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Abstract We investigated the anatomical and functional organization of the human substantia

nigra (SN) using diffusion and functional MRI data from the Human Connectome Project. We

identified a tripartite connectivity-based parcellation of SN with a limbic, cognitive, motor

arrangement. The medial SN connects with limbic striatal and cortical regions and encodes value

(greater response to monetary wins than losses during fMRI), while the ventral SN connects with

associative regions of cortex and striatum and encodes salience (equal response to wins and

losses). The lateral SN connects with somatomotor regions of striatum and cortex and also encodes

salience. Behavioral measures from delay discounting and flanker tasks supported a role for the

value-coding medial SN network in decisional impulsivity, while the salience-coding ventral SN

network was associated with motor impulsivity. In sum, there is anatomical and functional

heterogeneity of human SN, which underpins value versus salience coding, and impulsive choice

versus impulsive action.

DOI: https://doi.org/10.7554/eLife.26653.001

Introduction
Dopamine innervation to the cerebral hemispheres originates in the substantia nigra (SN) and ventral

tegmental area (VTA) of the midbrain. In monkeys, SN/VTA dopamine neurons display variations in

both anatomy and function. SN neurons can be divided into three tiers based on their staining, mor-

phology, and connectivity with the striatum (Haber, 2014; Haber and Knutson, 2010): moving from

a dorso-medial to ventro-lateral location in midbrain, dopamine neurons project to limbic, associa-

tive and then motor striatum. All three subdivisions send dendrites ventrally into the adjacent SN

pars reticulata (Haber and Knutson, 2010). Distinct functional characteristics have also been

reported for SN/VTA neurons by recording neural activity during appetitive and aversive outcomes

(Matsumoto and Hikosaka, 2009; Nomoto et al., 2010). Cells in ventromedial SNc and VTA

encode a value signal, being excited by appetitive events and inhibited by aversive events. Neurons

in lateral SN may encode a salience signal, responding equally to appetitive and aversive stimuli.

Dopamine plays a crucial role in decision-making and reinforcement learning by encoding a

reward-prediction error signal (Bayer and Glimcher, 2005; Glimcher, 2011; Schultz et al., 1997).

More recently, the role of dopamine in motivational and cognitive processing has been extended by

descriptions of responses not only to rewarding outcomes but also to novel, salient, and possibly

aversive experiences (Bromberg-Martin et al., 2010; Lisman and Grace, 2005; Matsumoto and

Hikosaka, 2009; Redgrave and Gurney, 2006).

An important clinical aspect of dopamine signaling is its role in impulsivity, defined as a tendency

to act rapidly and prematurely without appropriate foresight (Dagher and Robbins, 2009;

Dalley and Robbins, 2017; Morris and Voon, 2016). Impulsivity is a key feature of drug addiction,

obesity, and attention deficit hyperactivity disorder (ADHD). It can be divided into different compo-

nents (Meda et al., 2009). Decisional impulsivity is characterized by a tendency to make maladaptive
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or inappropriate choices and is typically tested with the Delay Discounting task. Motor impulsivity,

on the other hand, refers to premature responding or an inability to inhibit an inappropriate action,

and can be tested using Go/No Go type tasks. Discrete neural networks may underlie different forms

of impulsivity: VS and ventromedial prefrontal cortex (vmPFC), which encode stimulus value, are

implicated in decisional impulsivity (Kable and Glimcher, 2007; McClure et al., 2004; Sellitto et al.,

2010); somatomotor cortex, supplementary motor area (SMA), inferior frontal gyrus (IFG), anterior

insula and dorsal striatum are thought to play a role in motor impulsivity (Bari and Robbins, 2013;

Cai et al., 2014; Chikazoe et al., 2009). All these brain regions are interconnected with SN: they

receive dopamine innervation and send back direct or indirect projections that can modulate dopa-

mine neuron activity (Haber and Knutson, 2010).

In this study, we sought to determine anatomical and functional subdivisions of human SN, their

connections with striatal and cortical regions, and their role in value versus salience coding, and in

different forms of impulsivity. To date, the in-vivo mapping of SN connectivity in humans has been

challenging. The brainstem is prone to artifacts from head movement, pulse and respiration, as well

as image distortions during data acquisition. Besides, the SN is a relatively small structure that con-

nects with cortical and striatal regions through dense tracts in the internal capsule (Meola et al.,

2016), which causes difficulties for diffusion tractography (Jbabdi et al., 2015). Here, we attempt to

overcome these limitations using data from the human connectome project (HCP), taking advantage

of the high spatial resolution and rich collection of multimodal measures. First, we used diffusion

MRI (dMRI) to identify subdivisions of SN according to their connectivity patterns with the rest of

brain. We then mapped the distinct connectivity profiles for each subdivision. Next, we used an fMRI

gambling task to differentiate Blood Oxygen Level Dependent (BOLD) activity in SN subdivisions

and their projections in terms of responding predominantly to value or salience. Finally, we related

individual differences in value and salience coding during the gambling task to measures of deci-

sional and motor impulsivity to reveal dissociable neural substrates underlying impulsive choice and

impulsive action.

Results

Subdivisions of substantia nigra
The SN was parcellated based on spectral clustering of the connectivity patterns of SN voxels (Fig-

ure 1) as described previously (Fan et al., 2016). Three stable subdivisions were identified in the SN

of each hemisphere (Figure 2B): a dorsolateral area corresponding to lateral part of SN pars com-

pacta (lateral SNc – hereafter: lSNc), a dorsomedial area corresponding to medial part of SN pars

compacta (medial SNc - mSNc) and a ventral area (vSN). The Montreal Neurological Institute (MNI)

coordinates for the center of mass of each SN subdivision are listed in Table 1. The three subdivi-

sions were of similar volume on average (vSN: 93/90 mm3 for left/right; mSNc: 90/117 mm3 for left/

right; lSNc: 117/98 mm3 for left/right). This separation of dorsomedial, lateral and ventral SN coin-

cides with descriptions of dorsal, middle and ventral tiers of midbrain dopamine cells in primates

(Figure 2—figure supplement 1), which have distinct afferent and efferent striatal and cortical pro-

jections (Haber, 2014; Haber and Knutson, 2010).

The optimum number of subregions within SN was determined by evaluating both reproducibility

of parcellation using repeated split-half resampling and topological similarity across hemispheres. As

shown in Figure 2D, the three-subdivision parcellation of SN showed both high reproducibility

(mean normalized mutual information (NMI) = 0.85 and 0.88, respectively, for left and right SN) and

high inter-hemispheric topological similarity (mean NMI = 0.68). The same conclusion was drawn

from the other stability indices, the Dice coefficient and Cramer’s V (Figure 2—figure supplement

3. The stability of the parcellation is also supported by the probabilistic maps of each subdivision

(Figure 2C), where the intensity represents the probability of subdivision assignment over the popu-

lation at each SN voxel. Finally, the replication of the parcellation procedure on a second group of

60 randomly selected subjects from the HCP dataset yielded very similar results (NMI = 0.95; Fig-

ure 2—figure supplement 2).
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Connectivity patterns of SN subdivisions
Distinct connectivity profiles were identified for each subdivision of SN by performing probabilistic

fiber tractography from each subdivision (Figure 3) on 430 HCP datasets. Specifically, the dorsolat-

eral subregion (i.e. lateral SNc) mainly connected with the somatic motor and sensory cortex in pre-/

post-central gryus; the dorsomedial subregion (i.e. medial SNc) showed dominant connections with

limbic regions including lateral and medial OFC, hippocampus and amygdala. The ventral subregion

(i.e. vSN) preferentially connected with prefrontal cortex, anterior cingulate cortex and anterior

insula. These connectivity maps reveal a limbic-cognitive-motor organizational topography of SN

fiber projections. They also demonstrate a rotation in topology from medio-lateral in SN to ventro-

dorsal (and rostro-caudal) in cortex.

This limbic-cognitive-motor topology of SN projections was also evident from the maximum prob-

ability map (MPM) of the tractograms (Figure 4 and Figure 4—figure supplement 1). Particularly, in

prefrontal cortex, a clear rosto-caudal pattern of SN projections was present, with medial SNc mainly

connecting with the most rostral and ventral part including OFC and frontal pole, vSN connecting to

lateral and dorsomedial prefrontal cortex including middle frontal gyrus and inferior frontal gyrus,

and lateral SNc showing connections with the sensorimotor and somatosensory cortex. A similar ros-

tro-caudal distribution of fiber tracts was also seen in striatum, with medial SNc mainly connecting

with ventral striatum, vSN connecting via the anterior limb of the internal capsule with the body of

Figure 1. Connectivity-based brain parcellation procedure. After defining the seed region (step 1), probabilistic tractography was applied by sampling

5000 streamlines at each voxel within the seed mask (step 2). Whole-brain connectivity profiles were used to generate a connectivity matrix with each

row representing the connectivity profile of each seed voxel (step 3). Next, a correlation matrix was calculated as a measure of similarity between seed

voxels (step 4). Then, spectral clustering was applied to the similarity matrix (step 5) and multiple subdivisions were identified within the seed region

(step 6). The entire procedure was applied independently for each hemisphere and each subject.

DOI: https://doi.org/10.7554/eLife.26653.002

The following figure supplements are available for figure 1:

Figure supplement 1. Multi-slice view of the SN seed mask on group averaged brains.

DOI: https://doi.org/10.7554/eLife.26653.003

Figure supplement 2. Spatial locations of the four regions of interest.

DOI: https://doi.org/10.7554/eLife.26653.004
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Figure 2. Parcellation of Substantia Nigra based on anatomical connectivity profiles. (A) Definition of the seed region. Substantia Nigra mask was

extracted from a 7T atlas of Basal ganglia based on high-resolution MP2RAGE and FLASH scans (Keuken and Forstmann, 2015). (B) Parcellation map

of SN on 60 healthy young subjects. SN was subdivided into three subregions: a dorsolateral area corresponding to lateral part of SN pars compacta

(lSNc), a dorsomedial area corresponding to medial part of SNc (mSNc) and a ventral area (vSN). (C) Probabilistic map of each SN subdivision, where

Figure 2 continued on next page
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caudate and anterior part of putamen (associative striatum), and lateral SNc connecting via the pos-

terior limb of the internal capsule with the posterior part of putamen (motor striatum).

A similar organizational pattern was also revealed by analyzing the SN connections to seven

canonical resting-sate networks (Yeo et al., 2011), with clear dissociations, as well as overlaps, of

fiber projections among the three SN subdivisions (Figure 5—figure supplement 2). Specifically,

medial SNc preferentially connected with the limbic and visual networks; vSN dominantly connected

with the frontoparietal and default-mode networks; and lateral SNc mainly connected with the soma-

tomotor and dorsal attention networks.

Finally, connectivity fingerprints of the three SN subdivisions were generated by mapping the

connectivity profiles to a fine-grained whole brain anatomical connectivity atlas (Fan et al., 2016).

As shown in Figure 5, the three subdivisions of SN showed distinct connectivity profiles in frontal,

parietal, temporal and subcortical areas. Specifically, most prefrontal areas showed the strongest

connections with ventral SN (Figure 5—figure supplement 1A), except for several subregions in

superior and middle frontal gyrus, for instance lateral and medial area 6 (i.e. areas SFG_c7_4/5 and

MFG_c7_6), more strongly connecting with lateral SNc. The somatic motor and sensory cortex pref-

erentially connected with lateral SNc (Figure 5—figure supplement 1B). Meanwhile, most limbic

regions were targeted by fiber tracts derived from medial SNc (Figure 5—figure supplement 1C).

In summary, all the connectivity profiles of the SN subdivisions are consistent with a limbic (medial

SNc), motor (lateral SNc), and cognitive (ventral SN) functional organization.

Figure 2 continued

the intensity at each SN voxel represents the probability of subdivision assignment over the population. A probability of 100% at voxel i means that the

same assignment is made for every subject. (D) Reproducibility and topological similarity of SN parcellation. The three-cluster parcellation of SN

showed both high reproducibility, as assessed by repeated split-half resampling (mean NMI = 0.85 and 0.88, respectively for left and right SN) and high

inter-hemispheric topological similarity (mean NMI = 0.68). NMI: normalized mutual information.

DOI: https://doi.org/10.7554/eLife.26653.005

The following figure supplements are available for figure 2:

Figure supplement 1. Comparison of the SN parcellation from the current study and the subdivisions of dopamine cells in monkeys.

DOI: https://doi.org/10.7554/eLife.26653.006

Figure supplement 2. Replication of the SN parcellation in two independent groups.

DOI: https://doi.org/10.7554/eLife.26653.007

Figure supplement 3. Reproducibility and topological similarity in connectivity-based parcellation of bilateral SN measured by Dice coefficient and

Cramer’s V.

DOI: https://doi.org/10.7554/eLife.26653.008

Table 1. Regions of interest used in this study and their BOLD activity during the gambling task.

Brain regions X Y Z

Brain Activity (T-score)

Reward Punishment RPE

SN subdivisions

vSN �9 �13 �12 11.12 ** 8.63 ** 1.85

medial SNc �8 �16 �12 17.45 ** 12.48 ** 3.96 **

lateral SNc �12 �17 -9 9.72 ** 8.87 ** 0.93

Ventral Striatum �12 15 -6 8.91 ** - 9.33 ** 16.25 **

vmPFC �6 45 -9 - 26.72 ** - 32.37 ** 8.75 **

Anterior insula �32 22 -6 35.54 ** 36.62 ** 1.07

dACC �4 40 24 8.43 ** 7.64 ** 1.37

Notes: **p-value<0.01; *p-value<0.05 with FDR correction

SN: substantia nigra; vSN: ventral subregion of SN; SNc: SN pars compacta; vmPFC: ventral medial prefrontal cortex;

dACC: dorsal anterior cingulate cortex; RPE: reward prediction error

DOI: https://doi.org/10.7554/eLife.26653.009
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Brain activity during gambling task
In order to ascertain different functional roles of SN subdivisions, we explored their BOLD response

to win and loss outcomes during the fMRI gambling task. Brain activation maps of value-coding (i.e.

contrast of the difference in response to reward versus punishment) and salience-coding (i.e. con-

trast of the mean response to reward and punishment versus neutral) were assessed by whole-brain

analysis using one-sample t-tests and corrected for multiple comparisons using the threshold-free

cluster enhancement method (Smith and Nichols, 2009). Significant value-coding was detected in

ventral striatum and vmPFC, while salience signals were found in anterior insula, dorsal anterior cin-

gulate cortex (dACC) and dorsal striatum (Figure 6—figure supplement 1). Whole-brain contrast

analysis of value- and salience-related BOLD responses provided further evidence for the dissocia-

tion of reward value and motivational salience (Figure 6—figure supplement 2).

Next, ROI-based analysis was performed on the three SN subdivisions and four presumed target

regions: ventral striatum, vmPFC, anterior insula and dACC. Two-way repeated measures ANOVA

revealed a significant interaction effect between SN subdivisions and BOLD response to reward or

punishment (F = 6.6, p=0.0014). As shown in Figure 6, all three SN subregions were activated by

both reward and punishment, but only medial SNc showed significantly greater neural activity to

monetary gains than losses (T = 3.96, p<0.0001). Moreover, among the subdivisions of SN, medial

SNc showed significantly higher BOLD response to positive value (gains) compared to the other two

subdivisions (T = 3.52, p=0.0005 for vSN; T = 2.98, p=0.003 for lateral SNc), as shown in Figure 6—

figure supplement 3.

Figure 3. Connectivity patterns of the subdivisions of substantia nigra. Probabilistic fiber tractrography was performed for each SN subdivision to map

its whole-brain connectivity patterns. The population tract maps are shown with a threshold of connectivity probability at 0.05 and rendered using

MRIcron on the ICBM152 brain template.

DOI: https://doi.org/10.7554/eLife.26653.010

The following figure supplements are available for figure 3:

Figure supplement 1. Distinct and overlapping tractography maps among the subdivisions of substantia nigra.

DOI: https://doi.org/10.7554/eLife.26653.011

Figure supplement 2. Connectivity profiles revealed by deterministic fiber tractography using DSI-studio (http://dsi-studio.labsolver.org/) based on the

group averaged template of diffusion data from HCP-500 subjects.

DOI: https://doi.org/10.7554/eLife.26653.012
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A significant interaction effect was also detected between the four target regions and their BOLD

response (F = 30.26, p-value=3e-19). Specifically, ventral striatum showed a unique bi-directional

pattern, i.e. strongly activated during reward (T = 8.91, p<0.0001) and deactivated during punish-

ment (T = �9.33, p<0.0001). Meanwhile, as a core region in the default mode network (DMN;

[Buckner et al., 2008; Raichle, 2015]), vmPFC was deactivated in both conditions (T = �26.72 and

�32.37 with p<0.0001 for reward and punishment, respectively). Both ventral striatum and vmPFC

showed significantly greater response to rewarding than aversive outcomes (T = 16.25, p<0.0001 for

ventral striatum, T = 8.75, p<0.00001 for vmPFC), although in the case of vmPFC this consisted of

less deactivation (Figure 6). Of all regions examined, only VS showed the classic reward prediction

error pattern (activation for gains, inhibition for losses). On the contrary, as the core areas of the

salience network (Seeley et al., 2007), dACC and anterior insula were activated by both types of tri-

als, with no difference in response to reward and punishment (T = 1.37, p=0.17 for dACC, T = 1.07,

p=0.28 for anterior insula). These results support the theory that there are at least two separate

brain dopamine-related systems involved during gambling outcomes, with one encoding reward

value (i.e. different response to reward and punishment) and the other encoding motivational

salience (i.e. reacting similarly to rewarding and aversive outcomes).

Correlation analysis between brain activity and impulsivity measures
We next sought to determine if brain activity in the value and salience coding systems was related to

two impulsive traits: decisional and motor impulsivity. Based on the above brain connectivity (Fig-

ures 3–5) and activity analyses (Figure 6), we take the value-coding system to consist of mesolimbic

pathways projecting between medial SNc and ventral striatum and vmPFC, and the salience-coding

system of mesocortical pathways connecting vSN with dACC and anterior insula. We correlated

BOLD activity of these brain areas with behavioral measures of decisional and motor impulsivity. We

Figure 4. Maximum probability tractograms of the subdivisions of substantia nigra. A limbic-cognitive-motor organizational topography of SN

projections is shown in multi-slice views (A) with a focus on prefrontal cortex, striatum and pallidum (B). Maximum probability tractograms were

generated by assigning each voxel to the corresponding SN subdivision with which it showed the greatest connections. SN subdivisions: vSN (blue),

mSNc (green) and lSNc (orange).

DOI: https://doi.org/10.7554/eLife.26653.013

The following figure supplements are available for figure 4:

Figure supplement 1. Maximum Probability Map of tractograms from SN subdivisions under different thresholds of tractography probability.

DOI: https://doi.org/10.7554/eLife.26653.014

Figure supplement 2. Distinct and overlapping projections of SN subdivisions in basal ganglia.

DOI: https://doi.org/10.7554/eLife.26653.015
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Figure 5. Connectivity fingerprints of the subdivisions of Substantia Nigra. The connectivity fingerprints of SN subdivisions were calculated based on a

whole-brain atlas (Fan et al., 2016). The relative connectivity strength between each target (i.e. parcels in the brain atlas) and each SN subdivision is

plotted. An organizational topography of SN projections emerges with vSN mostly connected to prefrontal cortex, lateral SNc to sensorimotor cortex,

and medial SNc to limbic regions. The naming convention is based on Fan et al. (2016). The atlas is available at http://atlas.brainnetome.org/.

DOI: https://doi.org/10.7554/eLife.26653.016

The following figure supplements are available for figure 5:

Figure supplement 1. Connectivity profiles of SN subdivisions in prefrontal, motor and limbic systems.

DOI: https://doi.org/10.7554/eLife.26653.017

Figure supplement 2. Connectivity profiles of SN subdivisions to seven resting-state functional networks.

DOI: https://doi.org/10.7554/eLife.26653.018

Figure supplement 3. Target regions of the connectivity fingerprints.

DOI: https://doi.org/10.7554/eLife.26653.019
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reasoned that decisional impulsivity would implicate the value-coding dopamine system, while motor

impulsivity would implicate salience or motor system projections.

To characterize the relationship between BOLD activity and impulsivity measures, behavioral PLS

analysis (McIntosh and Lobaugh, 2004) was performed. BOLD effect sizes from all seven regions

that were detected as significantly activated during either value- or salience-coding (i.e. mSNc, VS

and vmPFC for value-coding; all target regions except VS for salience-coding) were imported as the

brain data. The two behavioral measures of impulsivity were imported as the behavior data. Behav-

ioral PLS has the potential to identify commonalities and differences across conditions in brain-

behavior relations. Fifteen subjects were excluded before the analysis to ensure that all subjects had

complete records of both behavioral measures within two standard deviations of the mean.

Two components were identified (Figure 7, proportion of covariance = 61% and 39%, permuted

p-value=0.012 and 0.11, respectively), with one significantly correlated with inhibitory control scores

(r = 0.1896, CI= [0.1575, 0.2781]) while the other was significantly correlated with Delay-Discounting

measures (r = �0.1535, CI= [�0.2499,–0.1277]). The reliability of both brain and behavior loadings

was assessed by estimating their confidence intervals using bootstrap resampling. The first compo-

nent (inhibitory control) comprised the value signal from vmPFC (z-score of weights = 2.1482) and

salience signal from insula (z-score = 2.5006) and dACC (z = 2.7626). The second component (delay-

discounting) comprised the value signal from mSNc (z-score = 2.0518) and VS (z-score = 2.5937).

Associations between brain response and behavioral scores were found for both components

(r = 0.1706 and 0.1551, respectively). The latent variables identified by PLS (including both brain and

behavioral scores) are intrinsically orthogonal across different components. The resulting brain net-

works and behavioral measures are consequently independent if they belong to different

components.

Figure 6. Brain activity in response to rewarding and aversive outcomes in the fMRI gambling task. Among SN subdivisions, only medial SNc showed a

significant difference in response to reward and punishment (p<0.001). The ventral striatum (VS) and ventromedial prefrontal cortex (vmPFC) also

responded differently to reward and punishment, with greater BOLD activity to rewarding than aversive stimuli (p<0.001). Meanwhile, anterior insula

and dorsal anterior cingulate cortex (dACC) showed no difference in response to reward and punishment.

DOI: https://doi.org/10.7554/eLife.26653.020

The following figure supplements are available for figure 6:

Figure supplement 1. Whole-brain analysis of BOLD response to value-coding and salience-coding.

DOI: https://doi.org/10.7554/eLife.26653.021

Figure Supplement 2. Contrast between value- and salience-related BOLD responses.

DOI: https://doi.org/10.7554/eLife.26653.022

Figure supplement 3. Brain activity in response to value and salience.

DOI: https://doi.org/10.7554/eLife.26653.023
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Figure 7. Behavioral PLS analysis on value- and salience-coding BOLD response and two measures of impulsivity. Two orthogonal components were

identified. The first component (A) captured the relationship between value signal from vmPFC, salience signals from anterior insula and dACC, and

inhibitory control scores on the Flanker task. The second component (B) captured the relationship between value signals from mSNc and VS, and the

AUC measure of delay discounting. Value and salience BOLD signals were derived from the gambling task. Note: for delay-discounting lower AUC

indicates greater impulsivity. (AUC: area under the curve). In the leftmost panel, blue color of the bars indicates a reliable contribution (z > 1.96) as

determined by the bootstrap procedure. Error bars in the middle panel represent 95% confidence intervals derived from bootstrap resampling. See

text for abbreviations.

DOI: https://doi.org/10.7554/eLife.26653.024

The following figure supplement is available for figure 7:

Figure supplement 1. Correlation analysis between value and salience BOLD response and two measures of impulsivity.

DOI: https://doi.org/10.7554/eLife.26653.025
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Individual correlation analyses between BOLD responses and impulsivity measures confirmed the

PLS results (Figure 7—figure supplement 1). We found significant correlations between AUC of

Delay Discounting and value-related BOLD response in medial SNc (r = �0.1304, p=0.0053) and

ventral striatum (r = �0.1191, p=0.01), and correlations between inhibitory control scores and

salience-related BOLD response in dACC (r = 0.1112, p=0.0161) and anterior insula (r = 0.1546,

p=0.0008). Only the associations of value-coding response in mSNc with Delay-Discounting and

salience-coding response in insula with inhibitory control remain significant after Holm–Bonferroni

correction with p-value=0.05. Moreover, the correlation of value-coding response in VS was signifi-

cantly higher with Delay-Discounting measures than inhibitory control scores (p=0.02), while the

association of salience-coding response in anterior insula was significantly stronger with inhibitory

control than Delay-Discounting (p=0.008).

Discussion

Subdivisions of SN
We used a connectivity-based parcellation scheme to subdivide human SN based on its anatomical

connectivity profile with the rest of the brain. A tripartite pattern of SN was revealed, consisting of a

medial (mSNc) tier, a lateral (lSNc) tier and a ventral (vSN) tier. A similar anatomical and connectional

differentiation of SN has been widely described in monkeys. Indeed, many studies report that mid-

brain dopamine neurons can be divided into two or three tiers (François et al., 1999; Haber and

Knutson, 2010; Lynd-Balta and Haber, 1994), with a dorsal calbindin-positive tier that extends

medially to the VTA, and a ventral calbindin-negative tier whose dendrites extend ventrally into the

pars reticulata of the substantia nigra. This ventral tier can be further subdivided into a more medio-

dorsal densocellular group and a ventro-lateral group of columnar cells (Haber, 2014). Tracer stud-

ies in monkeys have been used to map the striatal afferent and efferent projections of these SN sub-

divisions (Haber et al., 2000; Haber and Knutson, 2010; Lynd-Balta and Haber, 1994). The dorsal

tier mainly connects with ventromedial striatum, while the ventral tiers project to central and dorso-

lateral striatum. Coinciding with monkey anatomy, we also found a tripartite division of SN with simi-

lar anatomical and connectivity profiles (Figure 2B and Figure 2—figure supplement 1).

Specifically, our mSNc corresponds to the monkey pars dorsalis and connects with ventral striatum;

lSNc corresponds to the ventrolateral columnar part of SNc and connects to the motor regions of

dorsal striatum. Finally, our vSN corresponds to the ventral densocellular portion that projects to the

middle, associative, part of the striatum (Haber, 2014). Furthermore, the cortical projections of SN

subdivisions we identified using diffusion tractography also fit with this limbic (mSNc), associative

(vSN), and somatomotor (lSNc) organization (Figures 3–5). This specific association of lSNc with sen-

sorimotor cortex explains its crucial role in the motor symptoms of Parkinson disease, in which ven-

trolateral SNc is preferentially targeted by neurodegeneration (Gibb and Lees, 1991). It is worth

mentioning that this organizational pattern of SN projections (Figure 4) was detected by using a

winner-takes-all approach, which emphasizes the distinct connections among subdivisions. A more

lenient threshold for the identification of connections reveals large overlaps of anatomical connec-

tions among SN subdivisions (Figure 3—figure supplement 1). The three SN subdivisions have dif-

ferent but overlapping connectional profiles (Figure 5). For example, while SN-vmPFC connections

were mostly derived from medial SNc, the other two subdivisions also made considerable contribu-

tions. This is consistent with the view that vmPFC is a connectional hub that integrates broad

domains of information to support the valuation process during decision-making (Benoit et al.,

2014; Roy et al., 2012).

The inverted dorsal/ventral topography of SN-striatum connections (Haber, 2014) found here has

previously been described in human brain (Chowdhury et al., 2013). There, the authors used diffu-

sion tractography in 30 individuals to parcellate SN based on anatomical connections with two tar-

gets in striatum. The dorsal SN mainly connected to ventral striatum, while the ventral SN

preferentially connected to dorsal striatum. In contrast to this study, we used the whole-brain con-

nectivity profiles to identify the subareas within SN instead of using predefined regions of interest

restricted to striatal regions.

Recently, whole-brain tractography was also performed on the HCP dataset to identify the major

brainstem white matter tracts (Meola et al., 2016). Two distinct fiber tracts were found projecting
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through SN: the frontopontine tract (FPT) connecting prefrontal cortex and anterior SN and running

through the anterior limb of the internal capsule, and the corticospinal tract (CST) connecting motor

cortex and posterior SN and passing through the posterior limb of the internal capsule. This accords

with our fiber-tracking results, with vSN mainly connecting to the prefrontal cortex through the ante-

rior limb of the internal capsule adjacent to the anterior dorsal striatum (including the body of cau-

date and anterior part of putamen), and lSNc preferentially connecting to the sensorimotor cortex

via the posterior limb of the internal capsule and adjacent posterior dorsal striatum (including the

tail of caudate and posterior putamen). We identified an additional fiber tract, i.e. a mesolimbic

pathway connecting medial SNc with ventral striatum, vmPFC and OFC. On the other hand, some

detected connections of SN were unexpected. For instance, the midbrain projections to visual cortex

are sparse in rodents (Watabe-Uchida et al., 2012), but we detected relatively strong anatomical

connections between mSNc and visual areas using both probabilistic and deterministic tractography

(Figure 3—figure supplements 1 and 2). This might be caused by an intersection of mSNc outflow

with the temporo-parieto-occipito-pontine tract in the posterior limb of the internal capsule

(Meola et al., 2016).

The somatomotor to associative to limbic (from lateral to medial) organization of SN accords with

the cortical arrangement of information flow proposed by Mesulam (Mesulam, 1998), in which unim-

odal areas project to heteromodal associative, and then to prelimbic and limbic regions. A recent

study proposed a similar gradient of cortical information processing based on resting state fMRI

data from the HCP (Margulies et al., 2016). Our results suggest that the somatomotor to associa-

tive to limbic principle of cortical organization appears to be reflected in the SN.

Value and salience coding in SN projections
We found a dissociation between coding of value and salience within SN subdivisions and their pro-

jections. While all three subdivisions responded to both winning and losing money during the gam-

bling task (Figure 6), only mSNc encoded a classical value signal, showing significantly greater

BOLD response to wins than losses (Figure 6). Medial SNc preferentially connects to limbic areas

including ventral striatum, ventral pallidum, hippocampus, amygdala and OFC/vmPFC (Figure 4).

These brain regions have been reported to support value-based reinforcement learning

(Garrison et al., 2013; Glimcher, 2011), and goal-directed behaviors (Goto and Grace, 2005), and

have been implicated in drug addiction (Nutt et al., 2015). By contrast, vSN encoded salience,

showing a similar BOLD response to rewarding and aversive events (Figure 6). Ventral SN mainly

connects to the prefrontal cortex and salience network, including lateral frontal cortex, dorsomedial

prefrontal cortex, dACC and anterior insula (Figure 4). These brain areas are associated with atten-

tion, orientation and cognitive control (Menon and Uddin, 2010; Seeley et al., 2007; Uddin, 2015).

Finally, the lSNc subdivision also appeared to encode salience, responding equally to monetary

gains and losses. In contrast to the mesocortical pathway derived from vSN, the predominant projec-

tions of lSNc were with the motor cortex, premotor cortex, supplementary motor area, and posteri-

orly into the parietal cortex (Figure 4). The value/salience dissociation of lateral and medial SNc

corresponds to the findings from recordings in Macaque midbrain dopamine neurons (Bromberg-

Martin et al., 2010; Matsumoto and Hikosaka, 2009). A somewhat similar functional dissociation in

SN was reported in a fMRI study with a Pavlovian learning paradigm (Pauli et al., 2015), with the lat-

eral SN encoding a prediction signal for aversive events, and the medial SN encoding a reward pre-

diction error signal for appetitive learning.

SN and impulsivity
Impulsivity has been reported to contribute to a wide range of psychopathology including bipolar

disorder (Swann et al., 2009), ADHD (Winstanley et al., 2006), alcohol and substance dependence

(Ersche et al., 2010), pathological gambling (Leeman and Potenza, 2012) and addictive behaviors

in Parkinson’s disease (Averbeck et al., 2014; Dagher and Robbins, 2009). A current account of

impulsivity assigns a key role to midbrain dopamine neurons, which modulate choice behaviors

through the direct and indirect corticostriatal pathways (Buckholtz et al., 2010; Dalley and Roiser,

2012). Specifically, phasic bursts of dopamine firing enhance impulsive and risk-taking behaviors

through D1 receptors within the direct pathway, while pauses in dopamine firing activate inhibitory
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control through D2 receptors within the indirect pathway (Collins and Frank, 2014; Cox et al.,

2015). Impulsivity may also be a reflection of top-down cortical and striatal control of SN activity.

The multi-dimensional view of impulsivity proposes at least two major components (Meda et al.,

2009), namely impulsive action and impulsive choice. Here, we included two different impulsivity

measures, the Delay Discounting task (impulsive choice) and the Flanker inhibitory control task

(impulsive action), and explored the neural basis of these two constructs.

Our results suggest that two different dopamine systems modulate these two components of

impulsivity in parallel. Specifically, decisional impulsivity, measured by the Delay Discounting task,

was associated with the value-coding system comprising mSNc and VS (Figure 7). Stronger value-

coding signals in these areas were associated with more impulsive choices during delay discounting,

meaning higher preference for immediate and smaller rewards. Meanwhile, motor impulsivity mea-

sured by the Flanker inhibitory control task was associated with the salience-coding system consist-

ing of dACC and anterior insula (Figure 7). Stronger BOLD signals in the salience network predicted

better attentional inhibitory control. This finding is consistent with the theory that anterior insula

plays an important role in inhibitory control by increasing the saliency of stimuli, especially for unex-

pected events (Cai et al., 2014; Ghahremani et al., 2015).

Limitations
We included a large population of healthy young subjects acquired from the public HCP dataset.

Multimodal data included structural, diffusion-weighted and functional MRI, as well as behavioral

impulsivity measures. There were a few missing imaging or behavioral data and some datasets failed

during additional preprocessing. The final dataset included 485 subjects for the gambling-task fMRI

data, 430 subjects for the diffusion data, and 488 subjects for the behavioral measures. In the end,

we had over 400 overlapping subjects who had all three modalities.

The SN is a small nucleus located in the brainstem, where MRI data usually suffer from distortions

and signal losses. Partial volume effect might have impacted the imaging data, especially for fMRI.

However, in the HCP data, these problems have been mitigated by advanced high-resolution imag-

ing sequences and preprocessing (Glasser et al., 2013; Sotiropoulos et al., 2013). Still, one poten-

tial limitation of the current study is inferring midbrain dopaminergic projections from diffusion MRI.

Diffusion tractography has several known limitations, including the inability to perfectly resolve cross-

ing fibers, a relatively high susceptibility to false positives and negatives and a tendency to terminate

in gyral crowns as opposed to sulci, resulting in diminished anatomical accuracy (Jbabdi et al.,

2015; Jones et al., 2013; Thomas et al., 2014). A greater concern, however, is the possibility of sys-

tematic biases in probabilistic tractography that may give an incorrect impression of whole-brain SN

connectivity patterns. For example, it is accepted that connections are less likely to be detected if

they travel a long distance, exhibit marked curvature or branching, travel close to cerebrospinal fluid,

or pass through more complex white matter regions (Jbabdi et al., 2015). Most of our results are

unlikely to be due to such biases. First, although the SN parcellation and projection maps were

based on diffusion tractography, they also reveal a functional dissociation. That is, projection maps

of SN subdivisions reflect a limbic, associative and somatomotor organization, rather than a purely

geometric pattern. Moreover, our parcellation of SN accords closely with tract tracing studies in

macaque (Haber, 2014). The inverted dorsal-ventral topology of SN-striatum connections (Figure 4)

is difficult to account for based on a distance or curvature bias; however, the medial-lateral gradient

of SN projections with basal ganglia described here could reflect such a limitation. We found that

medial SNc mainly connects with the medial part of nucleus accumbens and globus pallidus, while

lateral SNc predominantly connects with lateral dorsal striatum, including tail of caudate and poste-

rior putamen. This medial-lateral arrangement could result from a bias of tractography. While the

SN-striatum arrangement is in accordance with known connectivity in macaque (Haber et al., 2000;

Haber and Knutson, 2010; Lynd-Balta and Haber, 1994) and other species (Düzel et al., 2009), it

is possible that SN-pallidal connections described here are artifactual, as they do not accord with

previously documented anatomical connections of basal ganglia. The pattern of SN-striatum connec-

tions is also consistent with the presumed functional roles of medial (limbic) and lateral (motor) struc-

tures in both SN and striatum. Regarding SN-cortical connections, the predominant topology found

here is not medial-lateral. For example, the lateral SNc connects mostly medially in primary and sup-

plementary motor areas (Figures 3–4). Indeed, the topological arrangement of SN-cortical connec-

tions exhibits a rotation from medio-lateral in SN to ventro-dorsal (and rostro-caudal) in cortex
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(Figure 3), as described previously for tractography of the ventral prefrontal cortex (Jbabdi et al.,

2013). Another limitation is that connectivity measured by diffusion tractography cannot resolve the

direction of a connection, which makes it impossible to distinguish efferent dopamine projections

from top-down fronto-nigral or striato-nigral projections.

Thus, although our results are consistent with those of Matsumoto and Hikosaka in monkeys

(Matsumoto and Hikosaka, 2009), in which there is a medial to lateral gradient for reward/salience

coding, we cannot attribute either connectivity or fMRI activation to dopamine neurons per se. The

population of neurons in VTA and SN is heterogeneous and includes GABAergic and glutamatergic

projection neurons and interneurons (Henny et al., 2012; Morales and Margolis, 2017). Thus,

despite a reward/salience dissociation found in SN activation and projections, our results do not con-

tradict the theory that dopamine neurons in SN/VTA are predominantly excited by reward and

reward prediction error (Cohen et al., 2012; Fiorillo, 2013). It is also notable that the fMRI results

demonstrated a salience response (i.e. to both wins and losses) throughout the SN, consistent with

recordings in monkeys, and that our connectivity findings support the theory that predominantly

reward versus predominantly salience coding SN neurons belong to different brain networks (Brom-

berg-Martin et al., 2010). Note, however, that our inability to assign activation or connectivity to

dopamine neurons (rather than SN neurons generally) means that our results do not contradict the

alternative interpretation that no dopamine neurons encode actual aversive value (Fiorillo, 2013;

Schultz et al., 2017). These authors suggest that dopamine neurons have an initial positive short-

latency response to all stimuli that depends on their intensity, but that the subsequent response

always encodes true value (activation for rewards, suppression for punishments).

Finally, we describe associations between behavioral measures of impulsivity and BOLD activation

during the gambling task. While these findings indicate a relationship between intrinsic organization

of SN-related brain networks and impulsivity, the correlation values are small (on the order of 0.1).

Therefore, most of the variability in behavior is accounted by other factors.

Conclusions
We subdivided the human SN into three subpopulations according to anatomical connectivity pro-

files, with a dorsal-ventral and lateral-medial arrangement. Our three-way partition of SN reveals

multiple dopaminergic systems in human SN, showing a limbic, cognitive and motor arrangement,

and encoding value and salience signals separately through distinct networks. Corresponding to this

connectional arrangement, we also found dissociable functional response during the gambling task

and correlations with impulsivity measures. Specifically, the mSNc-VS system was involved in value-

coding and associated with impulsive choice, while the vSN-dACC-insula system was involved in

salience-coding and associated with response inhibition. Building on the traditional reward predic-

tion error model of dopamine signaling (Schultz, 1998), our study provides evidence for the connec-

tional and functional disassociations of SN neurons in humans, which encode motivational value and

salience, possibly through different dopaminergic pathways. We also extended the current view on

the role of dopamine in impulsivity by uncovering different neural substrates for decisional and

motor impulsivity.

Materials and methods

Subjects and data acquisition
Data from 485 healthy individuals (age: 29.1 ± 3.5 years, 202 females) were obtained from the 500-

subject release of the Human Connectome Project (HCP RRID:SCR_008749) database from March

2015. Participants with body mass index (BMI) lower than 18 were considered as underweight and

excluded from this study. Multimodal data used here include structural MRI, diffusion-weighted MRI,

functional MRI during a gambling task and behavioral measures of impulsivity. The scanning proce-

dures are described in detail in Van Essen et al. (2013) and available online (https://www.human-

connectome.org/documentation/S500/HCP_S500_Release_Reference_Manual.pdf).

Diffusion MRI
Diffusion data were collected with 1.25 mm isotropic spatial resolution and three diffusion weight-

ings using HCP dMRI protocol (Sotiropoulos et al., 2013). The data were downloaded in a minimally
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pre-processed form using the HCP Diffusion pipeline (Glasser et al., 2013) including: normalization

of b0 image intensity across runs; correction for EPI susceptibility and eddy-current-induced distor-

tions, gradient-nonlinearities and subject motion. Next, the probability distributions of fiber orienta-

tion were estimated by using FSL’s (RRID:SCR_002823) multi-shell spherical deconvolution toolbox

(bedpostx), where each voxel contains at most three fiber directions and the diffusion coefficients

were modelled using a Gamma distribution (Jbabdi et al., 2012). A T1-weighted image down-

sampled to the resolution of the diffusion data was employed for the nonlinear registration of the

SN seed from MNI standard space to native structural volume space using FNIRT from the FSL pack-

age. In total, 430 subjects’ data were pre-processed and passed quality control. The parcellation of

SN was carried out on 120 randomly selected subjects in order to limit computation time and data

storage. To test the robustness of parcellation, we randomly divided the 120-subject dataset in half

and applied the parcellation procedure (as explained below) independently in each group. Specifi-

cally, the first 60 subjects were used as the test group to reveal the underlying organizational pattern

of SN. A second group of 60 subjects was then used as the replication group to test the stability of

our parcellation maps. All diffusion data (N = 430) were then used during the tractography analysis

to map the connectivity profiles of each of the SN subdivisions identified by parcellation.

Functional MRI with gambling task
During the gambling task (Barch et al., 2013), participants were asked to guess the number on a

mystery card. The card numbers ranged from one to nine and participants were asked to guess

whether the mystery card number was above or below five by pressing one of two buttons. The out-

come of each trial were either winning $1.0 or losing $0.50. Neutral trials with no gain or loss were

also included. Participants received their net winnings after completing the task. More details about

the task design and data acquisition can be found in (Barch et al., 2013). A general linear model

(GLM) implemented in FSL’s FILM (Woolrich et al., 2001) was used to estimate the neural activity

during feedback by convolving rewarding and losing trial outcome times with a double gamma

‘canonical’ hemodynamic response function. The resulting parameter estimates (cope) of contrast

images from the two acquisitions using different phase encoding directions (i.e. LR and RL coding)

were combined to generate individual BOLD activity during outcomes (Barch et al., 2013). The

copes images of rewarding and aversive outcomes provided by HCP dataset were used in the analy-

sis. The effect size of each contrast was extracted for each subject and each region of interest.

Impulsivity measures
Measures from two behavioral tests of impulsivity were used for each subject: the Delay Discounting

task and the Flanker Inhibitory Control Task. Detailed descriptions of these tasks are available in

(Barch et al., 2013). Briefly, the Delay discounting paradigm (Estle et al., 2006) was selected as the

measure of self-regulation and impulsive choice, which describes the temporal discounting of mone-

tary rewards. Subjects choose between a smaller immediate and a larger delayed reward. A dis-

counting measure of area-under-the-curve (AUC; [Myerson et al., 2001]) was calculated based on

participants’ choices across a series of trials, ranging from 1 (no discounting) to 0 (maximum dis-

counting) with larger values representing less impulsive decisions. Only the high monetary amount

($40,000) was used here considering that its AUC value is approximately uniformly distributed across

all subjects. The Flanker Inhibitory Control Task from the NIH Toolbox (http://www.nihtoolbox.org)

was selected as a measure of response inhibition. During the Flanker task (Eriksen and Eriksen,

1974), participants are required to indicate the left–right orientation of a centrally presented arrow

while inhibiting their attention to the surrounding flanking arrows. The final scores took into account

the accuracy and reaction time on both congruent (in the same direction) and incongruent (in the

opposite direction) trials, which provides a measure of inhibitory control in the context of selective

visual attention (Zelazo et al., 2014). Higher scores represent both higher accuracy levels and faster

reaction times, and therefore better inhibitory control.

Seed regions
A mask of substantia nigra was generated from a 7T MRI atlas of basal ganglia based on high-resolu-

tion MP2RAGE and FLASH scans (Keuken and Forstmann, 2015) available at https://www.nitrc.org/

projects/atag/. The entire region of SN (Figure 2A) was extracted from the probabilistic atlas with a
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threshold of 33% of the population (i.e. retaining voxels labeled as SN in at least 10 out of 30 sub-

jects) yielding masks of volume equal to approximately 300 mm3 in each hemisphere. The SN seed

mask overlayed on HCP average brain MRI images is illustrated in Figure 1—figure supplement 1.

Other regions of interest (ROI) of brain areas involved in reward and salience processing were

defined as follows. Ventral striatum and ventral medial prefrontal cortex (vmPFC) were defined by

drawing a 6 mm sphere around the peak coordinates from a fMRI meta-analysis of subjective value

(Bartra et al., 2013). Two salience-related areas, the dACC and anterior insular cortex, were defined

by drawing a 6 mm sphere around the peak coordinates of the salience network identified from rest-

ing state fMRI (Seeley et al., 2007). The MNI coordinates of these regions of interest are listed in

Table 1 and ROI are shown in Figure 1—figure supplement 2. Here, we hypothesized that ventral

striatum and vmPFC were part of a value-coding system (with greater activation to reward than pun-

ishment), while dACC and anterior insula were more involved in salience-coding (i.e. responding sim-

ilarly to reward and punishment). Note that we use a definition of salience as an equal response to

rewarding and aversive events, as used in monkey electrophysiology (Matsumoto and Hikosaka,

2009) and human fMRI (Rutledge et al., 2010).

Connectivity-based parcellation of SN
A data-driven connectivity-based brain parcellation procedure was used (Figure 1) as described in

Fan et al. (2016). First, probabilistic tractography was applied by sampling 5000 streamlines at each

voxel within the seed mask of SN. A target mask was constructed for each subject that includes all

brain voxels (white or gray matter) connecting to the seed region. The whole-brain connectivity pro-

file for each SN voxel was then saved as a connectivity map, where the intensity shows how many

streamlines reach the target area and is therefore a measure of the connectivity strength between

the seed and target. These connectivity maps were used to generate a connectivity matrix with each

row representing the whole-brain connectivity profile of one seed voxel. Next, a correlation matrix

was calculated as a measure of similarity between the connectivity profiles of each voxel pair (Johan-

sen-Berg et al., 2004). Spectral clustering (Shi and Malik, 2000) was applied to the similarity matrix

to identify clusters with distinct connectivity profiles. We applied this procedure separately for each

subject and each hemisphere to generate a series of parcellation maps for all individuals at different

resolutions (i.e. numbers of regions/parcels). Considering the small size of the SN, we chose cluster

numbers ranging from 2 to 8 in each hemisphere and chose the most stable and consistent parcella-

tion map (see below).

An additional group-parcellation procedure was applied to summarize the general pattern of par-

cellation across subjects. Specifically, a consensus matrix S was defined based on each individual par-

cellation map, with each element Sij ¼ 1 if and only if voxel vi and voxel vj belong to the same

cluster. Then, a group consensus matrix was generated by averaging the consensus matrices from all

subjects. The final group parcellation map was generated by performing spectral clustering again on

the group consensus matrix (Fan et al., 2016; Zhang et al., 2015).

The optimum parcellation solution (i.e. number of parcels) was determined by evaluating the

reproducibility of parcellation maps through a split-half procedure. Specifically, we randomly split

the entire group into two non-overlapping subgroups 100 times and generated the group parcella-

tion maps for each subgroup separately. The consistency between each pair of parcellation maps

was evaluated by different stability indices, including normalized mutual information (NMI)

(Zhang et al., 2015), Dice coefficient (Zhang et al., 2014) and Cramer’s V (Fan et al., 2014). The

average indices among 100 samples were calculated to represent the stability of each parcellation.

The suitable cluster number was then determined by searching for the local peaks in the stability

curve. In addition, topological similarity of the parcellation solutions between the two hemispheres

was also calculated as a measure of stability (Fan et al., 2016).

Connectivity profile of each SN subdivision
Based on the obtained parcellation map of SN, we mapped the anatomical connectivity profiles of

each subdivision by performing probabilistic tractography with 10,000 streamlines from each SN

subdivision. The resulting connectivity maps were first normalized by the size of the seed region and

total number of streamlines (i.e. 10,000) in order to generate the relative tracing strength from the

seed to the rest of the brain. A threshold of 0.001 (i.e. 10 out of 10,000) was then used to remove

Zhang et al. eLife 2017;6:e26653. DOI: https://doi.org/10.7554/eLife.26653 16 of 23

Research article Neuroscience

https://doi.org/10.7554/eLife.26653


noise effects of fiber tracking. The resulting individual tractograms were combined to generate a

population map of the major fiber projections for each SN subdivision. Another probabilistic thresh-

old of 50% was applied to the population fiber-tract maps (i.e. at least half of subjects showing each

retained fiber tract). This resulted in a group averaged tractogram for each subdivision of SN. Finally,

a maximum probability map (MPM) of fiber tracts, which represents distinct components of fiber

projections for each subdivision, was also generated based on the population fiber-tract maps. Spe-

cifically, a connectome mask was first generated for each subdivision by binarizing its group tractog-

raphy map with connectivity probability at 0.01. Note that different probability thresholds do not

change the organizational pattern, but only enlarge or shrink the coverage of major fiber tracts (Fig-

ure 4—figure supplement 1). Each voxel within the combined connectome mask was then classified

according to the SN subdivisions with which it had the highest connectivity. This calculation of MPM

on probabilistic tractography has been widely used in subdividing brain structures, including thala-

mus (Behrens et al., 2003), amygdala (Saygin et al., 2011) and striatum (Cohen et al., 2009). Here,

we use this method to generate the organizational topography of fiber projections among SN

subdivisions.

A quantitative representation of the connectivity profiles was also generated by calculating the

connectivity fingerprints between each SN subdivision and each cortical/subcortical area. A recently

published brain atlas based on anatomical connectivity profiles (Fan et al., 2016) was chosen to

define the target areas, consisting of a fine-grained parcellation of frontal, parietal, temporal, occipi-

tal cortex, limbic areas, as well as striatum and thalamus. The relative connectivity strength between

each SN subdivision and each brain parcel for an individual was calculated by dividing the streamline

counts by the size of each SN subdivision and each target area, as well as the total number of

streamlines from each SN subdivision (i.e. 10,000). Next, we scaled this tracing strength by dividing

it with the total tracing strength from the entire SN seed, which yields, for each target region and

SN subdivision, the proportion of SN-target projections starting from that subdivision relative to the

other two subdivisions. These normalized connectivity values were used to estimate the connectivity

fingerprints for each SN subdivision.

Neural activity during gambling task and correlations with impulsivity
measures
This dissociation of reward value and motivational salience assessed by simultaneous manipulation

of appetitive and aversive outcomes has been used often in the animal and human literature

(Bissonette et al., 2014; Roesch and Olson, 2004). Several studies have provided evidence for this

dissociation in prefrontal and cingulate areas (Kahnt et al., 2014; Litt et al., 2011; Roesch and

Olson, 2004), and in midbrain structures (Cohen et al., 2012; Matsumoto and Hikosaka, 2009;

Rigoli et al., 2016). Here, based on the rewarding and aversive outcomes of the fMRI gambling

task, two new contrasts were defined, that is, a value signal as the difference in BOLD response to

rewarding and aversive outcomes, and a salience signal as the average response to reward and

punishment.

Moreover, to examine the association between task-related BOLD activity and impulsivity meas-

ures, we performed partial least squares (PLS) analysis using the PLScmd Matlab toolbox (http://

www.rotman-baycrest.on.ca/pls/, [McIntosh et al., 1996; McIntosh and Lobaugh, 2004;

Mišić et al., 2016]), which identifies linear combinations of brain activity and behavioral measures

that maximally covary with each other. Briefly, a singular value decomposition was first performed

on the correlation matrix of brain and behavioral data. The brain data included the BOLD response

of three SN subdivisions and four other regions (VS, vmPFC, dorsal ACC, insula) under the condition

of either value- or salience-coding. The behavioral data consisted of the two behavioral measures of

impulsivity. A set of mutually orthogonal latent variables (LVs) was identified, where the left and right

singular vector weights correspond to an optimal combination of BOLD response and behaviors,

respectively. The effect size of each component was estimated as the ratio of the squared singular

value to the sum of squared singular values from the decomposition. The overall significance of each

pattern was assessed by permutation tests, whereby subject labels are randomly permuted and a

distribution of singular values is generated under the null hypothesis that there exists no relation

between the brain and behavioral data. p-Values were estimated as the proportion of permuted sin-

gular values that exceed the original singular value. The reliability with which each region or behavior

contributes to the multivariate pattern was estimated by bootstrap resampling: participants were
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sampled with replacement to construct a sampling distribution for each weight. To identify weights

that (a) make a large contribution to the multivariate pattern and (b) are stable across many resam-

plings, we estimated bootstrap ratios: singular vector weights divided by their bootstrap-estimated

standard errors. If the bootstrap distribution is approximately unit normal, the bootstrap ratio is

approximately equivalent to a z-score (Efron and Tibshirani, 1986). We therefore thresholded all

weights at bootstrap ratios equal to 1.96, corresponding to a 95% confidence interval.

Data Availability
The resulting maps from our study are available at https://www.neurovault.org/collections/2860/.
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Jones DK, Knösche TR, Turner R. 2013. White matter integrity, fiber count, and other fallacies: the do’s and
don’ts of diffusion MRI. NeuroImage 73:239–254. DOI: https://doi.org/10.1016/j.neuroimage.2012.06.081,
PMID: 22846632

Kable JW, Glimcher PW. 2007. The neural correlates of subjective value during intertemporal choice. Nature
Neuroscience 10:1625–1633. DOI: https://doi.org/10.1038/nn2007, PMID: 17982449

Kahnt T, Park SQ, Haynes JD, Tobler PN. 2014. Disentangling neural representations of value and salience in the
human brain. PNAS 111:5000–5005. DOI: https://doi.org/10.1073/pnas.1320189111, PMID: 24639493

Keuken MC, Forstmann BU. 2015. A probabilistic atlas of the basal ganglia using 7 T MRI. Data in Brief 4:577–
582. DOI: https://doi.org/10.1016/j.dib.2015.07.028, PMID: 26322322

Leeman RF, Potenza MN. 2012. Similarities and differences between pathological gambling and substance use
disorders: a focus on impulsivity and compulsivity. Psychopharmacology 219:469–490. DOI: https://doi.org/10.
1007/s00213-011-2550-7, PMID: 22057662

Lisman JE, Grace AA. 2005. The hippocampal-VTA loop: controlling the entry of information into long-term
memory. Neuron 46:703–713. DOI: https://doi.org/10.1016/j.neuron.2005.05.002, PMID: 15924857

Litt A, Plassmann H, Shiv B, Rangel A. 2011. Dissociating valuation and saliency signals during decision-making.
Cerebral Cortex 21:95–102. DOI: https://doi.org/10.1093/cercor/bhq065, PMID: 20444840

Lynd-Balta E, Haber SN. 1994. The organization of midbrain projections to the striatum in the primate:
sensorimotor-related striatum versus ventral striatum. Neuroscience 59:625–640. DOI: https://doi.org/10.1016/
0306-4522(94)90182-1, PMID: 7516506

Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos
FX, Petrides M, Jefferies E, Smallwood J. 2016. Situating the default-mode network along a principal gradient
of macroscale cortical organization. PNAS 113:12574–12579. DOI: https://doi.org/10.1073/pnas.1608282113,
PMID: 27791099

Matsumoto M, Hikosaka O. 2009. Two types of dopamine neuron distinctly convey positive and negative
motivational signals. Nature 459:837–841. DOI: https://doi.org/10.1038/nature08028, PMID: 19448610

McClure SM, Laibson DI, Loewenstein G, Cohen JD. 2004. Separate neural systems value immediate and delayed
monetary rewards. Science 306:503–507. DOI: https://doi.org/10.1126/science.1100907, PMID: 15486304

McIntosh AR, Bookstein FL, Haxby JV, Grady CL. 1996. Spatial pattern analysis of functional brain images using
partial least squares. NeuroImage 3:143–157. DOI: https://doi.org/10.1006/nimg.1996.0016, PMID: 9345485

McIntosh AR, Lobaugh NJ. 2004. Partial least squares analysis of neuroimaging data: applications and advances.
NeuroImage 23:S250–S263. DOI: https://doi.org/10.1016/j.neuroimage.2004.07.020, PMID: 15501095

Meda SA, Stevens MC, Potenza MN, Pittman B, Gueorguieva R, Andrews MM, Thomas AD, Muska C, Hylton JL,
Pearlson GD. 2009. Investigating the behavioral and self-report constructs of impulsivity domains using
principal component analysis. Behavioural Pharmacology 20:390–399. DOI: https://doi.org/10.1097/FBP.
0b013e32833113a3

Menon V, Uddin LQ. 2010. Saliency, switching, attention and control: a network model of insula function. Brain
Structure and Function 214:655–667. DOI: https://doi.org/10.1007/s00429-010-0262-0, PMID: 20512370

Meola A, Yeh FC, Fellows-Mayle W, Weed J, Fernandez-Miranda JC. 2016. Human connectome-based
tractographic atlas of the brainstem connections and surgical approaches. Neurosurgery 79:437–455.
DOI: https://doi.org/10.1227/NEU.0000000000001224, PMID: 26914259

Mesulam MM. 1998. From sensation to cognition. Brain 121:1013–1052. DOI: https://doi.org/10.1093/brain/121.
6.1013, PMID: 9648540
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