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Abstract The majority of multi-spanning membrane proteins are co-translationally inserted into

the bilayer by the Sec pathway. An important subset of membrane proteins have globular,

cofactor-containing extracytoplasmic domains requiring the dual action of the co-translational Sec

and post-translational Tat pathways for integration. Here, we identify further unexplored families of

membrane proteins that are dual Sec-Tat-targeted. We establish that a predicted heme-

molybdenum cofactor-containing protein, and a complex polyferredoxin, each require the

concerted action of two translocases for their assembly. We determine that the mechanism of

handover from Sec to Tat pathway requires the relatively low hydrophobicity of the Tat-dependent

transmembrane domain. This, coupled with the presence of C-terminal positive charges, results in

abortive insertion of this transmembrane domain by the Sec pathway and its subsequent release at

the cytoplasmic side of the membrane. Together, our data points to a simple unifying mechanism

governing the assembly of dual targeted membrane proteins.

DOI: 10.7554/eLife.26577.001

Introduction
Prokaryotic cytoplasmic membrane proteins represent 20–30% of the proteome (Wallin and von

Heijne, 1998; Krogh et al., 2001) and they fulfil a wide variety of critical functions in the cell includ-

ing respiration, photosynthesis, and ion transport, allowing this membrane to act as a tightly con-

trolled barrier between the cytoplasm and the extracellular environment. Cytoplasmic integral

membrane proteins adopt a-helical topologies, and in bacteria are inserted via the action of at least

one of three protein translocation machineries - the Sec machinery, the YidC insertase and the Tat

pathway (see [Collinson et al., 2015] for a recent review).

The SecYEG translocon is the major route by which multi-spanning membrane proteins are inte-

grated into the membrane. The insertion of transmembrane domains of polytopic proteins occurs

co-translationally following targeting of the translating ribosome to the Sec machinery through the

action of signal recognition particle (SRP) (Ulbrandt et al., 1997). YidC is positioned close to the lat-

eral gate of SecY and interacts with nascent transmembrane domains to facilitate their integration

into the membrane (Scotti et al., 2000; Urbanus et al., 2001; Sachelaru et al., 2015). YidC can also

act independently of the Sec system to integrate small (usually mono- or bitopic) membrane proteins

directly into the bilayer (Dalbey et al., 2014; Samuelson et al., 2000). The final topology adopted

by a polytopic membrane protein depends upon a number of intrinsic and extrinsic factors including

the hydrophobicity of membrane-spanning regions, the number and location of positively-charged

amino acids and the composition of the lipid bilayer (White and von Heijne, 2008a; Cymer et al.,

2015; Bogdanov et al., 2014).
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The Tat system is a post-translational protein transport pathway that operates independently of

the Sec and YidC machineries to transport folded proteins across the cytoplasmic membrane

(reviewed in Berks, 2015; Kudva et al., 2013). Proteins are targeted to the Tat machinery by N-ter-

minal signal sequences containing a highly conserved pair of arginine residues that are usually critical

for efficient recognition of substrates (Stanley et al., 2000). A subset of Tat substrate proteins con-

tain non-covalently bound prosthetic groups such as metal-sulphur clusters or nucleotide-based

cofactors, many of which play important roles in respiratory and photosynthetic metabolism

(Palmer and Berks, 2012). Some Tat substrates are also integral membrane proteins. In bacteria

Tat-dependent integral membrane proteins generally fall into two classes – those that are N-termi-

nally anchored in the bilayer by a non-cleaved signal sequence, such as the Rieske iron-sulfur pro-

teins for example of Paracoccus or Legionella (Bachmann et al., 2006; De Buck et al., 2007) or the

TtrA subunit of Salmonella tetrathionate reductase (James et al., 2013) and those that have a single

transmembrane helix at their C-termini such as the small subunits of hydrogenases and formate

dehydrogenases (Jormakka et al., 2002; Hatzixanthis et al., 2003).

Recent studies have indicated that the Rieske proteins of actinobacteria are highly unusual Tat

substrates (Keller et al., 2012; Hopkins et al., 2014). Rieske proteins are essential membrane-

bound components of cytochrome bc1 and b6f complexes that coordinate an iron-sulfur (FeS) cluster

involved in electron transfer from quinones to cytochromes c1/f (for reviews see [Cooley, 2013;

Baniulis et al., 2008]). The actinobacterial proteins have three transmembrane domains (TMDs) pre-

ceding the Rieske FeS domain, unlike most other Rieske proteins which contain only one TMD.

Inspection of actinobacterial Rieske sequences indicates the presence of a predicted twin-arginine

motif between TMDs 2 and 3, suggesting the possibility that the concerted action of more than one

translocase may be required for correct assembly. Indeed it was shown that the first two TMDs of

the Streptomyces coelicolor Rieske protein, Sco2149, are inserted by the Sec machinery, probably in

a co-translational manner, whereas the insertion of TMD3 is dependent on the Tat pathway

(Keller et al., 2012), providing the first example of these two machineries operating together to

assemble a single protein.

These findings raise a number of pertinent questions about the mechanisms by which these trans-

locases are co-ordinated to ensure that the Sec system does not integrate TMD3 but releases the

polypeptide to allow folding of the globular domain, and the subsequent recognition of a mem-

brane-tethered substrate by the Tat pathway. It also raises the question whether actinobacterial

Rieske proteins represent an oddity of nature, or whether there are further examples of dual Sec/

Tat-targeted membrane proteins to be discovered. Here we have addressed both of these major

aspects and show that in addition to Rieske there are at least two further conserved families of dual

targeted membrane proteins across bacteria and archaea that each have 5 TMDs. A further family of

proteins related to the Bacillus subtilis Tat substrate YkuE (Monteferrante et al., 2012) and pre-

dicted to have 4TMDs was also identified. A detailed dissection of the features of the transmem-

brane regions of S. coelicolor Rieske reveals that the relatively low hydrophobicity of TMD3 coupled

with the location of positively charged amino acid residues orchestrate the release of the polypep-

tide by the Sec pathway. Importantly, we demonstrate that these features are also present across all

identified families of these dual-targeted membrane proteins indicating that there is unifying mecha-

nism for their biogenesis.

Results

Fusion proteins for the analysis of Sco2149 membrane assembly
Previous work has shown that the S. coelicolor Rieske protein, Sco2149, has three transmembrane

domains that require the combined action of two distinct protein translocases, Sec and Tat, for com-

plete assembly into the membrane (Keller et al., 2012; Hopkins et al., 2014). However the mecha-

nism by which these two translocases are coordinated is unknown, although TMD and globular

domain swapping experiments indicated that the information required to coordinate this process

does not reside within the first two TMDs or the cofactor binding domain (Keller et al., 2012).

To assess the mechanism of TMD insertion we used constructs where the cofactor-containing FeS

domain was genetically removed from Sco2149 and replaced with the mature region of two different

reporter proteins – that of the E. coli Tat substrate AmiA (Ize et al., 2003) to report on interaction
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of Sco2149 with the Tat pathway, or of the Sec substrate b-lactamase (Bla, which is compatible for

export with either the Sec or Tat pathways depending on the nature of the targeting sequence

[Stanley et al., 2002]) (Figure 1A, Figure 1—figure supplement 1). These constructs were pro-

duced from the medium copy number vector pSU-PROM (which specifies kanamycin resistance

[Jack et al., 2004]) under control of the constitutive tatA promoter (Jack et al., 2001).

AmiA and its homologue AmiC are periplasmic Tat substrates that remodel the peptidoglycan,

and in their absence E. coli is sensitive to growth in the presence of SDS (Ize et al., 2003;

Bernhardt and de Boer, 2003) (Figure 1C; top panel). As expected, when either plasmid-encoded

native AmiA or the Sco2149TMD-AmiA fusion was produced in the tat+ strain lacking chromosomally

encoded periplasmic AmiA and AmiC (MCDSSAC), growth on SDS was restored (Figure 1C, middle

two panels). The export of AmiA from both of these constructs was absolutely dependent on the Tat

pathway as no growth on SDS was conferred in the tat- strain (MCDSSAC 4tat). Previously it has

been reported that a twin lysine substitution of the twin arginine motif of Sco2149 was sufficient to

prevent Tat-dependent export of AmiA when produced at lower levels from the pSU18 plasmid

(Keller et al., 2012). However, when expressed from the pSU-PROM vector, a low level of export by

the Tat pathway could still be observed for the Sco2149-AmiA construct harbouring this substitution

(Figure 1—figure supplement 2). It has been noted previously that Tat-dependent export of some

very sensitive plasmid-borne reporter proteins can be detected following twin lysine substitution of

the twin arginines (Ize et al., 2002; Kreutzenbeck et al., 2007), indicating that twin lysines can still

trigger Tat-dependent export but with a greatly reduced efficiency. However, less conservative sub-

stitutions of the twin arginine motif to twin alanine or to alanine-aspartate were not permissive for

Tat transport (Figure 1C; Figure 1—figure supplement 2).

The membrane insertion of Sco2149 was further investigated using the Bla fusion construct.

When exported to the periplasmic side of the membrane Bla confers resistance to ampicillin, which

can be assessed in a quantitative manner using M.I.C.Evaluator test strips. Figure 1D shows that the

basal M.I.C. for ampicillin was evaluated at 2.5 and 1.4 mg/ml, respectively, for the tat+ (MC4100)

and tat- (DADE) strains harbouring the empty vector. We assign these slight differences in M.I.C. to

the partially compromised cell wall in tat mutant strains (Ize et al., 2003; Bernhardt and de Boer,

2003). The tat+ strain producing the Sco2149TMD-Bla fusion protein was able to grow up to a con-

centration of approximately 15 mg/ml ampicillin, indicating that there was export of Bla in this strain.

However, some of that export was clearly by the Sec pathway since the tat- strain producing

Sco2149TMD-Bla had an M.I.C. for ampicillin of 7.6 mg/ml, significantly above basal level. It has been

reported that the introduction of negative charges into the n-region of a Sec signal peptide blocks

Sec-dependent translocation (Inouye et al., 1982), and therefore substituting the twin arginines to

alanine-aspartate would be expected to prevent translocation through both the Sec and Tat path-

ways. As shown in Figure 1D these substitutions reduced the MIC for ampicillin to 4.0 and 1.3 mg/

ml, respectively, for tat+ and tat- strain, very close to basal level. Taken together these results indi-

cate that there is some compatibility of TMD3 of the S. coelicolor Rieske protein with the Sec path-

way, which was not seen previously using a more qualitative assay (Keller et al., 2012).

The cytoplasmic loop region of Sco2149 does not modulate interaction
of TMD3 with the Sec pathway
The finding that there is some Sec-dependent translocation of the Bla portion of the Sco2149TMD-

Bla fusion in a strain lacking the Tat pathway provides a useful tool to study features of the protein

that influence interaction with the Sec machinery. We therefore undertook a programme of muta-

genesis on the Sco2149TMD-Bla construct, focusing firstly on the cytoplasmic loop region between

TMD2 and TMD3 as this has a number of highly conserved features across actinobacterial Rieske

proteins (Figure 1B; Figure 1—figure supplement 3). In particular the loop has a highly conserved

length (43 amino acids between the predicted end of TM2 and the twin arginine motif), a region of

predicted a-helical structure, and a number of positions where positively or negatively charged resi-

dues are conserved, including an almost invariant glutamic acid (E127 in Sco2149) and arginine-histi-

dine pairing (R133, H134 in Sco2149).

Initial site-directed replacement of amino acids in the loop region were undertaken and the level

of resistance to ampicillin mediated by the variant Sco2149TMD-Bla fusion protein in a tat- back-

ground was scored. As shown in Table 1, apart from the introduction of an alanine-aspartate pair to

replace the twin arginines, none of the substitutions we introduced, including replacement of the
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Figure 1. Sco2149TMD-reporter fusions to follow membrane insertion. (A) Cartoon representations of the S. coelicolor Rieske protein, Sco2149, and the

Sco2149TMD-AmiA and Sco2149TMD-Bla fusions. A signal peptidase I cleavage site (indicated by scissors) was introduced between the end of TMD3 and

the AmiA sequence to allow release of AmiA from the membrane (Keller et al., 2012). The position of the twin-arginine motif is indicated by RR. (B)

Sequence of the Sco2149 cytoplasmic loop region between TMDs 2 and 3. Amino acids predicted to be part of TMDs 2 and 3 are shown in red. The

Figure 1 continued on next page
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highly conserved E127 or R133/H134 residues or introduction of proline residues into the predicted

a-helical region, had any substantive effect on the interaction of Sco2149 with the Sec pathway. We

therefore made further substitutions, for example progressively deleting clusters of negatively

charged amino acids or changing them to positively charged lysines. None of these deletions or sub-

stitutions had any detectable effect on Sec translocation of the Bla fusion, even when all of the acidic

residues were substituted for lysine. Moreover, insertion of three additional negative charges into

the loop was also without detectable effect.

We similarly assessed translocation by Sec for a series of sliding truncations of 5, 10, 15, 20, 25,

30 and 35 residues within the loop region (summarised in Table 2). Again most of the truncations

had little effect on translocation of Sco2149TMD-Bla by the Sec pathway, and even truncations of 30

residues or more gave mean M.I.C.s for ampicillin similar to that seen for the non-mutated construct.

These findings indicate that many of the conserved features noted in this loop region, for example

the overall length, presence of a predicted a-helical region and clusters of negatively charged amino

acids do not modulate interaction of Sco2149 with the Sec pathway.

We did note, however, that one of the 35 residue truncations, D123–157, significantly reduced

integration of TMD3 by the Sec pathway (Figure 2A,B), whereas the other 35 residue truncation,

D118–152, showed a slight increase in Sec translocation (c.f. M.I.C of 7.6 mg/ml ampicillin for the

non-mutated construct vs 12 mg/ml for the D118–152 truncation). This suggested that there may be

some feature of the loop region between residues 153 and 157 influencing interaction with the Sec

pathway. To explore this further we made a series of additional one amino acid truncations to give

D118–153, D118–154, D118–155 and D118–156 and D118–157 constructs. Figure 2B indicates that

as soon as the truncation extended to amino acid 155, Sec translocation was substantially reduced

(but protein production and/or stability was not, Figure 2C). Inspection of the sequence indicates

that amino acid 155 is a lysine. Positively charged amino acids are important topology determinants

in membrane proteins, and are enriched in the cytoplasmic regions of membrane proteins, the so-

called ‘positive inside rule’ due to the energetic cost of translocating them across the membrane

against the protonmotive force (Heijne, 1986; Nilsson and von Heijne, 1990). To test whether the

loss of this basic residue was the reason for the very low level of periplasmic Bla activity, we intro-

duced a positive charge further along the loop (V158K) into the full length Sco2149TMD-Bla and the

D118–155, D118–156 and D118–157 truncations. Figure 2D shows that the introduction of the

V158K into the D118–155, D118–156 and D118–157 truncations restored the M.I.C. to a similar level

Figure 1 continued

twin arginines of the Tat recognition motif are given in purple underline. Predicted a-helical secondary structure is shown with a dotted line, and

alanine residues within this region that were mutated to proline are shown in pink. Negatively charged amino acids in the loop region are shown in

blue, positively charged ones in grey. (C) E. coli strain MCDSSAC (which carries chromosomal deletions in the signal peptide coding regions of amiA

and amiC) or an isogenic tatABC mutant containing either pSU-PROM (empty vector), or pSU-PROM producing native AmiA, Sco2149TMD-AmiA or a

variant where the twin-arginines were substituted to AD (Sco2149TMDRRAD-AmiA), were spotted, after serial dilution, on LB medium in the absence or

presence of 1% SDS. The plates were incubated for 20 hr at 37˚C. (D) Representative images of M.I.C.Evaluator strip tests of strains MC4100 (tat+) and

DADE (tat-) harbouring pSU-PROM (empty vector), pSU-PROM Sco2149TMD-Bla or pSU-PROM Sco2149TMDRRAD-Bla are shown. The mean M.I.C ± s.d.

for strains harbouring these constructs is given at the bottom of each test strip (where n = 4 biological replicates for each strain harbouring the empty

vector, n = 5 biological replicates for each strain harbouring pSU-PROM Sco2149TMD-Bla and n = 3 biological replicates for each strain harbouring pSU-

PROM Sco2149TMDRRAD-Bla).

DOI: 10.7554/eLife.26577.002

The following figure supplements are available for figure 1:

Figure supplement 1. Sequence alignment of selected actinobacterial Rieske proteins.

DOI: 10.7554/eLife.26577.003

Figure supplement 2. A twin lysine substitution of the twin arginine motif of Sco2149 still retains some interaction with the Tat pathway.

DOI: 10.7554/eLife.26577.004

Figure supplement 3. Sequence alignment TMD2/TMD3 loop region for a selection of actinobacterial Rieske proteins.

DOI: 10.7554/eLife.26577.005

Figure supplement 4. Effect of >35 residue truncations in the Sco2149 cytoplasmic loop region on the ability of Sco2149TMD-AmiA to support growth

on SDS.

DOI: 10.7554/eLife.26577.006

Tooke et al. eLife 2017;6:e26577. DOI: 10.7554/eLife.26577 5 of 32

Research article Biochemistry Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.26577.002
http://dx.doi.org/10.7554/eLife.26577.003
http://dx.doi.org/10.7554/eLife.26577.004
http://dx.doi.org/10.7554/eLife.26577.005
http://dx.doi.org/10.7554/eLife.26577.006
http://dx.doi.org/10.7554/eLife.26577


Table 1. Effect of amino acid substitutions, small deletions and insertions in the Sco2149 cytoplasmic

loop region on the ability of Sco2149TMD-AmiA and Sco2149TMD-Bla to support growth on SDS or

ampicillin, respectively. Note that growth on ampicillin was scored using the tat- strain DADE and

therefore assesses Sec translocation only. Y indicates growth on 1% SDS, N indicates no growth, nd –

not determined. Mean M.I.C for growth on ampicillin is given in mg/ml + one standard deviation, n =

at least 3. *Insertion of 3 additional amino acids, DEE between E128 and V129.

Variant
Growth on 1% SDS
(Tat translocation)

Mean M.I.C. for ampicillin
(Sec translocation)

wild type Y 7.6 ± 0.9

R161K R162K Y 3.8 ± 0.5

R161A R162D N 1.3 ± 0.3

R161A R162A N 5.5 ± 1.0

R161K R162Q N 3.3 ± 0.6

DR161 DR162 N 9.3 ± 2.3

R133H H134R Y 7.3 ± 1.2

R133K H134K Y 7.0 ± 2.0

M124L Y 6.0 ± 2.0

M124A Y 6.0 ± 2.0

S125L Y 6.7 ± 2.3

S125A Y 8.0 ± 0.0

D126L Y 7.3 ± 1.2

D126A Y 7.3 ± 1.2

E127L Y 6.0 ± 2.0

E127A Y 8.0 ± 2.8

A144P Y 6.7 ± 1.2

A148P Y 8.0 ± 2.8

A154P Y 8.0 ± 0.0

D126–8 nd 8.0 ± 0.0

D126–127 nd 7.5 ± 1.0

D127–128 nd 8.0 ± 2.8

131–2 nd 7.3 ± 1.2

D137D141 nd 4.0 ± 0.0

D131–2D141 nd 6.0 ± 2.0

D149D156 nd 8.0 ± 0.0

D126–8 D137D141 nd 8.0 ± 0.0

D126–8D131–2 nd 8.0 ± 2.4

D126–8D131–2
D137D141

nd 10.4 ± 2.2

D126–8D131–2 D137
D141 D149 D156

nd 10.0 ± 2.8

Ins D129 E130 E131* nd 6.7 ± 1.2

D131A E132A nd 6.0 ± 2.3

E137A E141A nd 6.7 ± 2.3

D126A E127A E128A nd 7.2 ± 1.1

D131K E132K nd 7.3 ± 1.2

E137K E141K nd 6.5 ± 1.9

D126K E127K E128K nd 9.0 ± 2.0

Table 1 continued on next page
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seen for the full length Sco2149TMD-Bla, establishing that positive charged residues in this loop

region influence interaction of Sco2149 with Sec.

A minimum cytoplasmic loop length is necessary for Tat recognition of
Sco2149 TMD3
Since none of the conserved features in the Sco2149 cytoplasmic loop were required for modulating

interaction with the Sec pathway, we next addressed whether they were required for recognition by

the Tat system. A subset of the amino acid substitutions and each of the sliding truncations was

introduced into the Sco2149TMD-AmiA fusion protein and expressed in a tat+ strain to allow Tat-

dependence to be scored by testing for growth in the presence of SDS (Tables 1 and 2). Table 1

shows that, apart from substitutions at the twin arginine motif, none of the other variants affected

Tat-dependent export of AmiA, including the introduction of prolines within the predicted a-helical

structure, or substitution of the highly conserved E127 or R133/H134. These results suggest that

none of these features are required for recognition of the loop region by the Tat pathway.

Ordinarily, Tat signal peptides have free N-termini, whereas the Tat signal sequence of Sco2149

is internal and is only recognised by the Tat pathway once the first 2 TMD of the protein have been

integrated by Sec. The loop truncation experiments indicated that the Tat system was still able to

identify and integrate TMD3 when it was truncated by up to 30 residues. However, one of the 35

residue truncations (Sco2149TMD-D123–157-AmiA) and the 40 residue truncation (Sco2149TMD-

D118–157-AmiA) supported no growth on SDS-containing media (Table 2; Figure 1—figure supple-

ment 4), indicating that there is a minimum loop length requirement of approximately eight amino

acids between TMD2 and the twin arginine motif is required for Tat recognition of a tethered signal

peptide.

Taken together we conclude that, with the exception of the twin arginine motif, none of the con-

served features of cytoplasmic loop are strictly necessary for interaction of Sco2149 with the Tat

pathway or to mediate release from Sec.

Specific physical properties of TMD3 drive its release from Sec
Hydrophobicity is the driving force for the insertion of a helix into the membrane (White and von

Heijne, 2008a; Hessa et al., 2005; von Heijne, 1997). Analysis of transmembrane helices from poly-

topic proteins of known three-dimensional structure shows a general trend that the first and last

TMDs are of similar hydrophobicity, and they are notably more hydrophobic than the central helices

(Hedin et al., 2010; Virkki et al., 2014). An analysis of the apparent 4G for the insertion of the

three TMDs of selected actinobacterial Rieske proteins is shown in Table 3. It can be seen that the

first and second TMDs have negative predicted 4Gapp values and are therefore expected to be

inserted as TMDs by the Sec system (Ojemalm et al., 2013). However, the third and final TMD is

predicted to have a positive Gapp (Table 3). This is in contrast to the final TMD of ‘standard’ Sec-

dependent proteins and suggests that this helix might be poorly recognised by the Sec machinery.

To probe this further we investigated the effect of increasing the hydrophobicity of TMD3.

Table 3 shows that substitution of a single leucine residue at either serine 179 or glycine 180

reduces the predicted 4Gapp value for TMD3 Sec-dependent membrane insertion by at least 0.6

kcal mol�1. Accordingly, when these single substitutions were individually introduced into the

Table 1 continued

Variant
Growth on 1% SDS
(Tat translocation)

Mean M.I.C. for ampicillin
(Sec translocation)

D126K E127K
E128K E137K E141K

nd 8.0 ± 0.0

D126K E127K E128K D131K
E132K E137K E141K

nd 10.0 ± 2.2

DOI: 10.7554/eLife.26577.007

Source data 1. Images of SDS growth tests and M.I.C.Evaluator strip tests of all strain and plasmid combinations
used in Table 1.

DOI: 10.7554/eLife.26577.008
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http://dx.doi.org/10.7554/eLife.26577.007Table%201.Effect%20of%20amino%20acid%20substitutions,%20small%20deletions%20and%20insertions%20in%20the%20Sco2149%20cytoplasmic%20loop%20region%20on%20the%20ability%20of%20Sco2149TMD-AmiA%20and%20Sco2149TMD-Bla%20to%20support%20growth%20on%20SDS%20or%20ampicillin,%20respectively.%20Note%20that%20growth%20on%20ampicillin%20was%20scored%20using%20the%20tat-%20strain%20DADE%20and%20therefore%20assesses%20Sec%20translocation%20only.%20Y%20indicates%20growth%20on%201%%20SDS,%20N%20indicates%20no%20growth,%20nd%20&x2013;%20not%20determined.%20Mean%20M.I.C%20for%20growth%20on%20ampicillin%20is%20given%20in%20&x00B5;g/ml%20+%20one%20standard%20deviation,%20n%20=%20at%20least%203.%20&x002A;Insertion%20of%203%20additional%20amino%20acids,%20DEE%20between%20E128%20and%20V129.%2010.7554/eLife.26577.00710.7554/eLife.26577.008Table%201&x2014;source%20data%201.Images%20of%20SDS%20growth%20tests%20and%20M.I.C.Evaluator%20strip%20tests%20of%20all%20strain%20and%20plasmid%20combinations%20used%20in%20Table%201.%2010.7554/eLife.26577.008VariantGrowth%20on%201%%20SDS(Tat%20translocation)Mean%20M.I.C.%20for%20ampicillin(Sec%20translocation)wild%20typeY7.6&x00A0;&x00B1;&x00A0;0.9R161K%20R162KY3.8&x00A0;&x00B1;&x00A0;0.5R161A%20R162DN1.3&x00A0;&x00B1;&x00A0;0.3R161A%20R162AN5.5&x00A0;&x00B1;&x00A0;1.0R161K%20R162QN3.3&x00A0;&x00B1;&x00A0;0.6&x2206;R161%20&x2206;R162N9.3&x00A0;&x00B1;&x00A0;2.3R133H%20H134RY7.3&x00A0;&x00B1;&x00A0;1.2R133K%20H134KY7.0&x00A0;&x00B1;&x00A0;2.0M124LY6.0&x00A0;&x00B1;&x00A0;2.0M124AY6.0&x00A0;&x00B1;&x00A0;2.0S125LY6.7&x00A0;&x00B1;&x00A0;2.3S125AY8.0&x00A0;&x00B1;&x00A0;0.0D126LY7.3&x00A0;&x00B1;&x00A0;1.2D126AY7.3&x00A0;&x00B1;&x00A0;1.2E127LY6.0&x00A0;&x00B1;&x00A0;2.0E127AY8.0&x00A0;&x00B1;&x00A0;2.8A144PY6.7&x00A0;&x00B1;&x00A0;1.2A148PY8.0&x00A0;&x00B1;&x00A0;2.8A154PY8.0&x00A0;&x00B1;&x00A0;0.0&x2206;126&x2013;8nd8.0&x00A0;&x00B1;&x00A0;0.0&x2206;126&x2013;127nd7.5&x00A0;&x00B1;&x00A0;1.0&x2206;127&x2013;128nd8.0&x00A0;&x00B1;&x00A0;2.8131&x2013;2nd7.3&x00A0;&x00B1;&x00A0;1.2&x2206;137&x2206;141nd4.0&x00A0;&x00B1;&x00A0;0.0&x2206;131&x2013;2&x2206;141nd6.0&x00A0;&x00B1;&x00A0;2.0&x0394;149&x0394;156nd8.0&x00A0;&x00B1;&x00A0;0.0&x2206;126&x2013;8%20&x2206;137&x2206;141nd8.0&x00A0;&x00B1;&x00A0;0.0&x2206;126&x2013;8&x2206;131&x2013;2nd8.0&x00A0;&x00B1;&x00A0;2.4&x2206;126&x2013;8&x2206;131&x2013;2&x2206;137&x2206;141nd10.4&x00A0;&x00B1;&x00A0;2.2&x2206;126&x2013;8&x2206;131&x2013;2%20&x2206;137&x2206;141%20&x0394;149%20&x0394;156nd10.0&x00A0;&x00B1;&x00A0;2.8Ins%20D129%20E130%20E131&x002A;nd6.7&x00A0;&x00B1;&x00A0;1.2D131A%20E132And6.0&x00A0;&x00B1;&x00A0;2.3E137A%20E141And6.7&x00A0;&x00B1;&x00A0;2.3D126A%20E127A%20E128And7.2&x00A0;&x00B1;&x00A0;1.1D131K%20E132Knd7.3&x00A0;&x00B1;&x00A0;1.2E137K%20E141Knd6.5&x00A0;&x00B1;&x00A0;1.9D126K%20E127K%20E128Knd9.0&x00A0;&x00B1;&x00A0;2.0D126K%20E127KE128K%20E137K%20E141Knd8.0&x00A0;&x00B1;&x00A0;0.0D126K%20E127K%20E128K%20D131KE132K%20E137K%20E141Knd10.0&x00A0;&x00B1;&x00A0;2.2
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Table 2. Effect of amino acid truncation in the Sco2149 cytoplasmic loop region on the ability of

Sco2149TMD-AmiA and Sco2149TMD-Bla to support growth on SDS or ampicillin, respectively. Note

that growth on ampicillin was scored using the tat- strain DADE and therefore assesses Sec transloca-

tion only. Y indicates growth on 1% SDS, N indicates no growth. Mean M.I.C for growth on ampicillin

is given in mg/ml + one standard deviation, n = at least 3.

Variant
Growth on 1% SDS
(Tat translocation)

Mean M.I.C. for ampicillin
(Sec translocation)

wild type Y 7.6 ± 0.9

5 residue truncations

D118–122 Y 10.0 ± 2.3

D123–127 Y 5.3 ± 2.3

D128–132 Y 12.0 ± 0.0

D133–137 Y 6.7 ± 2.3

D138–142 Y 7.0 ± 2.0

D143–147 Y 6.7 ± 2.3

D148–152 Y 10.0 ± 3.3

D153–157 Y 9.6 ± 3.6

10 residue truncations

D118–127 Y 6.0 ± 0.0

D128–137 Y 9.5 ± 3.0

D138–147 Y 8.0 ± 0.0

D148–157 Y 9.3 ± 2.3

15 residue truncations

D118–132 Y 9.0 ± 3.8

D123–137 Y 8.0 ± 0.0

D128–142 Y 10.0 ± 2.3

D133–147 Y 9.3 ± 2.3

D138–152 Y 5.0 ± 1.4

D143–157 Y 4.8 ± 1.5

20 residue truncations

D118–137 Y 7.3 ± 1.2

D138–157 Y 5.5 ± 1.9

25 residue truncations

D118–142 Y 12.0 ± 0.0

D123–147 Y 7.6 ± 0.9

D128–152 Y 8.0 ± 0.0

D133–157 Y 6.0 ± 0.0

30 residue truncations

D118–147 Y 10.0 ± 2.8

D123–152 Y 13.6 ± 2.2

D128–157 Y 7.3 ± 1.2

>35 residue truncations

D118–152 Y 12.0 ± 0.0

D123–157 N 3.0 ± 0.0

D118–153 Y 16.0 ± 0.0

D118–154 Y/N 9.3 ± 2.3

D118–155 N 4.0 ± 0.0

Table 2 continued on next page
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Sco2149TMD-Bla fusion in tat- cells, a dramatic increase in M.I.C for ampicillin of up to 25 fold was

observed (Figure 3B), almost at the upper limit of detection. Combining these substitutions (S179L,

G180L), and including a third substitution (P177L) shifts the predicted 4Gapp value closer to that of

TMD1 (Table 1). These substitutions also significantly increased the observed M.I.C. over the unsub-

stituted fusion, but did not appear to have additive effects over the single leucine substitutions. We

conclude that the low hydrophobicity of TMD3 is a key driver for the release of Sco2149 from the

Sec machinery.

It has long been known that Tat signal peptides frequently contain one or more positive charges

in their c-regions, close to the site of signal peptidase cleavage. These charges are not required for

the interaction with the Tat pathway but reduce the efficiency of interaction with Sec and have there-

fore been described ‘Sec-avoidance’ motifs (Bogsch et al., 1997; Cristóbal et al., 1999;

Blaudeck et al., 2001). A positive charge is generally also found close to the C-terminal end of

TMD3 of actinobacterial Rieske proteins (R185 in the case of Sco2149; Figure 3A, Figure 1—figure

supplement 1). Substitution of R185 for alanine in the Sco2149TMD-Bla fusion conferred an 8-fold

increase in M.I.C for ampicillin, and therefore R185 also appears to act as a Sec-avoidance motif in

this context. Interestingly, closer inspection of actinobacterial Rieske proteins indicates that there

are a number of further non-conserved positive charges located within the C-terminal vicinity of

TMD3 (Figure 3A underlined residues, Figure 1—figure supplement 1 orange residues) which are

not found in other Rieske proteins that only contain a single TMD (Figure 1—figure supplement 1).

Since our original Sco2149TMD-Bla fusion (where the Bla sequence is fused immediately after R185)

lacks most of these additional charges (Figure 3A), we made an additional Bla fusion where the

Sco2149 sequence in the fusion protein was extended to aa205, incorporating an additional four

positively charged residues. It can be seen that inclusion of this additional positively charged stretch

almost completely abolished transport via Sec, as the clearance zone around the M.I.C. strip was of

similar size to that of the negative control (Figure 3C). We did, however, note that for unknown rea-

sons there was a variable level of breakthrough growth within the zone of clearing for strain DADE

producing the extended Sco2149TMD-Bla fusion. We therefore constructed similar Bla fusions after

TMD3 of the M. tuberculosis Rieske protein, QcrA. Figure 3D indicates that there is some Sec-

dependent export of the Bla fusion when it is fused close to the C-terminal end (‘short fusion’) but

that this was almost abolished when the sequence was extended to introduce the positively charged

stretch (‘long fusion’). Taken together, we conclude that a combination of low hydrophobicity of

TMD3 coupled with the presence of several C-terminal positive charges promotes release of actino-

bacterial Rieske proteins from the Sec machinery.

Bioinformatic analysis identifies further families of membrane proteins
potentially dependent on both Sec and Tat pathways
We next asked whether actinobacterial Rieske proteins were the only protein family that required

both Sec and Tat pathways for their integration. To this end, all proteins from prokaryotic genomes

available in Genbank were analysed by both TATFind 1.4 (Rose et al., 2002) and TMHMM 2.0c

(Krogh et al., 2001) programs, initially to identify proteins with a similar N-in topology as actinobac-

terial Rieske proteins. For each protein, both outputs were combined to identify the position of twin

arginine motif, and the number of transmembrane helices present N-terminal and C-terminal to it.

The final output from this search was sorted to give those proteins that had a predicted even num-

ber of TMDs prior to the twin-arginine motif and that had a predicted single TMD immediately

Table 2 continued

Variant
Growth on 1% SDS
(Tat translocation)

Mean M.I.C. for ampicillin
(Sec translocation)

D118–156 N 4.0 ± 0.0

D118–157 N 2.5 ± 0.6

DOI: 10.7554/eLife.26577.009

Source data 1. Images of SDS growth tests and M.I.C.Evaluator strip tests of all strain and plasmid combinations
used in Table 2.

DOI: 10.7554/eLife.26577.010
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Figure 2. Interaction of Sco2149TMD-Bla with the Sec pathway. (A) The Sco2149 cytoplasmic loop region between TMDs 2 and 3. Color-coding is as

described in Figure 1. The extent of the 123–157 deletion is shown boxed and V158 that was substituted to K in this study is underlined. (B) and (D)

Representative images of M.I.C.Evaluator strip tests of strain DADE (tat-) harbouring pSU-PROM producing the indicated variants of Sco2149TMD-Bla.

The mean M.I.C ± s.d. is given at the bottom of each test strip (where n = 3 biological replicates for each strain). (C) Membrane extracts prepared from

Figure 2 continued on next page
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following the twin-arginine motif (available as a supplementary online file at: http://www.lifesci.dun-

dee.ac.uk/groups/tracy_palmer/docs/CombinedTATFindTMHMMoutput.docx). We subsequently

manually searched this list to identify any proteins with a predicted C-terminal cofactor-binding

domain.

From the output we identified a further actinobacterial Rieske homologue from Kitasatospora

setae (KSE_30950) that is predicted to have five TMDs, with the twin arginine motif adjacent to

TMD5. We also identified two further families of predicted metalloproteins that shared features of

dual-inserted proteins (shown schematically in Figure 4A). Sco3746, also from S. coelicolor is pre-

dicted to have five TMDs, with a predicted molybdenum cofactor (MoCo) binding domain at the

Figure 2 continued

the same strains used in (B) along with DADE harboring the empty plasmid vector as a negative control, were separated by SDS-PAGE (12%

acrylamide), transferred to nitrocellulose membrane and probed with anti-Sco2149 or anti-BamA (an unrelated outer membrane protein was used as a

loading control). To the right, the Sco2149-associated signal was quantified and normalised against the BamA signal for each sample. The

quantification results were expressed as percentage of the normalised signal obtained for the full length fusion (which was set at 100%). The results

represent mean ± s.e.m. of three biological replicates, a representative blot is shown.

DOI: 10.7554/eLife.26577.011

The following source data is available for figure 2:

Source data 1. Images of Sco2149 and BamA western blots used for quantification in Figure 2C.

DOI: 10.7554/eLife.26577.012

Source data 2. Quantification of density associated with Sco2149 and BamA signals from western blots from Figure 2—source data 1 used to gener-

ate graph in Figure 2C.

DOI: 10.7554/eLife.26577.013

Table 3. Predicted 4Gapp values (in kcal mol�1) for membrane insertion of each of the three TMDs of the indicated Rieske proteins.

Sequences were analysed using the 4Gapp prediction server (http://dgpred.cbr.su.se/) that are based on hydrophobicity scales gener-

ated from (Hessa et al., 2005, 2007). This server uses the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016) to predict the

positions of the TMDs and for S. coelicolor Rieske predicts TMD1 to span aa 58–80, TMD two to span aa 96–117 and TMD3 to span aa

168–187.

Predicted 4Gapp

Family/Species Uniprot ID TM1 TM2 TM3 TM3/Bla fusion*

Mycobacterium tuberculosis P9WH23 �4.252 �0.715 0.248

Corynebacterium glutamicum Q79VE8 �2.873 �0.761 0.564

Gordonia malaquae M3VAA9 �2.569 �0.214 1.291

Corynebacterium diphtheriae Q6NGA2 �2.402 �1.089 0.619

Dietzia cinnamea E6JC04 �2.997 �0.391 0.409

Salinispora tropica A4 � 9Y7 �2.315 �1.205 1.162

Streptomyces sp. D9VGG2 �1.291 �1.203 0.967

Verrucosispora maris F4F1U1 �2.248 �1.946 1.162

Stackebrandtia nassauensis D3Q1119 �1.876 �1.289 0.556

Rhodococcus erythropolis C3JJ95 �2.692 �0.208 0.912

Streptomyces coelicolor Q9 � 807 �2.374 �0.117 0.614 0.714

S. coelicolor S179L �0.389 �0.205

S. coelicolor G180L �0.037 0.044

S. coelicolor S179L, G180L �1.117 �0.987

S. coelicolor P177L, S179L, G180L �2.510 �2.409

S. coelicolor R185A 0.517 0.620

*Bla is fused to S. coelicolor Rieske after amino acid 185 (full sequence of all of the fusion proteins used in this study can be found in

Supplementary file 1D).

DOI: 10.7554/eLife.26577.014
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B
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Figure 3. Hydrophobicity of TMD3 and C-terminal positive charges modulate interaction with the Sec pathway. (A) Sco2149 TMD3 and flanking

sequences. Top shows the native Sco2149 sequence up to amino acid 205 (position of the L205-Bla fusion) and below the sequence of the R185

Sco2149-Bla fusion. In each case the predicted position of TMD3 was determined using the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015,

2016) and is shown boxed. The twin arginines are shown in purple and R185 (the position after which Bla was fused in the R185 construct) is shown in

Figure 3 continued on next page
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C-terminus and conserved histidine residues in TMDs 2, 3 and 4 that are predicted to co-ordinate

two heme b moieties (Figure 4A). The twin arginine motif, which is conserved across homologous

proteins (Figure 5), directly precedes TMD5. Homologues of Sco3746 were identified across the

actinobacteria, as well as in firmicutes, chloroflexi and euryarchaeota, and each carries a twin argi-

nine motif directly preceding TMD5 (Examples from each phyla are shown in Figure 5). Protein

Q1NSB0 from the delta proteobacterium MLMS-1 is also predicted to have five TMDs and to contain

seven 4Fe-4S clusters, three at the cytoplasmic side and four at the extracellular side of the mem-

brane (Figure 4A; Figure 6). Labelling of TMD2-4 (Figure 6) was complicated by the observation

that the iron-sulfur cluster binding regions were variably called as TMDs by some prediction pro-

grams. Again the conserved twin arginine motif directly precedes TMD5 and homologues of this

protein are encoded in many prokaryotic genomes including those from the chloroflexi, nitrospirae

and euryarchaeota phyla (Figure 6).

We subsequently modified our search to ascertain whether there might be any candidate dual-

targeted proteins with an N-out topology (supplementary online file available at: http://www.lifesci.

dundee.ac.uk/groups/tracy_palmer/docs/CombinedTATFindTMHMMoutput%20N-out%203.docx).

From this we identified a further protein family of predicted metallophosphoesterases closely related

to the B. subtilis Tat substrate YkuE (Figure 4A, Figure 7). B. subtilis YkuE has a cleavable N-termi-

nal Tat signal peptide and lacks any TMD, and has been shown to localize to the cell wall by electro-

static interactions (Monteferrante et al., 2012). These longer variants of YkuE are predicted to have

4TMD and an N-out orientation, with a conserved twin arginine motif directly preceding TMD4

(Figure 4A, Figure 7). Homologues of this protein are encoded by Gram-positive and Gram-nega-

tive bacteria including those from the Firmicutes and Bacteroidetes phyla (Figure 7).

Reporter proteins fused to Sco3746 or predicted polyferredoxin from
MLMS-1 are translocated by the Tat pathway
To confirm that the newly identified MoCo or polyferredoxin proteins were indeed Tat substrates,

we designed constructs whereby the predicted five TMDs of Sco3746 or MLMS-1 polyferredoxin

(PFD; cloned as a synthetic gene) were fused to the reporter proteins AmiA or maltose binding pro-

tein (MBP; Figure 4B; exact positions of the fusions are shown in Figures 5 and 6). As shown in

Figure 4C, E. coli malE� cells harboring MBP fused to these regions of either protein decolorized

maltose minimal medium containing the pH indicator dye bromocresol purple. This indicates that

the MBP portion of the fusion protein has been translocated to the periplasmic side of the mem-

brane. To confirm that this translocation was dependent on the Tat pathway, the twin-arginines of

the Tat recognition motif were substituted for two lysines. This conservative substitution abolished

maltose fermentation (Figure 4C), indicating that MBP translocation was dependent on the Tat path-

way. Similar findings were made using the AmiA reporter fusions. Figure 4D shows that, as

expected, when either plasmid-encoded Sco3746TMD-AmiA or PFDTMD-AmiA was produced in the

tat+ strain lacking native AmiA/C, growth on SDS was supported. Export was dependent on the Tat

pathway since growth on SDS was not supported in the tat- strain, or in the tat+ strain if the twin

arginine motif was substituted for twin lysine. We conclude that Sco3746 and PFD are dependent on

the Tat pathway for their assembly.

Figure 3 continued

yellow. Positively charged amino acids C-terminal to R185 are underlined. (B–D) Representative images of M.I.C.Evaluator strip tests of strain DADE

(tat-) harbouring pSU-PROM producing (B) the indicated variants of the R185 Sco2149TMD-Bla fusion or (C) the R185 or L205 Sco2149TMD-Bla fusions, as

indicated, or (D) M. tuberculosis QcrA fused to Bla. In (D) the amino acid sequence around TMD3 of M. tuberculosis QcrA is shown, with TMD3 boxed.

‘short fusion’ refers to a Bla fusion after I227 and ‘long fusion’ to a Bla fusion after A243. In each panel the mean M.I.C ± s.d. is given at the bottom of

each test strip (where n = 3 biological replicates for each strain).

DOI: 10.7554/eLife.26577.015

The following source data is available for figure 3:

Source data 1. Images of M. I.C.Evaluator strip tests used to generate mean M.I.C. values in Figure 3.

DOI: 10.7554/eLife.26577.016
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Figure 4. Further families of Tat-dependent polytopic membrane proteins. (A) Schematic representation of a polytopic predicted molybdenum cofactor

(MoCo) binding protein (Sco3746, left) a polytopic polyferredoxin (PFD, centre) and a polytopic metallophosphoesterase of the YkuE family (right)

identified bioinformatically as candidate dual-inserted membrane poteins. The twin arginines of the Tat recognition sequence are highlighted in yellow.

Four histidines in the TMDs of Sco3746 and homologues that are predicted to ligate two b hemes are shown in red. Note that three of these histidines

Figure 4 continued on next page
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Sco3746TMD and PFDTMD fusions are stably inserted in the membrane in
the absence of a functional Tat system
We next determined whether these fusion proteins were stably inserted into the membrane.

Figure 8A shows that both Sco3746TMD-MBP and PFDTMD-MBP were detected exclusively in the

membrane fraction of a tat+ strain at close to their theoretical masses (68 kDa for Sco3746TMD-MBP

and 81 kDa for PFDTMD-MBP). It should be noted that the relatively poor expression of PFDTMD-MBP

necessitated long exposure times for visualisation by western blot, thus two additional non-specific

bands were also detected by the MBP antibody for these samples. Substitution of the Tat consensus

arginine pair for di-lysine did not detectably affect the amount of fusion proteins produced, nor their

membrane localization, indicating that membrane insertion of each of these fusions occurred inde-

pendently of the Tat system. This was confirmed by repeating the analysis in a tat- strain, where as

expected the fusions were again detected exclusively in the membranes. Washing the membranes

with 4 M urea or 0.2 M carbonate did not extract either protein (Figure 8B), indicating that they

were integrally inserted into the membrane in the absence of the Tat pathway. This indicates the

participation of a second protein translocase, almost certainly the Sec pathway, in the insertion of

these proteins into the membrane.

Sco3746TMD-MBP has five TMDs
To confirm the predicted topology of the hydrophobic domain of Sco3746, we undertook a cysteine

accessibility study. The Sco3746TMD-MBP fusion is naturally devoid of cysteine residues. Guided by

topology prediction programs we made three Cys substitutions (G14C, A137C and A219C) that are

predicted to reside at the cytoplasmic side of the membrane and two (G84C and G171C) that are

located in predicted extracellular loops (Figure 8C). We produced these constructs in a tat+ strain

and probed cysteine accessibility using the reagent methoxypolyethyleneglycol maleimide (MAL-

PEG). This reagent, which has a mass of around 5000 Da, can pass through the outer membrane in

the presence of EDTA, but is impermeable to the inner membrane. Figure 8D shows that the G84C

and G171C variants of Sco3746TMD-MBP clearly labelled with MAL-PEG in whole cells confirming

that they are extracellular. By contrast, G14C, A137C and A219C variants were not labelled in whole

cells but were labelled upon cell lysis, consistent with them having a cytoplasmic location. Taken

together we conclude that the Sco3746TMD portion of the Sco3746TMD-MBP fusion has 5 TMDs.

A conserved mechanism regulates Sec-Tat transfer for dual-targeted
protein families
Our prior results analysing the interaction of actinobacterial Rieske proteins with the Sec pathway

indicated that a combination of low hydrophobicity of the Tat-dependent TMD coupled with the

presence of positive charges close to the C-terminal end of that TMD promoted release of the poly-

peptide from the Sec pathway. We therefore inspected the sequences of the Sco3746 homologues,

PFD proteins and YukE homologues to see whether these features are conserved across protein fam-

ilies. Figure 5 shows that several non-conserved positive charges are located close to the C-terminus

of TMD5 of the Sco3746 homologues examined, and analysis of predicted 4Gapp values for mem-

brane insertion of the five TMDs (Table 4) shows a positive 4Gapp for TMD5 suggesting that it may

potentially be poorly recognised by Sec. Interestingly, unlike the actinobacterial Rieske proteins

Figure 4 continued

are conserved (Figure 5) but the one at the N-terminal end of TMD3 (H?) is not. (B) Fusions of the TMDs of Sco3746 and of Q1NSB0 (PFD) to maltose

binding protein (MBP) or AmiA are shown as cartoons. As before, a signal peptidase I cleavage site (indicated by scissors) was introduced at the end of

predicted TMD5 to allow release of AmiA from the membrane (Keller et al., 2012). (C) E. coli tat+ strain HS3018-A (that lacks chromosomally-encoded

MBP) harboring pSU18 (empty vector), or the same vector producing native MBP, Sco3746TMD-MBP, PFDTMD-MBP or the twin-arginine substituted

variants Sco3746TMDRRKK-MBP and PFDTMDRRKK-MBP, as indicated, was cultured overnight, resuspended in minimal medium containing 1% Maltose

and 0.002% Bromocresol purple. Cells were diluted either 2.5 fold (left hand panel) or 10 fold (right hand panel) in the same medium and incubated

without shaking at 37˚C for 24 hr (left hand panel) or 48 hr (right hand panel). (D) E. coli strains MCDSSAC or an isogenic tatABC mutant harboring

pSU18 (empty vector), pSU18 producing native AmiA, or pSU18 producing either Sco3746TMD-AmiA or PFDTMD-AmiA fusion proteins, or variants of

these where the twin-arginine motif was substituted to twin lysine (Sco3746TMDRRKK-AmiA/PFDTMDRRKK-AmiA) were serially diluted and spotted onto

LB or LB containing 2% SDS. The plates were incubated for 20 hr at 37˚C.
DOI: 10.7554/eLife.26577.017
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TMD5

Q9L0V8           1 MGHWPSGSGAPAYGRSMRDLASRLPSSPGFWRSPLRGPWLTSVLGTVLLVGITVLFVTGL 

WP_056916643.1   1 ------------------------------MQGFVPTPMNGRLANLALLFVVPLAAVTGF 

WP_053225688.1   1 --------------------------------------MNARGTDWSLAALVTLLALTGA 

C8WRE4           1 --------------------------MLPVPSKARRWPRPLRYLHHYTIVSFALLVASGL 

OLB54713.1       1 --------------------------------------MSPRLTDWSLALAAALAFVTGI 

WP_058581003.1   1 -----------------------MTVGESVRRFVSRIEPRPRLVDWSIFVLVSFEVASGL 

 

 
Q9L0V8          61 LSYAAYNPDLAPVNDKTPDKGILGFYLFAWPTDPPWLYRLTQGVHVTLGLVLIPVLLAKL 

WP_056916643.1  31 MMFLLGSGPVWPV----------------------------AILHGVVALLVVVLVPWKS 

WP_053225688.1  23 LTLFG----GAWV----------------------------FGAHDITGFALSGVLVFKL 

C8WRE4          35 ALYLPFVHRFMIP-----------------------------YIPFVYRLHILLGLVFAV 

OLB54713.1      23 VSLLSGLPQEWFI----------------------------FALHGIVGIWLLLLLWGKL 

WP_058581003.1  38 LSFTVGTPDGAWL----------------------------FWLHAVAGLTLVALVGFKL 

 

 
Q9L0V8         121 WSVVPRLFTLPPVRSLAHALERISLLLLVGGALFEFVTGVLNIQLDYLFPGSFYPLHFYG 

WP_056916643.1  63 TVVRRGLRRPGQTRQRGRAVSLLLGLCVVLALLTGVAHVLGVLFADSRVT--TMQLHVGA 

WP_053225688.1  51 RRVWRRIGTR-R-------AGLIALLFVALTLLTGIAWSSAAKPNVFGYN--PLNFHSVF 

C8WRE4          66 TLFVPFVRVLPKGRRLSKWDWTLPVLLGSPIVATGIMLWWLTVFPAGMRSR-AFAWHGWL 

OLB54713.1      55 QRVWPRLIRP-RRWDHRTVYGLLALLFVTLALGSGIWWVGGGEWYFAGFN--LLNWHIGL 

WP_058581003.1  70 YRVRHRVTNR-HLWNRATGVSILLTVVTLSALGTGIAWVFGADADVWLWN--LLSVHVFF 

 

 

Q9L0V8         181 AWVFFAAFVAHAVLKTPIALRNLRAMREERDDLVSPRPAAPTVSRRGALWFVGGGSLLMF 

WP_056916643.1 121 GIVAVVLTVAHALQRRIRARR------------------GDLS-RRSFVRLVGLTAVALV 

WP_053225688.1 101 GAVLAAAVLTHAVGRAKRPRR------------------GDLT-RRQVLASAGVGLGAVA 

C8WRE4         125 TACLGTWILIHAFLKVTGIRPQSRLLYER----------VDWERRRFLVSLATGALGALV 

OLB54713.1     112 GIVLTAFILFHMFARAKRLRK------------------RDMAGRRHALHLGALLLGSVA 

WP_058581003.1 127 GLLLVPLTLLHLRTHFRPPRR------------------ADFEERRAALQYAGLLVGGAV 

 

 

Q9L0V8         241 ATNAGRSFDSPLRATAVLSPHGGPEPGGGPNGFQINKTAAHVGIDPAETGEDTWRLVVTG 

WP_056916643.1 162 LEAGVQATG-ALTARRGIRRSTGSFQLASSSVAAIP-ATSWLFDQVPELDPASWRLTVT- 

WP_053225688.1 142 LWQLQRTPG----LASAKRRFTGSYEVASFEGNAFP-STSWVADAPRPLTHATLQFGDRR 

C8WRE4         175 LTAIDPAAWLRGLRSASKAGSTGP-----PPGVQTFPAYYTVVNGYPEIDAAAYRLVVDG 

OLB54713.1     154 LWPGQQLTERALNLPGARRRFTGSQEIGSYSGNAFP-TSSWVADQPHPINVQTWRLSLGG 

WP_058581003.1 169 LFRAQETTNRVLDTAGVERRFTGSK---PVEGSSFP-VTSWVADDPDPIDTAAWSLSLGG 

 

Q9L0V8         301 RSGTVRFSRAELLAMEQHSVALP-IACVEGWSTSDQWWRGVRLRDLAARVGHEDDPPDVF 

WP_056916643.1 219 TGATSRDWSLVELGRWHDRQVAV-LDCTGGWWT-EQEWSGVRLSRLLP----PGAGGTVE 

WP_053225688.1 197 LTAAELDAG--------DELTAT-LDCTGGFYS-TQVWRGTRLDRLLG----DAPGSHVR 

C8WRE4         230 DVERPLSLTYAELRALPAVHETQNFQCVTGWSVPNVRWKGVHLSQLAILAKPRSGVRYVH 

OLB54713.1     213 AIAMPRDFSYDELVAVSDTLEAT-LDCTGGFYS-TQRWRGIRIGRLLDQAVLHADARYVS 

WP_058581003.1 225 RVNSPLELDYDELTT-DAELEAL-LDCTSGWYT-VQNWRGVRVGDLLDAAGVDDDARYVR 

 

Q9L0V8         360 VESLQRRGAFRSGALRANQVADPRSLLALQVNGEELSEDHGFPARVIVPAAPGVLNTKWV 

WP_056916643.1 273 VTSATG------YTRRLPLTDH--LLLATAIDGASLSGAHGAPVRLVVPGRRGYHWVKWV 

WP_053225688.1 243 VISHTG------YRWSFDRADAARLLLATHVGGEPLSHGHGAPVRLVAPGERGFIWVKWV 

C8WRE4         290 FYSGDG---VYTECLRLSEAFDPTVLLAYEMDGAPLLREQGYPLRLVVPKMYGYKSIKWV 

OLB54713.1     271 FISVTS------YRWSLPLAEARGALLATHIDEDLLSHDHGFPLRLVAPGRRGLEWVKWI 

WP_058581003.1 282 FVSVTG------YRWSLPVEEARDALLATHVGDNSLSHGHGAPLRLVAPGRRGFQWVKWV 

 

Q9L0V8         420 ARMTFGDMG-------------------- 

WP_056916643.1 325 VRISHDDRPWWVEPPLPLQ---------- 

WP_053225688.1 297 TRVELHDGPDPGAFASTLWSSLTARGRGS 

C8WRE4         347 VRVSFSAEPITGYWEHFGYPTEAYFGSR- 

OLB54713.1     325 THIEVLTEPDPGQALSIFTSSFTDAGRGS 

WP_058581003.1 336 EGVEVRRRGDPAQWLVTLISGFD------ 

‘short fusion’ position for Sco3746

Tat motif

Protein ID Domain Phylum genus/species 

Q9L0V8 Bacteria Actinobacteria Streptomyces coelicolor A3(2)  

WP_056916643.1 Bacteria Actinobacteria Phycicoccus sp. 

WP_053225688.1 Bacteria Actinobacteria Solirubrobacter soli  

C8WRE4 Bacteria Firmicutes Alicyclobacillus acidocaldarius  

OLB54713.1 Bacteria Chloroflexi Ktedonobacter sp. 

WP_058581003.1 Archaea Euryarchaeota Haloprofundus marisrubri 

TMD1

TMD3

TMD4

TMD2

‘long fusion’ fusion position for Sco3746

Figure 5. Sequence alignment of selected polytopic MoCo-binding proteins. Sequences of polytopic predicted MoCo-binding proteins from the

indicated prokaryotes were aligned using ClustalW (http://www.ch.embnet.org/software/ClustalW.html) and Boxshade (http://www.ch.embnet.org/

software/BOX_form.html). Predicted positions of the TMDs, using the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016), are shown in blue.

Figure 5 continued on next page
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which have a highly conserved loop region between Sec-dependent TMD2 and Tat-dependent

TMD3, the Sco3746 homologues have non-conserved loop sequences between TMD4 and TMD5

that show apparent length variability (although all of them are predicted to be at least 8aa long,

Figure 5 continued

Positively charged amino acids immediately downstream of TMD5 are shown in orange. The consensus twin arginine (Tat) motif is boxed in red.

Histidine residues that may co-ordinate heme b are shown in red font. The positions after which Bla was fused to the S. coelicolor protein are indicated.

DOI: 10.7554/eLife.26577.018

Q1NSB0             1 ---MNFSRLKSLRGWRLLSQWFFLLLFLFLFIETEGKGGDELGWPVKLFLDFNPLILLTTLLSAHTVPAIFLLALVVVALTLLLGRVFCGWICPFGTIHNLLSLASNRSRRLVG------ 

A0A0S7XC05         1 -----------MANIRRVSQVFFIVLFFFLLIRTQYSGSDEISYPVKIFLDLDPLFAGLLLLSSFTVKPILLLSLITVAVSLVLGRFFCGWVCPFGILHNAAGEVARRPKKLEHGL---- 

OGW21092.1         1 --------MSKLQNLRRTSQGIFLLLFLFLFIQTESKGRDALGYPAKIFLDFDPLIFITTIFSAHAVQKAFYFSLITIAITLIFGRAFCGWVCPLGTLNNIVGAMK-KGRPKTE------ 

OGB67066.1         1 -----------MARSRRILQIIFLLLFAALFLLARYP--YETGISSDIFLRFSPLPPLFHFLDNFTIPGWFWPALVILFLTLFLGRFFCGWICPLGTSLDLFNRLFKSPSNKISEK---- 

KYK31751.1         1 --------MVSLSHWRRISQFIFLAIFVLLFYKTQYP--LDF-VHTNIFLRSSPLIMITNVLITHSFSSRFLPAALLVVLTLFLGRFFCGWICPVGAISDLIPKTKRRLSS--------- 

WP_062193756.1     1 MFKRGVLSARSIRRLRRVIQILTWLFFLYLFIFATYR--DPQAGLAEIFYRFDPLVALTAMLAGRVVLAGFALAGITVVVTLLFGRVWCGWFCPMGTTLDIFRPARRKQHRAPAPP---- 

WP_027938385.1     1 ------MKSRVVSQVRLLVQSASLLVFVYCFFALVYPVG-READWLIWFSRLDPWLLVGQGRFAATWPDWWWLPFSVVLLTGLIGRIFCGWLCPLGALLTWVDMLSRRLLPERLLRRQQT 

 

 

Q1NSB0           112 HPAWLRLKYLILIMMLAMAALGIQQAGLLDPISLLIRSLAVGIYPAFSYAISAFFDTIYLWQIGGVSAVAEWFYGILRDTVLPFQQPIFSQAGLIGGLFIAILALNFYERRFWCRYLCPL 

A0A0S7XC05       106 YRKSQTWKYVILVIVAFSGFFSMSILGVVDPVSLTVRSLSIGIGPALESLVRTVFDGIYAHAPGWASGPSETVYGFLREHVLAFNQPHFFQGALLGTLFLGLLALNLVRPRFWCRFVCPL 

OGW21092.1       106 DRNLYRVKYYVLIFLIISSLFSLQLAGIVDPLSLLIRSLSVSVYPLFSYGIRAVFDAIYSADIKGVTALSESVYSILKKSVLSFQQPFYNQSLFIGALFFLILGLNLVEKRFWCKYLCPL 

OGB67066.1       104 WVKLRWLKYGILTAAIILAVFSINAWGFLDPLAIFTRLTISIFYPTFTLLIEGFL--ILFSKIPFAQSFSYSLFDWFKTYLMPESQAYYQGLAGLFALTVVIFGLERFARRFWCRYICPA 
KYK31751.1       101 ---FYRFKYYFLAFLIVLSVLGVQLLLISDPLVIFTRFLTFITH-----------------------------------------------LKIPVVLILIIILVASLGERFWCRVICPL 

WP_062193756.1   115 SEQWRKIKYVLLVFMVMAALLGNQSLLFLDPITMLTRSLANALWPMLGYAVYAIEAWLYRWDVLWDVLDAIHRTAVYP--LFRDLRSVYPLAVPLFLGFTGVLALNWWAERFWCRYLCPL 

WP_027938385.1   114 LQKLLPLRYYWLLFLIVVFLLGANWVLFLTPYALLGHELMLLG------------------------------------------------GKSVPWVMGIVLVATVFFSRLWCSVLCPT 

 

 

Q1NSB0           232 GALLGLLARWSLLSREVAEGCNHCGACGQHCPGGAEPHALPDFAGQHQTGAHQPTASPPWLRSECHACFNCDDICPQRLISFRWRLPGLGGKPRSAVSAPAVAGPDLGRRRLLGAAAAGL 

A0A0S7XC05       226 GALLAVLSKASILRLRLKENCDACGNCVRACPTGAS-----------------PALGDGWRKADCIFCWNCVEACPIEALTISFGRP-----------RGEEVRTDMTRRSFLWSAGAGL 

OGW21092.1       226 GALLGILSRFSIFKRSVSEGCTSCGACANVCQGNAS-----------------PDKKEEWRDTECYYCWNCDDVCPQNAVSFGFSGK------------KAAASMDLGRRRVITSMASGV 

OGB67066.1       222 GALFALFSQARFYERLVSESCPVCNRCQVECKMNAIP----------------GEKVHETNKAECIECFNCGEKCPPKAKSITYRFRW----------RPYHSKPDFSRRQFITTSASSI 

KYK31751.1       171 GALLGVFSLTRVLNLHVQEKCTQCGLCSRVCPMDAIK----------------EYKVKKT---ECTLCFDCVEKCPQHAITLTKQREP----------ITFESRRTFLK-------AGIA 

WP_062193756.1   233 GGLLGFISRFSLFRRVVNADCTSCAVCSRRCPTGTID----------------PARNFASDPAECTVCYDCADSCPRGSTTFQWQMPHWKP--------AEWQPYDPARREVLATLGLSA 

WP_027938385.1   186 GVLFSLLSKGKKLRYQVNSACSHCGICAQTCSVGAAP------------------ETTGNTGDGCMVCGECQKVCPLQSIQWGVAKKSSDEN-----GKLMEAGSQSSRRQFFAVTAVVA 

 

 

 

Q1NSB0           352 VVGPLLRVSNPPEG-RANPLLIRPPGSVPEKEFLARCVKCGECMKVCLTGG--LQPTLLEAGLEGLWTPMLVPRMGYCEYHCTLCGQVCPTGAIKRLPVREKTEVKIGLAMFDRDRCLPW 

A0A0S7XC05       318 LAIPLLRISPSEK--RPHPRLIRPPGALPEADFLERCVKCSECMKVCLTNG--LQPTLLEAGLEGTWSPMLVPTVGYCEYSCTLCGQVCPTGAIRELSVEEKRKTVIGLAFIDKNRCLPY 

OGW21092.1       317 IAVPLLRATPLSKSEFINQRLIRPPGSLEEKEFLKRCVKCGECMKVCITNG--LQPTLLEAGLEGIWSPLLIPKIGYCEFRCTLCGQVCPTGAIKKLNLEEKAKVKIGLAMIDKGRCLPY 

OGB67066.1       316 LAVGLISLGMKDRT--SSAKNIRPPGSLPENEFLDRCLRCLECVRICSSNGKCLQPVGFEQNLLELWTPVASMREGYCEYNCNLCGLVCPTDAILPLPLALKKQTPMGLAYFDKNLCIPF 

KYK31751.1       255 AGTGVLLSPLLSTS--TQTQVIRPPGALKEENFLSTCVRCGECMRVCPSQG--LRPVLLEGSLYALYTPKLVPRIGECQL-CMLCWQVCPTGALVEVD---PSQMKLGTASVNRNTCLEW 

WP_062193756.1   329 AWVALTYVEPVKKR--SPADLIRPPGAR-LVDFEALCIRCNECVRVCPTQG--LQASFLEGGWQNMLTPRLAPRFGPCNYSCNACGRACPTGAIPELSLEEKRQIPIGLARVDRNRCLPW 

WP_027938385.1   283 GAILCWQQTATAMK-----RVLRPPGALDEPDFSAACNRCGRCIQVCPGKA--LFPMPVEEGLGTFATPFLTPRKARCDL-CLACQAVCPTGAIAAVP---LEEVQMGRAIVDKPRCLAW 

 

 

Q1NSB0           469 SYGIPCIVCEEVCPTPKKAIWFEEVKTHDRDGQPVYLQRPHVDLELCVGCGICETLCPVADKPAVRVTSIGESRSRENQLLL---- 

A0A0S7XC05       434 AFAVNCIVCEEHCPTPDKAIVFEETEAIDPYGNSVTLKRPVVIPELCIGCGICEYKCPVLDEPAIYVTNINESRSPQRSLLIAPKK 

OGW21092.1       435 AHARPCIVCEEVCPTPKKAIWFEKAKVKDRNGKEFIVQQPRVDLELCIGCGICEAKCPVVDKPAIYVTSIGESRSKENRLLMEGY- 

OGB67066.1       434 ARHEDCLVCEEHCPTPDKAIKFDLKMAQLPDGSSRMVKYPYVVRELCIGCGICEHKCPLPALPGVLVTRENEKRLLTVPPAV---- 

KYK31751.1       367 ELGQACLVCQEVCP--FQAVDVVERGGQG-YGRGRGRRGPQVNRSKCAGCGACENHCPTEPTS-IVVSPEGEIRY----------- 

WP_062193756.1   444 AYNIDCLVCEEACPVASKAIKVEEVEVINGWGETVTIKRPYVIKELCIGCGMCEYQCPMGGDAAIRVFAYTETGGYSGGDASLGS- 

WP_027938385.1   392 NEDKLCFICGEQCPVLAIVDDGG--------------HRPKVLAEKCVGCGSCENACPVDGEAAIRVTPR---------------- 

Tat motif

4Fe-4S cluster 1

4Fe-4S cluster 1

4Fe-4S cluster 2 4Fe-4S cluster 3

4Fe-4S cluster 54Fe-4S cluster 4

4Fe-4S cluster 6

4Fe-4S cluster 7

‘short fusion’ position for PFD (Q1NSB0)

Protein ID Domain Phylum genus/species 

Q1NSB0 Bacteria Proteobacteria  delta proteobacterium MLMS-1 

A0A0S7XC05 Bacteria Fibrobacteres Latescibacteria bacterium DG_63 

OGW21092.1 Bacteria Nitrospirae Nitrospirae bacterium GWA2_46_11 

OGB67066.1 Bacteria Deferribacteres Caldithrix sp. RBG_13_44_9 

KYK31751.1 Archaea Euryarchaeota Thermoplasmatales archaeon DG-70-1 

WP_062193756.1 Bacteria Chloroflexi Anaerolinea thermolimosa 

WP_027938385.1 Bacteria Firmicutes Anaeroarcus burkinensis 

TMD1

TMD5

‘long fusion’ position for PFD (Q1NSB0)

Figure 6. Sequence alignment of selected polytopic polyferredoxin proteins. Sequences of polytopic predicted polyferredoxin proteins from the

indicated prokaryotes were aligned using ClustalW (http://www.ch.embnet.org/software/ClustalW.html) and Boxshade (http://www.ch.embnet.org/

software/BOX_form.html). Predicted positions of TMD1 and 5 (using the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016)) are shown in blue.

Positively charged amino acids immediately downstream of TMD5 are shown in orange. The consensus twin arginine motif is boxed in red and cysteine-

rich regions that are predicted coordinate 4Fe-2S cluster are boxed in yellow. The positions after which Bla was fused to the delta proteobacterium

MLMS-1 protein are indicated.
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which is the minimum loop length we defined for efficient recognition of Sco2149 TMD3 by the Tat

pathway; Table 2).

We constructed ‘short’ (after aa 252) and ‘long’ (after aa 272) variants of Sco3746TMD fused to Bla

(Figure 9A), and expressed these in a tat- strain to score for Sec-translocation of TMD5. Figure 9B

shows that for the short fusion there is some degree of insertion of TMD5 by the Sec pathway

because the M.I.C. for ampicillin mediated by this construct is significantly higher than the basal

level. Substitution of hydrophobic leucines into residues towards the predicted centre of TMD5 is

predicted to shift the 4Gapp for membrane insertion of TMD5 from positive to negative (Table 4),

and indeed, substitution of two or more leucine residues into the short fusion doubled the M.I.C. for

ampicillin (Figure 9B), consistent with an increased level of insertion of TMD5 by Sec. The long

Sco3746TMD-Bla fusion harbours an additional positive charge relative to the short fusion

(Figure 9A). Figure 9B shows that this extension reduced the M.I.C. for ampicillin almost to the level

F9YSF9             1 ----MIYVILVGV----VLG-YALLTGYALQAL----------KVLRTAKAI--RYL---FVLLSAG------------IILNVFWQWTQRDERVWTS---VQLYSMGALLTWALTLATL 

WP_028307559.1     1 ---MSIFLIAVTSILLLNLSWYLVSDYWLRS---DLAQYPRARNVTRLALLIWISIIFIPVIGMTIPY-FDNPLGRGPWGWLALFYLWMGS-IFFWMI---------GMGILGVPI---- 

A0A1G1HRI1         1 MPARSPYTIHLVVLFLILASVQVYLFVKARRRIRRSGLNPRLKSLIVISLAVFIGVMQVPYA----------AWFTGPEPGVRSAYAVLKYPFAVWSFGAIGTALLLGAG---------- 

A0A1Q6W294         1 -------MITRLIYLLLFVSPQVLLYVYLRERLPDPARPERA-RRVRIGLAATFAIFNIPWVLVAGRALSGSMWGVGRIPYLG---PWIAWQLLGWIFGTLVTCYLLGKLVLWGSR---- 

A0A0K4FD54         1 ------------------------------------------------------------------------------------------------------------------------ 

O34870             1 ------------------------------------------------------------------------------------------------------------------------ 

 

 

F9YSF9            82 SLVLFIEDIQRF--INLLVKRKQRKKEVTSRRKFVSLLGLGMAAIPFASMI---YGMTKGKYHFKVWKHTLYFDDLPEAFNGFKITQISDIHSGSFDNEDKIRYAIDLINEQKSDIITFT 

WP_028307559.1   100 SVYNYFTKKSRASKHGLQTKIDQNNSSSLSRRKLLRLALV---AAPPLIVSGSTIAAVATKDRLNIYTKDLPVAGLPDDLDKLTITHLSDLHIGMVTGRDRIERIVAEANSLKSDIIAVT 

A0A1G1HRI1       101 DLVSHFRGRVRARQ--RNP-----RPVNLERRAFLGRAFGAVAATPMVATA---YGATFDTARLEIVRKTLPFTSLPPSFDGVTVLQASDIHSGLSMDPATLRKLVQQMNALRPDLVLLT 

A0A1Q6W294       106 ELGAVLFGTRRASTT-HRPELLAAPSSLMSRRRFLARATYSYAAAGAALSI---YGIWSAYRVPQLTRRTLTFPNLPPGLDGLTLLHLSDLHAGIHLGAERMQEIVRQVNALTPDLIVQT 

A0A0K4FD54         1 ---------------------------MISRRRL-----LQVAAATLAAGSGFGYIHYMEPGWLELTHHRIA--FFKDKSQSFKILFLADLHYSRFVPLTLISEAINLGIAQKPDLILLG 

O34870             1 -------------------------MKKMSRRQFLKGMFGALAAGALTAGGGYGYARYLEPHMIETTEHTIKSSLIPHGFDGFKIVQFSDAHLSDYFTLEDLKTVILTINESKPDLIVFT 

 

 

F9YSF9           197 GDMVNNLASEMLPWKDI----FKNLHAPEGLFAVLGNHDYGDYSSWESPKAKAQNLQLLKDIQAEIGFDLLLNEHRY-IEKAGQRIALIGVENWGYGR--FSKYGDLEKALKNTHEKDFK 

WP_028307559.1   217 GDILDQDLQYMPDLLET----VGELKAPMGVYLCLGNHDKIQDP-----------YRWI-NKVRGAELDLLLNESVI-IDTGRTPLKIMGIDFTHRDNNNFSFIQ--KAEEDSSADNALR 

A0A1G1HRI1       211 GDYISASMKDLDPFLSA----FASLRAPMGVIASLGNHEYMYGR-----------IDTIKGGIRDIGATVLENESAM-LVKGADGIRIAGIADIRFGR---PD----LDRALDGPDGLFT 

A0A1Q6W294       222 GDMIDISRAFIPPYVQA----FRELRAPLGVVTVLGNHDRYTGE-----------RDVIR-GCRDAGQTFLQNDCHV-IERGGATLALLGIDDPHNWTADDPQPDDVVAALRSAPAAAFK 

A0A0K4FD54        87 GDYVLFDMPLNFPAFSDV---LSPLAKRAPTFAIYGNHDHPVGTE---------KNRVIGEALKSAGITVLFNEATL-ISAQKQQFELVGTGDLWAGQCKPP---------PTSEAGLSR 

O34870            96 GDIID--NPDTYQHHQAVIPLLRKLNAPFGKLCIYGNHDHGGYG-----------TAVYKSLMTAGGFTVYRNGYQTLSLADGSKIEIASLDDLMLGNPDYE---GT---LSRLSDRLFS 

 

 

F9YSF9           310 ILLSHDPTHWQYQVIPQQKNIHLTLSGHTHGMQFGIEIP-GWLRWSPSQWKYKYWAGIYQQNGKFLNVNRGFGFLAFPGRVGIWPEITVIELKGKKQKNETTT----------------- 

WP_028307559.1   318 ILLAHHPHAFDA---AAVMGIPLTLAGHTHGGQLVLKDLRGNELFNPGNRLFRYVKGIYHSPQG------------------------------HTLFVHVGSGDWFPLRMGVPCEIVQL 

A0A1G1HRI1       308 ILLSHRPEIFPV---AARRGVSLTLSGHYHGGQLALSLP--GVTLSAAHLVTPYPEGLFVEGRGLLYVNRGIGTTGPPVRLHARPELTLITLARAQAYVSVGTGHWLPFRLGCPAEISVF 

A0A1Q6W294       325 ILLAHRPGAWDG---AAPRGIPLTLAGHIHGGQLY--VP--GIGWSPGRLITKYVMGHFQRGDSQLYVSRGIGVVGVPIRVFAPPEIELFTLRRG------------------------- 

A0A0K4FD54       185 LVLAHNPDSKEV---MRDEAWDLMLCGHTHGGQIHIPLV--GEPFAPV-EDKRYTAGLNAFGERQIYTTRGVGSL-YGLRLNCRPEVTILELV--------------------------- 

O34870           197 ILLVHEPDAALK---TTDYPVNLQLSGHTHGGQIQLPFY--GPIITPP-YGKVYTEGMYQTGSTHIYVNRGLGMTRLPLRFLAKPEITVFTLKSTN------------------------ 

 

 

F9YSF9               -------- 

WP_028307559.1   405 RLVPAQII 

A0A1G1HRI1       423 TFQLPT-- 

A0A1Q6W294           -------- 

A0A0K4FD54           -------- 

O34870               --------

TMD1

Tat motif TMD4

TMD2/3

Figure 7. Sequence alignment of selected YkuE-related proteins. Sequences of polytopic YkuE-like metallophosphoesterase proteins from the

indicated prokaryotes were aligned, alongside the shorter homologues from E. coli and B. subtilis using ClustalW (http://www.ch.embnet.org/software/

ClustalW.html) and Boxshade (http://www.ch.embnet.org/software/BOX_form.html). Predicted positions of the TMDs (using the SCAMPI2/TOPCONS

servers (Tsirigos et al., 2015, 2016)) are shown in blue. Note that residues in predicted TMD2 and TMD3 are not well aligned across the homologues

and therefore amino acids predicted to be in TMD2 and TMD3 for each protein are individually marked in blue font. Positively charged amino acids

immediately downstream of TMD5 are shown in orange. The consensus twin arginine motif is boxed in red and amino acids predicted to coordinate

the metal ion cofactor are shown in red font.
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Figure 8. Topological analysis and membrane integration of Sco3746TMD-MBP and PFDTMD-MBP. (A) Membrane (M; 100 mg protein) and soluble (S; 50

mg protein) fractions of E. coli HS3018-A (4malE, tat+) and HS3018-A4tat strains harboring pSU18 (empty vector), pSU18 encoding Sco3746TMD-MBP or

PFDTMD-MBP fusion proteins, or variants of these where the twin-arginine motif was substituted to twin-lysine were separated by SDS-PAGE (12%

acrylamide), transferred to nitrocellulose membrane and immunoblotted with an anti-MBP antibody. (B) Crude membranes of the same strains and

Figure 8 continued on next page
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of the empty vector control, consistent with the positive charges at the C-terminal end of Sco3746

TMD5 modulating interaction of this TMD with the Sec pathway.

Similar to Sco3746 homologues, all of the PFD proteins analysed in Figure 6 also have a non-con-

served positively charged region at the C-terminal end of TMD5. Analysis of predicted 4Gapp values

for membrane insertion of the 5 TMDs was difficult due to variability in TMD predictions. We there-

fore analysed only the first and fifth (Tat-dependent) TMDs (Table 5), and again it can be seen that

the Tat-dependent TMD has a positive predicted 4Gapp.

To probe PFD interaction with the Sec pathway we designed ‘short’ (fused after aa 371) and

‘long’ (fused after aa 374) fusions of PFDTMD from delta proteobacterium MLMS-1 to Bla

(Figure 10A) and produced these in a tat- strain to score for Sec-translocation of TMD5. However,

neither of these constructs mediated detectable export of b-lactamase as the M.I.C. for ampicillin

was almost indistinguishable from the negative control (Figure 10B,C). We attribute this to the rela-

tively poor expression of the PFD fusion proteins (e.g. Figure 8A). Next we substituted two, or

three, leucine residues into TMD5 of PFD in each of the fusions, which is predicted to lower the

4Gapp value for TMD5 membrane insertion (Table 5). In agreement with this, Figure 10B shows that

these substitutions significantly increased the level of interaction of the short fusion with the Sec

pathway, giving mean M.I.C.s for ampicillin of 9.3 mg/ml for the G354L, R358L and 12.0 mg/ml for

the G354L, P355L, R358L substitutions, respectively. These same substitutions also increased the

interaction of the long fusion with Sec as they also conferred some resistance to ampicillin, each

Figure 8 continued

plasmids were treated with 4M urea or 0.2M carbonate, and the presence of the fusion proteins in the wash supernatant (S) and pelleted membrane (M)

was analyzed by immunoblotting as in (A). (C) Predicted locations of cysteine substitutions of Sco3746TMD-MBP used for topology analysis. (D) Cell

suspensions of strain HS3018-A harboring pSU18 alone (empty vector), or pSU18 encoding Sco3746TMD-MBP or the indicated single cysteine

substitutions of Sco3746TMD-MBP were incubated with buffer alone, with 5 mM MAL-PEG, or were lysed by sonication and incubated with 5 mM MAL-

PEG. Subsequently all samples were quenched, lysed and membranes pelleted by ultracentrifugation. Membrane samples (150 mg of protein) were

separated by SDS PAGE and immunblotted as in (A).

DOI: 10.7554/eLife.26577.021

Table 4. Predicted 4Gapp values (in kcal mol�1) for membrane insertion of each of the five TMDs of the indicated predicted MoCo-

binding proteins. Sequences were analysed using the 4Gapp prediction server (http://dgpred.cbr.su.se/) that are based on hydropho-

bicity scales generated from (Hessa et al., 2005, 2007). This server uses the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015,

2016) to predict the positions of the TMDs and for S. coelicolor Q9L0V6 (Sco3746) predicts TMD1 to span aa 39–61, TMD2 to span aa

99–121, TMD3 to span aa 139–161, TMD four to span aa 173–194 and TMD5 to span aa 223–242.

Predicted 4Gapp

Family/Species Protein ID TM1 TM2 Tm3† Tm4† TM5*

Phycicoccus sp. WP_056916643.1 �1.666 �0.199 �1.593 1.595 0.964

Solirubrobacter soli WP_053225688.1 �1.778 1.394 �2.239 1.681 1.135

Alicyclobacillus acidocaldarius C8WRE4 �0.540 �1.802 �1.128 0.143 0.231

Ktedonobacter sp. OLB54713.1 �0.479 �2.647 �2.375 �1.257 1.762

Haloprofundus marisrubri WP_058581003.1 1.067 �1.424 �0.421 �2.107 1.299

Streptomyces coelicolor Q9L0V6 �2.268 �0.011 0.328 0.512 1.376

S. coelicolor G234L, S235L �0.757

S. coelicolor G234L, S235L, M239L, F2440L �1.240

*Bla is fused to S. coelicolor Sco3746 (Q9L0V6) after amino acid 247 after amino acid 252 (full sequence of all of the fusion proteins used in this study

can be found in Supplementary file 1D).

†Positive values for DGapp values noted for some internal TMDs. These marginally hydrophobic TMDs are, however, still likely to be integrated by the

Sec pathway. Many individual TMD in multi-spanning membrane proteins have an unfavourable free energy of membrane insertion and are unable to

stably integrate by themselves, requiring TMD sequence-extrinsic features for membrane insertion. It is, however, usual for the first and last TMD to be

more hydrophobic as they lack these sequence-extrinsic features (Hedin et al., 2010; Virkki et al., 2014; Elofsson and von Heijne, 2007; White and

von Heijne, 2008b).
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giving a mean M.I.C. of 6.7 mg/ml (Figure 10C). However it is clear that the same leucine substitu-

tions confer lower levels of resistance to ampicillin when they are present in the long construct than

when they are in the short construct (compare Figure 10B with Figure 10C). Since the shorter con-

struct harbours one less positive charge at the C-terminal end of TMD5 we conclude that the addi-

tional positive charge present in the extended fusion reduces the level of membrane insertion by

Sec.

A

long fusion B

M.I.C.            1.0+0.0                 15.3+1.2 32.0+0.0             30.7+2.3 2.0+0.0    
( g/ml)
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Figure 9. Relative hydrophobicity of TMD5 coupled with C-terminal positive charges modulate interaction of Sco3746 with the Sec pathway. (A) The

sequence flanking TMD5 of Sco3746. The lower sequence extends to the position of the ‘short’ Sco3746-Bla fusion, and the amino acids in TMD5

substituted for leucine in this construct are shown. Top is the sequence fused to Bla in the ‘long fusion’. The predicted position of TMD5 was

determined using the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016) and is shown boxed. The twin arginines are shown in purple and

positively charged amino acids C-terminal to TMD5 are underlined. (B) Representative images of M.I.C.Evaluator strip tests of strain DADE (tat-)

harbouring pSU18 producing the indicated variants of Sco3746TMD-Bla In each panel the mean M.I.C ± s.d. is given at the bottom of each test strip

(where n = 3 biological replicates for each strain).

DOI: 10.7554/eLife.26577.023

The following source data is available for figure 9:

Source data 1. Images of M. I.C.Evaluator strip tests used to generate mean M.I.C. values in Figure 9B.

DOI: 10.7554/eLife.26577.024
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Finally we noted that all of the YukE homologues we analysed in Figure 7 also have a non-con-

served positively charged region at the C-terminal end of TMD4 that is not present in the shorter,

soluble variants. Moreover, analysis of predicted 4Gapp values for membrane insertion of the TMDs

(Table 6) again reveals that Tat-dependent TMD has a positive predicted 4Gapp. Taken together

our results demonstrate that the mechanism of Sec release of the final TMD is conserved across

three families of dual Sec-Tat targeted membrane proteins.

Discussion
In a previous study we identified the actinobacterial Rieske FeS protein as the first protein known to

be targeted to the plasma membrane by the dual action of the Sec and Tat translocases. The mecha-

nism by which translocation is coordinated between the two pathways was not known, although a

length- and sequence-conserved loop region between Sec-dependent TMD2 and Tat-dependent

TMD3 was implicated in this process (Keller et al., 2012). Intensive investigation into the principles

governing the correct biogenesis and topology of membrane proteins has revealed that the relative

hydrophobicity of a TMD along with the location of positively charged amino acids are key features

that govern the insertion and orientation of transmembrane segments (Heijne, 1986; Hessa et al.,

2005; Ojemalm et al., 2013). Here we show that that these principles are exploited by nature to

regulate translocation of Rieske by the Sec pathway and allow its hand-off to Tat prior to insertion of

the final TMD. None of the features of the highly conserved loop region, other than the presence of

one or more positively charged amino acids that serve as topology signals, plays any discernible role

in co-ordinating the Sec and Tat pathways and may therefore be required for cofactor insertion or

interaction with other components of the cytochrome bc1 complex.

A bioinformatic analysis of prokaryotic genome sequences identified three further families of pol-

ytopic membrane proteins that share the predicted features of Sec-Tat dual-targeting. Two of these

have five TMDs, with the fifth TMD immediately preceded by a consensus Tat recognition motif. A

representative member of each of the 5TMD family was shown to be membrane inserted through

the action of two translocases, with the Tat system recognising the final TMD. Importantly, the low

hydrophobicity of the final TMD coupled with C-terminal positive charges, identified through our

analysis of the S. coelicolor Rieske protein as being critical for Sec-release, are conserved across

these further protein families, and were confirmed experimentally to govern release of this final

Table 5. Predicted 4Gapp values (in kcal mol�1) for membrane insertion of the first and last TMDs of

the indicated predicted polyferredoxin proteins. Sequences were analysed using the 4Gapp predic-

tion server (http://dgpred.cbr.su.se/) that are based on hydrophobicity scales generated from

(Hessa et al., 2005, 2007). This server uses the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015,

2016) to predict the positions of the TMDs and for delta proteobacterium MLMS-1 Q1NSB0 (PFD)

predicts TMD1 to span aa 9–31 and TMD5 to span aa 338–359.

Predicted 4Gapp

Family/Species Protein ID TM1 TM5*

Latescibacteria bacterium DG_63 A0A0S7XC05 �1.792 0.371

Nitrospirae bacterium GWA2_46_11 OGW21092.1 �1.062 1.222

Caldithrix sp. RBG_13_44_9 OGB67066.1 �3.560 1.438

Thermoplasmatales archaeon DG-70–1 KYK31751.1 �1.474 1.715

Anaerolinea thermolimosa WP_062193756.1 �2.317 1.107

Anaeroarcus burkinensis WP_027938385.1 �0.975 0.836

delta proteobacterium MLMS-1 Q1NSB0 �2.382 0.297

delta proteobacterium MLMS-1 G354L, R358L �0.701

delta proteobacterium MLMS-1 G354L, P355L, R358L �1.741

*Bla is fused to delta proteobacterium MLMS-1 PFD (Q1NSB0) after amino acid 364 (full sequence of all of the

fusion proteins used in this study can be found in Supplementary file 1D).
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Figure 10. Relative hydrophobicity of MLMS-1 PFD TMD5 coupled with C-terminal positive charges governs interaction with the Sec pathway. (A) The

sequence flanking TMD5 of MLMS-1 PFD. The lower sequence (corresponding to ‘short fusion’ in parts B and C) extends to the position of the shorter

PFD-Bla fusion, whereas the top sequence is the sequence fused to Bla in the ‘long fusion’. The predicted position of TMD5 was determined using the

SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016) and is shown boxed. The twin arginines are shown in purple and positively charged amino

Figure 10 continued on next page
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TMD from Sec. Thus a common mechanism is at play to orchestrate the integration of dual Sec-Tat

targeted membrane proteins.

A model for how such proteins are assembled is shown in Figure 11, using the actinobacterial

Rieske protein as an example. According to the model, the Sec-dependent helices are inserted co-

translationally. The positively-charged twin-arginines N-terminal to the final TMD imposes an N-in,

C-out orientation on this helix. However, the C-terminal positive charges prevent the full insertion of

this TMD because the relatively low hydrophobicity is insufficient to drive translocation of the C-ter-

minal positively charged region (Wahlberg and Spiess, 1997; Goder and Spiess, 2003). This is

experimentally supported by our findings that substitution of a single leucine residue into TMD3 of

the S. coelicolor Rieske-Bla fusion is sufficient to greatly increase its Sec-dependent insertion despite

the presence of two positive charges at the C-terminal end. Accordingly, it is likely that this final

TMD is released by the Sec pathway as a re-entrant loop. It is formally possible that instead of poly-

peptide release by Sec there is direct handoff of the partially-synthesized protein to the Tat receptor

complex, where its full maturation, including cofactor insertion, could potentially occur. Such a

model would require interaction between the Sec and Tat machineries. However, it should be noted

that the Sec and Tat pathways of E. coli are able to co-operatively integrate dual-targeted protein

families even though the organism itself does not encode such proteins, suggesting that a direct

Sec-Tat interaction is unlikely to be an essential feature of this process. Ultimately, following folding

of the cofactor-containing domain, the Tat machinery mediates translocation of the folded domain

across the membrane, releasing the Tat-dependent TMD into the bilayer.

Signal peptides of soluble Tat substrates often contain one or more positively-charged residues

in their c-regions which are known to act as Sec-avoidance motifs. Removal of these charges results

in signal sequences that can mediate efficient transport by the Sec machinery (Bogsch et al., 1997;

Cristóbal et al., 1999; Blaudeck et al., 2001). Furthermore, signal peptides that direct proteins to

the Tat machinery are known to be less hydrophobic than Sec signal peptides and if the hydropho-

bicity of a Tat signal peptide is increased it can also mediate efficient transport by the Sec pathway

Figure 10 continued

acids C-terminal to TMD5 are underlined. Amino acids in TMD5 substituted for leucine in both constructs are shown. (B and C) Representative images

of M.I.C.Evaluator strip tests of strain DADE (tat-) harbouring pSU18 producing the indicated variants of PFDTMD-Bla In each panel the mean M.I.C ±

s.d. is given at the bottom of each test strip (where n = 3 biological replicates for each strain).

DOI: 10.7554/eLife.26577.026

The following source data is available for figure 10:

Source data 1. Images of M. I.C.Evaluator strip tests used to generate mean M.I.C. values in Figure 10B and C.

DOI: 10.7554/eLife.26577.027

Table 6. Predicted 4Gapp values (in kcal mol�1) for membrane insertion of each of the four TMDs of the indicated metallophosphoes-

terase (YkuE) proteins. Sequences were analysed using the 4Gapp prediction server (http://dgpred.cbr.su.se/) that are based on hydro-

phobicity scales generated from (Hessa et al., 2005, 2007). This server uses the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015,

2016) to predict the positions of the TMDs.

Predicted 4Gapp

Family/Species Protein ID TM1 TM2 Tm3† TM4

Capnocytophaga canimorsus F9YSF9 �1.595 �1.327 �1.266 0.957

Desulfitibacter alkalitolerans WP_028307559.1 �1.409 �2.217 �2.075 1.087

Nitrospirae bacterium RBG_16_64_22 A0A1G1HRI1 �1.326 �0.017 0.628 1.579

Gemmatimonadetes bacterium 13_2_20 CM_69_27 A0A1Q6W294 �1.397 �0.016 �0.881 1.282

†Positive values for DGapp value noted internal TMD. This marginally hydrophobic TMD is, however, still likely to be integrated by the Sec pathway.

Many individual TMD in multi-spanning membrane proteins have an unfavourable free energy of membrane insertion and are unable to stably integrate

by themselves, requiring TMD sequence-extrinsic features for membrane insertion. It is, however, usual for the first and last TMD to be more hydropho-

bic as they lack these sequence-extrinsic features (Hedin et al., 2010; Virkki et al., 2014; Elofsson and von Heijne, 2007; White and von Heijne,

2008b).

DOI: 10.7554/eLife.26577.028
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(Cristóbal et al., 1999). However, despite possessing these ‘Sec-avoidance’ features, over half of

the native E. coli Tat signal peptides are capable of transporting reporter proteins through the Sec

pathway if fused to an appropriate passenger domain (Tullman-Ercek et al., 2007). This raises the

possibility that rather than being an exception, Sec interaction with Tat signal peptides is much

more frequent, and that following abortive attempts at Sec-translocation, membrane-associated

twin-arginine signal peptides are common substrates of the Tat pathway. In this context it should be

noted that both thylakoid and E. coli Tat substrates interact with the membrane before subsequent

interaction with Tat machinery (Musser and Theg, 2000; Ma and Cline, 2000; Shanmugham et al.,

2006; Bageshwar et al., 2009).

Our work has shown that dual targeted Sec-Tat dependent membrane proteins are dispersed

across two domains including Gram-negative and Gram-positive bacteria and euryarchaea, indicat-

ing that the biogenesis of dual-targeted membrane proteins is a common feature of prokaryotes. It

is interesting to note that distant homologues of both the predicted heme-Moco binding protein,

Sco3746, and the MLMS-1 polyferredoxin are widely found as separate polypeptides. For example

E. coli MsrP/MsrQ (formerly YedY/YedZ encoded by yedYZ) are, respectively, a Sec-dependent poly-

topic heme b protein and Tat-targeted soluble MoCo-containing periplasmic protein that together

use electrons from the respiratory chain to catalyse the repair of proteins containing methionine sulf-

oxide (Brokx et al., 2005; Gennaris et al., 2015). Likewise MLMS-1 polyferredoxin is a fusion of

NapH, a Sec-dependent polytopic protein with four TMD that co-ordinates [4Fe-4S] iron-sulfur clus-

ters at the cytoplasmic side of the membrane, with NapG, a Tat-dependent periplasmic protein that

is predicted to co-ordinate four [4Fe-4S] at the periplasmic side of the membrane. Collectively

NapGH form a quinol dehydrogenase complex that in E. coli and Wolinella succinogenes is involved

in nitrate respiration (Brondijk et al., 2004; Kern and Simon, 2008). The close relationship of such

proteins and their corresponding genes raises the possibility that dual-targeted proteins arose dur-

ing the course of evolution from separate polypeptides but adjacent genes. Alternatively, the ances-

tral proteins may have been single, dual-targeted polypeptides that subsequently separated in some

organisms.

Materials and methods

Bacterial strains, plasmid construction and growth conditions
All strains used in this study are derived from Escherichia coli K-12 and are listed in

Supplementary file 1A. Strain DH5a (Stratagene) was used for molecular biology applications.

Strains MC4100 (Casadaban and Cohen, 1979) and DADE (as MC4100; DtatABCD, DtatE;
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Figure 11. Model for actinobacterial Rieske protein assembly. 1. TMDs 1 and 2 are inserted into the membrane cotranslationally by the Sec machinery

(blue box). The Sec machinery interacts with TMD3 in an N-in, C-out orientation. 2. The positive charges at the C-terminal end of TMD3 force an

orientational preference on the helix and it is not inserted by the Sec machinery. 3. The hydrophobic segment of TMD3 is released from the Sec

machinery as a re-entrant loop. As there are no further TMDs within the Riekse sequence the Sec machinery releases the polypeptide. 4 and 5.

Translation is completed and the iron-sulfur cluster is inserted into the protein. 6. The assembled Tat machinery (pink half-cylinder) interacts with TMD3

to translocate the folded globular domain across the membrane. 7. The fully assembled Rieske protein is released into the membrane to interact with

partner proteins.
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[Wexler et al., 2000]) were used for work with Bla fusions, MCDSSAC (Ize et al., 2003) and

MCDSSACDtat (as MCDSSAC; DtatABC::Apra; [Keller et al., 2012]) were used for work with AmiA

fusions, and HS3018-A (Caldelari et al., 2008) and HS3018-ADtat (As HS3018-A; DtatABCD, DtatE;

[Keller et al., 2012]) were used for work with MBP fusions.

The amino acid sequences of all of the fusion proteins used in this study can be found in

Supplementary file 1B. All plasmids used and generated in this study are listed in

Supplementary file 1C and all oligonucleotides are listed in Supplementary file 1D. To generate

pSU-PROM AmiA, DNA encoding full length AmiA was PCR amplified using oligonucleotides BamHI

AmiA and SU18.2 with pSU18 AmiA (Keller et al., 2012) as a template, digested with BamHI and

HindIII and inserted into similarly digested pSU-PROM (Jack et al., 2004). To generate pSU-PROM

Sco2149TMD-AmiA, the Sco2149TMD-AmiA allele was excised from pSU-TM123-AmiA (Keller et al.,

2012) by digestion with BamHI/HindIII and ligated into similarly digested pSU-PROM. To generate

pSU-PROM Sco2149TMD-Bla, the amiA coding region was excised from pSU-PROM Sco2149TMD-

AmiA by digestion with XbaI/HindIII and replaced with the coding sequence for the mature region

of Bla obtained by PCR amplification from pBR322 that had been similarly digested. To extend the

Sco2149TMD-Bla fusion to aa205 of Sco2149, the region covering Sco2149 codons 1–205 were ampli-

fied using oligonucleotides Sco2149TMD and Sco2149TMD extension and cloned as a BamHI-XbaI

fragment into similarly digested pSU-PROM Sco2149TMD-Bla to generate pSU-PROM Sco2149TM-

Dextended-Bla.

DNA encoding the first 247 amino acids of Sco3746 was PCR amplified using oligonucleotides

Sco3746For and Sco3746Rev with Streptomyces coelicolor M145 chromosomal DNA as a template,

digested with BglII and XbaI and inserted into pSU-PROM (Jack et al., 2004) that had been

digested with BamHI and XbaI. The region covering the tat promoter and Sco3746TMD coding region

was excised using EcoRI/XbaI and ligated into similarly digested pSU18 (Bartolomé et al., 1991).

Subsequently DNA encoding the mature regions of AmiA (from pSU-PROM Sco2149TMD-AmiA) or

MBP (from pTM123-MBP, (Keller et al., 2012) were cloned in as XbaI-HindIII fragments to give

Sco3746TMD-AmiA and Sco3746TMD-MBP, respectively. To construct Sco3746TMD-Bla the first 252

amino acids of Sco3746 was PCR amplified using oligonucleotides Sco3746For and Sco3746(252)Rev

with S. coelicolor M145 chromosomal DNA as a template, digested with BglII and XbaI and inserted

into similarly digested pSU-PROM Sco2149TMD-Bla (thus replacing the Sco2149 coding sequence

with Sco3746). Subsequently the XbaI site was replaced with KpnI by Quickchange site-directed

mutagenesis using oligonucleotides Sco3746TMDBlaFor and Sco3746TMDBlaRev. To extend the

Sco3746TMD-Bla fusion to aa272 of Sco3746, the region covering Sco3746 codons 1–272 were ampli-

fied using oligonucleotides SU18.1 and Sco3746TMDextension and pSU18PROM Sco3746TMD-Bla as

template. This was digested with EcoRI and KpnI fragment and ligated into a similarly digested

pSU18PROM Sco3746TMD-Bla as template to generate pSU18PROM Sco3746TMDextended-Bla.

A synthetic gene encoding the transmembrane region (residues 1–227) of the Rieske protein

(QcrA) from Mycobacterium tuberculosis strain Rv2195 was codon optimised for E. coli K12 expres-

sion (OPTIMIZER, [Puigbò et al., 2007]) and the synthetic gene was purchased ready cloned in

pUC57 (GenScript). The MtbRieskeTMD coding region was subcloned by digestion RcaI-XbaI and

ligated into pBAD24 (Guzman et al., 1995) using vector sites NcoI/XbaI. It was then digested

BamHI/XbaI and ligated into pSU-PROM Sco2149TMD-Bla in place of Sco2149TMD. To extend the

MtbRieskeTMD-Bla fusion to aa243 of QcrA, the region covering QcrA 1–243 were amplified using

oligonucleotides MtbRieskeTMD and MtbRieskeTMD extension and pBAD24-QcrA as template,

digested with BamHI-XbaI and ligated into similarly digested pSU-PROM MtbRieskeTMD-Bla to gen-

erate pSU-PROM MtbRieskeTMDextended-Bla.

The transmembrane coding region (residues 1–364) of the predicted polyferredoxin (PFD) from

delta proteobacterium MLMS-1 (NCBI GI:494503356) was codon optimised for E. coli K12 expres-

sion (OPTIMIZER, [Puigbò et al., 2007]) and the synthetic gene was purchased already cloned into

pBluescript (Biomatik). The PFDTMD coding region was excised with RcaI/XbaI and cloned into

pBAD24 (Guzman et al., 1995) that had been digested with NcoI/XbaI. Subsequently DNA encod-

ing the mature region of MBP (excised from pTM123-MBP [Keller et al., 2012]) was cloned in as an

XbaI-HindIII fragment. The entire PFDTMD-MBP coding region was subsequently excised as an EcoRI-

HindIII fragment and cloned into similarly digested pSU18 (Bartolomé et al., 1991) to give pSU18

PFDTMD-MBP. To construct pSU18 PFDTMD-AmiA, the MBP coding region was excised and replaced

with the AmiA coding region (as an XbaI/HindIII fragment from pSU-PROM Sco2149TMD-AmiA). To
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construct the PFDTMD-Bla fusion (which covers up to aa371 of PFD), oligonucleotides SU18.1 and

PFDTMDBlaRev were used to amplify the PFD coding sequence (with pSU18 PFDTMD-Bla as tem-

plate). The product was digested with EcoRI and KpnI and ligated into similarly digested pSU18-

PROM Sco3746TMD-Bla to generate PFDTMD-Bla. The PFDTMD coding sequence in this construct was

further extended to residue 374 using oligonucleotides SU18.1 and PFDTMD extension and pSU18

PFDTMD-Bla as template. The resultant product was digested with EcoRI-KpnI and ligated into simi-

larly digested pSU18 PFDTMD-Bla to generate pSU18 PFDTMDextended-Bla.

Site-directed mutagenesis was performed using the QuickChange method (Stratagene) according

to manufacturer’s instructions. Deletion mutants were generated from a modified QuickChange

method adapted from Liu and Naismith (2008). Briefly, forward and reverse primers were designed

to remove up to 5 residues at a time, overlapping by 12 nucleotides upstream and downstream of

the region to be deleted with an overhang of 12 nucleotides at either end. For truncations larger

than 5 residues the template used, already contained a downstream deletion of all residues but the

additional 5 residues to be removed. All constructs were verified by DNA sequencing.

Unless otherwise stated, E. coli strains were grown aerobically overnight at 37˚C in Luria-Bertani

(LB) broth supplemented with appropriate antibiotic/s at the indicated final concentrations - ampicil-

lin (125 mg/ml), kanamycin (50 mg/ml), apramycin (25 mg/ml) and chloramphenicol (25 mg/ml). Filter-

sterilised SDS solution was added to the media to final concentration of 1% to 2% as indicated. Phe-

notypic growth tests in the presence of SDS were performed as follows: overnight cultures were

diluted to OD600 0.1 and 5 ml aliquots were spotted in a serial dilution series from 104 cells to 101

cells per 5 ml for Sco2149TMD-AmiA and 5.106 to 105 for Sco3746TMD-AmiA and PFDTMD-AmiA on LB

agar supplemented with 1 or 2% SDS. Phenotypic testing for maltose fermentation employed the

approach of (Keller et al., 2012) using maltose-bromocresol purple broth prepared with M9 minimal

medium supplemented with 0.002% bromocresol purple (Roth) and 1% maltose. Growth was per-

formed in 96-well plates incubated without shaking for 24 hr to 48 hr at 37˚C. E. coli susceptibility to

ampicillin was determined by assessing the Minimum Inhibitory Concentration (M.I.C.) that pre-

vented growth. Stationary phase cultures were diluted to OD600 0.1 and LB agar plates were inocu-

lated by swabbing the diluted culture to generate a lawn of bacteria. Oxoid M.I.C.Evaluator test

strips (Thermo Fisher Scientific) containing a gradient of 0–256 mg/ml ampicillin were placed onto

the lawn and incubated at 37˚C for 18 hr. The M.I.C. value (in mg/ml) was read from the scale where

the pointed end of the ellipse intersects the strip according to manufacturer’s instructions.

Photographs of 96-well plates were captured as JPG files using a digital camera (DX AF-S NIK-

KOR 18–55 mm; Nikon) and colonies on agar with a digital scanner (EPSON perfection 3490

PHOTO). JPG files were imported into Gimp for cropping but otherwise were not processed.

Subcellular fractionation
Membrane and cellular fractions were prepared as described by Keller et al. (2012) with modifica-

tions. E. coli cells were grown overnight at 37˚C in LB medium with appropriate antibiotics, subcul-

tured and harvested at OD600 of 0.2 for cells producing Sco2149 derivatives or OD600 of 0.5 for cells

producing Sco3746 and PFD derivatives. Cells producing Sco2149 constructs were resuspended in

the same volume of hypertonic buffer (20 mM Tris-HCl pH7.5/200 mM NaCl) supplemented with

EDTA-free protease inhibitor (Roche). Cells producing Sco3746 or PFD constructs were diluted to

give a final OD600 of 0.2 in the same buffer. Cells were then lysed by sonication (Branson Digital

Sonifier 250) and the suspension was centrifuged for 10 min at 20 000 g at 4˚C to remove unbroken

cells and large cellular debris. The resulting supernatant was then ultracentrifuged for 1 hr at 220

000 g at 4˚C to separate membrane and soluble fractions. An aliquot of the soluble fraction was

kept for analysis and the membrane pellet was resuspended in 50 mM Tris-HCl pH 7.5; 5 mM

MgCl2; 10% (v/v) Glycerol. Protein concentration was estimated by the Lowry method (Lowry et al.,

1951) using the DCTM Protein Assay kit (Bio-Rad) and a standard curve generated with Bovine

Serum Albumin (BSA). Membrane and soluble fractions were snap-frozen and kept at �20˚C until

further analysis. Urea and carbonate extraction was undertaken as described previously

(Keller et al., 2012).
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Cysteine accessibility experiments
Cysteine accessibility was assessed as described by Koch et al. (2012) with the following modifica-

tions. Cultures were harvested at OD600 of 0.8 and resuspended to give a final OD600 of 0.3 in a

labeling buffer (50 mM HEPES, 5 mM MgCl2 pH 6.8) supplemented with EDTA-free protease inhibi-

tor (Roche). An aliquot of the sample was lysed by sonication. Labeling was then performed for 1 hr

at room temperature on intact or lysed cells using 5 mM methoxypolyethylene glycol maleimide

(MAL-PEG) at room temperature for 1 hr in the presence of 5 mM EDTA. A control without addition

of labeling reagent was systematically included. The reaction was quenched by addition of 100 mM

dithiothreitol (DTT) and the whole cell samples were then lysed by sonication. All samples were sub-

sequently centrifuged for 10 min at 20,000 g, 4˚C to remove non-broken cells and the resulting

supernatant ultracentrifuged for 30 min at 200,000 g at 4˚C to pellet the membranes. The mem-

brane pellet was resuspended in 60 ml of 50 mM Tris-HCl pH 7.5; 5 mM MgCl2; 10% (v/v) glycerol

for analysis by SDS PAGE and western blotting.

Protein analysis
Proteins were separated by Tris-glycine SDS-PAGE (7.5%, 10%, 12% or 15% polyacrylamide, as indi-

cated) and transferred onto nitrocellulose membrane either with semi-dry (TransBlot SD SemiDry

Transfer Cell, Bio-Rad) or dry transfer (iBlot2, Life technologies). Proteins were detected with primary

antibodies raised against either Sco2149 (a monoclonal Sco2149 peptide antibody generated by

GenScript against the N-Terminal epitope CLPPHEPRVQDVDER), Bla (monoclonal antibody, Abcam

ab12251), MBP (monoclonal antibody, NEB E8032L), BamA (polyclonal antibody, [Lehr et al.,

2010]). Bands were revealed with chemiluminescence (Clarity Western ECL Blotting Substrate, Bio-

rad) after incubation with secondary antibody coupled to HRP (anti-mouse IgG or Anti-Rabbit IgG,

Biorad). Light-emitting bands were visualised with a CCCD camera (GeneGNOME XRQ Syngene).

ImageJ (Schneider et al., 2012) was used for densitometry analysis. The density of Sco2149-associ-

ated signals were normalised against the BamA-associated signals which was used as a loading con-

trol. The results were expressed as percentage of the normalised signal obtained for the unmodified

Sco2149TMD-AmiA or Sco2149TMD-Bla fusion proteins.

Bioinformatic analysis
A Perl script was used to run all proteins from all completed prokaryotic genomes available in Gen-

bank at the time of analysis through the TATFind program (version 1.4; [Rose et al., 2002]) and the

TMHMM program (version 2.0c; [Krogh et al., 2001]). Conditions were included in the script to state

that there should be an even number of TMD before the twin arginines, the number of TMD after

the twin arginines should be exactly one, and the total probability of N-in should be greater than

0.9. The output of this, sorted into number of TMD prior to the twin arginines, can be found at:

http://www.lifesci.dundee.ac.uk/groups/tracy_palmer/docs/CombinedTATFindTMHMMoutput.docx.

Subsequently the script was updated to state that that there should be an odd number of TMD

(one, three, five or seven) before the twin arginines, the number of TMD after the twin arginines

should be exactly one, and the total probability of N-in should be less than 0.5. This output, sorted

into number of TMD prior to the twin arginines, can be found at: http://www.lifesci.dundee.ac.uk/

groups/tracy_palmer/docs/CombinedTATFindTMHMMoutput%20N-out%203.docx.
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Lehr U, Schütz M, Oberhettinger P, Ruiz-Perez F, Donald JW, Palmer T, Linke D, Henderson IR, Autenrieth IB.
2010. C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are
decisive for its recognition and assembly by BamA. Molecular Microbiology 78:932–946. doi: 10.1111/j.1365-
2958.2010.07377.x, PMID: 20815824

Li P, Beckwith J, Inouye H. 1988. Alteration of the amino terminus of the mature sequence of a periplasmic
protein can severely affect protein export in Escherichia coli. PNAS 85:7685–7689. doi: 10.1073/pnas.85.20.
7685, PMID: 3051001

Liu H, Naismith JH. 2008. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid
mutagenesis protocol. BMC Biotechnology 8:91. doi: 10.1186/1472-6750-8-91, PMID: 19055817

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. The
Journal of Biological Chemistry 193:265–275. PMID: 14907713

Ma X, Cline K. 2000. Precursors bind to specific sites on thylakoid membranes prior to transport on the Delta pH
protein translocation system. Journal of Biological Chemistry 275:10016–10022. doi: 10.1074/jbc.275.14.10016,
PMID: 10744678

Monteferrante CG, Miethke M, van der Ploeg R, Glasner C, van Dijl JM. 2012. Specific targeting of the
metallophosphoesterase YkuE to the Bacillus cell wall requires the twin-arginine translocation system. Journal
of Biological Chemistry 287:29789–29800. doi: 10.1074/jbc.M112.378190, PMID: 22767609

Musser SM, Theg SM. 2000. Characterization of the early steps of OE17 precursor transport by the thylakoid
DeltapH/Tat machinery. European Journal of Biochemistry 267:2588–2598. doi: 10.1046/j.1432-1327.2000.
01269.x, PMID: 10785379

Nilsson I, von Heijne G. 1990. Fine-tuning the topology of a polytopic membrane protein: role of positively and
negatively charged amino acids. Cell 62:1135–1141. doi: 10.1016/0092-8674(90)90390-Z, PMID: 2119256
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