
Roland et al., 2017 

 1 

 1 

 2 

Odor identity coding by distributed ensembles of neurons in the mouse 3 

olfactory cortex 4 

 5 

 6 

 7 

Benjamin Roland1, Thomas Deneux2, Kevin M. Franks3, Brice Bathellier2*, and 8 

Alexander Fleischmann1* 9 

 10 

 11 

 12 

 13 

1Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 14 

and INSERM U1050, Paris, France 15 

2Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, 16 

UPR 3293, Gif-sur-Yvette, F-91198, France 17 
3Department of Neurobiology, Duke University, Durham, NC, USA 18 

 19 
*Corresponding authors: bathellier@unic.cnrs-gif.fr, alexander.fleischmann@college-de-france.fr 20 

 21 

22 

mailto:alexander.fleischmann@college-de-france.fr


Roland et al., 2017 

 2 

Abstract  23 

 24 

Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide 25 

range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in 26 

olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can 27 

accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex 28 

without any apparent spatial organization. However, piriform response patterns change substantially 29 

over a 100-fold change in odor concentration, apparently degrading the population representation of 30 

odor identity. We show that this problem can be resolved by decoding odor identity from a 31 

subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are 32 

overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore 33 

propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons 34 

in the olfactory cortex. 35 

  36 
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Introduction 37 

All sensory systems must be able to unambiguously determine stimulus identity in the face of 38 

variable stimulus intensity. In vision, for example, the perception of colors is stable across a wide 39 

range of luminance, despite the strong dependency of photoreceptor activation on wavelength and 40 

light intensity (Nunn et al., 1984). This problem is of particular importance in olfaction, given the 41 

massive and rapid fluctuations in odorant concentration, for example encountered in odor plumes in 42 

the environment (Murlis and Jones, 1981).  43 

Molecular features of odorants are detected by odorant receptors. Odorant receptors are 44 

expressed on the dendrites of sensory neurons in the olfactory epithelium, and odorant receptors are 45 

broadly tuned such that each odorant typically activates multiple receptors (Jiang et al., 2015; Malnic 46 

et al., 1999). A given olfactory sensory neuron expresses one of a large repertoire of odorant receptors 47 

(Buck and Axel, 1991; Zhang and Firestein, 2002), and neurons expressing a given receptor project to 48 

two spatially invariant glomeruli in the olfactory bulb (Mombaerts, 2001). Thus, the molecular 49 

features of an odorant are represented as a discrete and stereotyped map of glomerular activity (Bozza 50 

et al., 2004; Ma et al., 2012; Soucy et al., 2009; Uchida et al., 2000). Odor information encoded in 51 

patterns of glomerular activity must then be integrated at higher olfactory centers in the brain to 52 

generate unified odor objects, defined by perceptual features such as odor identity and intensity 53 

(Gottfried, 2010; Wilson and Sullivan, 2011; Wojcik and Sirotin, 2014). The piriform cortex has been 54 

suggested to serve as such a site of integration.  55 

The piriform cortex is a simple, three-layered paleocortical structure, which receives dense 56 

projections from mitral and tufted cells, the main output neurons of the olfactory bulb. Mitral and 57 

tufted cells extend an apical dendrite into a single glomerulus, and thus only receive direct excitatory 58 

input from sensory neurons expressing a single odorant receptor. Odor information encoded in the 59 

spatio-temporal patterns of mitral and tufted cell activity is then transmitted to higher olfactory 60 

centers, including the piriform cortex. Mitral and tufted cells project axons to large areas of the 61 

piriform cortex, without identifiable topographic organization (Ghosh et al., 2011; Igarashi et al., 62 

2012; Nagayama et al., 2010; Sosulski et al., 2011). Individual piriform neurons receive inputs from 63 
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multiple and broadly distributed glomeruli, thus providing an opportunity for molecular feature 64 

integration (Apicella et al., 2010; Miyamichi et al., 2011). Consistent with this model, optical 65 

stimulation of the olfactory bulb suggests that piriform neurons respond to combinations of co-active 66 

glomeruli (Davison and Ehlers, 2011; Haddad et al., 2013). Calcium imaging and electrophysiological 67 

recordings show that odors activate sparse ensembles of piriform neurons, which are distributed 68 

across the piriform cortex without apparent spatial organization (Poo and Isaacson, 2009; Rennaker et 69 

al., 2007; Stettler and Axel, 2009; Tantirigama et al., 2017). However, how information about the 70 

identity and intensity of an odor is encoded in the response patterns of piriform ensemble activity 71 

remains poorly understood.  72 

The ability to unambiguously identify odors across a wide range of concentrations is essential 73 

for olfactory perception and behavior (Cleland et al., 2011; Stopfer et al., 2003; Wojcik and Sirotin, 74 

2014). Indeed, rats can identify odorants with consistently high accuracy over a greater than 50,000-75 

fold range in concentration (Homma et al., 2009). However, the specificity of odorant - receptor 76 

binding steeply depends on odorant concentration (Jiang et al., 2015; Malnic et al., 1999), and 77 

consequently, patterns of odor-evoked glomerular activity change with changing odorant 78 

concentration (Bozza et al., 2004; Meister and Bonhoeffer, 2001; Rubin and Katz, 1999; Spors and 79 

Grinvald, 2002). Similarly, the spatio-temporal patterns of mitral and tufted cell strongly depend on 80 

odorant concentration (Banerjee et al., 2015; Bathellier et al., 2008; Fukunaga et al., 2012; Kato et al., 81 

2013; Miyamichi et al., 2013; Sirotin et al., 2015). Therefore, we sought to determine if the piriform 82 

cortex is capable of forming concentration-invariant representations of odor identity from sensory 83 

input that is concentration-dependent.  84 

Here, we have used in vivo two-photon calcium imaging in anaesthetized mice to record odor 85 

responses from large, unbiased ensembles of piriform neurons. We find that odor identity can 86 

accurately be decoded from the spatial patterns of local piriform odor responses. However, we also 87 

observe that piriform odor representations change substantially across a 100-fold range in odor 88 

concentration, degrading information about the identity of the odor. We propose a solution for this 89 

potential confound by identifying a subpopulation of concentration-invariant piriform neurons, which 90 
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accurately encodes odor identity across a broad range of odor concentrations. These concentration-91 

invariant neurons are present at numbers significantly above chance in piriform ensembles but not in 92 

olfactory bulb mitral and tufted cells, indicating that the ability to form concentration-independent 93 

representations of odor identity in functionally distinct neural subnetworks is an emergent property of 94 

piriform cortex.  95 

  96 
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Results 97 

Representations of odor identity in the piriform cortex  98 

We stereotaxically injected Adeno-Associated Virus (AAV) expressing the calcium indicator 99 

GCaMP6s (Chen et al., 2013) into the piriform cortex of adult (6-10 week old) mice. Ten days after 100 

infection we surgically exposed the piriform cortex for two-photon imaging under ketamine/xylazine 101 

anesthesia. Viral expression of GCaMP6s resulted in dense labeling of layer II piriform neurons 102 

(Figure 1a and b, and Methods). To monitor calcium signals in such large and densely packed neural 103 

ensembles we developed an automated cell segmentation algorithm based on calcium signal 104 

similarities (Figure 1 - figure supplement 1, and Methods). This algorithm operates on the entire 105 

data set obtained from individual imaging sites and efficiently identifies individual neurons by 106 

iteratively clustering neighboring pixels with high signal covariance. Under these conditions, we 107 

could simultaneously monitor the activity of 100-400 (mean ± SD: 242 ± 105) neurons per imaging 108 

site.  109 

In initial experiments, to establish population coding properties of large ensembles of piriform 110 

neurons, we measured responses to a test panel of 13 different monomolecular odorants. Two-second 111 

odor pulses of these stimuli (1:10,000 dilution in mineral oil, 0.01% vol./vol.) elicited relatively 112 

sparse but partially overlapping activity of piriform neurons, consistent with one previously published 113 

report (Stettler and Axel, 2009) (Figure 1c and d). We observed that individual neurons responded 114 

selectively with an increase or decrease in fluorescence. Across 6 imaging sites in three mice (total 115 

number of neurons = 1706), 20% (± 8.4%) of the neurons responded with an increase in fluorescence, 116 

and 11% (± 5.7%) of the neurons responded with a decrease in fluorescence (Figure 1f). Most 117 

neurons responding with an increase in fluorescence exhibited narrow stimulus tuning, with the 118 

exception of a small subpopulation of neurons (8.5% ± 5.4%) that responded to 12 or all 13 odorants 119 

of the test panel. Neurons responding with a decrease in fluorescence exhibited similarly selective 120 

odor tuning, but only a minimal number of broadly tuned neurons could be observed (Figure 1g). 121 

Strikingly, many neurons displayed high trial-to-trial variability in response to the repeated delivery 122 

of the same odorant (Figure 1e).  123 
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We next sought to quantify the similarity of population responses evoked by different 124 

odorants. For each trial, we constructed population activity vectors, defined as the mean temporally 125 

deconvolved change in fluorescence of all simultaneously recorded cells of an imaging site over a 4-126 

second time window after stimulus onset (Figure 2a). We then computed pairwise cross-correlations 127 

between all single-trial population activity vectors. The results of this analysis for the imaging site 128 

shown in Figure 1b are displayed in Figure 2b as a cross-correlation matrix. As indicated by the 129 

square boxes along the diagonal (4 x 4 trials), repeated exposure to the same odorant triggered highly 130 

correlated population response patterns (intra-odorant cross-trial correlation coefficients, neurons 131 

pooled across 6 imaging sites: 0.67 ± 0.07 (across odorants)). However, this cross-correlation analysis 132 

also revealed that patterns elicited by different odorants were fairly similar (mean inter-odorant 133 

correlation coefficient: 0.44 ± 0.08). Such overlap may, at least in part, be a consequence of correlated 134 

noise at a given imaging site. We therefore pooled neurons across imaging sites and projected this 135 

pseudo-population onto the first three principle components in principal component space (Figure 136 

2c). While response patterns for a few odorants appeared to segregate from each other, substantial 137 

overlap remained between neural ensembles encoding different odorants.  138 

This raises the question as to whether the spatial patterns of odor-evoked piriform activity we 139 

can observe with calcium imaging, which lacks precise temporal information at small time scales, 140 

contain sufficient information to discriminate between different odorants. To address this question we 141 

tested the accuracy with which a linear classifier correctly identify odorants based on single trial 142 

response patterns (see Methods). Despite both trial-to-trial variability and considerable overlap in 143 

response patterns to different odorants, the classifier could correctly identify all 13 stimuli in our 144 

odorant test panel (Figure 2d). Classification accuracy reached 94% when pooling all 6 imaging sites 145 

(Figure 2e). For individual imaging sites, the average classification accuracy was 71% (± 5.8%) 146 

(Figure 2 - figure supplement 1). Correct classification slowly rises after odor onset to reach high 147 

accuracy within 0.5 s. This relatively slow rise can largely be explained by the slow rise time of the 148 

calcium indicator GCAMP6s (Chen et al., 2013). Interestingly, classification accuracy remained 149 

significantly above chance level for several seconds after odor delivery, despite a marked decline in 150 
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odor-evoked fluorescence (Figure 2e). This finding is consistent with the observation that odor-151 

specific network configurations persist for extended periods of time in the olfactory bulb (Bathellier et 152 

al., 2008; Friedrich and Laurent, 2001). To determine whether this sustained piriform activity is odor-153 

specific, we trained the classifier at defined time points after odor onset (0.27, 1, and 3 s, Figure 2e, 154 

colored arrows) and measured classification accuracy over time. We observed that a classifier trained 155 

on response patterns 1 second after odor onset accurately predicted odor identity during odor delivery, 156 

but classification accuracy readily declined after odor offset. In contrast, a classifier based on 157 

response patterns at 0.27 and 3 seconds after odor onset yielded a lower classification accuracy, 158 

however, classification success was more stable over time. This suggests that early and late (post odor 159 

offset) representations are based on weak activity configurations present during odor exposure but 160 

masked by another much stronger component, which quickly vanishes after the odor is withdrawn. 161 

Thus, odor representations are dynamically rearranged after odor offset to maintain odor information 162 

for several seconds.  163 

Previous anatomical and functional experiments suggested that odor information was encoded 164 

in randomly distributed ensembles of piriform neurons (Ghosh et al., 2011; Illig and Haberly, 2003; 165 

Sosulski et al., 2011; Stettler and Axel, 2009). Therefore, to test whether odorant-selective piriform 166 

neurons were clustered or randomly distributed across individual imaging sites we selected cells that 167 

were significantly modulated by odorants (1-way ANOVA, p < 0.05) and mapped their odorant 168 

preference (i.e. the odorant that triggered the strongest response, see example map in Figure 3a). As a 169 

sensitive measure of spatial clustering we computed for each imaging site a nearest neighbor index 170 

(NNI Theodoridis and Koutroumbas, 2009), as the mean distance of a cell preferring a given odor to 171 

the nearest cell preferring the same odor. We then computed the NNI distribution for 1000 spatially 172 

shuffled maps to estimate the probability p that the observed value can be explained by random spatial 173 

organization (null hypothesis). Using this measure we found no evidence for spatial clustering in any 174 

of the 6 imaging sites (p values of 0.49, 0.81, 0.09, 0.21, 0.91, 0.79). To validate the sensitivity of this 175 

test to detect spatial clusters we again simulated populations, but now with subtle inhomogeneities in 176 

the spatial distributions of neurons. We divided the simulated site into 16 equally sized sub-areas and 177 
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allowed preference for a given odorant to occur in only three or four randomly chosen sub-areas 178 

(Figure 3b). In this case, comparing observed and simulated NNI resulted in highly significant values 179 

for p. 180 

These observations suggest that information about odor identity is homogeneously distributed 181 

across individual imaging sites. To further illustrate this idea we sequentially defined each cell within 182 

an imaging site as a “starter cell”, and iteratively built neural ensembles of increasing size by adding 183 

neighboring neurons (Figure 3c). We observed that different clusters of the same size encoded 184 

odorant identity with similar accuracy, and that no “hotspots” of classification were observed. Finally, 185 

we found that classification accuracy was very similar for the 6 different imaging sites in three mice, 186 

which were up to 1 mm apart along the rostro-caudal axis of the piriform cortex (Figure 2 - figure 187 

supplement 1, and data not shown). 188 

Taken together, our data show that odorants activate spatially distributed ensembles of 189 

piriform neurons with significant overlap and variability, and no apparent spatial organization. 190 

Furthermore, the spatial patterns of odor-evoked piriform activity contain sufficient information to 191 

robustly decode stimulus identity.  192 

 193 

Patterns of piriform activity decorrelate with increasing concentrations  194 

The ability to correctly classify individual trials as corresponding to a given odorant reveals 195 

that odor response patterns are different, but does not directly address how odor identity is encoded 196 

within piriform ensembles. Importantly, perceived odor identity of monomolecular odorants typically 197 

remains stable across a large range of odor intensities (Homma et al., 2009), providing an 198 

experimental opportunity to more directly address this question. Therefore, to test if odor identity 199 

coding is stable across changing odorant concentrations, i.e. concentration-invariant, we next 200 

analyzed piriform neural activity in response to three different odorants over a 100-fold range in 201 

concentrations (acetophenone, ethyl acetate, and hexanone; at 1:10,000, 1:1,000, 1:100 vol./vol. 202 

dilution in mineral oil). We confirmed, using photoionization detector (PID) measurements, that 203 

odorant presentations were reliable and scaled according to volumetric ratios (Figure 4 - figure 204 



Roland et al., 2017 

 10 

supplement 1). We analyzed 13 imaging sites in 11 mice (total number of neurons = 2935). We 205 

found that the fraction of both activated and suppressed neurons increased moderately but statistically 206 

significantly with increasing concentrations (Figure 4a and b, mixed effect ANOVA, significant 207 

effect of concentration on the fraction of activated neurons: F(2,96) = 52.49, p < 0.01, and on the 208 

fraction of suppressed neurons: F(2,96) = 28.79, p < 0.01). Thus, population sparseness decreases with 209 

increasing concentrations. We then asked how changes in odorant concentration impacted the 210 

response properties of individual neurons. To follow the evolution of each cell’s odorant selectivity, 211 

we calculated lifetime sparseness across the 100-fold range in concentration (see Methods). We 212 

observed diverse concentration-induced changes in cell selectivity across the population, indicating 213 

that an increase in odorant concentration did not systematically broaden odor tuning (Figure 4c and 214 

d). Indeed, when considered across the entire population, the distribution of lifetime sparseness of 215 

individual neurons was maintained across stimulus intensities (mean ± SD: 0.01%: 0.35 ± 0.23, 0.1%: 216 

0.37 ± 0.24, 1%: 0.38 ± 0.24, Figure 4e).  217 

To visualize changes in the population response patterns with increasing odorant 218 

concentration, we next rearranged the population response matrix of the imaging site shown in Figure 219 

3a, using hierarchical clustering (Figure 5a and b). This analysis further supported the observation 220 

that neural responses varied with the odorant stimulus, and that response magnitudes could increase or 221 

decrease with increasing odorant concentrations. To quantify the similarities of response patterns 222 

elicited by odorants at different concentrations, and to evaluate the contributions of these different 223 

response profiles to the encoding of the identity of an odorant, we next calculated the cross-trial 224 

correlations between individual response vectors of neurons pooled across 13 imaging sites (Figure 225 

5c). We first noted that pair-wise trial correlations increased with concentration, indicating that trial-226 

to-trial variability across the population decreases at higher concentrations (mean ± SD across 227 

odorants: 0.01%, 0.67 ± 0.03; 0.1%, 0.72 ± 0.06; 1%, 0.74 ± 0.05). Note that this decrease in trial-to-228 

trial variability partly accounts for the increased number of cells with responses that are statistically 229 

significantly different from mineral oil at higher concentrations (Figure 4b). Furthermore, we found 230 

that responses to a given odorant at a given concentration were significantly more correlated than 231 
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responses to a given odorant at different concentrations (mixed-effect ANOVA, effect of 232 

concentration F2,96 = 51.39, p < 0.01). This concentration-dependent decorrelation was gradual: the 233 

average correlation between response patterns elicited by the three odorants at low (0.01% vol./vol.) 234 

and intermediate (0.1% vol./vol.) concentrations was 0.53 (± 0.12), while the average correlation 235 

between response patterns at low and high (1% vol./vol.) odorant concentrations dropped to 0.36 (± 236 

0.12) (Figure 5c and d). Thus, the spatial patterns of piriform odor responses were not concentration-237 

invariant. Instead, response patterns to a given odorant changed substantially as odor concentration 238 

increased and became as different over a 100-fold change in concentration as responses to a different 239 

odorant. 240 

 241 

A concentration-invariant subpopulation of piriform neurons  242 

Because overall piriform patterns of piriform activity change across odorant concentrations, 243 

we next asked if we could identify subnetworks of concentration-invariant piriform neurons that can 244 

represent the identity of an odor independent of its intensity. We used a linear regression approach 245 

(Rigotti et al., 2013) to determine if individual neurons were present within piriform ensembles whose 246 

response profiles could be accounted for solely by the identity of the odorants, irrespective of their 247 

concentrations. We performed an analysis of variance of each cell’s response profile, with odorant 248 

concentration and odorant identity as the two explanatory variables (Figure 6a). Consistent with our 249 

qualitative inspection of response profiles (Figure 5a and b), we found that 37.2% ± 11.7% of cells 250 

were selectively responsive to odorant, while 27.8% ± 10.6% of cells showed responses that were 251 

modulated by an interaction between odorant identity and concentration (Figure 6a). Crucially, of the 252 

cells that were selectively modulated by odorant, 30.1 % ± 11.6 %, constituting 10.4% ± 4.5% of the 253 

total population of cells, exhibited concentration-invariant responses for all three odors, according to 254 

the analysis of variance (Figure 6c). Representative response traces of concentration-invariant 255 

neurons are shown in Figure 6b. Thus, although many neurons displayed mixed selectivity to the 256 

odorant identities and concentrations tested in our experiment, a substantial fraction of concentration-257 

invariant neurons can be identified within piriform neural ensembles.  258 
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To verify our selection procedure for concentration-invariant piriform neurons, we quantified 259 

the similarities of their response patterns across the 100-fold odorant concentration range. We found 260 

that, for a given odorant, responses remained highly correlated across increasing concentrations (mean 261 

inter-concentration similarity ± SD across odorants, 0.01% to 0.1%: 0.60 ± 0.09; 0.01% to 1%: 0.57 ± 262 

0.10, Figure 6d, and Figure 6 – figure supplement 1). These across-concentration response 263 

correlations for concentration-invariant subpopulations approached those for within-concentration 264 

responses observed in the general population (0.65 ± 0.10), although a small but significant difference 265 

remained (Wilcoxon rank sum test, p < 0.05). 266 

To qualitatively display differences in the odor representation formed by the concentration-267 

invariant subnetwork of neurons compared to the rest of the piriform ensemble, we next projected 268 

their population response patterns onto the first three principal components in principal component 269 

space. This analysis revealed that odorant representations of concentration-invariant neurons clustered 270 

irrespective of concentration, while odorant representations of generic neurons clustered by 271 

concentrations of the same odorants, but not systematically by odorant groups (Figure 6e and Figure 272 

6 - figure supplement 2). To more quantitatively evaluate the odor coding properties of 273 

concentration-invariant piriform subnetworks, and to test if concentration-invariant neurons could 274 

generalize odorant identity across changing odorant concentrations, we next trained a linear classifier 275 

to predict odorant identity based on a single concentration. We then tested the classifier on all other 276 

odorants and concentrations (“generalization learning”, Figure 6f, see Methods). We found that the 277 

classification accuracy of odorant identity across a 10-fold change in odorant concentration was 278 

similar between the concentration-invariant subpopulation of neurons and the entire population of 279 

“generic” neurons. However, for the more difficult generalization tasks across a 100-fold change in 280 

odorant concentration (0.01% to 1%, and 1% to 0.01%, Figure 5f, red squared boxes), subnetworks 281 

of concentration-invariant neurons were much more accurate in predicting odorant identity than the 282 

entire population of “generic” neurons (1% to 0.01% generalization: concentration-invariant cells 283 

mean = 63.5% ± 27.1%, Mann-Whitney test n = 13 U = 20, Benjamini and Hochberg’s FDR adjusted 284 

p < 0.01, “generic” neurons mean = 19.2 % ± 17.8%, Mann-Whitney test n = 13 U = 82, FDR 285 
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adjusted p = 0.39). Taken together, these analyses demonstrate that for a given set of odorants and 286 

concentrations it is possible to identify a subpopulation of piriform neurons that can encode the 287 

identity of an odor largely independent of odor intensity.   288 

How stable are concentration-invariant piriform subnetworks with varying stimulus intensity 289 

range and complexity? To address this questions we first identified concentration-invariant neurons 290 

across a 10-fold instead of a 100-fold range in odorant concentration. Using the same selection criteria 291 

as for the original data set, this analysis yielded 19.2% (± 7.4% SD across experiments) 292 

concentration-invariant neurons. Second, we identified concentration-invariant neurons for pairs of 293 

two odorants instead of the three odorants in our test panel. We found that 22% (± 8%) of the cells 294 

were concentration-invariant for at least one pair of odorants. Of those cells, 49% were identified as 295 

concentration-invariant for all three odorants while the response of the other 51% of cells was 296 

modulated by the concentration of one of the three odorants. Taken together, these data suggest that 297 

concentration-invariant subnetworks of neurons can be modulated by stimulus complexity and 298 

concentration, yet remain relatively stable within the range of our stimulus set.  299 

We then tested if concentration-invariant neurons exhibited response profiles that differentiate 300 

them from other neurons. We compared response rise time (from 10% to 90% of peak ΔF/F, 301 

concentration-invariant neurons: 0.55 +/- 0.05 s; generic neurons: 0.52+/-0.10 s) and duration (width 302 

at 50% peak ΔF/F, concentration-invariant neurons: 2.02 +/- 0.07 s; generic neurons: 2.01+/-0.11 s), 303 

odor-evoked peak change in fluorescence (deconvolved ΔF/F, concentration-invariant neurons: 10.0 304 

+/- 0.7 %; generic neurons: 9.2 +/- 1.3 %), and trial-to-trial variability, but found no significance 305 

between the two populations (p > 0.05, Wilcoxon ranked sum test, n=13) (Figure 6 – figure 306 

supplement 1). We next examined whether concentration-invariant cells were spatially clustered. 307 

Visual inspection of the localization of concentration-invariant cells at individual imaging sites did 308 

not reveal obvious clustering (Figure 6 – figure supplement 1). Furthermore, performing the 309 

statistical analysis based on the nearest neighbor index (see Figure 3), we found that the organization 310 

of concentration-invariant neurons at 11 out of 13 imaging sites was undistinguishable from the 311 
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random distribution obtained for shuffled data. In two out of 13 imaging sites, spatial distributions 312 

that were moderately but significantly different from random.  313 

Taken together, our analysis identifies a subpopulation of piriform neurons, with response 314 

profiles and spatial distributions that are similar to other odor-responsive neurons, but which encode 315 

odor identity independent of concentration.  316 

 317 

Concentration-invariant neurons are overrepresented in piriform cortex but not in the olfactory 318 

bulb 319 

A representation of odor identity emerges in piriform cortex from the integration of odor-320 

evoked mitral and tufted cell activity from the olfactory bulb. Considerable normalization of odor-321 

evoked neural activity across a range of odorant concentrations has been observed in the olfactory 322 

bulb (Banerjee et al., 2015; Kato et al., 2013; Miyamichi et al., 2013; Roland et al., 2016; Zhu et al., 323 

2013), suggesting that concentration-invariant piriform odor responses could be inherited from the 324 

olfactory bulb. Alternatively, the formation of segregated, concentration-invariant odor identity 325 

representations in subpopulations of piriform neurons may emerge within cortex itself. Therefore, to 326 

distinguish between these models, we next analyzed odor-evoked responses of olfactory bulb mitral 327 

and tufted cells. We used previously described mitral/tufted cell calcium imaging data (Roland et al., 328 

2016) (Figure 7a), obtained under equivalent experimental conditions but using GCaMP3 instead of 329 

GCaMP6 as the calcium indicator. We then performed an analysis of variance of each cell’s response 330 

profile, as described above for the piriform imaging data (19 imaging sites in 8 mice, total number of 331 

cells = 523, Figure 7b). 332 

Visual inspection of the response matrix suggested that the majority of mitral cell responses 333 

are concentration-dependent (Figure 7c). Consistent with this impression, our analysis of variance 334 

indicated that 25.9 % ± 14.9 % of neurons exhibited odorant-selective responses. Of these, only 335 

20.5% ± 15.1%, constituting only 5.2% ± 5.9% of the total population were concentration-invariant. 336 

Thus, many fewer neurons were exclusively modulated by odorant identity in the olfactory bulb 337 

compared to the piriform cortex (Figure 7d) (olfactory bulb, 5.2% ± 5.9%, piriform cortex 10.4% ± 338 
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4.5%, Mann-Whitney test, nob = 19, npir = 13, U = 59, p < 0.01). However, we imaged more piriform 339 

neurons (2935) than olfactory bulb mitral cells (523). Therefore, to ensure that differences in the 340 

fractions of concentration-invariant neurons did not result from biased sampling, we subsampled 341 

piriform cortex to match the numbers of olfactory bulb cells. Furthermore, we tested whether relaxing 342 

the significance criterion from p < 0.01 to p < 0.05 would change our results. We find that the fraction 343 

of concentration-invariant cells in piriform cortex is consistently and significantly higher than that 344 

observed in the olfactory bulb, independent of sampling size and the significance criterion used in our 345 

model (Figure 7 – figure supplement 1, Methods). Note also that, as a consequence of the lower 346 

dynamic range of GCaMP3 compared to GCaMP6s (Chen et al., 2013), we are likely to overestimate 347 

the concentration-invariance of mitral cell responses, so that the difference in the fraction of 348 

concentration-invariant cells in piriform cortex compared to olfactory bulb may be greater than this 349 

analysis suggests.  350 

Responses in both piriform and mitral cells are highly heterogeneous. We therefore used a 351 

bootstrapping analysis to ensure that the population of concentration-invariant neurons we observed 352 

are indeed over-represented and are not merely a consequence of the inherent response variability 353 

across population within each dataset. We repeated the analysis of variance on 10,000 shuffled cell-354 

odor pairs, in which cell identities were scrambled across stimuli but the population statistics for each 355 

odorant response were preserved (see Methods). Shuffling mitral cell identities across stimuli indeed 356 

resulted in the identification of the same percentage of concentration-invariant neurons observed 357 

experimentally (bootstrap mean 3.9% ± 0.8%; observed value 5.5%, p = 0.073). By contrast, shuffling 358 

cell identities from the piriform dataset yielded significantly fewer concentration-invariant neurons 359 

than observed experimentally (bootstrap mean 5.3% ± 0.41%; observed value 11.7%, p < 0.001, 360 

Figure 7e). Finally, we computed the significance of these findings for each individual imaging site. 361 

We considered the observed number of concentration-invariant neurons per imaging site to be 362 

significantly above chance if it was higher than 99% of the values calculated from the bootstrap 363 

samples. We found that the observed number of concentration-invariant neurons in piriform was 364 

above chance in 8 out of 13 imaging sites. In contrast, only 2 out of 19 mitral and tufted cell imaging 365 
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sites contained concentration-invariant neurons above chance level (Figure 7f). Together, these 366 

results indicate that the encoding of odor identity independent of concentration is robust in piriform 367 

cortex, but not in olfactory bulb mitral and tufted cells.  368 

  369 
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Discussion 370 

We have examined how the identity of an odor is represented in neural ensemble activity in 371 

the piriform cortex using two-photon calcium imaging in anesthetized mice. We found that despite 372 

substantial overlap between response patterns evoked by different odorants, odor identity could 373 

correctly be predicted from local ensembles of piriform neurons. Furthermore, we observed that 374 

piriform response patterns across the population change substantially with increasing odorant 375 

concentration, potentially confounding odor identification. However, a substantial fraction of odor-376 

selective piriform neurons exhibit largely concentration-invariant odor responses, and odor identity - 377 

independent of intensity - could accurately be decoded from this subpopulation of piriform neurons. 378 

Concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb 379 

mitral and tufted cells, suggesting that concentration-invariant subnetworks for odor identity emerge 380 

in cortical neural circuits for olfaction.  381 

 382 

The structure of odor identity-encoding piriform ensembles 383 

Previous immunohistochemical, electrophysiological and imaging experiments have revealed 384 

that piriform odor representations are distributed across a large area of the cortex, and that piriform 385 

neurons display discontinuous receptive fields (Poo and Isaacson, 2009; Rennaker et al., 2007; Stettler 386 

and Axel, 2009; Yoshida and Mori, 2007). These observations led to the speculation that information 387 

about odor is encoded by ensembles of coordinately active neurons distributed across piriform cortex 388 

without topographic organization (Stettler and Axel, 2009). Here, we explicitly tested this prediction, 389 

and we found that odor identity could indeed be decoded from spatially distributed patterns of odor-390 

evoked piriform activity. Our results are consistent with recent data from extracellular recordings in 391 

awake rats (Miura et al., 2012) and mice (see co-submitted manuscript by Bolding and Franks), which 392 

show that odor identity can be accurately decoded from the firing rates of piriform neural ensembles. 393 

However, extracellular recordings cannot reveal the spatial organization of the neurons that 394 

participate in odor coding. Our data show that odorant-selective neurons do not cluster in space. 395 

Furthermore, odor identity can be decoded with similar accuracy from multiple different imaging 396 
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sites, and information about odor identity appears to be homogeneously distributed within an 397 

individual imaging site. Thus, our results provide robust evidence that odor information is encoded 398 

without topographic organization by ensembles of piriform neurons.  399 

 400 

Comparison with extracellular recordings in awake mice  401 

Bolding and Franks (2017) have used extracellular recordings to explore how odor identity and 402 

intensity is encoded in piriform cortex. It is interesting to compare their results with our results 403 

obtained from optical imaging. The majority of piriform neurons are narrowly tuned to odor, exhibit 404 

high trial-to-trial variability to repeated presentations of the same odor, and substantial overlap 405 

between response patterns elicited by different odors. Piriform odor representations are less sparse 406 

than previously suggested, and odor identity can accurately be decoded from piriform ensembles in 407 

the absence of precise temporal information, consistent with an earlier report (Miura et al., 2012). 408 

Both studies report that piriform odor representations are not concentration-invariant: odorants 409 

presented at a range of different intensities (30-fold concentration range in Bolding and Franks, 100-410 

fold in this study) elicit highly dissimilar response patterns, as dissimilar as the response patterns 411 

observed for two different odorants. An important difference between the two studies is that, due to 412 

the surgical preparation required to expose piriform cortex for two-photon imaging, optical recordings 413 

were performed in ketamine/xylazine-anesthetized mice while electrophysiological recordings were 414 

obtained from awake, head-fixed mice. Thus, despite the potentially diverse effects of anesthesia on 415 

odor sampling and neural physiology, key features of piriform odor responses identified in the two 416 

studies are very similar. 417 

 418 

Bolding and Franks utilize the high temporal resolution of electrophysiological recordings to 419 

propose that information about odor intensity can be encoded by the synchrony of piriform odor 420 

responses. Our study, on the other hand, describes the spatial organization of piriform odor 421 

representations and provides evidence for a concentration-invariant subnetwork of piriform neurons 422 

that encodes odor identity - independent of odor intensity. Thus, the two studies propose 423 
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complementary coding schemes for non-interfering representations of odor identity and odor intensity 424 

in the mouse olfactory cortex. Interestingly, Bolding and Franks also observe that a subpopulation of 425 

neurons exhibits short-latency concentration-invariant odor responses. While differences in the 426 

experimental design of the two studies preclude a direct comparison, it is tempting to speculate that 427 

these represent the same neural subpopulations.  428 

Anesthesia interferes with active sniffing, and awake mice and rats typically exhibit faster 429 

sniff rates that can be dynamically modulated by odor (Blauvelt et al., 2013; Carey and Wachowiak, 430 

2011; Wachowiak et al., 2013). In contrast, we do not observe significant modulation of sniff rate in 431 

anesthetized mice. Anesthesia has also been shown to modulate the activity of neurons in the 432 

olfactory bulb. In awake mice, periglomerular and granule cell inhibitory neurons exhibit higher 433 

levels of activity (Cazakoff et al., 2014; Kato et al., 2012; Wachowiak et al., 2013), while some mitral 434 

cells exhibit diminished spontaneous and odor-evoked activity (Kato et al., 2012; Kollo et al., 2014; 435 

Shusterman et al., 2011). Anesthesia is likely to differentially affect different types of piriform 436 

neurons and has recently been shown to modulate baseline neural activity in piriform cortex 437 

(Tantirigama et al., 2017). Of note, at elevated odorant concentrations, recordings in awake mice 438 

show that the fraction of activated neurons remains stable, while imaging experiments in anesthetized 439 

mice show a moderate increase (this study, and Stettler and Axel, 2009). This observation suggests 440 

that normalization of neural activity is incomplete under anesthesia, consistent with recent reports on 441 

the activity of cortical feedback projections to the olfactory bulb (Boyd et al., 2015; Otazu et al., 442 

2015; Rothermel and Wachowiak, 2014). The activity of cortical feedback projections has been 443 

suggested to contribute to signal normalization and is attenuated under anesthesia.  444 

 445 

Odor identity and intensity 446 

The ability to accurately determine stimulus identity independent of intensity is critical for 447 

olfactory perception and behavior (Cleland et al., 2011; Sirotin et al., 2015; Stopfer et al., 2003). 448 

Behavioral experiments have shown that rats can be trained to identify, with high accuracy, 449 

monomolecular odorants across a greater than 50,000-fold range in concentration (Homma et al., 450 
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2009). On the other hand, odor concentration-invariance is not absolute. Behavioral experiments in 451 

humans and insects have shown that the perceived identity of an odor can change with concentration 452 

(Bhagavan and Smith, 1997; Gross-Isseroff and Lancet, 1988; Laing et al., 2003; Pelz et al., 1997). 453 

While the perceptual boundaries of odor concentration-invariance remain poorly defined, it is clear 454 

that odor identity and intensity must be, at least in part, independently represented in the brain. Earlier 455 

experiments in insects have suggested that odor identity and intensity information is intermingled in 456 

the antennal lobe. Interestingly, however, multidimensional manifolds representing odor identity 457 

emerged after non-linear dimensionality reduction of the data, suggesting that downstream structures 458 

could extract concentration-invariant information about odor identity from antennal lobe activity 459 

(Stopfer et al., 2003). Moreover, experiments in the fish olfactory bulb suggest that temporal 460 

multiplexing could be used to independently transmit odor identity and intensity information to higher 461 

olfactory centers in the brain (Friedrich et al., 2004) (see also companion manuscript by Bolding and 462 

Franks).  463 

We propose an alternative, simple solution for representing these two distinct features of an 464 

odor stimulus in the mammalian olfactory cortex; that information about odor identity and odor 465 

intensity can be separately represented in distinct subpopulations of piriform neurons. We observed 466 

that piriform odor representations change systematically with increasing odorant concentrations, such 467 

that responses evoked by an odorant at different concentrations can become as dissimilar as responses 468 

evoked by two different odorants. However, we found that ~30% of odor-selective neurons support 469 

concentration-invariant odor representations. Such subnetworks can provide a stable representation of 470 

odor identity, while information about odor concentration can simultaneously be encoded in other 471 

neural ensembles.  472 

What cellular and circuit mechanisms could underlie the generation of concentration-invariant 473 

piriform odor responses? The most parsimonious model for such functionally distinct subpopulations 474 

of piriform neurons is that these neural subpopulations represent distinct piriform neural cell types. 475 

Recent work in acute slice preparations has indeed highlighted the functional diversity of piriform 476 

layer II neurons. Piriform layer II cells can be classified into semilunar and superficial pyramidal 477 
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cells, and cells of intermediate phenotype (Suzuki and Bekkers, 2011; Wiegand et al., 2011). 478 

Superficial semilunar cells have higher input resistance and shorter membrane time constants than 479 

pyramidal cells in deep piriform layer II, and semilunar cells receive stronger excitatory input from 480 

the olfactory bulb, but weaker associational input than pyramidal cells. Such differences in intrinsic 481 

properties and synaptic connectivity could underlie some of the heterogeneity in response types we 482 

observe. Interestingly, layer II semilunar and pyramidal cells project to distinct piriform target areas 483 

(Chen et al., 2014; Diodato et al., 2016), providing an opportunity to selectively transmit distinct 484 

features of the odor stimulus to different targets. For example, layer II pyramidal cells send cortical 485 

feedback projections to the olfactory bulb, which have been implicated in signal normalization - a 486 

function that primarily relies on information about stimulus intensity but may be largely independent 487 

of odor identity (Boyd et al., 2015; Otazu et al., 2015). On the other hand, semilunar cells projecting 488 

to the cortical amygdala, which has been implicated in the encoding of odor valence (Root et al., 489 

2014), may transmit information about odor identity, independent of intensity. The identification of 490 

feature-selective subnetworks in piriform cortex, and advances in the characterization of piriform 491 

neural connectivity will open up new possibilities for examining odor information routing in cortical 492 

neural circuits for olfaction.   493 

 494 

  495 
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Materials and methods 496 

Surgical preparation for piriform imaging 497 

Adult (6-10 week-old) male mice on a mixed genetic background (C57BL/6; 129Sv) were 498 

used for experiments. All experiments were performed according to European and French institutional 499 

animal care guidelines (protocol number B750512/00615.02). A total of 400-700 nl of AAV-500 

GCaMP6s (AV-1-PV2824, Penn Vector) were stereotaxically injected at multiple sites into the 501 

piriform cortex at 0.5 - 1 mm posterior to bregma, using manually controlled pressure injection. 10-13 502 

days later, the piriform cortex was surgically exposed, following experimental procedures described 503 

in Stettler and Axel, 2009. Briefly, mice were anesthetized with ketamine/xylazine (100mg/kg / 504 

10mg/kg, Sigma Aldrich) and a head-post was glued to the skull. Skin was retracted to expose the 505 

masseter muscle, the superficial temporal vein was cauterized, and the zygomatic bone was removed 506 

with fine scissors. The upper portion of the lower jawbone was cleared from tendons and cut out. 507 

Minor bleeding was stopped with gelatin sponge (Gelfoam). A well was constructed around the 508 

surgical site with silicone sealant (WPI). A small craniotomy, typically 1 x 2 mm in size, was then 509 

drilled over the piriform, and the thinned bone was removed with fine forceps. After removal of the 510 

dura, the silicone well surrounding the craniotomy was filled with artificial cerebral spinal fluid 511 

(ACSF; 125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM CaCl2, 2 mM MgSO4) at 512 

all times. A small glass coverslip was placed over the craniotomy and sealed in place using 2% 513 

agarose. 6 imaging sites in 3 mice (total number of neurons = 1706) were analyzed for the 13 odorant 514 

test panel, and at 13 imaging sites in 11 mice (total number of neurons = 2935) for acetophenone, 515 

ethyl acetate and hexanone at 3 different concentrations.  516 

 517 

Surgical preparation for mitral cell imaging 518 

Methods for mitral and tufted cell imaging are described in Roland et al., 2016. Briefly, 3 to 519 

3.5 nL of rabies-GCaMP3 virus was slowly pressure injected underneath the LOT. 5-7 days later, 520 

mice were anaesthetized using ketamine/xylazine and the skull overlying the olfactory bulb was 521 

thinned using a dental drill and removed with forceps, and the dura was peeled back using fine 522 
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forceps. A small circular glass coverslip was placed over the exposed bulb and sealed in place using 523 

2% agarose. Activity at 19 imaging sites in 8 mice (total number of cells = 523) was analyzed.  524 

 525 

Functional imaging 526 

A typical piriform imaging experiment lasted between 2 to 3 hours, and a maximum of 3 527 

different fields of view were imaged per mouse, at a position between 0 to 1.5 mm posterior to 528 

Bregma. Body temperature was maintained at 37°C using a feedback-controlled heating pad (FST). 529 

Piriform imaging data were acquired on two different microscopes: a Leica SP5 with a 25x Olympus 530 

objective, 256 x 256 pixels for a 347 x 347 μm field of view, and a Scientifica Multiphoton 531 

VivoScope with a 20x Olympus objective, 256 x 160 pixels for a 357 x 220 μm field of view. A Mai 532 

Tai DeepSee laser (Spectra-Physics) was tuned to 910 nm. Densely packed piriform layer II neurons 533 

at a depth of ~250 µM below the pial surface were imaged. 30 seconds movie sequences were 534 

acquired at a frame rate of ~15Hz. Mitral cell imaging data were acquired on two different 535 

microscopes: Ultima, Prairie Technologies with a 16x objective at 2x zoom or Leica SP5 with a 25x 536 

Olympus objective. 25 seconds movie sequences at 256 x 256 pixels were acquired at a frame rate of 537 

2.53 Hz (Ultima) or 2.9 Hz (Leica SP5).  538 

An odor trial lasted 30 seconds (8 seconds of pre-stimulus baseline, 2 seconds of stimulation, 539 

20 seconds of post-stimulus acquisition). Odors were delivered at a flow rate of 1 L/min with inter-540 

trial intervals of ~35 seconds. Odor stimuli for a given experiment consisted of one of two odor sets, 541 

delivered through a 16 channel olfactometer (Automate Scientific): 13 monomolecular odorants 542 

(purchased from Sigma Aldrich at the highest purity available), diluted at 1:10,000 vol./vol. in 543 

mineral oil (Sigma Aldrich), and a “concentration series” consisting of acetophenone, ethyl acetate, 544 

and hexanone, at 10-fold increasing concentrations (1:100, 1:1,000 and 1:10,000 vol./vol. dilutions). 545 

Odorants were presented 4 times each, in pseudo-randomized order to avoid habituation (average 546 

inter-stimulus interval for the same odor stimulus = 7 min). A photoionization detector (miniPID 547 

200B, Aurora Scientific) was used to confirm reliable odor delivery and to verify that odorant 548 

concentration scales according to volumetric ratios. No stimulus was presented twice in a row. For the 549 
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concentration series experiment, odorant identity was changed at every trial, i.e. different 550 

concentrations of the same odorant were never presented in a row to avoid adaptation. 551 

 552 

Data analysis 553 

Signal extraction 554 

Data analysis was conducted in Matlab. Motion artifacts were first corrected by using a 555 

subpixel translational-based discrete Fourier analysis. Regions of interest (ROIs) were then manually 556 

drawn for mitral cell data. For piriform data, ROIs were selected using a semi-automated hierarchical 557 

clustering algorithm based on pixel covariance over time (see detailed method below), and the 558 

weighted pixel gray value average inside each ROI was used to estimate the fluorescence of single 559 

cells at each time frame. The raw fluorescence trace was then upsampled to match the highest 560 

sampling rate of each set of experiments (i.e., ~15 Hz for piriform datasets, ~3Hz for mitral cell 561 

datasets). When needed, we corrected for piriform neuropil contamination using a published method 562 

(Kerlin et al., 2010): the neuropil signal Fneuropil (t) surrounding each cell was estimated by averaging 563 

the signal of all pixels within a 20 μm circular region from the cell center (excluding all other ROIs). 564 

The true fluorescence signal of a cell body was estimated as follows: Ftrue (t) = Fmeasured (t) – r x Fneuropil 565 

(t), with r = 0.5.  566 

For each trial, the change in fluorescence (∆F/F0) was calculated as (F-F0) / F0 , where F0 is 567 

the median value between seconds 4 and 8 of the pre-stimulus period. We estimated the baseline 568 

fluctuation for a given trial as the standard deviation (SD) of ∆F/F0 during the baseline period. Odor 569 

responses were assessed over a 4 second period following odor onset. A ROC analysis (including 570 

blank trials consisting of 30 seconds of recording with no stimulation for the evaluation of the false 571 

positive rate) was used to determine a threshold with the best sensitivity/specificity ratio. A cell was 572 

deemed responsive if it reached and remained above threshold (2 times the standard deviation of the 573 

baseline) for 21 (activation) or 19 (suppression) frames during this response window. These criteria 574 

yielded a detection accuracy (ACC) of 0.92 and 0.915, and a true positive rate (TPR) of 0.89 and 0.87, 575 

respectively.  576 
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To estimate the time course of firing rate, the calcium signal was temporally deconvolved 577 

using the following formula: r(t) = f’(t) + f(t) / τ in which f’(t) is the first derivative of f(t) and τ the 578 

decay constant set to 2 seconds for GCaMP6s (as estimated from the decay of the GCAMP6s 579 

fluorescent transients), and 0.5 seconds for GCaMP3. This signal was low-pass filtered using a 4-pole 580 

Butterworth filter with a cutoff frequency of 2.5Hz and used for all subsequent analysis, except for 581 

example traces in Figure 1, for which the raw signal was plotted. 582 

 583 

Automated cell segmentation 584 

We developed an original method for automatically detecting neurons in the recording region, 585 

based on activity time courses. As in other existing methods (Mukamel et al., 2009; Pnevmatikakis et 586 

al., 2016), our method uses temporal activity patterns to automatically segment neurons, including the 587 

cells undetectable with contrast-based methods because of low fluorescent baseline. But while other 588 

methods focus only on the activity time-courses, our method also takes connexity into account, i.e. 589 

that pixels belonging to the same neuron are neighboring each other. We perform iterative clustering 590 

of all pixels in the image by merging together neighboring pixels or regions whose activities are 591 

correlated. 592 

The clustering procedure is schematized in Figure 1 - figure supplement 1. At each step, 593 

correlations are calculated for each pair of connected pixels in the entire image (with connections only 594 

allowed in the horizontal and vertical directions), and the two pixels with the highest correlation are 595 

merged together (Figure 1 - figure supplement 1a). The averaged signal of the merged region is then 596 

computed and connections and correlations with neighbors are updated. This process continues until 597 

all pixels have been merged. We observed that the first pixels merged by this procedure belong to 598 

neurons (or axons and dendrites), while pixels belonging to diffuse neuropil regions aggregate at later 599 

stages, without altering the segmentation of the neurons (Figure 1 - figure supplement 1c). Hence 600 

there is a large range of iteration counts for which we obtain a stable number of clusters 601 

corresponding to well segmented neurons and a variable number of regions corresponding to neuropil 602 

regions (depending on the stage of the clustering). To obtain a first neuronal segmentation, we 603 
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therefore selected the clustering output obtained at a particular iteration step. This parameter is user 604 

selectable, but the final result is weakly sensitive to it. A value of I = 25000 was typically chosen for 605 

these datasets.  606 

We then extract neurons from this first segmentation step by identifying merged pixel ensembles 607 

that have typical neuronal size and shapes (Figure 1 - figure supplement 1d). To do so, we compute 608 

three measures from each aggregated region and retain only regions falling within a particular range: 609 

1. Size of the region defined as 𝑟𝑒𝑔𝑠𝑖𝑧𝑒 =  number of pixels must be included between a 610 

minsize and maxsize parameters. 611 

2. Region dispersion defined as 
! 𝑥!𝑐𝑒𝑛𝑡𝑒𝑟

!!𝑥∈𝑟𝑒𝑔𝑖𝑜𝑛

𝑟𝑒𝑔𝑠𝑖𝑧𝑒
 must be smaller than a threshold maxdisp 612 

(typically 0.5): This will select round-shaped regions and discard elongated regions. 613 

3. The ratio between average pixel weights (see below for weights calculation) of the pixels 614 

located at the border of the region and of all the pixels should be smaller than a threshold 615 

maxborder (typically 0.9): This will select regions whose pixel contributions decrease near 616 

the border of the region, which is typical of neuron regions but not of neuropil fragment 617 

regions. 618 

 619 

A graphical interface permits to adjust these selection parameters if necessary. The final 620 

segmentation is obtained after a visual quality check in which the user has the possibility to add or 621 

remove agglomerated regions within a dedicated graphical interface that helps accelerating the 622 

procedure (Figure 1 - figure supplement 1d). Importantly, the correlations used in the algorithm are 623 

calculated on the full duration of the dataset, but to reduce computational costs, the data is temporally 624 

binned into bins of 30 seconds. Also, two additional preprocessing procedures are applied to remove 625 

correlations with large spatio-temporal scales: 626 

1. Global slow drifts are removed by high-pass filtering all time courses with a cutoff period of 627 

100s. 628 

2. The average signal over all pixels is calculated, and its contribution in each individual pixel 629 

(i.e. the projection of the pixel time courses onto this average signal) is subtracted. 630 
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 631 

To compute the “average” signals of the regions obtained at the end of the first neuronal 632 

segmentation step, we assign weights to each individual pixel in order to obtain the best estimate of 633 

the signal common to all these pixels. Note that the regular average corresponds to the case in which 634 

all these weights are equal to 1/N (N being the number of pixels inside the region), but does not 635 

necessarily constitute the best estimate of the common signal, as pixel with low signal level and 636 

comparatively high noise contribute as much as pixels with high signal levels. To find the appropriate 637 

weights, we proceed as follows:  638 

1. All weights 𝑤𝑖 are initialized to 1/N  639 

2. The signal of the region is calculated as: 640 

𝑥𝑟𝑒𝑔 = 𝑤𝑖𝑥𝑖
𝑖

= 𝑋𝑤 

(where 𝑥𝑖 are column vectors of individual pixel signals)  641 

3. Weights are updated as: 642 

𝑊 = 𝑋!𝑥𝑟𝑒𝑔 

(where 𝑋! = 𝑋𝑇𝑋
!!

𝑋𝑇 is the pseudo-inverse of 𝑋). Steps 2 and 3 are repeated (typically 643 

3 times) until convergence. 644 

Note that the weights are then visualized on our graphical interface, highlighting the regions of the 645 

neurons that contribute with the strongest signals.  646 

 647 

Population vector analysis 648 

To build response vectors, we averaged the deconvolved ∆F/F0 signal of all cells over the 4 649 

seconds following odor onset. This provides an estimate of a neuron’s response to each odor trial. We 650 

obtained a matrix (piriform neurons x odors trials) representing the population response after odor 651 

delivery for every trial. To build the cross-correlation matrix of the patterns of activity, we calculated 652 

Pearson’s correlation coefficients between every pair of such odor trials. 653 

 654 
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Lifetime sparseness 655 

Lifetime sparseness was calculated as: 656 

𝑆𝑙 =  

1 −  
!!
!

!
!!!

!

!!
!

!
!
!!!

1 −  !
!

 

where rj are the neurons’ responses to individual odors and N is the total number of odors. Lifetime 657 

sparseness quantifies the specificity of the neurons’ odor-evoked responses (0: uniformly distributed 658 

across odors, 1: highly selective for one odor).  659 

 660 

Linear classifier 661 

To quantify the information contained within patterns of piriform activity, we used a linear 662 

classifier to predict stimulus identity based upon the response patterns to single odor trials. We 663 

obtained comparable classification performance using one-vs-all Support Vector Machine (SVM) 664 

with a linear kernel on the raw ∆F/F data, or linear discriminant analysis (LDA) on the principal 665 

components encompassing 95% of variance in the data. For computational efficiency, LDA was used 666 

for the analysis in Figure S2. To build the response vectors, we accumulated ∆F/F0 signal over a 5 667 

frame (~333 ms) sliding window (Figure 2), or used a mean response by accumulating signal over the 668 

4 seconds following odor onset (Figure 5). These vectors define a multidimensional (1 neuron = 1 669 

dimension) representation of odors and were used to classify single trial response patterns. To avoid 670 

overfitting, we used a leave-one-out cross-validation strategy, whereby the assessed trial is excluded 671 

from the calculation of the centroids.  672 

To assess the decoding of odors based on stimulus identity (Figure 2), trials were classified as 673 

belonging to one of the stimulus group (13 odors, chance level: 1/13 = 7%). To assess the decoding of 674 

odor identity across concentration (Figure 5), we adapted a previously published protocol (Stopfer et 675 

al., 2003). For each odor trial tested, only the most distant concentration was kept to train the 676 

classifier (when testing trials at 0.1% concentration, only trials at 0.01% concentration were kept). 677 

Thus, outcome of this classification was between 7 possible groups of stimuli: 1 group with the tested 678 

odorant identity, and 2 odorants x 3 concentrations groups of the other odors. Classification was 679 
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deemed correct if the trial was assigned to the correct identity group (1 group out of 7 possible, 1/7  = 680 

14% chance level).  681 

 682 

Analysis of variance of single neurons and bootstrap methods 683 

To investigate the source of modulation of individual neural responses, we used a linear 684 

regression approach by fitting an analysis of variance (ANOVA) with concentration, odorant identity, 685 

and trial number as fixed effects, using type II sum of square. We defined concentration-invariant 686 

cells as cells that were only significantly modulated by odorant identity (Test 1, p < 0.01); containing 687 

information that enables them to identify at least one of the three odorants, but were not significantly 688 

modulated by concentration (Test 2, p > 0.01) or by interactions between identity and concentration 689 

(Test 3, p > 0.01). “Generic neurons” are all other cells. It is important to note that in our dataset, only 690 

39.9% of all recorded piriform neurons were significantly modulated by odorant identity. Thus, the 691 

11.7% of piriform cells that were identified as concentration-invariant represent ~30% of the neurons 692 

that contained significant odorant information. To evaluate the accuracy our method, we estimated an 693 

upper bound on the false positive rate (FPR) of the statistical test. The expected FPR for the 694 

intersection of the three tests is the product of the FPRs of each test. Modulation by odor identity 695 

(Test 1) is assessed an FPR of 1%, while the FPR for the absence of modulation by intensity (Test 2) 696 

and by intensity-identity interactions (Test 3) are not precisely known as they correspond to the false 697 

negative rates of the associated tests. However, given that the FPRs for tests 2 and 3 are bounded by 698 

1, the FPR for the concentration-invariant cells is less than 1%. This indicates that at least 10.7% are 699 

true positive for concentration invariance (subtracting the 1% FPR). Similarly, of the 5.5% of 700 

concentration-invariant neurons identified in the olfactory bulb, at least 4.5% are true positives. To 701 

test for the stability of the concentration-invariant subpopulation with respect to the statistical 702 

threshold, we repeated the analysis with an alpha-value of 0.05 instead of 0.01. We identified 12.8% 703 

of concentration-invariant neurons and, importantly, all concentration-invariant cells previously 704 

identified with the 0.01 threshold were included in this ensemble. Thus the detection of concentration 705 

invariant cells is only marginally affected by the exact statistical parameters. 706 
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In a second type of analysis, we tested the hypothesis (different from the one tested above) 707 

that concentration invariance was a property arising from a random coding scheme, in which response 708 

magnitude is arbitrarily assigned for each neuron and odor-concentration pair. We generated 1000 709 

bootstrapped datasets in which we randomly shuffled the cell identities for each odor-concentration 710 

pair. In other words, if the data set is described as a 3D array A[Cell_list,Odor_Conc_list,Trials_list], 711 

one surrogate dataset AS is generated by performing a randomization of “Cell_list” for each of the 9 712 

items of the Odor_Conc_list. Note that individual trials of a given cell-odor-concentration triplet are 713 

kept together. We then submitted the surrogate datasets to the statistical analysis described above for 714 

detecting concentration-invariant cells. This enabled us to compute the expected distribution of the 715 

fraction of concentration-invariant cells for the “random coding scheme” hypothesis. We found that 716 

the fraction of cells observed in cortex is incompatible with this hypothesis (Figure 6d, p < 0.001), in 717 

contrast to the olfactory bulb (Figure 6d, p = 0.073).  718 

 719 

Statistics 720 

All descriptive statistics in text and figure legends are mean ± SD. The percent of responding 721 

neurons to each stimulus was calculated as the average number of active neurons across 4 trials. To 722 

construct the spatial odor maps, as well as to calculate any parameter implying a thresholding of cell 723 

activity (e.g. cell tuning), only cells that responded at least twice out of 4 trials were included.  724 

  725 
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Figure 1. Calcium imaging of odor-evoked activity in piriform cortex 914 

(a) (Top) Schematic of the experimental protocol. AAV-GCaMP6s was stereotaxically injected into 915 

piriform cortex. After 10 days, piriform cortex was surgically exposed and neural activity in response 916 

to odors was recorded with 2-photon imaging. (Bottom) Coronal section of a brain used for piriform 917 

imaging. Scale bar: 100μm.  918 

(b) (Top) Stack average of an imaging site, and (bottom) masks of the regions of interest (ROIs) 919 

identified by our clustering algorithm (see also Figure S2). Scale bar: 50μm.  920 

(c) Single trial example traces of 4 different cells (rows) in response to 4 different monomolecular 921 

odorants (columns). Cells respond with an increase (red traces) or a decrease (blue traces) in 922 

fluorescence (gray traces: non responsive trials). Note the different scale of ∆F/F values (y axis) for 923 

each neuron. Red bar: odor presentation. 924 

(d) Spatial patterns of piriform activity in response to four trials (columns) of three different 925 

monomolecular odorants (rows). ∆F/F values are clipped at 100% here and henceforth in all figures. 926 

Odorants activate sparse, distributed, and partially overlapping ensembles of piriform neurons. 927 

(e) Reliability of activation (red) and suppression (blue), measured as the number of trials each cell-928 

odor pair responded to a given odorant, averaged across imaging sites (n = 6 sites in 3 mice). Error 929 

bars: 95% CI of the mean. 930 

(f) Percent of neurons activated (red) or suppressed (blue), averaged across four trials. Dots: single 931 

data points from individual imaging sites. Horizontal bars: mean across imaging sites (n = 6). Error 932 

bars: 95% CI of the mean.  933 

(g) Tuning curve of activation (red) and suppression (blue), averaged across imaging sites (n = 6). 934 

Error bars: 95% CI of the mean. 935 
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Figure 2. Odor identity is encoded in the spatial patterns of piriform activity  937 

(a) Population response of the imaging site shown in Figure 1a. The mean ∆F/F value after stimulus 938 

onset for each trial (columns) in each cell (rows) is color-coded.   939 

(b) Similarity matrix obtained by computing the pairwise correlation coefficients between all 940 

population response vectors in (a). Squares along the diagonal (4 x 4 trials) represent the similarity of 941 

responses to 4 exposures of the same odorant (intra-stimulus cross-trial correlations). 942 

(c) Patterns of piriform activity in response to single odor presentations (dots represent different 943 

odorants, color-coded as in (a)) projected onto space of the first three principal components 944 

(accounting for ~20% of the total variance). Neurons were pooled across imaging sites. 945 

(d) Confusion matrix summarizing the performance of a linear classifier trained to discriminate the 946 

odorants in A, summed over imaging sites (n = 6 sites in 3 mice). 947 

(e) Percent of trials correctly identified by a linear classifier, for neurons pooled across all 6 imaging 948 

sites (blackline). Green, red and blue lines represent classification accuracy obtained with a classifier 949 

trained on response patterns at 0.27 (green arrowhead), 1 (red arrowhead)  and 3 (blue arrowhead) s 950 

after odor onset. Gray dashed line: theoretical chance level. Gray square: odor exposure.   951 
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Figure 3. No evidence for topography in patterns of piriform activity 954 

(a) Odorant preference map for an imaging site, with the odorant preference of individual piriform 955 

neurons color coded as in Figure 2.  956 

(b) Example of simulated clustering. The imaging site was divided into 16 equally sized sub-areas and 957 

preference for an odorant was allowed to occur in only three or four randomly chosen sub-areas. The 958 

P value indicates the probability that the computed nearest neighbor index is different from randomly 959 

distributed neurons.  960 

(c) (Top) Example of an ensemble of piriform neurons (in red) locally constrained around a “starter 961 

cell” (in yellow), and used for classification of the stimulus set of Figure 2. (Bottom) Heatmaps of the 962 

classification accuracy of different starter cells for piriform ensembles of increasing size. 963 

 964 

 965 

 966 
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Figure 4. Odor-evoked activity and sparseness of individual piriform neurons depends on 968 

odorant concentration  969 

(a) Spatial patterns of piriform activity in response to acetophenone, ethyl acetate and hexanone at 970 

three different concentrations (1:10,000, 1:1,000, 1:100 vol./vol. dilutions).  971 

(b) Percent of neurons activated or suppressed by acetophenone, ethyl acetate, and hexanone at three 972 

different concentrations (1:10,000, 1:1,000, 1:100 vol./vol. dilutions). Dashed gray lines represent 973 

individual imaging sites, thick red (activation) and blue (suppression) lines represent averages across 974 

sites (n = 13 sites in 11 mice). Error bars: 95% CI of the mean. 975 

(c) Spatial patterns of piriform activity in response to acetophenone, ethyl acetate and hexanone at 976 

three different concentrations (1:10,000, 1:1,000, 1:100 vol./vol. dilutions). Only cells responding at 977 

least 2 out of 4 trials are depicted. Cells responding to multiple odorants are color-coded in white. 978 

(d) Matrix of lifetime sparseness across concentrations for the cells in (c), sorted by hierarchical 979 

clustering.  980 

(e) Distribution of lifetime sparseness of all neurons pooled across imaging sites (n = 13, total number 981 

of neurons = 2935). 982 

 983 

 984 
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Figure 5. Patterns of piriform activity decorrelate with increasing odorant concentrations 986 

(a) Population response of the imaging site in Figure 3a to acetophenone, ethyl acetate and hexanone 987 

at three different concentrations (1:10,000, 1:1,000, 1:100 vol./vol. dilutions). Cells are sorted by 988 

hierarchical clustering. 989 

(b) Example response profiles of cells suppressed at higher concentrations for all three odorants (top 990 

panel), cells moderately enhanced by increasing concentrations of ethyl acetate or hexanone (middle 991 

panel), and cells strongly enhanced by increasing concentrations of acetophenone (bottom). 992 

(c) Similarity matrix obtained by computing the pairwise correlation coefficients between all response 993 

vectors pooled across imaging sites. Squares along the diagonal (4 x 4 trials) represent the similarities 994 

of responses to a single odorant/concentration pair (intra-stimulus cross-trial correlations). Large 995 

squares (12 x 12 trials) represent the similarities of responses to an odorant at varying concentrations 996 

(intra-odorant cross-trial correlations). The similarities of responses to increasing concentrations of a 997 

given odorant (intra-odorant inter-concentrations similarity) are highlighted by dashed line rectangles. 998 

(d) Correlation coefficients of the patterns of piriform activity elicited at increasing concentrations 999 

with the patterns elicited at low concentrations. Dashed gray lines represent individual imaging sites, 1000 

thick black lines the average across sites (n = 13 sites in 11 mice). Error bars: 95% CI of the mean. 1001 

Patterns of piriform activity along increasing concentrations gradually decorrelate from the patterns 1002 

elicited at low concentration. 1003 
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Figure 6. A concentration-invariant subnetwork of piriform neurons  1006 

(a) Summary of the analysis of variance of the response profiles of cells in Figure 4a. Two ANOVAs 1007 

are performed successively. In the first step, neurons with mixed selectivity are excluded from the 1008 

analysis. Concentration-invariant cells are then identified as cells significantly modulated by odorant 1009 

identity but not concentration (red arrowheads: example cells). These cells are used for subsequent 1010 

analyses against the population of all other “generic neurons”. Red dashed line: significance 1011 

threshold, set at p = 0.01.  1012 

(b) Deconvolved response traces of 4 concentration-invariant cells (rows) to acetophenone, ethyl 1013 

acetate and hexanone at three different concentrations (light grey: 1:10,000, dark grey: 1:1,000, black 1014 

1:100 vol./vol. dilutions). ∆F/F values are normalized to each cell’s maximum ∆F/F. Red bar: odor 1015 

presentation. Shaded area: time interval used to integrate ∆F/F values for the analysis of variance in 1016 

(a).  1017 

(c) Response matrix of the population of cells in (a) exclusively modulated by odorant identity. ∆F/F 1018 

values do not vary significantly with increasing odorant concentrations.  1019 

(d) Similarity matrix obtained by computing the correlation coefficients between patterns of 1020 

concentration-invariant neurons pooled across imaging sites (n = 13). Responses of concentration-1021 

invariant neurons to different concentrations of a given odorant (intra-odorant inter-concentrations 1022 

similarity) are as correlated as responses to the same odorant/concentration pair.  1023 

(e) Patterns of activity of generic neurons (left) or concentration-invariant neurons (right) in response 1024 

to single odor presentations (dots) projected onto space of the first three principal components. 1025 

Neurons were pooled across imaging sites (n = 13). 1026 

(f) Confusion matrix summarizing the accuracy of the classification of odorant identity by generic 1027 

neurons (left) or concentration-invariant neurons (right) in a generalization task (see Methods), 1028 

summed over imaging sites (n = 13). The classifier assigns each odor trial to one of 7 stimulus groups. 1029 

Two concentrations of the tested odorant (including the tested concentration) are excluded from the 1030 

training data (white boxes). Difficult generalization tasks across a 100-fold change in odorant 1031 

concentration are highlighted by the red squares.  1032 
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Figure 7. Concentration-invariant representations of odor identity emerge in the piriform 1033 

cortex  1034 

(a) (left) Schematic of the experimental protocol. Rabies-GCaMP3 was injected underneath the lateral 1035 

olfactory tract. After 5-7 days, the olfactory bulb was surgically exposed and mitral cell activity in 1036 

response to odorants was recorded with 2-photon imaging. (middle) Stack average of an imaging site. 1037 

Scale bar: 50μm. (right) Deconvolved response traces of 2 neurons to acetophenone, ethyl acetate 1038 

and hexanone at three different concentrations (light grey: 1:10,000, dark grey: 1:1,000, black 1:100 1039 

vol./vol. dilutions). Red bar: odor presentation. Shaded area: time interval used to integrate ∆F/F 1040 

values for the analysis of variance in (b). 1041 

(b) Summary of the analysis of variance of the response profiles of a mitral and tufted cell imaging 1042 

site. See also Figure 5a, and Methods for details. 1043 

(c) Population response of the imaging site in (a) to acetophenone, ethyl acetate and hexanone at three 1044 

different concentrations (1:10,000, 1:1,000, 1:100 vol./vol. dilutions). Cells are sorted by the p-value 1045 

of the effect of odorant identity.  1046 

(d) Percent of concentration-invariant neurons (red line) identified in the olfactory bulb (left, n = 19 1047 

imaging sites in 8 mice) and in piriform cortex (right, n = 13 imaging sites in 11 mice), overlaid onto 1048 

the distribution of the percent of concentration-invariant neurons found in the bootstrap samples. 1049 

(e) P-values for the number of concentration-invariant neurons identified at each imaging site in the 1050 

olfactory bulb (left, n = 19) and the piriform cortex (right, n = 13). The number of concentration-1051 

invariant neurons is significantly above chance (red dots, p < 0.01) in 8 out of 13 imaging sites in the 1052 

perform cortex, but only in 2 out of 19 imaging sites in the olfactory bulb. 1053 
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Figure supplements  1057 

Figure 2 - figure supplement 1. Classification accuracy is consistent across mice and imaging 1058 

sites 1059 

(a) Percent of trials correctly identified by a linear classifier, averaged across 6 imaging sites (orange 1060 

line). Shaded area: SD of the mean. Green line: mean deconvolved ∆F/F values of significant odor-1061 

evoked responses. Gray square: odor exposure.  1062 

(b) Accuracy of odor identity classification in pseudo-populations of increasing size. Distribution of 1063 

the accuracy of odor classification by a linear classifier trained on pseudo-populations of piriform 1064 

ensembles (n = 10,000) of increasing size, randomly sampled from the dataset presented in Figure 2 1065 

(1,703 neurons in 3 mice).  1066 

(c) Classification accuracy is highly consistent across mice. Percent of trials correctly identified by a 1067 

linear classifier, averaged within each mouse of the dataset used in Figure 2. Shaded area: SD of the 1068 

mean. Gray squares: odor exposure.  1069 
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Figure 4 - figure supplement 1. Odorant concentration scales with nominal dilution and breath 1072 

period is independent of odorant concentration  1073 

(a) Photoionization detector (PID) traces for Hexanone at 1:10,000, 1:1,000, and 1:100 vol./vol. 1074 

dilution in mineral oil. 4 individual trails and average trace across the 4 trials are shown. Shaded area: 1075 

SD of the mean.  1076 

(b) Coefficient of variation of the mean PID signal after odor onset, averaged across 14 trials. Error 1077 

bar: SD of the mean.  1078 

(c) Mean PID signal normalized to 1:10,000 vol./vol. dilution, averaged across 14 trials. Red dotted 1079 

line shows the expected output from nominal dilutions. Error bar: SD of the mean.  1080 

(d) Breath period of mice before and after exposure to odorants at different concentrations. Error bar: 1081 

SD of the mean.  1082 
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Figure 6 - figure supplement 1. Cross-correlation and principal component analysis of 1085 

concentration-invariant piriform neurons  1086 

(a) Correlation coefficients of odor-evoked responses of concentration-invariant piriform neurons. 1087 

Cross-trial correlations at a given concentration (empty bars) did not significantly change across 1088 

concentrations for all three odorants. Cross-trial correlations for acetophenone and hexanone 1089 

responses at low concentration were not significantly different from the cross-concentration 1090 

correlations for low versus high odorant concentrations. A small but significant difference was 1091 

observed for cross-concentration correlations for ethyl actetate (cross-trial correlations at 0.01%: 0.57 1092 

± 0.04% SD, cross-concentration correlations 0.01 versus 1%: 0.65± 0.05% SD, p = 0.007).  1093 

 (b) Hierarchical clustering of the data transformed into principal components (Fig. 6e) shows that 1094 

patterns of activity of generic neurons cluster systematically by concentration, but not by odorant 1095 

identity. In contrast, patterns of concentration-invariant neurons cluster by odorant identity but do not 1096 

systematically cluster by concentrations.  1097 
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Figure 6 - figure supplement 2. Response properties and spatial organization of concentration-1099 

invariant piriform neurons 1100 

(a) Trial-to-trial variability, measured as the percentage of trials each cell-odor pair responded to a 1101 

given odorant, for concentration-invariant and generic neurons, averaged across imaging sites (n = 13 1102 

sites in 11 mice). Error bars: 95% CI of the mean. 1103 

(b) Odor-evoked change in fluorescence (DF/F) for concentration-invariant and generic neurons.   1104 

(c) Simulated clustering of concentration-invariant neurons. The imaging site was devided into 16 1105 

equally sized sub-areas and concentration-invariance was allowed to occur in half of the sub-areas. 1106 

The P value indicates the probability that the computed nearest neighbor index for the concentration 1107 

invariant neurons is different from randomly distributed neurons. 1108 

(d) Spatial distribution of concentration-invariant neurons for each imaging site. The p value indicates 1109 

that the probability with which the nearest neighbor index of the observed spatial distribution can be 1110 

explained by a randomly distributed ensemble, simulated by cell identity shuffling. 1111 
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Figure 7 - figure supplement 1. Comparison of the fraction of concentration-invariant neurons 1114 

in piriform cortex and olfactory bulb 1115 

(a) Percent of concentration-invariant neurons identified in the olfactory bulb (green line) and in 1116 

piriform cortex (red line), overlaid onto the distribution of the percent of concentration-invariant 1117 

neurons found with 1000 random iterations of subsampling 500 piriform neurons (gray).  1118 

(b) Percent of concentration-invariant neurons identified in the olfactory bulb (green line) and in 1119 

piriform cortex (red line), overlaid onto the distribution of the percent of concentration-invariant 1120 

neurons found in the bootstrap samples (gray). As in Figure 7, but with a significance criterion of p < 1121 

0.05. 1122 

 1123 
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