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Abstract Influenza virus’ low replicative fidelity contributes to its capacity for rapid evolution.

Clonal sequencing and fluctuation tests have suggested that the influenza virus mutation rate is 2.7

� 10–6 - 3.0 � 10–5 substitutions per nucleotide per strand copied (s/n/r). However, sequencing

assays are biased toward mutations with minimal fitness impacts and fluctuation tests typically

investigate only a subset of all possible single nucleotide mutations. We developed a fluctuation

test based on reversion to fluorescence in a set of virally encoded mutant green fluorescent

proteins, which allowed us to measure the rates of selectively neutral mutations representative of

the twelve different mutation types. We measured an overall mutation rate of 1.8 � 10–4 s/n/r for

PR8 (H1N1) and 2.5 � 10–4 s/n/r for Hong Kong 2014 (H3N2) and a transitional bias of 2.7–3.6. Our

data suggest that each replicated genome will have an average of 2–3 mutations and highlight the

importance of mutational load in influenza virus evolution.

DOI: 10.7554/eLife.26437.001

Introduction
The rapid evolution of influenza virus has led to reduced vaccine efficacy, widespread drug resis-

tance, and the annual emergence of novel strains. While complex ecological, environmental, and

host demographic factors influence the evolutionary dynamics of influenza virus, the virus’ adaptabil-

ity is driven in large part by its capacity to generate genetic diversity through mutation and reassort-

ment (Nelson and Holmes, 2007). Like other RNA viruses, influenza virus replicates with extremely

low fidelity. The influenza virus RNA-dependent RNA polymerase (RdRp) complex, which includes

the viral proteins PB1, PB2, PA, and NP, lacks proofreading and repair activity (Te Velthuis and

Fodor, 2016). Its mutation rate has been reported to be approximately 10�5 to 10�6 mutations per

nucleotide per cellular infection (Sanjuán et al., 2010; Suárez-López and Ortı́n, 1994;

Suárez et al., 1992; Nobusawa and Sato, 2006; Parvin et al., 1986; Bloom, 2014).

An accurate accounting of influenza virus’ mutation rate and mutational bias is essential for defin-

ing its evolutionary dynamics and for informing control efforts. The mutation rate will determine the

probability that a mutation conferring drug resistance, antibody escape, or broadened host range

will be generated within a given virus population. It will also define a virus’ sensitivity to drug-

induced lethal mutagenesis, a broad-spectrum antiviral strategy that exploits the high mutation rate

and low mutational tolerance of many RNA viruses (Anderson et al., 2004; Bull et al., 2007). We

have shown that the antiviral activity of three different nucleoside analogues is due to increased viral

mutation rates, and a new anti-influenza drug, favipiravir, has been found to act through a similar

mechanism (Cheung et al., 2014; Pauly and Lauring, 2015; Baranovich et al., 2013). As in other

RNA viruses, the mutational bias of the influenza polymerase complex is largely undefined. While

viral mutation rates are typically reported as a single measurement, each of the 12 distinct
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nucleotide substitutions (for example, A to C, G to U) will have its own rate. The rates of these muta-

tional classes will in turn determine the accessibility of various nucleotide and amino acid substitu-

tions. Many RNA viruses appear to exhibit a pronounced bias toward transition mutations

(Sanjuán et al., 2010). Because transitions are more likely to be synonymous than transversions, this

bias can impact models of molecular evolution and inferences of natural selection based on dN/dS

ratios.

Mutations are typically reported as either frequencies or rates (Sanjuán et al., 2010;

Belshaw et al., 2011). Mutation frequency is the number of mutations identified in a sample per

nucleotide sequenced. Frequency measurements therefore quantify not only the rate at which a

mutation is generated but also that mutation’s ability to persist in a population. In contrast, mutation

rates measure how many mutations are made in a discrete unit of time (for example, per infection

cycle or strand copied) and are a better representation of polymerase error. Viral mutation rates

have often been measured by Sanger sequencing of randomly selected clones obtained through pla-

que purification or limiting dilutions (Tromas and Elena, 2010; Vignuzzi et al., 2006; Eckerle et al.,

2007; Nobusawa and Sato, 2006; Parvin et al., 1986; Bloom, 2014). Mutation frequencies

obtained in this manner can be converted to mutation rates by adjusting for the number of replica-

tion cycles prior to sampling (Sanjuán et al., 2010). With these adjustments, sequencing-based esti-

mates of influenza virus mutation rates range from 7.1 � 10�6 to 4.5 � 10�5 substitutions per

nucleotide per cell infection cycle. While sequencing approaches can potentially measure the rate of

all mutational classes, they lack precision and have poor power for detecting differences across

strains or conditions. They are also biased towards sampling of genomes with higher fitness. Next

generation sequencing platforms have increased the throughput and power of clonal sequencing,

but in many cases, the impact of reverse transcription error in library preparation has not been thor-

oughly investigated.

A more direct way to measure mutation rates is to use a Luria-Delbrück fluctuation test (Luria and

Delbrück, 1943; Koziol, 1991; Foster, 2006; Furió et al., 2005; Combe and Sanjuán, 2014). In

this method, a large number of parallel cultures are infected with small inocula and assessed for a

set of newly generated mutants exhibiting a scoreable phenotype after a period of exponential

growth. Because the mutations are rare and random, they follow a Poisson distribution across cul-

tures. Mutation rate estimates from a null class model are robust to the mode of replication, which

may vary across viral species (Foster, 2006; Furió et al., 2005). Using resistance to monoclonal anti-

bodies as a scoreable phenotype, influenza’s mutation rate has been estimated to be 2.7 � 10�6 to

3.0 � 10�5 substitutions per nucleotide per strand copied (Suárez et al., 1992; Suárez-López and

Ortı́n, 1994). While fluctuation tests are more precise than sequencing assays, most scoreable phe-

notypes sample just a few sites or mutational classes.

Here, we apply two new approaches for measuring the influenza virus mutation rate that over-

come the drawbacks of sampling bias and low statistical power inherent to currently available meth-

ods. The first relies on measurements of the frequency of mutations to stop codons within a short

segment of the influenza genome using PrimerID, an error-controlled next-generation sequencing

approach (Jabara et al., 2011; Zhou et al., 2015). Because these nonsense mutations are lethal and

generally not propagated, their frequencies approximate the mutation rate in the prior replication

cycle (Cuevas et al., 2009). The second is a Luria-Delbrück fluctuation test that scores reversion to

fluorescence in virally encoded green fluorescent protein (GFP) mutants (Zhang et al., 2013). The

GFP method enabled interrogation of all 12 mutation classes independently and under distinct repli-

cation conditions.

Results
The vast majority of premature stop codons in RNA virus open reading frames are lethal and are

therefore likely to have been generated during the previous replication cycle (for example,

[Visher et al., 2016]). Eighteen of the 61 sense codons are a single mutation away from a stop

codon, and the frequency at which these nonsense mutational targets (NSMT) mutate to stop

codons approximates the viral mutation rate. When combined with a highly accurate next generation

sequencing approach, the NSMT method can provide rate estimates for eight mutational classes

(Cuevas et al., 2009; Cuevas et al., 2015; Acevedo et al., 2014). We identified a 402 base frag-

ment within the PA gene of A/Wisconsin/03/2007 H3N2 that contains a balanced distribution of 80
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NSMT, and used the PrimerID method to sequence individual PA clones from an influenza popula-

tion on the Illumina platform. PrimerID sequencing utilizes a library of barcoded reverse transcription

primers to generate consensus sequences for each cDNA template, thereby controlling for the PCR

or base-calling errors that plague many next generation sequencing studies (Jabara et al., 2011;

Zhou et al., 2015). The PrimerID method does not control for errors introduced during reverse tran-

scription (RT), and the mutation rates of reverse transcriptases are similar to those of viral RNA

dependent RNA polymerases (RdRp) (Sanjuán et al., 2010).

In an attempt to distinguish RT errors from mutations introduced by the influenza RdRp, we com-

pared PrimerID-NSMT estimates of the mutation rate for influenza virus to a control, in which the

segment 3 (PA) RNA was expressed from a plasmid pol I promoter in transfected cells

(Hoffmann et al., 2000). Mutations identified in the viral genome are derived from either the influ-

enza RdRp or RT, and the control establishes the background error rate of the assay due to pol I

transcription and RT (Figure 1A). We obtained over 449,000 aligned PA fragment consensus

sequences for each sample, representing approximately 75% of starting RNA templates. The fre-

quencies of mutations to stop codons were similar for 5 of the 8 mutation classes (Figure 1B,

Supplementary file 1). The frequencies of the other three mutation classes (A to U, C to A, and U to

G) were only slightly higher in the samples derived from RNA replicated by the influenza RdRp than

those that were not. The G to A mutation rate was highest in both samples (1.3 � 10�4

and 8.5 � 10�5 substitutions per nucleotide for cell-derived and viral-derived samples, respectively),

and analyses of the RT mutational spectrum consistently show this to be the most common mutation,

with rates of 1 � 10�4 substitutions per nucleotide (Gout et al., 2013; Mansky and Temin, 1995;

Holtz and Mansky, 2013; Cuevas et al., 2015). These data demonstrate that the background error

rate of reverse transcriptase during sample preparation is equal to or higher than the rate of muta-

tions introduced by the influenza RdRp.

We also compared the frequency of mutations to stop codons to the frequency of all observed

mutations. Mutations in the transfected control were evenly distributed across the PA fragment and

no more common than the subset of mutations to stop codons (Figure 1C). In contrast, the fre-

quency of mutations in the replicated viral RNA was higher than the subset of stop codon mutations.

The accumulation of mutations to frequencies above those of the stop codon mutations and the

background signal indicate the action of selection on newly generated mutations. Together, these

data suggest that the high background error rate of reverse transcriptase and issues of selection

bias may confound sequencing-based measurements of the basal mutation rate and mutational bias

of riboviruses.

A fluorescence-based fluctuation test
We developed a Luria-Delbrück fluctuation test for influenza virus mutation rates that scores rever-

sion to fluorescence in a set of 12 virally-encoded mutant green fluorescent proteins (GFP). The fluo-

rescent chromophore of enhanced GFP contains three essential amino acids (T65, Y66, and G67)

(Ma et al., 2010), and nonsynonymous substitution at any of these positions results in a GFP with

either absent or altered fluorescent properties (Timerghazin et al., 2008; Fu et al., 2015;

Nakano et al., 2002). We used a plasmid that contains GFP instead of hemagglutinin on influenza A

virus segment 4 (DHA-GFP, [Martı́nez-Sobrido et al., 2010]), to generate a set of 12 derivatives that

each encode a mutant GFP protein (Table 1). Each of these mutant GFP proteins has a single nucle-

otide mutation that, with reversion to fluorescence, will interrogate a specific mutational class intro-

duced by the viral RdRp during viral replication. Influenza viruses expressing these mutant GFP

proteins from a genomic context were rescued from cells co-transfected with each construct as well

as 7 additional plasmids that express the remaining 7 genomic segments and the viral proteins

encoded by each. Because these DHA-GFP viruses express GFP rather than HA, they were replicated

in cells stably expressing the HA protein in trans. They were then transferred to a second plate of

non-HA expressing cells for imaging.

Because our mutant GFP proteins are not fluorescent, we used anti-GFP antibody staining and

immunofluorescence microscopy to verify GFP expression from each of the 12 mutant DHA-GFP

viruses. In virally infected cultures, we occasionally identified rare cells expressing GFP that was fluo-

rescent at the excitation and emission wavelengths consistent with reversion to fluorescence

(Figure 2A). We used antibody staining to titrate the total number of viruses expressing GFP. The

growth kinetics of mutant DHA-GFP A/Puerto Rico/8/1934 H1N1 viruses were slower than the
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parental PR8, but similar among the 12 mutants

(Figure 2B). In all cases, titers of 1 � 105 per mil-

liliter were achieved by 22 hr at 37˚C. This corre-

sponds to 104 viruses per well of a 96 well plate,

which is the maximum that can be accurately

measured by fluorescence microscopy. In subse-

quent experiments, we used antibody staining of

infected cells to titrate the total number of

viruses expressing GFP – the mutational target –

since a subset of viruses will delete the GFP open

reading frame during replication.

Fluctuation tests are most accurate when the

marker is selectively neutral (Foster, 2006;

Furió et al., 2005). We measured the replicative

fitness of viruses expressing the mutant DHA-GFP

relative to those expressing the wild type DHA-

GFP. We competed a subset of the mutant

viruses against a wild type DHA-GFP virus con-

taining a neutral PB1 sequence barcode and used

RT-quantitative PCR to measure the frequency of

the competitors over serial passage on MDCK-

HA cells (Visher et al., 2016). Each of 6 mutant

DHA-GFP viruses, which sample mutations in the

3 mutated amino acid positions, maintained sta-

ble frequencies over 4 passages. They were just

as fit as the wild type DHA-GFP virus (Figure 2B,

p>0.05, n = 3 replicates, one way ANOVA), con-

firming that the scoreable phenotype and the

mutations interrogated are selectively neutral.

The secondary structure of genomic RNA in

positive sense viruses is known to influence muta-

tion rates in a site specific manner (Geller et al.,

2015, 2016; Pathak and Temin, 1992;

Pita et al., 2007). In influenza virus, the formation

of stable RNA structures in the replication com-

plex is limited by the binding activity of the viral

nucleoprotein (Te Velthuis and Fodor, 2016).

We performed an in silico analysis of the DHA-

GFP RNA to further exclude the possibility that

reversion of mutations could be influenced by

local RNA structure (Figure 2D). A sliding win-

dow analysis of the minimum free energy of RNA

folding suggests that the introduced mutations

are not located in highly stable RNA secondary

structures in the DHA-GFP RNA (Lorenz et al.,

2011; Jorge et al., 2015). The rates at which

these mutations revert to the wild type sequen-

ces are therefore likely to be representative of

mutation rates across the influenza virus genome.

We used a Luria-Delbrück fluctuation test to

convert reversion frequencies to viral mutation

rates (Luria and Delbrück, 1943; Foster, 2006).

For each of the 12 mutant DHA-GFP, we infected

parallel cultures of MDCK-HA cells with mutant

DHA-GFP viruses and transferred replicated virus

to MDCK cells in a 96-well imaging plate
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Figure 1. Influenza mutation rates by PrimerID next

generation sequencing. (A) Segment 3 (PA) RNA was

isolated from either cells transfected with pol I

expression plasmids or cell-free supernatants of cells

infected with influenza virus. These RNA were reverse

transcribed with barcoded PrimerID primers and

amplified by PCR for sequencing as described in the

methods. We obtained 449,655 PrimerID consensus

sequences for the plasmid-derived RNA sample and

481,286 consensus sequences for the virus-derived

RNA sample. (B) The frequencies of mutations to stop

codons in pol I transcribed RNA (open circles) and

virus-derived RNA (filled circles) were determined by

dividing the number of stop codon mutations across

the consensus sequences by the total number of

nonsense mutation target (NSMT) sites analyzed.

Plotted data are in Figure 1—source data 1. See also

Supplementary file 1. (C) Total mutation frequencies

were calculated as the number of observed mutations

for a particular mutation class divided by the number of

sequenced sites that could mutate by that same class.

Shown is the ratio of total mutation frequency to stop

Figure 1 continued on next page
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(Figure 3A). The replication time and transfer

volume were empirically determined for each

mutation class, drug, temperature, and virus

tested to yield approximately 104 infectious

viruses in the transfer population. Because the

DHA-GFP viruses do not express the HA protein,

they only replicate in MDCK-HA cells, and there

was no viral spread in the imaging plate. The

kinetics and intensity of GFP expression are

driven by the ability of the replicated viruses to

infect cells on the imaging plate, replicate their

RNA and express GFP protein. Expression is

independent of whether a given genome coding

for a green GFP was generated early or late in

the replication plate. We used a null class model

to calculate mutation rates based on the number of parallel cultures without a revertant in the imag-

ing plate (green fluorescence) and the degree of viral replication (anti-GFP antibody staining of the

inocula and replicated virus). Importantly, the null class model relies on the number of cultures with

any revertant virus, as opposed to the absolute number of revertant viruses. Because the actual num-

ber of infectious cycles is irrelevant to the calculation of mutation rates, the null class model further

removes any bias attributable to mutations generated early or late in the replication plate. The muta-

tion rates we report using this method are in the coding (+) sense of the RNA, rather than the geno-

mic (-) sense.

We validated the specificity of our assay for specific mutational classes by performing a set of

fluctuation tests in each of three different mutagenic nucleoside drugs. We and others have previ-

ously shown that ribavirin increases the frequency C to U and G to A transitions, 5-azacytidine

increases the frequency of C to G and G to C transversions, and 5-fluorouracil increases the fre-

quency of all transitions (A to G, C to U, G to A, and U to C) in influenza virus (Pauly and Lauring,

2015; Cheung et al., 2014). Each of these mutagens increased the rates of only the expected muta-

tion classes (Figure 3B–D). In some cases, the amount of replicated virus was sufficiently low and the

Figure 1 continued

codon mutation frequency by mutation class for

sequences derived from plasmid-derived RNA (grey

bars) and virus-derived RNA (black bars). Plotted data

are in Figure 1—source data 2.

DOI: 10.7554/eLife.26437.002

The following source data is available for figure 1:

Source data 1. Spreadsheet with frequencies of muta-

tions to stop codons in plasmid- and virus-derived RNA.

DOI: 10.7554/eLife.26437.003

Source data 2. Spreadsheet with mutation frequency

by class for plasmid- and virus-derived RNA.

DOI: 10.7554/eLife.26437.004

Table 1. Non-fluorescent DHA-GFP constructs.

Mutation Probed* Nucleotide Sequece† Amino acid Sequence‡

WT eGFP acc uac ggc T Y G

A -> C aAa uac ggc K Y G

A -> G acc uac gAc T Y D

A -> U acc Aac ggc T N G

C -> A acc uCc ggc T S G

C -> G acc uac gCc T Y A

C -> U acc Cac ggc T H G

G -> A acc uGc ggc T C G

G -> C uGg uac ggc§ W Y G

G -> U acc Gac ggc T D G

U -> A acc uUc ggc T F G

U -> C aUa uac ggc I Y G

U -> G acc uac gUc T Y V

*Mutations are in the mRNA coding sense.
†Nucleotides 193–201 of the eGFP reading frame are shown. Changes from wild type are in bold and italics. Site

that allows reversion to fluorescence is capitalized.
‡Amino acids 65–67 of eGFP are shown. Changes from wild type are in bold and italics.
§This construct is able to revert to wild type GFP (S65).

DOI: 10.7554/eLife.26437.005
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mutations were sufficiently rare that we were not able to obtain replicate fluctuation tests in which

the null class (P0) lay within the ideal range of 0.1–0.7 (Koziol, 1991; Foster, 2006). Here and else-

where, these less precise mutation rate measurements are indicated with open symbols (Figures 3–

5).
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Figure 2. Characterization of mutant DHA-GFP influenza viruses. (A) Fluorescent images of cells infected with mutant DHA-GFP (shown are data for the

A to C virus, see Table 1) and stained with Hoechst and anti-GFP Alexa 647 conjugate. Cells were imaged at 4x magnification and the resulting images

were digitally magnified to an equal extent for this figure. (B) Growth kinetics of mutant DHA-GFP viruses. MDCK-HA cells were infected at an MOI of

0.01 in 96-well plates and incubated at 32˚C (open squares), 37˚C (filled squares), or 39˚C (open circles). At each time point, the supernatants from 4

wells were transferred to a new 96-well plate containing MDCK cells. After 14 hr the cells were fixed and stained using an anti-GFP antibody. The

number of cells stained were determined by fluorescence microscopy and used to calculate the titer of GFP expressing virus. Data shown are the

cumulative mean and standard deviations for 4 measurements at each time point for each of two mutant DHA-GFP viruses (C to U and U to A viruses).

Each point is the therefore the mean ± standard deviation for 8 values. Plotted data are in Figure 2—source data 1. (C) The fitness of 6 of the mutant

DHA-GFP viruses (x-axis) were compared to wild type DHA-GFP through direct competition with a genetically barcoded competitor over 4 serial

passages. Quantitative PCR was used to determine the relative changes in the frequency of the two competitors and fitness values were calculated as

described in the Methods. Mutant viruses are classified by the GFP amino acid mutated, with wild type (black), T65 (gray), Y66 (striped), G67 (white).

Shown are the mean and standard deviation for three competitions and fitness measurements for each virus. Plotted data are in Figure 2—source data

2. (D) The minimum free energy of RNA folding for 100 base sliding windows (80 base overlaps) were determined for the DHA-GFP construct. The

location of the three mutated sites (bases 280–288) are indicated by the dashed line. Plotted data are in Figure 2—source data 3.

DOI: 10.7554/eLife.26437.006

The following source data is available for figure 2:

Source data 1. Spreadsheet with virus titer (GFP+ virus per ml) in imaging plate at the indicated time points and temperatures.

DOI: 10.7554/eLife.26437.007

Source data 2. Spreadsheet with replicate fitness values for wild type and DHA-GFP viruses as shown in Figure 2C.

DOI: 10.7554/eLife.26437.008

Source data 3. Spreadsheet with minimum free energy of RNA folding by window start position as shown in Figure 2D.

DOI: 10.7554/eLife.26437.009

Pauly et al. eLife 2017;6:e26437. DOI: 10.7554/eLife.26437 6 of 18

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.26437.006
http://dx.doi.org/10.7554/eLife.26437.007
http://dx.doi.org/10.7554/eLife.26437.008
http://dx.doi.org/10.7554/eLife.26437.009
http://dx.doi.org/10.7554/eLife.26437


The mutation rates of influenza A virus
We used our GFP fluctuation test to measure the mutation rates of two evolutionarily divergent influ-

enza viruses. Influenza A/Puerto Rico/8/1934 H1N1 (PR8) was the second influenza virus isolated and

was extensively passaged in various cell culture environments prior to cloning (Francis and Magill,

1935). We cloned a circulating seasonal influenza virus, influenza A/Hong Kong/4801/2014 H3N2

(Hong Kong 2014), into the 8 plasmid reverse genetic system after limited passage in MDCK. After

transfection, the rescued PR8 virus contained the DHA-GFP segment with seven PR8 genome seg-

ments. The rescued Hong Kong 2014 virus contained the DHA-GFP segment, the segments coding

for the polymerase complex – PB2, PB1, PA, and NP – from A/Hong Kong/4801/2014 H3N2, and

the segments encoding NA, M, and NS from PR8. This chimera was necessary to obtain high titer

stocks.
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Figure 3. Fluorescent Luria-Delbruck fluctuation test. (A) General workflow for measuring the mutation rate using mutant DHA-GFP viruses. Parallel

cultures of MDCK-HA cells were infected with passage one stocks of mutant DHA-GFP viruses at low multiplicity. The time for initial replication was

varied to allow for a number of replicated viruses and revertants adequate to measure the mutation rate for a given class. Supernatants were

transferred to 96-well plates of MDCK cells and incubated for 14 hr to allow for infection and GFP expression in target cells. The mutation rate for each

mutant DHA-GFP virus and class was calculated as described in the methods and text based on the initial and final titer (Ni and Nf, anti-GFP positive

infected cells) and proportion of cultures with no revertants (P0, wells without green fluorescence). (B–D) Specificity of the reversion to fluorescence

assay. The (B) A to G, (C) G to A, and (D) G to C mutation rates for A/Puerto Rico/8/1934 H1N1 were measured at 37˚C in cells pretreated with 0.625

mM 5-azacytidine (AzaC), 15 mM 5-fluorouracil (5 FU), or 2.5 mM ribavirin (Riba). No data are shown for G to C with 2.5 mM ribavirin because large titer

decreases upon drug treatment prohibited measurements. Filled symbols represent measurements in which P0 is between 0.1 and 0.69, where the

assay is most precise. Open circles represent data with P0 between 0.7 and 0.9. Arithmetic means are indicated. A one-way ANOVA with a Dunnett’s

correction for multiple comparisons was used for each mutation class to compare each drug treatment to no drug treatment. *p<0.05, **p<0.01,

***p<0.005. Plotted data are in Figure 3—source data 1.

DOI: 10.7554/eLife.26437.010

The following source data is available for figure 3:

Source data 1. Mutation rates for A to G, G to A, and G to C viruses in the presence and absence of AzaC, 5FU and Riba as measured by fluctuation test.

DOI: 10.7554/eLife.26437.011
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The mutation rates of the PR8 and Hong Kong 2014 viruses were higher than previously reported

for influenza A virus and generally biased toward transitions (Parvin et al., 1986; Nobusawa and

Sato, 2006; Bloom, 2014). In both viruses, mutation rates were highest for the reciprocal transitions,

A to G and U to C (Figure 4 and Supplementary file 2). The rates for the other two transitions (C to

U and G to A) were approximately six fold lower and similar to the rates of the more common trans-

version mutations. We note that this G to A mutation rate is much lower than the rate estimated

using the PrimerID-NSMT assay (see Figure 1). This discrepancy may reflect differences in mutational

bias between the influenza RdRp and retroviral reverse transcriptases. The overall rate and spectrum

of mutations for the PR8 and Hong Kong 2014 viruses are very similar, and given the base composi-

tion of each virus, we estimate that each replicated 13.5 kb genome contains, on average, 2 to 3

mutations. The transition to transversion ratio is 2.7 in PR8 and 3.6 in Hong Kong 2014.

We did identify differences between the two viruses in specific mutation classes. The rate of G to

A mutations was two-fold higher in Hong Kong 2014 than in PR8 (7.2 � 10�5 vs. 3.1 � 10�5,

p=0.0018, multiple t-test with Holm-Sidak correction), and the Hong Kong 2014 virus also exhibited

a marginally increased rate of G to U mutations that was not statistically significant (6.0 � 10�5 vs.

3.5 � 10�5, p=0.083). For both viruses, the rates of mutations away from A are symmetrical to the

reciprocal mutations away from U. Interestingly, mutations away from C were much less common

than the reciprocal mutations away from G. In PR8 G nucleotides are 3.8 times more likely to mutate

than C nucleotides. In the Hong Kong virus, this difference is 2.7 fold.

Influenza virus mutation rates across physiologic temperatures
Biochemical studies of purified influenza virus RdRp suggest that replication temperature can affect

enzyme fidelity (Aggarwal et al., 2010). Influenza viruses replicate over a range of temperatures in

nature from 32˚C and 37˚C across the respiratory tract of humans to 39˚C in febrile illness to 41˚C in

birds (Köhl, 1990; McFadden et al., 1985; Scull et al., 2009; Bradel-Tretheway et al., 2008). We

used the PR8 virus encoding mutant DHA-GFP representing the 5 most frequent mutational classes
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Figure 4. The mutation rates of influenza viruses replicated at 37˚C. (A) Measurements of A/Puerto Rico/8/1934 H1N1 viruses encoding the 12 different

mutant DHA-GFP constructs. (B) Measurements of viruses encoding the replication complex (PB2, PB1, PA, and NP) from A/Hong Kong/4801/2014

H3N2 and the remaining genes coming from A/Puerto Rico/8/1934 H1N1. Filled symbols represent measurements in which P0 is between 0.1 and 0.69.

Open circles represent data with P0 between 0.7 and 0.95. Plotted data are in Figure 4—source data 1. Raw counts of green cells in positive wells for

Hong Kong viruses are in Figure 4—source data 2. The arithmetic means are indicated on the graphs and the means and standard deviations

reported in Supplementary file 2.

DOI: 10.7554/eLife.26437.012

The following source data is available for figure 4:

Source data 1. Mutation rates for all twelve mutational classes for PR8 and Hong Kong viruses as measured by fluctuation test.

DOI: 10.7554/eLife.26437.013

Source data 2. Raw data for all experiments with Hong Kong viruses showing number of wells with n green cells (n = 0–10).

DOI: 10.7554/eLife.26437.014
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to measure mutation rates at different temperatures. This virus replicated reasonably well in MDCK-

HA cells at 32˚C and 39˚C, albeit to lower titers (see Figure 2C). The mutation rates for these 5 clas-

ses were generally stable over this 7 degree range of physiological temperatures (Figure 5). We

were unable to measure mutation rates at temperatures higher than 39˚C due to host cell

intolerance.

Discussion
We developed two new methods to define the mutation rate and mutational bias of H1N1 and

H3N2 influenza viruses. We found that the background error rate of reverse transcriptase may con-

found measurements of influenza virus mutation rates that are based on sequencing of RT-PCR

amplified templates. We therefore developed a high throughput GFP-based assay to estimate the

mutation rates for all 12 substitution classes. This assay can be easily adapted to any virus that toler-

ates the addition of the GFP open reading frame. While PR8 (H1N1) and Hong Kong 2014 (H3N2)

viruses varied in their mutation rates for individual classes, the overall mutation rate was consistent

across these evolutionarily divergent influenza polymerases at a range of temperatures. These muta-

tion rates are considerably higher than previously reported, and given the impact of mutational load,

suggest that the virus is replicating at the maximally tolerable mutation rates.

Sequencing assays for viral mutation rates are plagued by ascertainment and sampling biases.

The mutations that are detected in plaque-derived populations represent only the viable fraction

and those identified in passaged supernatants are often heavily biased toward mutations with less

deleterious fitness effects. While Sanjuan and colleagues have appropriately adjusted for typical viral

mutational fitness effects in sequence-based estimates of mutation rates (Sanjuán et al., 2010),

these fitness effects may not be uniform across viruses or in the genes analyzed (Sanjuán, 2010;

Visher et al., 2016). Next generation sequencing can minimize these biases by improving the detec-

tion of rarer, more deleterious mutations (Geller et al., 2016, 2015; Cuevas et al., 2015;
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Figure 5. The effect of temperature on influenza A virus mutation rates. Mutation rates were determined for A/

Puerto Rico/8/1934 H1N1 viruses encoding the indicated mutant DHA-GFP constructs replicated at 32˚C (blue),

37˚C (black) and 39˚C (red). Filled symbols represent measurements in which P0 is between 0.1 and 0.69. Open

circles represent data with P0 between 0.7 and 0.90. The arithmetic means are indicated. A two-way ANOVA

revealed no significant differences in mutation rates based upon temperature. Plotted data are in Figure 5—

source data 1.

DOI: 10.7554/eLife.26437.015

The following source data is available for figure 5:

Source data 1. Mutation rates for all twelve mutational classes for PR8 at the indicated temperatures as measured

by fluctuation test.

DOI: 10.7554/eLife.26437.016
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Combe et al., 2015). However, our data from PrimerID-controlled next generation sequencing sug-

gest that reverse transcriptase error can be a significant confounder that needs to be considered in

studies of RNA viruses. In our experiments, the high background RT error rate made it difficult to

distinguish mutations introduced by the influenza polymerase complex from those generated during

reverse transcription of the viral genomic RNA. The mutational bias of RT may also differ from that

of viral RNA-dependent RNA polymerases. Guanine to adenine transitions are the most common

mutation made by RT (Gout et al., 2013; Mansky and Temin, 1995; Holtz and Mansky, 2013;

Cuevas et al., 2015) and are the ones found most frequently in our study as well as many others

that rely on RT-PCR amplification for sequencing (for example, [Crotty et al., 2000; Pauly and Laur-

ing, 2015; Cheung et al., 2014; Presloid et al., 2016]). In contrast, our fluctuation test suggests

that A to G and U to C mutations are the most common classes in influenza.

Fluctuation tests are sensitive for rare mutational events and avoid many of the issues with

sequencing assays (Luria and Delbrück, 1943; Foster, 2006; Furió et al., 2005; Combe and San-

juán, 2014). Our reversion to fluorescence assay has several additional advantages over ones that

rely on phenotypic markers such as drug or antibody resistance (Zhang et al., 2013). First, the

marker was selectively neutral, as the mutant GFP and revertant wild type GFP viruses had equal fit-

ness. Second, we were able to measure all 12 mutational classes in a format that allowed for suffi-

cient replicates. Third, we were able to control the number of cellular infection cycles by expressing

the HA protein in trans (Martı́nez-Sobrido et al., 2010). Fourth, we used an anti-GFP antibody to

measure the number of mutation targets directly. One shortcoming of all fluctuation tests is that

genomic mutation rates are extrapolated from data at one specific site. While RNA structures are

unlikely to play a major role in mutation rate variability in influenza virus (Te Velthuis and Fodor,

2016), we cannot exclude that sequence context could modulate mutation rates across the genome.

For example, influenza and other RNA viruses can exhibit bias in their dinucleotide content

(Belalov and Lukashev, 2013; Greenbaum et al., 2008), and it is not clear whether the bases pre-

ceding a site can influence local nucleotide misincorporation rates.

We found that the mutation rates of the lab adapted PR8 H1N1 strain are similar to those of a

recently circulating H3N2 strain, and both sets of measurements are considerably higher than those

obtained in previous sequence-based studies. While these earlier works estimated rates

between 7.1 � 10�6 and 4.5 � 10�5 mutations per nucleotide per cell infection, our composite muta-

tion rates were 1.8 � 10�4 and 2.5 � 10�4 mutations per nucleotide per strand replicated for PR8

(H1N1) and Hong Kong/2014 (H3N2), respectively (Parvin et al., 1986; Nobusawa and Sato, 2006;

Bloom, 2014; Sanjuán et al., 2010). Consistent with the biases detailed above, our measurements

are closer to those obtained for specific classes in antibody-based fluctuation tests (Suárez et al.,

1992; Suárez-López and Ortı́n, 1994). These very high mutation rates mean that each replicated

genome has, on average, 2–3 mutations. We have found that 28–31% of randomly selected muta-

tions in influenza virus are lethal (Visher et al., 2016). Using a 70% probability that a given mutation

results in a viable virus, the likelihood of any given genome being able to replicate is only 34% to

49%. We suggest that mutational load accounts for a sizable portion of the 90–99% of genomes in

influenza populations that are non-infectious (for example, [Baranovich et al., 2013; Pauly and Laur-

ing, 2015]). This mutation rate clearly places influenza close to a theoretical maximum rate, and we

and others have shown that small increases in the virus’ mutation rate lead to considerable losses in

genome infectivity (Baranovich et al., 2013; Cheung et al., 2014; Pauly and Lauring, 2015).

Cellular replication environments are often hypothesized to influence RNA virus mutation rates,

and yet these effects have rarely been documented (Pita and Roossinck, 2013; Pita et al., 2007;

Diamond et al., 2004; Holtz and Mansky, 2013; Combe and Sanjuán, 2014). Here, we found no

significant differences in rates of the five most common mutational classes across a seven degree

range of physiologic temperatures. Nucleotide pools could potentially influence the observed muta-

tional biases. Intracellular concentrations of nucleotide triphosphates are much higher than those of

deoxynucleotides, and cellular pools are typically biased towards ATP and GTP, which have other

metabolic functions (Traut, 1994; Stridh, 1983). While it is tempting to speculate that pool bias

could lead to the observed asymmetry in mutations away from guanine, this is unlikely to be the

case in MDCK cells. The concentrations of all four NTP in MDCK cells are at least ten fold higher

than the Km of the influenza polymerase for each (Aggarwal et al., 2010; Stridh, 1983;

Zhang et al., 2010). We can’t exclude that biases in pools could play a role in primary cells where

NTPs may be more limiting. However, Combe and Sanjuan found that VSV mutation rates were
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similar across a range of primary and immortalized cell lines that were cultured under a range of con-

ditions (Combe and Sanjuán, 2014). It is also intriguing that A to G and U to C were the most com-

mon mutations, as these classes are characteristic of the host enzyme adenosine deaminase acting

on RNA (ADAR) (Samuel, 2011; Bass, 2002; tenOever et al., 2007). As ADAR-editing occurs almost

exclusively on double stranded RNA, it is not clear that it would contribute to the mutation rates

measured on our presumably unstructured GFP messages.

We expect that our data will lead to improved models of influenza evolution. For example, our

estimates of the virus’ transition to transversion bias can inform null models for inference of selection

in protein coding genes. The availability of a complete nucleotide substitution matrix will also enable

studies of selection on codon usage and dinucleotide content. The nucleotide frequencies of both

PR8 (H1N1) and Hong Kong 2014 (H3N2) are far from what would be predicted by the 12 mutation

rates. This suggests either that selection is maintaining the virus’ nucleotide content away from the

mutational equilibrium or that the virus has not had sufficient time to achieve it. Finally, our measure-

ments for the rate of each mutation class, coupled with recent studies on mutational fitness effects

in influenza will also greatly improve our ability to construct more accurate phylogenies.

Materials and methods

Viruses, plasmids, and cells
Madin-Darby canine kidney (MDCK) cells were provided by Arnold S. Monto (University of Michigan

School of Public Health) who obtained them directly from the ATCC and Influenza Reagent

Resource (Manassas, VA), and HEK 293 T cells were provided by Raul Andino (University of Califor-

nia, San Francisco). Both cell lines were maintained in Dulbecco’s modified Eagle medium (Gibco

11965, Waltham, MA) supplemented with 10% fetal bovine serum (Gibco 10437) and 25 mM HEPES

(Gibco 15630). Cells were maintained at 37˚C and 5% CO2 in a humidified incubator except where

indicated. Laboratory stocks of these cell lines tested negative for mycoplasma contamination in

2013. Neither cell line has been independently authenticated in our lab. We have not used cell lines

from the list of commonly misidentified cell lines maintained by the International Cell Line Authenti-

cation Committee.

Influenza A/Puerto Rico/8/1934 H1N1 was obtained from the ATCC (VR-1469). The A/Hong

Kong/4801/2014 H3N2 strain was obtained from the Centers for Disease Control and Prevention

International Reagent Resource (FR-1483). The A/Wisconsin/03/2007 H3N2 strain was provided by

Dr. Arnold S. Monto (University of Michigan School of Public Health). Molecular clones were derived

from each of these isolates by reverse transcription polymerase chain reaction (RT-PCR) amplification

and insertion of all eight genomic segments into the pHW2000 plasmid (Hoffmann et al., 2001,

2000).

Cells expressing the hemagglutinin (HA) protein of influenza A/Puerto Rico/8/1934 H1N1 (MDCK-

HA cells) were generated by co-transfection Madin Darby canine kidney (MDCK) cells with pCABSD,

which expresses a gene for Blasticidin S resistance, and pCAGGS-HA, which expresses the influenza

A/Puerto Rico/8/1934 H1N1 HA (Martı́nez-Sobrido et al., 2010). Pools of cells stably expressing HA

were selected in growth media containing 5 mg/mL Blasticidin S. These pools were enriched for cells

with high HA expression by staining with an anti-HA antibody (1:1000 dilution, Takara c179, Moun-

tain View, CA) and an Alexa 488-conjugated anti-mouse IgG (1:200 dilution, Life Technologies

A11001, Waltham, MA) followed by fluorescence-activated cell sorting on a FACSAria II (BD Bio-

sciences, San Jose, CA). Cells were sorted three times over the course of 5 passages and >99% of

cells in the final population were positive for high level HA expression.

A pPOLI vector encoding eGFP with influenza genomic packaging sequences was kindly provided

by Luis Martinez-Sobrido (University of Rochester). This construct, which we call DHA-GFP, expresses

eGFP flanked by the 78 3’-terminal bases (33 noncoding, 45 coding) and 125 5’-terminal bases (80

coding, 45 noncoding) of segment 4 from influenza A/WSN/33 H1N1. It lacks the HA translation initi-

ation codon (Martı́nez-Sobrido et al., 2010). Twelve mutant DHA-GFP constructs (Table 1) were

generated using the QuikChange II site-directed mutagenesis kit (Agilent Technologies 200523,

Santa Clara, CA) with primers 5’- CTCGTGACCACCCTG<mutant sequence>GTGCAGTGCTTCAGC-

3’ and 5’- GCTGAAGCACTGCAC< rev comp mutant sequence>CAGGGTGGTCACGAG-3’, where
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mutant sequence corresponds to the sequences in Table 1 and rev comp mutant sequence is the

reverse complement of each.

A neutral genetic barcode was incorporated into the PB1 segment of A/Puerto Rico/8/1934

H1N1 in the pHW2000 vector by overlap extension PCR using inner primers 5’-gatcacaactcatttC-

caACgGaaACgGAgGgtgagagacaat-3’ and 5’-ATTGTCTCTCACCCTCCGTTTCCGTTGGAAATGAG

TTGTGATC-3’, and outer primers containing BsmB1 sites for cloning into the pHW2000 plasmid.

Recombinant viruses were rescued in 12-well plates after transfection of co-cultures of 2 � 105

293 T cells and 1 � 105 MDCK cells with mixtures of pHW2000 plasmids encoding all 8 influenza

genome segments (500 ng each) using 2 mL of TransIT-LT1 (Mirus 2300, Madison, WI) per nanogram

of DNA (Hoffmann et al., 2000). Viruses expressing GFP were rescued in the same manner except

that the pPOLI vector encoding DHA-GFP or its mutants and pCAGSS-HA were used in place of the

pHW2000 plasmid encoding influenza HA, and MDCK-HA cells were used in place of MDCK cells.

PrimerID sequencing
A custom R script (https://github.com/lauringlab/NGS_mutation_rate_assay) (Pauly and Lauring,

2017; copy archived at https://github.com/elifesciences-publications/NGS_mutation_rate_assay) was

used to identify the 402 base region in the A/Wisconsin/03/2007 H3N2 genome (positions 865 to

1266 of the PA gene) with the highest concentration of nonsense mutational targets (NSMT). Total

cellular RNA was isolated using Trizol (Life Technologies 15596) from 293 T cells 48 hr after transfec-

tion with a plasmid expressing A/Wisconsin/03/2007 H3N2 segment 3 (PA). Virus RNA was isolated

using Trizol from cell free supernatants of MDCK cells infected with A/Wisconsin/03/2007 H3N2 virus

at a multiplicity of infection (MOI) of 0.5 for 24 hr. In both cases, the RNA was treated with DNase I

(Roche 04716728001, Indianapolis, IN) to remove residual plasmid DNA. The copy number of seg-

ment 3 (PA) RNA in each sample was determined by reverse transcription with SuperScript III (Invi-

trogen 18080051, Waltham, MA) and primer 5’-AGCAAAAGCAGG-3’ followed by quantitative PCR

on a 7500 Fast Real-Time PCR system (Applied Biosystems, Waltham, MA) with Power SYBR Green

PCR Master Mix (Applied Biosystems 4367659) and primers 5’-TCTCCCATTTGTGTGGTTCA-3’ and

5’-TGTGCAGCAATGGACGATTT-3’. A plasmid encoding PA was used to generate a standard curve

to relate cycle threshold to copy number. The absence of plasmid DNA containing the PA sequence

was confirmed by lack of signal in qPCR of RNA that was not reverse transcribed.

Sequencing libraries were prepared from 2 � 105 copies of segment 3 (PA) RNA using Accuscript

high fidelity reverse transcriptase (Agilent Technologies 200820) and primer (5’-CCTACGGGAGG-

CAGCAGNNNNNNNNNNAATTCCTCCTGATGGATGCT-3’), which binds to bases 842 to 861 of the

PA gene (positive strand numbering) and contains a degenerate N10 barcode sequence (1,048,576

unique sequences). Because the RNA copy number was just one-fifth of the total number of barcode

sequences, it is unlikely that the same barcode would prime multiple complementary DNA (cDNA)

molecules. Three separate reverse transcription reactions were performed for RNA harvested from

both transfected and infected cells to increase the total number of RNA templates in the experi-

ment. The resulting PrimerID barcoded cDNA was purified using Agencourt AMPure XP beads

(Beckman Coulter A63881, Indianapolis, IN) to remove residual primers. The purified cDNA was

amplified by PCR for 26 cycles (10 s at 98˚C, 30 s at 69˚C, and 30 s at 72˚C) using Phusion high fidel-

ity DNA polymerase (New England Biolabs M0530, Ipswich, MA) and primers 5’-CAAGCAGAA-

GACGGCATACGAGAT < i7 > AGTCAGTCAGTATGGGGCTACGTCCTCTCCAA-3’ and 5’-AATGA

TACGGCGACCACCGAGATCTACAC < i5 > TATGGTAATTGGCCTACGGGAGGCAGCAG-3’, where

i5 and i7 are 8 base Illumina indexing sequences. These primers contain the Illumina flow cell adapt-

ers at their 5’-ends. Unique index primers were used in the PCR for each of the three RT replicates.

Products were gel purified using a GeneJET Gel extraction kit (Thermo Scientific K0691, Waltham,

MA) and replicates were pooled with each product at 1.5 ng/mL. The two pooled sets (one for trans-

fected cells and one for infected cells) were each sequenced on an Illumina MiSeq with 2 � 250

paired end reads, V2 chemistry, and the sequencing primers 5’-TATGGTAATTGGCCTACGGGAGG-

CAGCAG-3’, 5’-AGTCAGTCAGTATGGGGCTACGTCCTCTCCAA-3’, and 5’-TTGGAGAGGACG

TAGCCCCATACTGACTGACT-3’. Each pooled set, one derived from transfection and one from

infection, made up half of the DNA input on a separate sequencing run with the remaining DNA

being composed of bacterial genome libraries. This allowed for sufficient sequencing diversity at

each base. We obtained over 15 million reads from each of the samples.
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Consensus sequences that met empirically determined count cutoffs were generated for each Pri-

merID using Ruby scripts kindly provided by Ronald Swanstrom and colleagues (University of North

Carolina). We obtained greater than 449,000 consensus sequences for each of the two samples, sug-

gesting that nearly 75% of the original RNA templates (6 � 105 copies among 3 separate reactions)

were sampled. Consensus sequences were aligned to the A/Wisconsin/03/2007 H3N2 PA sequence

using Bowtie2 and analyzed using Samtools. A custom Python script was used to determine the

base composition at each position (https://github.com/lauringlab/NGS_mutation_rate_assay)

(Pauly and Lauring, 2017) and the number of stop codons within each PrimerID consensus

sequence. The mutation frequency for each of the eight mutational classes was determined by divid-

ing the number of stop codons resulting from each class by the number of sites sequenced that

could possibly mutate to a stop codon through that same class. Raw sequencing fastq files from this

experiment are available at the Sequence Read Archive under BioProject accession number

PRJNA347826.

Competition assay
Equal quantities (TCID50) of selected mutant DHA-GFP viruses were mixed with wild type DHA-GFP

viruses containing a neutral sequence barcode in the PB1 gene, and used to infect 4 � 105 MDCK-

HA cells in a 6-well plate at an MOI of 0.01. At 24 hr post infection, supernatants were harvested

and infectious particles were titered by TCID50. The resulting virus was passaged three more times

on MDCK-HA cells, maintaining an MOI of 0.01 at each passage. Each viral competition was per-

formed in triplicate. Viral RNA was harvested from the initial mixture and passaged supernatants

using a Purelink Pro 96 viral DNA/RNA kit (Invitrogen 12280). Complementary DNA was synthesized

using Superscript III and random hexamers. Quantitative PCR was used to determine the relative

amount of total PB1 (primers 5’-CAGAAAGGGGAAGATGGACA-3’ and 5’-GTCCACTCGTGTTTGC

TGAA-3’), barcoded PB1 (primers 5’-ATTTCCAACGGAAACGGAGGG-3’ and 5’-AAACCCCCTTA

TTTGCATCC-3’), and non-barcoded PB1 (primers 5’-ATTTCCAACGGAAACGGAGGG-3’ and 5’-

AAACCCCCTTATTTGCATCC-3’) in each sample. The relative amounts of barcoded and non-bar-

coded PB1 at each passage were normalized by subtracting the Ct threshold for the total PB1

primer set from the respective Ct thresholds (for example, DCt = Ctcompetitior – Cttotal PB1). The nor-

malized values at each passage were compared to the initial viral mixture to obtain a relative Ct

(DDCt = DCtP1 – DCtP0). The relative Ct was converted to reflect the fold change in genome copies

(Dratio = 2–DDCt). The slope of the differences between the log10 D ratios of the two viruses as a func-

tion of the passage number is equal to the log10 relative fitness of the non-barcoded virus ([log10Dra-

tionon-barcoded- log10 Dratiobarcoded]/passage) (Visher et al., 2016).

Growth curves
One hundred TCID50 of each mutant DHA-GFP virus (in 100 mL of media) were used to infect

1.2 � 104 MDCK-HA in a 96-well plate. At two hour intervals between 14 and 26 hr post infection,

supernatants from 4 wells were transferred to a black 96-well plate containing 1.5 � 104 MDCK cells

and 50 mL of viral media. Virus equivalent to the initial inoculum was added to 4 wells so that the

virus present at 0 hr post infection could be determined. At 14 hr after supernatant transfer, the cells

were fixed, stained and imaged as described below.

RNA minimum free energy
The minimum free energy of the DHA-GFP RNA was determined using the RNA sliding window

python script that is included with the CodonShuffle package (Jorge et al., 2015).

GFP-based Luria-Delbrück fluctuation test
Passage 1 (P1) stocks of DHA-GFP viruses were made by passing rescued virus once on MDCK-HA

cells at an MOI of 0.01 for 48 hr. For each fluctuation test, 24 or more parallel cultures of MDCK-HA

cells were infected with P1 influenza viruses encoding one of the twelve DHA-GFP mutants in viral

media (Dulbecco’s modified Eagle medium (Gibco 11965) supplemented with 0.187% BSA, 25 mM

HEPES, and 2 mg/mL TPCK treated trypsin [Worthington Biochemical 3740, Lakewood, NJ]).

Depending on the mutation class, these infections were performed in either 96-well plates (1.2 �

104 cells infected with 400 TCID50 of virus in 100 mL), 48-well plates (3.6 � 104 cells infected with
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1200 TCID50 of virus in 300 mL), or 24-well plates (7.2 � 104 cells infected with 2400 TCID50 of virus

in 600 mL). At 17–30 hr post infection (depending on the mutation class, drug treatment, and assay

temperature) supernatants were transferred to black 96-well plates (Perkin Elmer

6005182, Waltham, MA) containing 1.5 � 104 MDCK target cells and 50 mL of viral media. Superna-

tants from each well of 48-well and 24-well plates were transferred in 150 mL aliquots to 2 or 4 wells

of the black 96-well plate, respectively. In addition to the supernatants derived from the parallel rep-

lication cultures, two to four wells were infected with the amount of virus used to seed these cultures

(see Ni, below)

At 14 hr post-infection, cells were fixed with 2% formaldehyde for 20 min, rinsed with phosphate

buffered saline (PBS), and permeabilized with 0.1% triton-X-100 for 8 min. Cells were then rinsed

again with PBS, incubated at room temperature for one hour in PBS with 2% BSA and 0.1% tween-

20 (PBS-T), and stained with 1:5000 Hoechst (Life Technologies 33342) and 1:400 anti-GFP Alexa

647 conjugate (Life Technologies A31852) diluted in 2% BSA in PBS-T for 1 hr. Cells were washed

three times with PBS-T, and the plates were sealed with black tape prior to removal of the final

wash. Plates were imaged using an ImageXpress Microscope (Molecular Devices, Sunnyvale, CA)

using DAPI, Cy5, and FITC-specific filter cubes with a 4x magnification lens. Four non-overlapping

quadrants were imaged from each well to ensure that the entire surface area was captured, Cellular

nuclei and antibody stained cells were counted using MetaXpress version 6 software (Molecular

Devices). Cells expressing fluorescent GFP were manually counted from the collected images.

Mutation rates were calculated using the null-class model, m(s/n/r) = -ln(P0)/(Nf-Ni), where m(s/n/r) is

the mutation rate per strand replicated, P0 is the proportion of cultures that do not contain a cell

infected by a virus encoding fluorescent GFP, and Nf and Ni are the final and initial viral population

sizes, as determined by staining with the anti-GFP antibody, which recognizes both fluorescent and

non-fluorescent eGFP (Foster, 2006; Furió et al., 2005). Cultures that contained a number of green

cells greater than or equal to 0.8 (Nf/Ni) were removed from the calculation because they were likely

to have contained a pre-existing fluorescent revertant in the inoculum. These events were extremely

rare given the low titer inocula. The null class model is most precise when P0 is between 0.1 and 0.7

(Foster, 2006). Due to the rarity of certain mutation classes and the constraints of the maximum viral

population size per culture and per well on the imaging plate, not all of our measurements fell within

this range. Measurements where the P0 was above 0.7 are indicated in the graphical representations

of our data.

Ribavirin (1-[(2R,3R,4S,5R)�3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]�1H-1,2,4-triazole-3-car-

boxamide) (Sigma-Aldrich R9644, St. Louis, MO) was dissolved in PBS at 100 mM. 5-azacytidine (4-

Amino-1-(b-D-ribofuranosyl)�1,3,5-triazin-2(1 hr)-one) (Sigma-Aldrich A2385) and 5-Fluorouracil (2,4-

Dihydroxy-5-fluoropyrimidine) (Sigma-Aldrich F6627) were dissolved in dimethyl sulfoxide (DMSO) at

100 mM and 384 mM, respectively. For mutation rate measurements in the presence of drug,

MDCK-HA cells were pretreated with viral media containing 2.5 mM ribavirin, 0.625 mM 5-azacyti-

dine, or 15 mM 5-fluorouracil for three hours. Mutation rate assays were carried out according to the

above protocol except that the viral media for the initial infections contained drugs at the indicated

concentrations.

Mutation rate measurements at different temperatures were carried out as above, except that

the initial replication was performed in incubators maintained at 32˚C or 39˚C. The imaging plates

were maintained at 37˚C for the 14 hr after the supernatant transfer.

The mutational transition to transversion ratio was calculated as sum of the rates of the 4 transi-

tion classes divided by the sum of the rates of the 8 transversion classes. This metric describes the

relative likelihood of any new mutation being a transition as opposed to a tranversion.
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