beta-galactosi-
dase), phoH-like protein (phosphate starvation-inducible protein), ftsZ (cell division protein) and
groEL (chaperonin). As 19F, the serotype most associated with carriage duration, is predominantly
the b-lactam resistant PMEN14 lineage the pbp association may be driven through strong LD
between with this serotype. Figure 5Ðfigure supplement 1 shows the analysis of SNPs which may
be driving significant lineage associations ± this also suggested dnaB (DNA replication) may be asso-
ciated with altered carriage duration. Associated k-mers were also found in phtD (host cell surface
adhesion), mraY (cell wall biosynthesis), tlyA (rRNA methylase), zinT (zinc recruitment), adcA (zinc
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recruitment) and recJ (DNA repair). Additionally we found k-mers in the bacteriocin blpZ and immu-
nity protein pncM (Bogaardt et al., 2015 ) to be associated with variability in carriage duration. This
could be evidence that intra-strain competition occurs within host via this mechanism, consistent
with previous in vitro mouse models ( Dawid et al., 2007 ).

It is not possible to determine whether variation in these genes is associated with a change in car-
riage duration or if the variation is present in longer carried, generally more prevalent lineages. For
example, b-lactam resistance may appear associated as the long carried lineages 19F and 23F are
more frequently resistant, or it may genuinely provide an advantage in the nasopharynx that extends
carriage duration independent of other factors. Future studies of carriage duration, or further experi-
mental evidence will be needed to determine which is the case for these regions.

Antigenic variation in known regions (of pspA, pspC, zmpA or zmpB) may be expected to cause a
change in carriage duration (Lipsitch and O'Hagan, 2007 ), however we found none of these to be
associated with a change in carriage duration. This was likely due to stratification of variation in these
regions with lineage, but may also be caused by a larger diversity of k-mers in the region reducing
power to detect an association.

Child age independently affects variance in carriage duration
Finally, we wished to determine the importance of two environmental factors which are known to
contribute to variance in this phenotype: child age and whether the carriage episode is the first the
child has been exposed to (Abdullahi et al., 2012a ; Abdullahi et al., 2012b ; Turner et al., 2012 ).
These have been applied throughout the analysis as covariates, both in the estimation of carriage
episodes and in associating genetic variation with change in carriage duration.

We applied linear regression to these factors while using the first 30 PCs to correct for the effect
of the bacterial genome, which showed they were both significantly associated with carriage dura-
tion as expected (age p ˆ 3:9 � 10� 7; previous carriage p ˆ 2:5 � 10� 8). Using the linear mixed model
to control for bacterial genotype both factors were again significant (LRT = 26.4; p ˆ 1:8 � 10� 6).
Together, they explained 0.046 of variation in carriage duration. As found previously, increasing
child age contributes to a decrease in the duration of carriage episodes. From a mean of 68 days
long, we calculated a drop of 19 days after a year, and 32 days after two years. Extrapolating, this
causes carriage episodes longer than two days to cease by age 11 (Figure 6 ). Previous carriage of
any serotype was estimated to cause an increase in the duration of future carriage episodes, though
previous studies have found no overall effect ( Weinberger et al., 2008 ). It has previously been
shown that prior exposure to non-typables in this cohort make colonisation by another non-typable
occur later, and for a shorter time ( Turner et al., 2012 ). The positive effect observed in this analysis
is therefore likely to be an artefact due to subsequent carriage episodes being more likely to be due
to typable pneumococci.

Additional environmental factors that explain some of the remainder of the variance may include
the variation of the host immune response and interaction with other infections or co-colonisation. In
particular, co-infection influenza A was not recorded but is known to affect population dynamics
within the nasopharynx (Kono et al., 2016 ). Fundamentally, imprecise inference of the carriage dura-
tion will limit our ability to fully explain its variance.

Discussion
Other than serotype, the genetic determinants of pneumococcal carriage duration were previously
unknown. By developing models for longitudinal swab data and combining the results with whole
genome sequence data we have quantified and mapped the genetic contribution to the carriage
duration of S. pneumoniae. We found that despite a range of other factors such as host age which
are known to cause carriage duration to differ, sequence variation of the pneumococcal genome
explains most of this variability (63%). Common serotypes and resistance to erythromycin cause
some of this effect (19% total), as does the presence or absence of particular prophage sequence in
the genome. Table 5 summarise the sources we found to be significantly associated with variation in
carriage duration.

We provide a quantitative estimate of how closely transmission pairs share their carriage duration,
and show evidence for differences both between and within serotypes. The implication of phage as
having a significant effect on carriage duration has interesting corollaries on pneumococcal genome
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diversification through frequent infection and loss of prophage, even during carriage episodes in this
dataset.

Investigating a mechanism for the prophage association, we found that having an intact comYC
gene, which is frequently interrupted by prophage causing loss of function of the competence sys-
tem, was associated with increased carriage duration. While the competence system is observed to
remain intact over the evolutionary history of the species, these disruptive mutations spread irrevers-
ibly through the population as competent bacteria can acquire the mutation, and non-competent
bacteria can no longer reverse it through recombination ( Croucher et al., 2014b ). Selection must
therefore maintain the function at this locus over short timescales, and an increased carriage dura-
tion may be evidence of this. We therefore hypothesise that the associated prophage sequences
may affect carriage duration through disruption of the competence system, without which deleteri-
ous mutations will accumulate in the population due to Muller's ratchet.

The results presented here have important implications for the modelling of pneumococcal trans-
mission and their response to perturbation of the population by vaccine. Importantly, our analysis of
heritability shows that variants other than serotype affect carriage duration, consistent with recent
theoretical work ( Lehtinen et al., 2017 ). Here we have shown that these alleles do exist in a natural
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Figure 6. Predicted mean carriage duration as a function of child age. Fit is an exponential decay over the first two years of life, using the decay rate
inferred from a linear regression of log(carriage duration).
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population, and also identified candidates for the loci which fulfil this role. Together these studies
suggest that variants exist in the pneumococcal genome which alter carriage duration, which in turn
is linked to antibiotic resistance.

We were not able to fully explain the basis for heritability of carriage duration for a number of
reasons. The close association of the phenotype with lineage limited our power to fine-map lineage
associated variants other than capsule type which may affect carriage duration. Meta-analysis with
more large studies with higher resolution may help to resolve these issues: we are conducting a simi-
lar study in Cape Town, South Africa which will combine sequence data with two-weekly swabs and
will be compared to these results in future. Additional environmental factors that explain some of
the remainder of the variance may include the variation of the host immune response and interaction
with other infections or co-colonisation. In particular, co-infection with influenza A was not recorded
but is known to affect population dynamics within the nasopharynx ( Kono et al., 2016 ).

This is a phenotype which would have been difficult to assay by traditional methods such as in an
animal model due to the cohort size needed and the length of time experiments would need to be
run for. By instead using genome-wide association study methods we have been able to quantita-
tively investigate a complex phenotype in a natural population. We believe that the analysis of heri-
tability and variance explained in a phenotype of interest, as presented here, will be an important
part analysis of complex bacterial traits in future studies.

Materials and methods

Sample collection
The study population was a subset of infants from the Maela longitudinal birth cohort ( Turner et al.,
2013a ), and was split into two cohorts. In the `routine' cohort, 364 infants were swabbed monthly
from birth, 24 times in total. All swabs were cultured and serotyped using the latex sweep method
(Turner et al., 2013b ). In the `immunology' cohort 234 infants were swabbed on the same time
schedule, but cultured and serotyped following the World Health Organisation (WHO) method
(Turner et al., 2012 ). Non-typable pneumococci were confirmed by bile solubility, optochin suscep-
tibility and Omniserum Quellung negative. For both cohorts phenotypic drug resistance to six antibi-
otics was available (chloramphenicol, b-lactams, clindamycin, erythromycin, trimethoprim and
tetracycline). 3161 randomly selected pneumococcal positive swabs from the study population have
been previously sequenced, 2175 of which were from these longitudinal infant samples
(Chewapreecha et al., 2014a ).

Table 5. Summary of variance of carriage duration explained by genetic and environmental factors.
H2 encompasses all rows, other than the measured environmental effects. For each variant component the method used to estimate it
is reported: CPP - closest phylogenetic pairs; LMM - variance component using a linear mixed model with pathogen genotype as ran-
dom effects; R2 - linear regression using lasso to select predictors.

Source Of which is Total variance explained Proportion of total heritability explained

Total heritability (H2) 0.634 (CPP) 1.00

Common SNP heritability (h2
SNP) 0.438 (LMM) 0.691

Serotype and resistance 0.190 (R2)/0.253 (LMM) 0.300 (R2)/0.399 (LMM)

Serotype only 0.178 (R2)/0.135 (LMM) 0.281 (R2)/0.213 (LMM)

Resistance only 0.092 (R2)/0.113 (LMM) 0.145 (R2)/0.178 (LMM)

Phage k-mers 0.067 (LMM) 0.106

Intact comYC 0.127 (LMM) 0.201

Measured environmental effects Age and previous carriage 0.046 (R2) -

DOI: https://doi.org/10.7554/eLife.26255.030
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Converting swab data into a time series
Latex sweeps could not differentiate 6A and 6C serotypes, so we treated these as a single serotype
when detected by this method (in WHO serotyping PCR was used to differentiate these serotypes).
15B and 15C serotypes spontaneously interconvert, so were combined. We removed two duplicated
swabs (08B09098 from the immunology cohort; 09B02164 from the routine observation cohort).

To get a good fit of the HMM, we normalised observation times for each sample. Defining infant
birth as t ˆ 0, subsequent sampling times ti were measured in days, and normalised to have a vari-
ance of one. The actual (untransformed) carriage duration in days was used as initial phenotype y.

Hidden markov model of time series
We modelled the time series of swab data using a continuous-time HMM, as implemented in the R
package msm (RRID:SCR_015500) (Jackson, 2011 ). Unobserved (true) states correspond to whether
the child is carrying bacteria in their nasopharynx, and observed (emitted) states correspond to
whether a positive swab was seen at each point. Transition probabilities between each state Q and
the emission probabilities E are jointly estimated by maximum likelihood using the BOBYQA algo-
rithm. We then constructed the most likely path through the unobserved states for each child using
the Viterbi algorithm ( Forney, 1973 ) with the observed data and estimated model parameters.
Assuming that continuous occupation of the carried state corresponded to a single carriage episode,
we calculated the duration for each such episode from the inferred true states.

Processing genetic data
For each isolate with an inferred carriage duration (N = 2175) we extracted SNPs from the previously
generated alignment against the ATCC 700669 genome ( Chewapreecha et al., 2014b ). Consequen-
ces of SNPs were annotated with VEP (RRID:SCR_007931), using a manually prepared reference
(McLaren et al., 2010 ). A phylogenetic tree was generated from this alignment using FastTree
(RRID:SCR_015501) under the GTR +gamma model (Price et al., 2009 ). The carriage duration was
mapped on to this phylogeny using phytools (RRID:SCR_015502) (Revell, 2013 ). We then filtered
the sites in the alignment to remove any where the major allele was an N, any sites with a minor
allele frequency lower than 1%, and any sites where over 5% of calls were missing. This left 115210
sites for association testing and narrow-sense heritability estimation.

We counted 68M non-redundant k-mers with lengths 9±100 from the de novo assemblies of the
genomes using a distributed string mining algorithm ( Seth et al., 2014 ; VaÈlimaÈki and Puglisi,
2012 ). We filtered out low frequency variants removing any k-mers with a minor allele frequency
below 2%, leaving 17M for association testing.

We identified the presence of phage by performing a blastn of the de novo assemblies against a
reference database of phage sequence (Croucher et al., 2016 ). If the length of the top hit was over
5000 we defined the isolate as having phage present ( Figure 5 ).

Transformation of carriage duration phenotype
As we aimed to fit a multiple linear regression model to the carriage duration y at each genetic locus
k, we first ensured the data was appropriate for this model. The phenotype distribution was posi-
tively skewed, with an approximately exponential distribution ( Figure 3 ). Residuals were therefore
non-normally distributed, potentially reducing power ( McCulloch, 2003 ). In the regression setting, a
monotonic function can be applied to transform the response variable to avoid this problem. We
took the natural logarithm of the carriage duration

ŷ ˆ ln…y†

which led to the residuals being much closer to being normally distributed ( Figure 3 ). We applied
the same transformation to child age, when it was used as a covariate in association.

Estimation of heritability
We estimated broad sense heritability H2 with the ANOVA-CPP method in the patherit R package
(Mitov and Stadler, 2016 ), using a patristic distance cutoff of 0.04 ( Figure 4 ). To test the effect of
lineage genetics we used the patherit package to fit an Ornstein-Uhlenbeck model of the warped
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carriage duration along the phylogeny. We compared the likelihood of the full fit to that with no
genetic effect on the trait ( s 2

G ˆ 0) using a likelihood ratio test (LRT) with one degree of freedom.

To estimate the SNP-based heritability h2
SNP we applied a linear mixed model, which uses the

genomic relatedness matrix (as calculated from SNPs passing filtering) as random effects. We used
the implementation in warped-lmm (RRID:SCR_015503) (Fusi et al., 2014 ), which learns a monotonic
transform as it fits the model to the data to ensure residuals are normally distributed ( Figure 3 ). We
therefore used the untransformed phenotype y as the input. Child age and whether previous car-
riage had occurred were included as covariates. We also estimated h2

SNP using LDAK (RRID:SCR_
015504) (Speed et al., 2012 ) with default settings, which gave an estimate of 0.437 (<1% difference
from the warped-lmm estimate).

Association of antimicrobial resistance and serotype with carriage
duration
We encoded all 56 observed serotypes (including non-typables) and resistance to the six antibiotics
as dummy variables. We used 6A/C as the reference level, as this had a mean carriage duration close
to the grand mean in previous analysis. Orthogonal polynomial coding was used for the latter four
antibiotics, where resistance could be intermediate or full. We then regressed this design matrix X
was against the transformed carriage duration ŷ . We removed three observations with low carriage
lengths due to a delayed initial swab, and seven observations with leverages of one ( Figure 3 ).

We performed variable selection using lasso regression (Efron et al., 2004 ), implemented in the
R package glmnet (RRID:SCR_015505) (Friedman et al., 2010 ). We used leave-one-out cross-valida-
tion to choose a value for the `1 penalty; the value one standard error above the minimum cross-vali-
dated error ( Tibshirani et al., 2001 ) was selected (l ˆ 0:033; Figure 4 ). The 20 predictors with non-
zero coefficients in the model at this value of l (Table 2) were used in a linear regression to calculate
the multiple R2, which corresponds to the proportion of variance explained by these predictors.

To estimate the variance components from serotype and resistance we used genomic partitioning
(Yang et al., 2011 ), as implemented in LDAK. We used SNPs in the capsule locus to calculate a kin-
ship matrix approximating the contribution from serotype variation. For antibiotic resistance we
used SNPs in the pbp genes, dyr gene and ICE transposon to calculate a kinship matrix. Restricted
maximum likelihood was used to estimate the variance explained by each of these components.

Capsule switch events had been previously identified by first reconstructing of the ancestral state
of the serotype at each node through maximum parsimony ( Chewapreecha et al., 2014a ). For each
node involving loss or gain of the capsule, those with at least one child being a tip were selected to
find recent switches (all were capsule gain). The carriage duration of all unencapsulated children of
the identified node were used as the null distribution to calculate an empirical p-value for the
switched isolate. P-values were combined using Fisher's method (Rosenthal, 1978 ).

Genome wide association of carriage duration
We used the linear mixed model implemented in fast-lmm (RRID:SCR_015506) (Lippert et al., 2011 )
to associate genetic elements with carriage duration, independent of overall lineage effects. We
used the warped phenotype as the response, the kinship matrix (calculated from SNPs) as random
effects, and variant presence, child age and previous carriage as fixed effects. For SNPs we used a
Bonferroni correction with a < 0:05 and an N of 92487 phylogenetically independent sites to derive a
genome-wide significance cutoff of p<5:4 � 10� 7, and a suggestive significance cutoff (Lander and
Kruglyak, 1995 ; Stranger et al., 2011 ) of p ˆ 1:1 � 10� 4. We tested pairwise LD between the signif-
icant SNPs by calculating the R2 between them. We removed those with R2 > 0:2, assuming these
represented the same underlying signal, to define the significant loci. To perform conditional analysis
we used the pattern of the most significant SNP as a fixed-effect, removed it from the test and kin-
ship estimation, and re-ran the mixed model on all other sites.

For k-mers we counted 5254876 phylogenetically independent sites, giving a genome wide signif-
icance cutoff of 9:5 � 10� 9. We used blastn (RRID:SCR_001598) with default settings to map the sig-
nificant k-mers to seven reference genomes (ATCC 700669, INV104B, OXC141, SPNA45,
Taiwan19F, TIGR4 and NT_110_58), and the possible Tn916 sequences (Croucher et al., 2011 ).

To search for variants with some level of lineage independence we used SEER (RRID:SCR_
015499) (Lees et al., 2016 ). To correct for population structure we used the patristic distances from
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the phylogenetic tree as the kinship matrix, which we then projected into 30 dimensions using metric
multidimensional scaling. The coordinates of the samples in this space were used as covariates in
SEER's linear regression. We performed association tests on SNPs and k-mers with MAF > 1% using

multiple linear regression, and report the top hits with p<10� 14. Significant k-mers were mapped as
above.

Code and data availability
All code used for analysis is available on github, along with inferred carriage duration for each sam-
ple (Lees, 2017 ). A copy is archived at https://github.com/elifesciences-publications/carriage-
duration.
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