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Abstract The ability to computationally predict whether a compound treats a disease would

improve the economy and success rate of drug approval. This study describes Project Rephetio to

systematically model drug efficacy based on 755 existing treatments. First, we constructed

Hetionet (neo4j.het.io), an integrative network encoding knowledge from millions of biomedical

studies. Hetionet v1.0 consists of 47,031 nodes of 11 types and 2,250,197 relationships of 24 types.

Data were integrated from 29 public resources to connect compounds, diseases, genes, anatomies,

pathways, biological processes, molecular functions, cellular components, pharmacologic classes,

side effects, and symptoms. Next, we identified network patterns that distinguish treatments from

non-treatments. Then, we predicted the probability of treatment for 209,168 compound–disease

pairs (het.io/repurpose). Our predictions validated on two external sets of treatment and provided

pharmacological insights on epilepsy, suggesting they will help prioritize drug repurposing

candidates. This study was entirely open and received realtime feedback from 40 community

members.

DOI: https://doi.org/10.7554/eLife.26726.001

Introduction
The cost of developing a new therapeutic drug has been estimated at 1.4 billion dollars

(DiMasi et al., 2016), the process typically takes 15 years from lead compound to market (Reich-

ert, 2003), and the likelihood of success is stunningly low (Hay et al., 2014). Strikingly, the costs

have been doubling every 9 years since 1970, a sort of inverse Moore’s law, which is far from an opti-

mal strategy from both a business and public health perspective (Scannell et al., 2012). Drug repur-

posing — identifying novel uses for existing therapeutics — can drastically reduce the duration,

failure rates, and costs of approval (Ashburn and Thor, 2004). These benefits stem from the rich
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preexisting information on approved drugs, including extensive toxicology profiling performed dur-

ing development, preclinical models, clinical trials, and postmarketing surveillance.

Drug repurposing is poised to become more efficient as mining of electronic health records

(EHRs) to retrospectively assess the effect of drugs gains feasibility (Wang et al., 2015; Xu et al.,

2015; Brilliant et al., 2016; Tatonetti et al., 2012). However, systematic approaches to repurpose

drugs based on mining EHRs alone will likely lack power due to multiple testing. Similar to the

approach followed to increase the power of genome-wide association studies (GWAS)

(Stephens and Balding, 2009; Sawcer, 2008), integration of biological knowledge to prioritize drug

repurposing will help overcome limited EHR sample size and data quality.

In addition to repurposing, several other paradigm shifts in drug development have been pro-

posed to improve efficiency. Since small molecules tend to bind to many targets, polypharmacology

aims to find synergy in the multiple effects of a drug (Roth et al., 2004). Network pharmacology

assumes diseases consist of a multitude of molecular alterations resulting in a robust disease state.

Network pharmacology seeks to uncover multiple points of intervention into a specific pathophysio-

logical state that together rehabilitate an otherwise resilient disease process (Hopkins, 2008; Hop-

kins, 2007). Although target-centric drug discovery has dominated the field for decades, phenotypic

screens have more recently resulted in a comparatively higher number of first-in-class small mole-

cules (Swinney and Anthony, 2011). Recent technological advances have enabled a new paradigm

in which mid- to high-throughput assessment of intermediate phenotypes, such as the molecular

response to drugs, is replacing the classic target discovery approach (Iskar et al., 2012; Lamb, 2007;

Qu and Rajpal, 2012). Furthermore, integration of multiple channels of evidence, particularly diverse

types of data, can overcome the limitations and weak performance inherent to data of a single

domain (Hodos et al., 2016). Modern computational approaches offer a convenient platform to tie

these developments together as the reduced cost and increased velocity of in silico experimentation

massively lowers the barriers to entry and price of failure (Hurle et al., 2013; Liu et al., 2013).

Hetnets (short for heterogeneous networks) are networks with multiple types of nodes and rela-

tionships. They offer an intuitive, versatile, and powerful structure for data integration by aggregat-

ing graphs for each relationship type onto common nodes. In this study, we developed a hetnet

(Hetionet v1.0) by integrating knowledge and experimental findings from decades of biomedical

research spanning millions of publications. We adapted an algorithm originally developed for social

eLife digest Of all the data in the world today, 90% was created in the last two years. However,

taking advantage of this data in order to advance our knowledge is restricted by how quickly we can

access it and analyze it in a proper context.

In biomedical research, data is largely fragmented and stored in databases that typically do not

“talk” to each other, thus hampering progress. One particular problem in medicine today is that the

process of making a new therapeutic drug from scratch is incredibly expensive and inefficient,

making it a risky business. Given the low success rate in drug discovery, there is an economic

incentive in trying to repurpose an existing drug that has already been shown to be safe and

effective towards a new disease or condition.

Himmelstein et al. used a computational approach to analyze 50,000 data points – including

drugs, diseases, genes and symptoms – from 19 different public databases. This approach made it

possible to create more than two million relationships among the data points, which could be used

to develop models that predict which drugs currently in use by doctors might be best suited to treat

any of 136 common diseases. For example, Himmelstein et al. identified specific drugs currently

used to treat depression and alcoholism that could be repurposed to treat smoking addition and

epilepsy.

These findings provide a new and powerful way to study drug repurposing. While this work was

exclusively performed with public data, an expanded and potentially stronger set of predictions

could be obtained if data owned by pharmaceutical companies were incorporated. Additional

studies will be needed to test the predictions made by the models.

DOI: https://doi.org/10.7554/eLife.26726.002
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network analysis and applied it to Hetionet v1.0 to identify patterns of efficacy and predict new uses

for drugs. The algorithm performs edge prediction through a machine learning framework that

accommodates the breadth and depth of information contained in Hetionet v1.0 (Himmelstein and

Baranzini, 2015a; Sun et al., 2011). Our approach represents an in silico implementation of network

pharmacology that natively incorporates polypharmacology and high-throughput phenotypic

screening.

One fundamental characteristic of our method is that it learns and evaluates itself on existing

medical indications (i.e. a ’gold standard’). Next, we introduce previous approaches that also per-

formed comprehensive evaluation on existing treatments. A 2011 study, named PREDICT, compiled

1933 treatments between 593 drugs and 313 diseases (Gottlieb et al., 2011). Starting from the

premise that similar drugs treat similar diseases, PREDICT trained a classifier that incorporates five

types of drug-drug and two types of disease-disease similarity. A 2014 study compiled 890 treat-

ments between 152 drugs and 145 diseases with transcriptional signatures (Cheng et al., 2014). The

authors found that compounds triggering an opposing transcriptional response to the disease were

more likely to be treatments, although this effect was weak and limited to cancers. A 2016 study

compiled 402 treatments between 238 drugs and 78 diseases and used a single proximity score —

the average shortest path distance between a drug’s targets and disease’s associated proteins on

the interactome — as a classifier (Guney et al., 2016).

We build on these successes by creating a framework for incorporating the effects of any biologi-

cal relationship into the prediction of whether a drug treats a disease. By doing this, we were able

to capture a multitude of effects that have been suggested as influential for drug repurposing

including drug-drug similarity (Gottlieb et al., 2011; Li and Lu, 2012), disease-disease similarity

(Gottlieb et al., 2011; Chiang and Butte, 2009), transcriptional signatures (Lamb, 2007; Qu and

Rajpal, 2012; Cheng et al., 2014; Lamb et al., 2006; Iorio et al., 2013), protein interactions

(Guney et al., 2016), genetic association (Nelson et al., 2015; Sanseau et al., 2012), drug side

effects (Campillos et al., 2008; Nugent et al., 2016), disease symptoms (Zhou et al., 2014), and

molecular pathways (Pratanwanich and Lió, 2014). Our ability to create such an integrative model

of drug efficacy relies on the hetnet data structure to unite diverse information. On Hetionet v1.0,

our algorithm learns which types of compound–disease paths discriminate treatments from non-

treatments in order to predict the probability that a compound treats a disease.

We refer to this study as Project Rephetio (pronounced as rep-het-ee-oh). Both Rephetio and

Hetionet are portmanteaus combining the words repurpose, heterogeneous, and network with the

URL het.io.

Results

Hetionet v1.0
We obtained and integrated data from 29 publicly available resources to create Hetionet v1.0 (Fig-

ure 1). The hetnet contains 47,031 nodes of 11 types (Table 1) and 2,250,197 relationships of 24

types (Table 2). The nodes consist of 1552 small molecule compounds and 137 complex diseases, as

well as genes, anatomies, pathways, biological processes, molecular functions, cellular components,

perturbations, pharmacologic classes, drug side effects, and disease symptoms. The edges repre-

sent relationships between these nodes and encompass the collective knowledge produced by mil-

lions of studies over the last half century.

For example, Compound–binds–Gene edges represent when a compound binds to a protein

encoded by a gene. This information has been extracted from the literature by human curators and

compiled into databases such as DrugBank, ChEMBL, DrugCentral, and BindingDB. We combined

these databases to create 11,571 binding edges between 1389 compounds and 1689 genes. These

edges were compiled from 10,646 distinct publications, which Hetionet binding edges reference as

an attribute. Binding edges represent a comprehensive catalog constructed from low-throughput

experimentation. However, we also integrated findings from high-throughput technologies — many

of which have only recently become available. For example, we generated consensus transcriptional

signatures for compounds in LINCS L1000 and diseases in STARGEO.

While Hetionet v1.0 is ideally suited for drug repurposing, the network has broader biological

applicability. For example, we have prototyped queries for (a) identifying drugs that target a specific
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pathway, (b) identifying biological processes involved in a specific disease, (c) identifying the drug

targets responsible for causing a specific side effect, and (d) identifying anatomies with transcrip-

tional relevance for a specific disease (Himmelstein, 2016j). Each of these queries was simple to

write and took less than a second to run on our publicly available Hetionet Browser. Although it is

possible that existing services provide much of the aforementioned functionality, they offer less ver-

satility. Hetionet differentiates itself in its ability to flexibly query across multiple domains of informa-

tion. As a proof of concept, we enhanced the biological process query (b), which identified

processes that were enriched for disease-associated genes, using multiple sclerosis (MS) as an exam-

ple disease. The verbose Cypher code for this query is shown below:

MATCH path =

//Specify the type of path to match

(n0:Disease)-[e1:ASSOCIATES_DaG]-(n1:Gene)-[:INTERACTS_GiG]-

(n2:Gene)-[:PARTICIPATES_GpBP]-(n3:BiologicalProcess)

WHERE

//Specify the source and target nodes

n0.name = 'multiple sclerosis' AND

n3.name = 'retina layer formation'

//Require GWAS support for the Disease-associates-Gene relationship
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Figure 1. Hetionet v1.0. (A) The metagraph, a schema of the network types. (B) The hetnet visualized. Nodes are drawn as dots and laid out orbitally,

thus forming circles. Edges are colored by type. (C) Metapath counts by path length. The number of different types of paths of a given length that

connect two node types is shown. For example, the top-left tile in the Length 1 panel denotes that Anatomy nodes are not connected to themselves

(i.e. no edges connect nodes of this type between themselves). However, the bottom-left tile of the Length 4 panel denotes that 88 types of length-four

paths connect Symptom to Anatomy nodes.

DOI: https://doi.org/10.7554/eLife.26726.003
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AND 'GWAS Catalog' in e1.sources

//Require the interacting gene to be upregulated in a relevant tissue

AND exists((n0)-[:LOCALIZES_DlA]-(:Anatomy)-[:UPREGULATES_AuG]-(n2))

RETURN path

The query above identifies genes that interact with MS GWAS-genes. However, interacting genes

are discarded unless they are upregulated in an MS-related anatomy (i.e. anatomical structure, e.g.

organ or tissue). Then relevant biological processes are identified. Thus, this single query spans four

node and five relationship types.

The integrative potential of Hetionet v1.0 is reflected by its connectivity. Among the 11 metano-

des, there are 66 possible source–target pairs. However, only 11 of them have at least one direct

connection. In contrast, for paths of length 2, 50 pairs have connectivity (paths types that start on

the source node type and end on the target node type, see Figure 1C). At length 3, all 66 pairs are

connected. At length 4, the source–target pair with the fewest types of connectivity (Side Effect to

Symptom) has 13 metapaths, while the pair with the most connectivity types (Gene to Gene) has

3542 pairs. This high level of connectivity across a diversity of biomedical entities forms the founda-

tion for automated translation of knowledge into biomedical insight.

Hetionet v1.0 is accessible via a Neo4j Browser at https://neo4j.het.io. This public Neo4j instance

provides users an installation-free method to query and visualize the network. The Browser contains

a tutorial guide as well as guides with the details of each Project Rephetio prediction. Hetionet v1.0

is also available for download in JSON, Neo4j, and TSV formats (Himmelstein, 2017a). The JSON

and Neo4j database formats include node and edge properties — such as URLs, source and license

information, and confidence scores — and are thus recommended.

Systematic mechanisms of efficacy
One aim of Project Rephetio was to systematically evaluate how drugs exert their therapeutic poten-

tial. To address this question, we compiled a gold standard of 755 disease-modifying indications,

which form the Compound–treats–Disease edges in Hetionet v1.0. Next, we identified types of paths

(metapaths) that occurred more frequently between treatments than non-treatments (any com-

pound–disease pair that is not a treatment). The advantage of this approach is that metapaths natu-

rally correspond to mechanisms of pharmacological efficacy. For example, the Compound–binds–

Gene–associates–Disease (CbGaD) metapath identifies when a drug binds to a protein correspond-

ing to a gene involved in the disease.

Table 1. Metanodes.

Hetionet v1.0 includes 11 node types (metanodes). For each metanode, this table shows the abbrevia-

tion, number of nodes, number of nodes without any edges, and the number of metaedges connect-

ing the metanode.

Metanode Abbr Nodes Disconnected Metaedges

Anatomy A 402 2 4

Biological process BP 11,381 0 1

Cellular component CC 1391 0 1

Compound C 1552 14 8

Disease D 137 1 8

Gene G 20,945 1800 16

Molecular function MF 2884 0 1

Pathway PW 1822 0 1

Pharmacologic class PC 345 0 1

Side effect SE 5734 33 1

Symptom S 438 23 1

DOI: https://doi.org/10.7554/eLife.26726.004
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We evaluated all 1206 metapaths that traverse from compound to disease and have length of 2–4

(Figure 2A). To control for the different degrees of nodes, we used the degree-weighted path count

(DWPC, see Materials and methods) — which downweights paths going through highly connected

nodes (Himmelstein and Baranzini, 2015a) — to assess path prevalence. In addition, we compared

the performance of each metapath to a baseline computed from permuted networks. Hetnet permu-

tation preserves node degree while eliminating edge specificity, allowing us to isolate the portion of

unpermuted metapath performance resulting from actual network paths. We refer to the permuta-

tion-adjusted performance measure as D AUROC. A positive D AUROC indicates that paths of the

given type tended to occur more frequently between treatments than non-treatments, after account-

ing for different levels of connectivity (node degrees) in the hetnet. In general terms, D AUROC

assesses whether paths of a given type were informative of drug efficacy.

Overall, 709 of the 1206 metapaths exhibited a statistically significant D AUROC at a false discov-

ery rate cutoff of 5%. These 709 metapaths included all 24 metaedges, suggesting that each type of

relationship we integrated provided at least some therapeutic utility. However, not all metaedges

were equally present in significant metapaths: 259 significant metapaths included a Compound–

binds–Gene metaedge, whereas only four included a Gene–participates–Cellular Component

Table 2. Metaedges.

Hetionet v1.0 contains 24 edge types (metaedges). For each metaedge, the table reports the abbrevi-

ation, the number of edges, the number of source nodes connected by the edges, and the number

of target nodes connected by the edges. Note that all metaedges besides GenefiregulatesfiGene

are undirected.

Metaedge Abbr Edges Sources Targets

Anatomy–downregulates–Gene AdG 102,240 36 15,097

Anatomy–expresses–Gene AeG 526,407 241 18,094

Anatomy–upregulates–Gene AuG 97,848 36 15,929

Compound–binds–Gene CbG 11,571 1389 1689

Compound–causes–Side Effect CcSE 138,944 1071 5701

Compound–downregulates–Gene CdG 21,102 734 2880

Compound–palliates–Disease CpD 390 221 50

Compound–resembles–Compound CrC 6486 1042 1054

Compound–treats–Disease CtD 755 387 77

Compound–upregulates–Gene CuG 18,756 703 3247

Disease–associates–Gene DaG 12,623 134 5392

Disease–downregulates–Gene DdG 7623 44 5745

Disease–localizes–Anatomy DlA 3602 133 398

Disease–presents–Symptom DpS 3357 133 415

Disease–resembles–Disease DrD 543 112 106

Disease–upregulates–Gene DuG 7731 44 5630

Gene–covaries–Gene GcG 61,690 9043 9532

Gene–interacts–Gene GiG 147,164 9526 14,084

Gene–participates–Biological Process GpBP 559,504 14,772 11,381

Gene–participates–Cellular Component GpCC 73,566 10,580 1391

Gene–participates–Molecular Function GpMF 97,222 13,063 2884

Gene–participates–Pathway GpPW 84,372 8979 1822

GenefiregulatesfiGene Gr > G 265,672 4634 7048

Pharmacologic Class–includes–Compound PCiC 1029 345 724

DOI: https://doi.org/10.7554/eLife.26726.005
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metaedge. Table 3 lists the predictiveness of several metapaths of interest. Refer to the Discussion

for our interpretation of these findings.

Predictions of drug efficacy
We implemented a machine learning approach to translate the network connectivity between a com-

pound and a disease into a probability of treatment (Himmelstein, 2016k; Himmelstein, 2017b).

The approach relies on the 755 known treatments as positives and 29,044 non-treatments as nega-

tives to train a logistic regression model. Note that 179,369 non-treatments were omitted as nega-

tive training observations because they had a prior probability of treatment equal to zero (see

Materials and methods). The features consisted of a prior probability of treatment, node degrees for

14 metaedges, and DWPCs for 123 metapaths that were well suited for modeling. A cross-validated

elastic net was used to minimize overfitting, yielding a model with 31 features (Figure 2B). The

DWPC features with negative coefficients appear to be included as node-degree-capturing covari-

ates, i.e. they reflect the general connectivity of the compound and disease rather than specific

paths between them. However, the 11 DWPC features with non-negligible positive coefficients

Figure 2. Performance by type and model coefficients. (A) The performance of the DWPCs for 1206 metapaths, organized by their composing

metaedges. The larger dots represent metapaths that were significantly affected by permutation (false discovery rate < 5%). Metaedges are ordered by

their best performing metapath. Since a metapath’s performance is limited by its least informative metaedge, the best performing metapath for a

metaedge provides a lower bound on the pharmacologic utility of a given domain of information. (B) Barplot of the model coefficients. Features were

standardized prior to model fitting to make the coefficients comparable (Himmelstein and Lizee, 2016a).

DOI: https://doi.org/10.7554/eLife.26726.006

Himmelstein et al. eLife 2017;6:e26726. DOI: https://doi.org/10.7554/eLife.26726 7 of 35

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.26726.006
https://doi.org/10.7554/eLife.26726


represent the most salient types of connectivity for systematically modeling drug efficacy. See the

metapaths with positive coefficients in Table 3 for unabbreviated names. As an example, the

CcSEcCtD feature assesses whether the compound causes the same side effects as compounds that

treat the disease. Alternatively, the CbGeAlD feature assesses whether the compound binds to

genes that are expressed in the anatomies affected by the disease.

We applied this model to predict the probability of treatment between each of 1538 connected

compounds and each of 136 connected diseases, resulting in predictions for 209,168 compound–dis-

ease pairs (Himmelstein et al., 2016a), available at http://het.io/repurpose/. The 755 known dis-

ease-modifying indications were highly ranked (AUROC = 97.4%, Figure 3). The predictions also

successfully prioritized two external validation sets: novel indications from DrugCentral

(AUROC = 85.5%) and novel indications in clinical trial (AUROC = 70.0%). Together, these findings

indicate that Project Rephetio has the ability to recognize efficacious compound–disease pairs.

Table 3. The predictiveness of select metapaths.

A small selection of interesting or influential metapaths is provided (complete table online). Len. refers to number of metaedges com-

posing the metapath. D AUROC and �log10(p) assess the performance of a metapath’s DWPC in discriminating treatments from non-

treatments (in the all-features stage as described in Materials and methods). p assesses whether permutation affected AUROC. For ref-

erence, p=0.05 corresponds to �log10(p) = 1.30. Note that several metapaths shown here provided little evidence that D AUROC 6¼ 0

underscoring their poor ability to predict whether a compound treated a disease. Coef. reports a metapath’s logistic regression coeffi-

cient as seen in Figure 2B. Metapaths removed in feature selection have missing coefficients, whereas metapaths given zero-weight

by the elastic net have coef. = 0.0.

Abbrev. Len. D auroc �log10(P) Coef. Metapath

CbGaD 2 14.5% 6.2 0.20 Compound–binds–Gene–associates–Disease

CdGuD 2 1.7% 4.5 Compound–downregulates–Gene–upregulates–Disease

CrCtD 2 22.8% 6.9 0.15 Compound–resembles–Compound–treats–Disease

CtDrD 2 17.2% 5.8 0.13 Compound–treats–Disease–resembles–Disease

CuGdD 2 1.1% 2.6 Compound–upregulates–Gene–downregulates–Disease

CbGbCtD 3 21.7% 6.5 0.22 Compound–binds–Gene–binds–Compound–treats–Disease

CbGeAlD 3 8.4% 5.2 0.04 Compound–binds–Gene–expresses–Anatomy–localizes–Disease

CbGiGaD 3 9.0% 4.4 0.00 Compound–binds–Gene–interacts–Gene–associates–Disease

CcSEcCtD 3 14.0% 6.8 0.08 Compound–causes–Side Effect–causes–Compound–treats–Disease

CdGdCtD 3 3.8% 4.6 0.00 Compound–downregulates–Gene–downregulates–Compound–treats–Disease

CdGuCtD 3 �2.1% 2.4 Compound–downregulates–Gene–upregulates–Compound–treats–Disease

CiPCiCtD 3 23.3% 7.5 0.16 Compound–includes–Pharmacologic Class–includes–Compound–treats–Disease

CpDpCtD 3 4.3% 3.9 0.06 Compound–palliates–Disease–palliates–Compound–treats–Disease

CrCrCtD 3 17.0% 5.0 0.12 Compound–resembles–Compound–resembles–Compound–treats–Disease

CrCbGaD 3 8.2% 6.1 0.002 Compound–resembles–Compound–binds–Gene–associates–Disease

CtDdGdD 3 4.2% 3.9 Compound–treats–Disease–downregulates–Gene–downregulates–Disease

CtDdGuD 3 0.5% 1.0 Compound–treats–Disease–downregulates–Gene–upregulates–Disease

CtDlAlD 3 12.4% 6.0 Compound–treats–Disease–localizes–Anatomy–localizes–Disease

CtDpSpD 3 13.9% 6.1 Compound–treats–Disease–presents–Symptom–presents–Disease

CtDuGdD 3 0.7% 1.3 Compound–treats–Disease–upregulates–Gene–downregulates–Disease

CtDuGuD 3 1.1% 1.4 Compound–treats–Disease–upregulates–Gene–upregulates–Disease

CuGdCtD 3 �1.6% 2.9 Compound–upregulates–Gene–downregulates–Compound–treats–Disease

CuGuCtD 3 4.4% 3.5 0.00 Compound–upregulates–Gene–upregulates–Compound–treats–Disease

CbGiGiGaD 4 7.0% 5.1 0.00 Compound–binds–Gene–interacts–Gene–interacts–Gene–associates–Disease

CbGpBPpGaD 4 4.9% 3.8 0.00 Compound–binds–Gene–participates–Biological Process–participates–Gene–associates–Disease

CbGpPWpGaD 4 7.6% 7.9 0.05 Compound–binds–Gene–participates–Pathway–participates–Gene–associates–Disease

DOI: https://doi.org/10.7554/eLife.26726.007
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Predictions were scaled to the overall prevalence of treatments (0.36%). Hence a compound–dis-

ease pair that received a prediction of 1% represents a twofold enrichment over the null probability.

Of the 3980 predictions with a probability exceeding 1%, 586 corresponded to known disease-modi-

fying indications, leaving 3394 repurposing candidates. For a given compound or disease, we pro-

vide the percentile rank of each prediction. Therefore, users can assess whether a given prediction is

a top prediction for the compound or disease. In addition, our table-based prediction browser links

to a custom guide for each prediction, which displays in the Neo4j Hetionet Browser. Each guide

includes a query to display the top paths supporting the prediction and lists clinical trials investigat-

ing the indication.

Nicotine dependence case study
There are currently two FDA-approved medications for smoking cessation (varenicline and bupro-

pion) that are not nicotine replacement therapies. PharmacotherapyDB v1.0 lists varenicline as a dis-

ease-modifying indication and nicotine itself as a symptomatic indication for nicotine dependence,

but is missing bupropion. Bupropion was first approved for depression in 1985. Owing to the seren-

dipitous observation that it decreased smoking in depressed patients taking this drug, Bupropion

was approved for smoking cessation in 1997 (Harmey et al., 2012). Therefore, we looked whether

Project Rephetio could have predicted this repurposing. Bupropion was the ninth best prediction for

Figure 3. Predictions performance on four indication sets. We assess how well our predictions prioritize four sets of indications. (A) The y-axis labels

denote the number of indications (+) and non-indications (�) composing each set. Violin plots with quartile lines show the distribution of indications

when compound–disease pairs are ordered by their prediction. In all four cases, the actual indications were ranked highly by our predictions. (B) ROC

Curves with AUROCs in the legend. (C) Precision–Recall Curves with AUPRCs in the legend.

DOI: https://doi.org/10.7554/eLife.26726.008
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nicotine dependence (99.5th percentile) with a probability 2.50-fold greater than the null. Figure 4

shows the top paths supporting the repurposing of bupropion.

Atop the nicotine dependence predictions were nicotine (10.97-fold over null), cytisine (10.58-

fold), and galantamine (9.50-fold). Cytisine is widely used in Eastern Europe for smoking cessation

due to its availability at a fraction of the cost of other pharmaceutical options (Cahill et al., 2016). In

the last half decade, large-scale clinical trials have confirmed cytisine’s efficacy (West et al., 2011;

Walker et al., 2014). Galantamine, an approved Alzheimer’s treatment, is currently in Phase 2 trial

for smoking cessation and is showing promising results (Ashare et al., 2016). In summary, nicotine

dependence illustrates Project Rephetio’s ability to predict efficacious treatments and prioritize his-

toric and contemporary repurposing opportunities.

Epilepsy case study
Several factors make epilepsy an interesting disease for evaluating repurposing predictions

(Khankhanian and Himmelstein, 2016). Antiepileptic drugs work by increasing the seizure threshold

— the amount of electric stimulation that is required to induce seizure. The effect of a drug on the sei-

zure threshold can be cheaply and reliably tested in rodent models. As a result, the viability of most

approved drugs in treating epilepsy is known.

We focused our evaluation on the top 100 scoring compounds — referred to as the epilepsy pre-

dictions in this section — after discarding a single combination drug. We classified each compound

as anti-ictogenic (seizure suppressing), unknown (no established effect on the seizure threshold), or

ictogenic (seizure generating) according to medical literature (Khankhanian and Himmelstein,

2016). Of the top 100 epilepsy predictions, 77 were anti-ictogenic, eight were unknown, and 15

Figure 4. Evidence supporting the repurposing of bupropion for smoking cessation. This figure shows the 10 most supportive paths (out of 365 total)

for treating nicotine dependence with bupropion, as available in this prediction’s Neo4j Browser guide. Our method detected that bupropion targets

the CHRNA3 gene, which is also targeted by the known-treatment varenicline (Mihalak et al., 2006). Furthermore, CHRNA3 is associated with nicotine

dependence (Thorgeirsson et al., 2008) and participates in several pathways that contain other nicotinic-acetylcholine-receptor (nAChR) genes

associated with nicotine dependence. Finally, bupropion causes terminal insomnia (Boshier et al., 2003) as does varenicline (Hays et al., 2008), which

could indicate an underlying common mechanism of action.

DOI: https://doi.org/10.7554/eLife.26726.009
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Figure 5. Top 100 epilepsy predictions. (A) Compounds — ranked from 1 to 100 by their predicted probability of treating epilepsy — are colored by

their effect on seizures (Khankhanian and Himmelstein, 2016). The highest predictions are almost exclusively anti-ictogenic. Further down the

prediction list, the prevalence of drugs with an ictogenic (contraindication) or unknown (novel repurposing candidate) effect on epilepsy increases. All

compounds shown received probabilities far exceeding the null probability of treatment (0.36%). (B) A chemical similarity network of the epilepsy

Figure 5 continued on next page
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were ictogenic (Figure 5A). Notably, the predictions contained 23 of the 25 disease-modifying antie-

pileptics in PharamcotherapyDB v1.0.

Many of the 77 anti-ictogenic compounds were not first-line antiepileptic drugs. Instead, they

were used as ancillary drugs in the treatment of status epilepticus. For example, we predicted four

halogenated ethers, two of which (isoflurane and desflurane) are used clinically to treat life-threaten-

ing seizures that persist despite treatment (Mirsattari et al., 2004). As inhaled anesthetics, these

compounds are not appropriate as daily epilepsy medications, but are feasible for refractory status

epilepticus where patients are intubated.

Given this high precision (77%), the eight compounds of unknown effect are promising repurpos-

ing candidates. For example, acamprosate — whose top prediction was epilepsy — is a taurine ana-

log that promotes alcohol abstinence. Support for this repurposing arose from acamprosate’s

inhibition of the glutamate receptor and positive modulation of the GABAA receptor (Figure 5C). If

effective against epilepsy, acamprosate could serve a dual benefit for recovering alcoholics who

experience seizures from alcohol withdrawal.

While certain classes of compounds were highly represented in our epilepsy predictions, such

benzodiazepines and barbiturates, there was also considerable diversity (Khankhanian and Himmel-

stein, 2016). The 100 predicted compounds encompassed 26 third-level ATC codes (Knaus, 2016),

such as antiarrhythmics (quinidine, classified as anti-ictogenic) and urologicals (phenazopyridine, clas-

sified as unknown). Furthermore, 25 of the compounds were chemically distinct, i.e. they did not

resemble any of the other epilepsy predictions (Figure 5B).

Next, we investigated which components of Hetionet contributed to the epilepsy predictions

(Khankhanian and Himmelstein, 2016). In total, 392,956 paths of 12 types supported the predic-

tions. Using several different methods for grouping paths, we were able to quantify the aggregate

biological evidence. Our algorithm primarily drew on two aspects of epilepsy: its known treatments

(76% of the total support) and its genetic associations (22% of support). In contrast, our algorithm

drew heavily on several aspects of the predicted compounds: their targeted genes (44%), their

chemically similar compounds (30%), their pharmacologic classes, their palliative indications (5%),

and their side effects (4%).

Specifically, 266,192 supporting paths originated with a Compound–binds–Gene relationship.

Aggregating support by these genes shows the extent that 121 different drug targets contributed

to the predictions (Khankhanian and Himmelstein, 2016). In order of importance, the predictions

targeted GABAA receptors (15.3% of total support), cytochrome P450 enzymes (5.6%), the sodium

channel (4.6%), glutamate receptors (3.8%), the calcium channel (2.7%), carbonic anhydrases (2.5%),

cholinergic receptors (2.1%), and the potassium channel (1.4%). Besides cytochrome P450, which pri-

marily influences pharmacokinetics (Johannessen and Landmark, 2010), our method detected and

leveraged bonafide anti-ictogenic mechanisms (Rogawski and Löscher, 2004). Figure 5C shows

drug target contributions per compound and illustrates the considerable mechanistic diversity

among the predictions.

Also notable are the 15 ictogenic compounds in our top 100 predictions. Nine of the ictogenic

compounds share a tricyclic structure (Figure 5B), five of which are tricyclic antidepressants. While

the ictogenic mechanisms of these antidepressants are still unclear (Johannessen Landmark et al.,

2016), Figure 5C suggests their anticholinergic effects may be responsible (Himmelstein, 2017d),

in accordance with previous theories (Dailey and Naritoku, 1996).

We also ranked the contribution of the 1137 side effects that supported the epilepsy predictions

through 117,720 CcSEcCtD paths. The top five side effects — ataxia (0.069% of total support), nys-

tagmus (0.049%), diplopia (0.045%), somnolence (0.044%), and vomiting (0.043%) — reflect estab-

lished adverse effects of antiepileptic drugs (Zadikoff et al., 2007; Wu and Thijs, 2015;

ROFF HILTONHilton et al., 2004; Placidi et al., 2000; Jahromi et al., 2011). In summary, our

Figure 5 continued

predictions, with each compound’s 2D structure (Himmelstein et al., 2017a). Edges are Compound–resembles–Compound relationships from Hetionet

v1.0. Nodes are colored by their effect on seizures. (C) The relative contribution of important drug targets to each epilepsy prediction

(Himmelstein et al., 2017a). Specifically, pie charts show how the eight most-supportive drug targets across all 100 epilepsy predictions contribute to

individual predictions. Other Targets represents the aggregate contribution of all targets not listed. The network layout is identical to B.

DOI: https://doi.org/10.7554/eLife.26726.010
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method simultaneously identified the hallmark side effects of antiepileptic drugs while incorporating

this knowledge to prioritize 1538 compounds for anti-ictogenic activity.

Discussion
We created Hetionet v1.0 by integrating 29 resources into a single data structure — the hetnet.

Consisting of 11 types of nodes and 24 types of relationships, Hetionet v1.0 brings more types of

information together than previous leading-studies in biological data integration (Gligorijević and

Pržulj, 2015). Moreover, we strove to create a reusable, extensible, and property-rich network.

While all the resources we include are publicly available, their integration was a time-intensive under-

taking and required careful consideration of legal barriers to data reuse. Hetionet allows researchers

to begin answering integrative questions without having to first spend months processing data.

Our public Neo4j instance allows users to immediately interact with Hetionet. Through the

Cypher language, users can perform highly specialized graph queries with only a few lines of code.

Queries can be executed in the web browser or programmatically from a language with a Neo4j

driver. For users that are unfamiliar with Cypher, we include several example queries in a Browser

guide. In contrast to traditional REST APIs, our public Neo4j instance provides users with maximal

flexibility to construct custom queries by exposing the underlying database.

As data has grown more plentiful and diverse, so has the applicability of hetnets. Unfortunately,

network science has been naturally fragmented by discipline resulting in relatively slow progress in

integrating heterogeneous data. A 2014 analysis identified 78 studies using multilayer networks — a

superset of hetnets (heterogeneous information networks) with the potential for additional dimen-

sions, such as time. However, the studies relied on 26 different terms, 9 of which had multiple defini-

tions (Kivela et al., 2014; Himmelstein et al., 2015b). Nonetheless, core infrastructure and

algorithms for hetnets are emerging. Compared to the existing mathematical frameworks for multi-

layer networks that must deal with layers other than type (such as the aspect of time) (Kivela et al.,

2014), the primary obligation of hetnet algorithms is to be type aware. One goal of our project has

been to unite hetnet research across disciplines. We approached this goal by making Project Rephe-

tio entirely available online and inviting community feedback throughout the process

(Himmelstein et al., 2015c).

Integrating every resource into a single interconnected data structure allowed us to assess sys-

tematic mechanisms of drug efficacy. Using the max performing metapath to assess the pharmaco-

logical utility of a metaedge (Figure 2A), we can divide our relationships into tiers of

informativeness. The top tier consists of the types of information traditionally considered by pharma-

cology: Compound–treats–Disease, Pharmacologic Class–includes–Compound, Compound–resem-

bles–Compound, Disease–resembles–Disease, and Compound–binds–Gene. The upper-middle tier

consists of types of information that have been the focus of substantial medical study, but have only

recently started to play a bigger role in drug development, namely the metaedges Disease–associ-

ates–Gene, Compound–causes–Side Effect, Disease–presents–Symptom, Disease–localizes–Anat-

omy, and Gene–interacts–Gene.

The lower-middle tier contains the transcriptomics metaedges such as Compound–downregu-

lates–Gene, Anatomy–expresses–Gene, GenefiregulatesfiGene, and Disease–downregulates–

Gene. Much excitement surrounds these resources due to their high-throughput and genome-wide

scope, which offers a route to drug discovery that is less biased by existing knowledge. However,

our findings suggest that these resources are only moderately informative of drug efficacy. Other

lower-middle tier metaedges were the product of time-intensive biological experimentation, such as

Gene–participates–Pathway, Gene–participates–Molecular Function, and Gene–participates–Biologi-

cal Process. Unlike the top tier resources, this knowledge has historically been pursued for basic sci-

ence rather than primarily medical applications. The weak yet appreciable performance of the

Gene–covaries–Gene suggests the synergy between the fields of evolutionary genomics and disease

biology. The lower tier included the Gene–participates–Cellular Component metaedge, which may

reflect that the relevance of cellular location to pharmacology is highly case dependent and not ame-

nable to systematic profiling.

The performance of specific metapaths (Table 3) provides further insight. For example, significant

emphasis has been put on the use of transcriptional data for drug repurposing (Iorio et al., 2013).

One common approach has been to identify compounds with opposing transcriptional signatures to
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a disease (Qu and Rajpal, 2012; Sirota et al., 2011). However, several systematic studies report

underwhelming performance of this approach (Gottlieb et al., 2011; Cheng et al., 2014;

Guney et al., 2016) — a finding supported by the low performance of the CuGdD and CdGuD

metapaths in Project Rephetio. Nonetheless, other transcription-based methods showed some

promise. Compounds with similar transcriptional signatures were prone to treating the same disease

(CuGuCtD and CdGdCtD metapaths), while compounds with opposing transcriptional signatures

were slightly averse to treating the same disease (CuGdCtD and CdGuCtD metapaths). In contrast,

diseases with similar transcriptional profiles were not prone to treatment by the same compound

(CtDdGuD and CtDuGdD).

By comparably assessing the informativeness of different metaedges and metapaths, Project

Rephetio aims to guide future research towards promising data types and analyses. One caveat is

that omics-scale experimental data will likely play a larger role in developing the next generation of

pharmacotherapies. Hence, were performance reevaluated on treatments discovered in the forth-

coming decades, the predictive ability of these data types may rise. Encouragingly, most data types

were at least weakly informative and hence suitable for further study. Ideally, different data types

would provide orthogonal information. However, our model for whether a compound treats a dis-

ease focused on 11 metapaths — a small portion of the hundreds of metapaths available. While par-

simony aids interpretation, our model did not draw on the weakly-predictive high-throughput data

types — which are intriguing for their novelty, scalability, and cost-effectiveness — as much as we

had hypothesized.

Instead our model selected types of information traditionally considered in pharmacology. How-

ever, unlike a pharmacologist whose area of expertise may be limited to a few drug classes, our

model was able to predict probabilities of treatment for all 209,168 compound–disease pairs. Fur-

thermore, our model systematically learned the importance of each type of network connectivity.

For any compound–disease pair, we now can immediately provide the top network paths supporting

its therapeutic efficacy. A traditional pharmacologist may be able to produce a similar explanation,

but likely not until spending substantial time researching the compound’s pharmacology, the dis-

ease’s pathophysiology, and the molecular relationships in between. Accordingly, we hope certain

predictions will spur further research, such as trials to investigate the off-label use of acamprosate

for epilepsy, which is supported by one animal model (Farook et al., 2008).

As demonstrated by the 15 ictogenic compounds in our top 100 epilepsy predictions, Project

Rephetio’s predictions can include contraindications in addition to indications. Since many of Hetio-

net v1.0’s relationship types are general (e.g. the Compound–binds–Gene relationship type conflates

antagonist with agonist effects), we expect some high scoring predictions to exacerbate rather than

treat the disease. However, the predictions made by Hetionet v1.0 represent such substantial rela-

tive enrichment over the null that uncovering the correct directionality is a logical next step and

worth undertaking. Going forward, advances in automated mining of the scientific literature could

enable extraction of precise relationship types at omics scale (Ehrenberg et al., 2016;

Himmelstein et al., 2016b).

Future research should focus on gleaning orthogonal information from data types that are so

expansive that computational methods are the only option. Our CuGuCtD feature — measuring

whether a compound upregulates the same genes as compounds which treat the disease — is a

good example. This metapath was informative by itself (D AUROC = 4.4%) but was not selected by

the model, despite its orthogonal origin (gene expression) to selected metapaths. Using a more

extensive catalog of treatments as the gold standard would be one possible approach to increase

the power of feature selection.

Integrating more types of information into Hetionet should also be a future priority. The ‘network

effect’ phenomenon suggests that the addition of each new piece of information will enhance the

value of Hetionet’s existing information. We envision a future where all biological knowledge is

encoded into a single hetnet. Hetionet v1.0 was an early attempt, and we hope the strong perfor-

mance of Project Rephetio in repurposing drugs foreshadows the many applications that will thrive

from encoding biology in hetnets.
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Materials and methods
Hetionet was built entirely from publicly available resources with the goal of integrating a broad

diversity of information types of medical relevance, ranging in scale from molecular to organismal.

Practical considerations such as data availability, licensing, reusability, documentation, throughput,

and standardization informed our choice of resources. We abided by a simple litmus test for deter-

mining how to encode information in a hetnet: nodes represent nouns, relationships represent verbs

(Chen, 1997; Himmelstein et al., 2016c).

Our method for relationship prediction creates a strong incentive to avoid redundancy, which

increases the computational burden without improving performance. In a previous study to predict

disease–gene associations using a hetnet of pathophysiology (Himmelstein and Baranzini, 2015a),

we found that different types of gene sets contributed highly redundant information. Therefore, in

Hetionet v1.0, we reduced the number of gene set node types from 14 to 3 by omitting several

gene set collections and aggregating all pathway nodes.

Nodes
Nodes encode entities. We extracted nodes from standard terminologies, which provide curated

vocabularies to enable data integration and prevent concept duplication. The ease of mapping exter-

nal vocabularies, adoption, and comprehensiveness were primary selection criteria. Hetionet v1.0

includes nodes from five ontologies — which provide hierarchy of entities for a specific domain —

selected for their conformity to current best practices (Malone et al., 2016).

We selected 137 terms from the Disease Ontology (Schriml et al., 2012; Kibbe et al., 2015)

(which we refer to as DO Slim (Himmelstein and Li, 2015d; Himmelstein, 2016g)) as our disease

set. Our goal was to identify complex diseases that are distinct and specific enough to be clinically

relevant yet general enough to be well annotated. To this end, we included diseases that have been

studied by GWAS and cancer types from TopNodes_DOcancerslim (Wu et al., 2015). We ensured

that no DO Slim disease was a subtype of another DO Slim disease. Symptoms were extracted from

MeSH by taking the 438 descendants of Signs and Symptoms (Himmelstein and Pankov, 2015a;

Himmelstein, 2016h).

Approved small molecule compounds with documented chemical structures were extracted from

DrugBank version 4.2 (Law et al., 2014; Himmelstein, 2015b; Himmelstein, 2016i). Unapproved

compounds were excluded because our focus was repurposing. In addition, unapproved compounds

tend to be less studied than approved compounds making them less attractive for our approach

where robust network connectivity is critical. Finally, restricting to small molecules with known docu-

mented structures enabled us to map between compound vocabularies (see Mappings).

Side effects were extracted from SIDER version 4.1 (Kuhn et al., 2016; Himmelstein, 2015c;

Himmelstein, 2016j). SIDER codes side effects using UMLS identifiers (Bodenreider, 2004), which

we also adopted. Pharmacologic Classes were extracted from the DrugCentral data repository

(Ursu et al., 2017; Himmelstein et al., 2016d). Only pharmacologic classes corresponding to the

‘Chemical/Ingredient’, ‘Mechanism of Action’, and ‘Physiologic Effect’ FDA class types were included

to avoid pharmacologic classes that were synonymous with indications (Himmelstein et al., 2016d).

Protein-coding human genes were extracted from Entrez Gene (Maglott et al., 2011;

Himmelstein et al., 2015h; Himmelstein, 2016l). Anatomical structures, which we refer to as anato-

mies, were extracted from Uberon (Mungall et al., 2012). We selected a subset of 402 Uberon

terms by excluding terms known not to exist in humans and terms that were overly broad or arcane

(Malladi et al., 2015; Himmelstein, 2016m).

Pathways were extracted by combining human pathways from WikiPathways (Kutmon et al.,

2016; Pico et al., 2008), Reactome (Fabregat et al., 2016), and the Pathway Interaction Database

(Schaefer et al., 2009). The latter two resources were retrieved from Pathway Commons (RRID:

SCR_002103) (Cerami et al., 2011), which compiles pathways from several providers. Duplicate

pathways and pathways without multiple participating genes were removed (Pico and Himmelstein,

2015; Himmelstein and Pico, 2016a). Biological processes, cellular components, and molecular

functions were extracted from the Gene Ontology (Ashburner et al., 2000). Only terms with 2–

1000 annotated genes were included.
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Mappings
Before adding relationships, all identifiers needed to be converted into the vocabularies matching

that of our nodes. Oftentimes, our node vocabularies included external mappings. For example, the

Disease Ontology includes mappings to MeSH, UMLS, and the ICD, several of which we submitted

during the course of this study (Himmelstein, 2015e). In a few cases, the only option was to map

using gene symbols, a disfavored method given that it can lead to ambiguities.

When mapping external disease concepts onto DO Slim, we used transitive closure. For example,

the UMLS concept for primary progressive multiple sclerosis (C0751964) was mapped to the DO

Slim term for multiple sclerosis (DOID:2377).

Chemical vocabularies presented the greatest mapping challenge (Himmelstein, 2015b), since

these are poorly standardized (Hersey et al., 2015). UniChem’s (Chambers et al., 2013) Connectiv-

ity Search (Chambers et al., 2014) was used to map compounds, which maps by atomic connectivity

(based on First InChIKey Hash Blocks (Heller et al., 2013)) and ignores small molecular differences.

Edges
Anatomy–downregulates–Gene and Anatomy–upregulates–Gene edges (Himmelstein et al., 2016f;

Himmelstein and Bastian, 2015e; Himmelstein and Bastian, 2015f) were extracted from Bgee

(Bastian et al., 2008), which computes differentially expressed genes by anatomy in post-juvenile

adult humans. Anatomy–expresses–Gene edges were extracted from Bgee and TISSUES

(Santos et al., 2015; Himmelstein and Jensen, 2015g; Himmelstein and Jensen, 2015h).

Compound–binds–Gene edges were aggregated from BindingDB (Chen et al., 2001;

Gilson et al., 2016), DrugBank (Law et al., 2014; Wishart et al., 2006), and DrugCentral

(Ursu et al., 2017). Only binding relationships to single proteins with affinities of at least 1 mM (as

determined by Kd, Ki, or IC50) were selected from the October 2015 release of BindingDB

(Himmelstein and Gilson, 2015i; Himmelstein et al., 2015d). Target, carrier, transporter, and

enzyme interactions with single proteins (i.e. excluding protein groups) were extracted from Drug-

Bank 4.2 (Himmelstein, 2016i; Himmelstein and Protein, 2015j). In addition, all mapping DrugCen-

tral target relationships were included (Himmelstein et al., 2016d).

Compound–treats–Disease (disease-modifying indications) and Compound–palliates–Disease

(symptomatic indications) edges are from PharmacotherapyDB as described in Intermediate resour-

ces. Compound–causes–Side Effect edges were obtained from SIDER 4.1 (Kuhn et al., 2016;

Himmelstein, 2015c; Himmelstein, 2016j), which uses natural language processing to identify side

effects in drug labels. Compound–resembles–Compound relationships (Himmelstein, 2016i;

Himmelstein and Chen, 2015k; Himmelstein et al., 2015q) represent chemical similarity and corre-

spond to a Dice coefficient �0.5 (Dice, 1945) between extended connectivity fingerprints

(Rogers and Hahn, 2010; Morgan, 1965). Pharmacologic Class–includes–Compound edges were

extracted from DrugCentral for three FDA class types (Ursu et al., 2017; Himmelstein et al.,

2016d). Compound–downregulates–Gene and Compound–upregulates–Gene relationships were

computed from LINCS L1000 as described in Intermediate resources.

Disease–associates–Gene edges were extracted from the GWAS Catalog (Himmelstein and Bar-

anzini, 2016b), DISEASES (Himmelstein and Jensen, 2015l; Himmelstein and Jensen, 2016c), Dis-

GeNET (Himmelstein, 2015f; Himmelstein and Piñero, 2016d), and DOAF (Himmelstein, 2015g;

Himmelstein, 2016s). The GWAS Catalog compiles disease–SNP associations from published

GWAS (MacArthur et al., 2017). We aggregated overlapping loci associated with each disease and

identified the mode reported gene for each high confidence locus (Himmelstein, 2015h;

Himmelstein et al., 2015v). DISEASES integrates evidence of association from text mining, curated

catalogs, and experimental data (Pletscher-Frankild et al., 2015). Associations from DISEASES with

integrated scores � 2 were included after removing the contribution of DistiLD. DisGeNET integra-

tes evidence from over 10 sources and reports a single score for each association (Piñero et al.,

2015; Piñero et al., 2017). Associations with scores � 0.06 were included. DOAF mines Entrez

Gene GeneRIFs (textual annotations of gene function) for disease mentions (Xu et al., 2012). Associ-

ations with three or more supporting GeneRIFs were included. Disease–downregulates–Gene and

Disease–upregulates–Gene relationships (Himmelstein et al., 2015a; Himmelstein et al., 2016j)

were computed using STARGEO as described in Intermediate resources.
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Disease–localizes–Anatomy, Disease–presents–Symptom, and Disease–resembles–Disease edges

were calculated from MEDLINE co-occurrence (Himmelstein and Pankov, 2015a;

Himmelstein, 2016u). MEDLINE is a subset of 21 million PubMed articles for which designated

human curators have assigned topics. When retrieving articles for a given topic (MeSH term), we

activated two non-default search options as specified below: majr for selecting only articles where

the topic is major and noexp for suppressing explosion (returning articles linked to MeSH subterms).

We identified 4,161,769 articles with two or more disease topics; 696,252 articles with both a dis-

ease topic (majr) and an anatomy topic (noexp) (Himmelstein, 2015i); and 363,928 articles with both

a disease topic (majr) and a symptom topic (noexp). We used a Fisher’s exact test (Fisher, 1922) to

identify pairs of terms that occurred together more than would be expected by chance in their

respective corpus. We included co-occurring terms with p<0.005 in Hetionet v1.0.

GenefiregulatesfiGene directed edges were generated from the LINCS L1000 genetic interfer-

ence screens (see Intermediate resources) and indicate that knockdown or overexpression of the

source gene significantly dysregulated the target gene (Himmelstein and Chung, 2015q;

Himmelstein et al., 2016k). Gene–covaries–Gene edges represent evolutionary rate

covariation �0.75 (Priedigkeit et al., 2015; Himmelstein and Partha, 2015r;

Himmelstein, 2016w). Gene–interacts–Gene edges (Himmelstein et al., 2015z; Himmelstein and

Baranzini, 2016e) represent when two genes produce physically interacting proteins. We compiled

these interactions from the Human Interactome Database (Rual et al., 2005; Venkatesan et al.,

2009; Yu et al., 2011; Rolland et al., 2014), the Incomplete Interactome (Menche et al., 2015),

and our previous study (Himmelstein and Baranzini, 2015a). Gene–participates–Biological Process,

Gene–participates–Cellular Component, and Gene–participates–Molecular Function edges are from

Gene Ontology annotations (Huntley et al., 2015). As described in Intermediate resources, annota-

tions were propagated (Himmelstein et al., 2015g; Himmelstein et al., 2015f). Gene–participates–

Pathway edges were included from the human pathway resources described in the Nodes section

(Pico and Himmelstein, 2015; Himmelstein and Pico, 2016a).

Directionality
Whether a certain type of relationship has directionality is defined at the metaedge level. Directed

metaedges are only necessary when they connect a metanode to itself and correspond to an asym-

metric relationship. In the case of Hetionet v1.0, the sole directed metaedge was Gen-

efiregulatesfiGene. To demonstrate the implications of directionality, Hetionet v1.0 contains two

relationships between the genes HADH and STAT1: HADH–interacts–STAT1 and

HADHfiregulatesfiSTAT1. Both edges can be represented in the inverse orientation: STAT1–inter-

acts–HADH and STAT1 regulates HADH. However due to directed nature of the regulates rela-

tionship, STAT1firegulatesfiHADH is a distinct edge, which does not exist in the network. Similarly,

HADH–associates–obesity and obesity–associates–HADH are inverse orientations of the same under-

lying undirected relationship. Accordingly, the following path exists in the network: obesity–associ-

ates–HADHfiregulatesfiSTAT1, which can also be inverted to STAT1 regulates HADH–

associates–obesity.

Intermediate resources
In the process of creating Hetionet, we produced several datasets with broad applicability that

extended beyond Project Rephetio. These resources are referred to as intermediate resources and

described below.

Transcriptional signatures of disease using STARGEO
STARGEO is a nascent platform for annotating and meta-analyzing differential gene expression

experiments (Hadley et al., 2017). The STAR acronym stands for Search-Tag-Analyze Resources,

while GEO refers to the Gene Expression Omnibus (Edgar et al., 2002; Barrett et al., 20122013).

STARGEO is a layer on top of GEO that crowdsources sample annotation and automates meta-

analysis.

Using STARGEO, we computed differentially expressed genes between healthy and diseased

samples for 49 diseases (Himmelstein et al., 2015a; Himmelstein et al., 2016j). First, we and others

created case/control tags for 66 diseases. After combing through GEO series and tagging samples,
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49 diseases had sufficient data for case-control meta-analysis: multiple series with at least three

cases and three controls. For each disease, we performed a random effects meta-analysis on each

gene to combine log2 fold-change across series. These analyses incorporated 27,019 unique samples

from 460 series on 107 platforms.

Differentially expressed genes (false discovery rate �0.05) were identified for each disease. The

median number of upregulated genes per disease was 351 and the median number of downregu-

lated genes was 340. Endogenous depression was the only of the 49 diseases without any signifi-

cantly dysregulated genes.

Transcriptional signatures of perturbation from LINCS L1000
LINCS L1000 profiled the transcriptional response to small molecule and genetic interference pertur-

bations. To increase throughput, expression was only measured for 978 genes, which were selected

for their ability to impute expression of the remaining genes. A single perturbation was often

assayed under a variety of conditions including cell types, dosages, timepoints, and concentrations.

Each condition generates a single signature of dysregulation z-scores. We further processed these

signatures to fit into our approach (Himmelstein et al., 2016m; Himmelstein et al., 2016n).

First, we computed consensus signatures — which meta-analyze multiple signatures to condense

them into one — for DrugBank small molecules, Entrez genes, and all L1000 perturbations

(Himmelstein and Chung, 2015q; Himmelstein et al., 2016k). First, we discarded non-gold (non-

replicating or indistinct) signatures. Then, we meta-analyzed z-scores using Stouffer’s method. Each

signature was weighted by its average Spearman’s correlation to other signatures, with a 0.05 mini-

mum, to de-emphasize discordant signatures. Our signatures include the 978 measured genes and

the 6489 imputed genes from the ‘best inferred gene subset’. To identify significantly dysregulated

genes, we selected genes using a Bonferroni cutoff of p=0.05 and limited the number of imputed

genes to 1000.

The consensus signatures for genetic perturbations allowed us to assess various characteristics of

the L1000 dataset. First, we looked at whether genetic interference dysregulated its target gene in

the expected direction (Himmelstein, 2016c). Looking at measured z-scores for target genes, we

found that the knockdown perturbations were highly reliable, while the overexpression perturbations

were only moderately reliable with 36% of overexpression perturbations downregulating their tar-

get. However, imputed z-scores for target genes barely exceeded chance at responding in the

expected direction to interference. Hence, we concluded that the imputation quality of LINCS L1000

is poor. However, when restricting to significantly dyseregulated targets, 22 out of 29 imputed

genes responded in the expected direction. This provides some evidence that the directional fidelity

of imputation is higher for significantly dysregulated genes. Finally, we found that the transcriptional

signatures of knocking down and overexpressing the same gene were positively correlated 65% of

the time, suggesting the presence of a general stress response (Himmelstein et al., 2016o).

Based on these findings, we performed additional filtering of signifcantly dysregulated genes

when building Hetionet v1.0. Compound–down/up-regulates–Gene relationships were restricted to

the 125 most significant per compound-direction-status combination (status refers to measured ver-

sus imputed). For genetic interference perturbations, we restricted to the 50 most significant genes

per gene-direction-status combination and merged the remaining edges into a single Gen-

efiregulatesfiGene relationship type containing both knockdown and overexpression

perturbations.

PharmacotherapyDB: physician curated indications
We created PharmacotherapyDB, an open catalog of drug therapies for disease

(Himmelstein, 2016a; Himmelstein et al., 2016p; Himmelstein et al., 2016q). Version 1.0 contains

755 disease-modifying therapies and 390 symptomatic therapies between 97 diseases and 601

compounds.

This resource was motivated by the need for a gold standard of medical indications to train and

evaluate our approach. Initially, we identified four existing indication catalogs (Himmelstein et al.,

2015e): MEDI-HPS which mined indications from RxNorm, SIDER 2, MedlinePlus, and Wikipedia

(Wei et al., 2013); LabeledIn which extracted indications from drug labels via human curation

(Khare et al., 2014; Khare et al., 2015; Himmelstein and Khare, 2015s); EHRLink which identified
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medication–problem pairs that clinicians linked together in electronic health records (McCoy et al.,

2012; Himmelstein, 2015j); and indications from PREDICT, which were compiled from UMLS rela-

tionships, drugs.com, and drug labels (Gottlieb et al., 2011). After mapping to DO Slim and Drug-

Bank Slim, the four resources contained 1388 distinct indications.

However, we noticed that many indications were palliative and hence problematic as a gold stan-

dard of pharmacotherapy for our in silico approach. Therefore, we recruited two practicing physi-

cians to curate the 1388 preliminary indications (Himmelstein et al., 2015j). After a pilot on 50

indications, we defined three classifications: disease modifying meaning a drug that therapeutically

changes the underlying or downstream biology of the disease; symptomatic meaning a drug that

treats a significant symptom of the disease; and non-indication meaning a drug that neither thera-

peutically changes the underlying or downstream biology nor treats a significant symptom of the dis-

ease. Both curators independently classified all 1388 indications.

The two curators disagreed on 444 calls (Cohen’s k = 49.9%). We then recruited a third practicing

physician, who reviewed all 1388 calls and created a detailed explanation of his methodology

(Himmelstein et al., 2015j). We proceeded with the third curator’s calls as the consensus curation.

The first two curators did have reservations with classifying steroids as disease modifying for autoim-

mune diseases. We ultimately considered that these indications met our definition of disease modify-

ing, which is based on a pathophysiological rather than clinical standard. Accordingly, therapies we

consider disease modifying may not be used to alter long-term disease course in the modern clinic

due to a poor risk–benefit ratio.

User-friendly gene ontology annotations
We created a browser (http://git.dhimmel.com/gene-ontology/) to provide straightforward access to

Gene Ontology annotations (Himmelstein et al., 2015g; Himmelstein et al., 2015f). Our service

provides annotations between Gene Ontology terms and Entrez Genes. The user chooses propa-

gated/direct annotation and all/experimental evidence. Annotations are currently available for 37

species and downloadable as user-friendly TSV files.

Data copyright and licensing
We committed to openly releasing our data and analyses from the origin of the project

(Spaulding et al., 2015). Our goals were to contribute to the advancement of science (Hrynaszkie-

wicz, 2011; Molloy, 2011), maximize our impact (McKiernan et al., 2016; Piwowar and Vision,

2013), and enable reproducibility (Stodden et al., 2016; Stodden and Miguez, 2014; Bagg-

erly, 2010). These objectives required publicly distributing and openly licensing Hetionet and Proj-

ect Rephetio data and analyses (Hrynaszkiewicz and Cockerill, 2012; Hagedorn et al., 2011).

Since we integrated only public resources, which were overwhelmingly funded by academic

grants, we had assumed that our project and open sharing of our network would not be an issue.

However, upon releasing a preliminary version of Hetionet (Himmelstein and Jensen, 2015u), a

community reviewer informed us of legal barriers to integrating public data. In essence, both copy-

right (rights of exclusivity automatically granted to original works) and terms of use (rules that users

must agree to in order to use a resource) place legally binding restrictions on data reuse. In short,

public data is not by default open data.

Hetionet v1.0 integrates 29 resources (Table 4), but two resources were removed prior to the

v1.0 release. Of the total 31 resources (Himmelstein et al., 2015i), 5 were United States government

works not subject to copyright, and 12 had licenses that met the Open Definition of knowledge ver-

sion 2.1. Four resources allowed only non-commercial reuse. Most problematic were the remaining

nine resources that had no license — which equates to all rights reserved by default and forbids

reuse (Oxenham, 2016) — and one resource that explicitly forbid redistribution.

Additional difficulty resulted from license incompatibles across resources, which was caused pri-

marily by non-commercial and share-alike stipulations. Furthermore, it was often unclear who owned

the data (Elliott, 2005). Therefore, we sought input from legal experts and chronicled our progress

(Himmelstein et al., 2015i; Himmelstein, 2015k; Himmelstein et al., 2016r; Himmelstein, 2015a;

Himmelstein, 2015d).

Ultimately, we did not find an ideal solution. We had to choose between absolute compliance

and Hetionet: strictly adhering to copyright and licensing arrangements would have decimated the
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Table 4. The 29 public data resources integrated to construct Hetionet v1.0.

Components notes which types of nodes and edges in Hetionet v1.0 derived from the resource (as per the abbreviations in Table 1

and 2). Cat. notes the general category of license (Himmelstein et al., 2015i). Category 1 refers to United States government works

that we deemed were not subject to copyright. Category 2 refers to resources with licenses that allow use, redistribution, and modifi-

cation (although some restrictions may still exist). The subset of category 2 licenses that we deemed to meet the the Open Definition

are denoted with OD. Category 4 refers to resources without a license, hence with all rights reserved. References provides Research

Resource Identifiers as well as citations to resource publications and related Project Rephetio materials. For information on license

provenance, institutional affiliations, and funding for each resource, see the online table.

Resource Components License Cat. References

Entrez Gene G custom 1 RRID:SCR_002473 (Maglott et al., 2011; Himmelstein et al., 2015h;
Himmelstein, 2016l)

LabeledIn CtD, CpD custom 1 RRID:SCR_015667 (Khare et al., 2014; Khare et al., 2015; Himmelstein and Khare,
2015s)

MEDLINE DlA, DpS, DrD custom 1 RRID:SCR_002185 (Himmelstein and Pankov, 2015a; Himmelstein, 2016u)

MeSH S custom 1 RRID:SCR_004750 (Himmelstein and Pankov, 2015a; Himmelstein, 2016h)

Pathway
Interaction
Database

PW, GpPW 1 RRID:SCR_006866 (Schaefer et al., 2009; Pico and Himmelstein, 2015;
Himmelstein and Pico, 2016a)

Disease
Ontology

D CC BY 3.0 2OD RRID:SCR_000476 (Schriml et al., 2012; Kibbe et al., 2015; Himmelstein and Li,
2015d; Himmelstein, 2016g)

DISEASES DaG CC BY 4.0 2OD RRID:SCR_015664 (Himmelstein and Jensen, 2015l; Himmelstein and Jensen,
2016c; Pletscher-Frankild et al., 2015)

DrugCentral PC, CbG, PCiC CC BY 4.0 2OD RRID:SCR_015663 (Ursu et al., 2017; Himmelstein et al., 2016d)

Gene Ontology BP, CC, MF, GpBP,
GpCC, GpMF

CC BY 4.0 2OD RRID:SCR_002811 (Ashburner et al., 2000; Huntley et al., 2015;
Himmelstein et al., 2015g; Himmelstein et al., 2015f)

GWAS Catalog DaG custom 2OD RRID:SCR_012745 (Himmelstein and Baranzini, 2016b; MacArthur et al., 2017;
Himmelstein, 2015h; Himmelstein et al., 2015v)

Reactome PW, GpPW custom 2OD RRID:SCR_003485 (Fabregat et al., 2016; Cerami et al., 2011; Pico and
Himmelstein, 2015; Himmelstein and Pico, 2016a)

LINCS L1000 CdG, CuG, Gr > G custom 2OD (Himmelstein and Chung, 2015q; Himmelstein et al., 2016k; Himmelstein, 2015k)

TISSUES AeG CC BY 4.0 2OD RRID:SCR_015665 (Santos et al., 2015; Himmelstein and Jensen, 2015g;
Himmelstein and Jensen, 2015h)

Uberon A CC BY 3.0 2OD RRID:SCR_010668 (Mungall et al., 2012;Malladi et al., 2015; Himmelstein, 2016m)

WikiPathways PW, GpPW CC BY 3.0/custom 2OD RRID:SCR_002134 (Kutmon et al., 2016; Pico et al., 2008; Pico and Himmelstein,
2015; Himmelstein and Pico, 2016a)

BindingDB CbG mixed CC BY 3.0
and CC BY-SA 3.0

2OD RRID:SCR_000390 (Chen et al., 2001; Gilson et al., 2016; Himmelstein and Gilson,
2015i; Himmelstein et al., 2015d)

DisGeNET DaG ODbL 2OD RRID:SCR_006178 (Himmelstein, 2015f; Himmelstein and Piñero, 2016d;
Piñero et al., 2015; Piñero et al., 2017)

DrugBank C, CbG, CrC custom 2 RRID:SCR_002700 (Law et al., 2014; Himmelstein, 2015b; Himmelstein, 2016i;
Himmelstein et al., 2016r)

MEDI CtD, CpD CC BY-NC-SA 3.0 2 RRID:SCR_015668 (Himmelstein et al., 2015e; Wei et al., 2013)

PREDICT CtD, CpD CC BY-NC-SA 3.0 2 (Gottlieb et al., 2011; Himmelstein et al., 2015e)

SIDER SE, CcSE CC BY-NC-SA 4.0 2 RRID:SCR_004321 (Kuhn et al., 2016; Himmelstein, 2015c; Himmelstein, 2016j)

Bgee AeG, AdG, AuG 4 RRID:SCR_002028 (Himmelstein et al., 2016f; Himmelstein and Bastian, 2015e;
Himmelstein and Bastian, 2015f; Bastian et al., 2008)

DOAF DaG 4 RRID:SCR_015666 (Himmelstein, 2015g; Himmelstein, 2016s; Xu et al., 2012)

ehrlink CtD, CpD 4 (McCoy et al., 2012; Himmelstein, 2015j)

Evolutionary Rate
Covariation

GcG 4 RRID:SCR_015669 (Priedigkeit et al., 2015; Himmelstein and Partha, 2015r;
Himmelstein, 2016w)

hetio-dag GiG 4 (Himmelstein and Baranzini, 2015a; Himmelstein et al., 2015z; Himmelstein and
Baranzini, 2016e)

Incomplete
Interactome

GiG 4 (Himmelstein et al., 2015z; Himmelstein and Baranzini, 2016e; Menche et al.,
2015; Himmelstein, 2015a)

Table 4 continued on next page
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network. On the other hand, in the United States, mere facts are not subject to copyright, and fair

use doctrine helps protect reuse that is transformative and educational. Hence, we choose a path

forward which balanced legal, normative, ethical, and scientific considerations.

If a resource was in the public domain, we licensed any derivatives as CC0 1.0. For resources

licensed to allow reuse, redistribution, and modification, we transmitted their licenses as properties

on the specific nodes and relationships in Hetionet v1.0. For all other resources — for example,

resources without licenses or with licenses that forbid redistribution — we sent permission requests

to their creators. The median time till first response to our permission requests was 16 days, with

only two resources affirmatively granting us permission. We did not receive any responses asking us

to remove a resource. However, we did voluntarily remove MSigDB (Liberzon et al., 2011), since its

license was highly problematic (Himmelstein, 2015d). As a result of our experience, we recommend

that publicly funded data should be explicitly dedicated to the public domain whenever possible.

Permuted hetnets
From Hetionet, we derived five permuted hetnets (Himmelstein, 2016b). The permutations preserve

node degree but eliminate edge specificity by employing an algorithm called XSwap to randomly

swap edges (Hanhijärvi et al., 2009). To extend XSwap to hetnets (Himmelstein and Baranzini,

2015a), we permuted each metaedge separately, so that edges were only swapped with other

edges of the same type. We adopted a Markov chain approach, whereby the first permuted hetnet

was generated from Hetionet v1.0, the second permuted hetnet was generated from the first, and

so on. For each metaedge, we assessed the percent of edges unchanged as the algorithm pro-

gressed to ensure that a sufficient number of swaps had been performed to randomize the network

(Himmelstein, 2016b). Permuted hetnets are useful for computing the baseline performance of

meaningless edges while preserving node degree (Himmelstein, 2015l). Since, our use of permuta-

tion focused on assessing D AUROC, a small number of permuted hetnets was sufficient, as the vari-

ability in a metapath’s AUROC across the permuted hetnets was low.

Graph databases and Neo4j
Traditional relational databases — such as SQLite, MySQL, and PostgreSQL — excel at storing highly

structured data in tables. Connectivity between tables is accomplished using foreign-key references

between columns. However, for many biomedical applications the connectivity between entities is of

foremost importance. Furthermore, enforcing a rigid structure of what attributes an entity may pos-

sess is less important and often unnecessarily prohibitive. Graph databases focus instead on captur-

ing connectivity (relationships) between entities (nodes). Accordingly, graph databases such as

Neo4j offer greater ease when modeling biomedical relationships and superior performance when

traversing many levels of connectivity (Yoon et al., 2017; Jaiswal, 2013). Until recently, graph data-

base adoption in bioinformatics was limited (Have and Jensen, 2013). However lately, the demand

to model and capture biological connectivity at scale has led to increasing adoption (Lysenko et al.,

2016; Balaur et al., 2016; Summer et al., 2016; Mungall et al., 2017).

We used the Neo4j graph database for storing and operating on Hetionet and noticed major

benefits from tapping into this large open source ecosystem (Himmelstein, 2015m). Persistent stor-

age with immediate access and the Cypher query language — a sort of SQL for hetnets — were two

of the biggest benefits. To facilitate our migration to Neo4j, we updated hetio — our existing

Python package for hetnets (Himmelstein, 2016g) — to export networks into Neo4j and DWPC

queries to Cypher. In addition, we created an interactive GraphGist for Project Rephetio, which

introduces our approach and showcases its Cypher queries. Finally, we created a public Neo4j

Table 4 continued

Resource Components License Cat. References

Human
Interactome
Database

GiG 4 RRID:SCR_015670 (Himmelstein et al., 2015z; Himmelstein and Baranzini, 2016e;
Rual et al., 2005; Venkatesan et al., 2009; Yu et al., 2011; Rolland et al., 2014)

STARGEO DdG, DuG 4 (Himmelstein et al., 2015a; Himmelstein et al., 2016j; Hadley et al., 2017)
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instance (Himmelstein, 2016i), which leverages several modern technologies such Neo4j Browser

guides, cloud hosting with HTTPS, and Docker deployment (Belmann et al., 2015; Beaulieu-

Jones and Greene, 2017).

Machine learning approach
Project Rephetio relied on the previously published DWPC metric to generate features for com-

pound–disease pairs. The DWPC measures the prevalence of a given metapath between a given

source and target node (Himmelstein and Baranzini, 2015a). It is calculated by first extracting all

paths from the source to target node that follow the specified metapath. Next, each path is

weighted by taking the product of the node degrees along the path raised to a negative exponent.

This damping exponent — the sole parameter — thereby determines the extent that paths through

high-degree nodes are downweighted: we chose w = 0.4 based on our past optimizations

(Himmelstein and Baranzini, 2015a). The DWPC equals the sum of the path weights (referred to as

path-degree products). Traversing the hetnet to extract all paths between a source and target node,

which we performed in Neo4j, is the most computationally intensive step in computing DWPCs

(Himmelstein and Lizee, 2016t). For future work, we are exploring matrix multiplication

approaches, which could improve runtime several orders of magnitude.

Project Rephetio made several refinements to metapath-based hetnet edge prediction compared

to previous studies (Himmelstein and Baranzini, 2015a; Sun et al., 2011). First, we transformed

DWPCs by mean scaling and then taking the inverse hyperbolic sine (Burbidge et al., 1988) to make

them more amenable to modeling (Himmelstein et al., 2016s). Second, we bifurcated the workflow

into an all-features stage and an all-observations stage (Himmelstein, 2016k). The all-features stage

assesses feature performance and does not require computing features for all negatives. Here, we

selected a random subset of 3020 (4 � 755) negatives. Little error was introduced by this optimiza-

tion, since the predominant limitation to performance assessment was the small number of positives

(755) rather than negatives. Based on the all-features performance assessment

(Himmelstein, 2015n), we selected 142 DWPCs to compute on all observations (all 209,168 com-

pound–disease pairs). The feature selection was designed to remove uninformative features (accord-

ing to permutation) and guard against edge-dropout contamination (Himmelstein, 2016h). Third,

we included 14 degree features, which assess the degree of a specific metaedge for either the

source compound or target disease.

Network support of predictions
To improve the interpretability of the predictions, we developed a method for decomposing a pre-

diction into its network support (Himmelstein, 2016e). This information is deployed to our Neo4j

Browser guides, allowing users to assess the biomedical evidence contributing to a given prediction.

First, we used logistic regression terms to quantify the contribution of metapaths that positively sup-

port a prediction. Second, we decomposed a metapath’s contribution, according to its DWPC, into

specific paths contributions. Finally, we aggregated paths based on their source (first) or target (last)

edge to quantify the contribution of specific edges of the source compound or target disease

(Himmelstein, 2016f).

Using the acamprosate–epilepsy prediction as an example, we first quantified metapath contribu-

tions: 40% of the prediction was supported by CbGbCtD paths, 36% by CbGaD paths, 11% by

CcSEcCtD paths, 8% by CbGpPWpGaD paths, and 5% by CbGeAlD paths. Second, we calculated

path contributions: Acamprosate–binds–GRM5–associates–epilepsy syndrome was the most sup-

portive path, contributing 11% of the prediction. Finally, we aggregated path contributions to calcu-

late that the source edge of Acamprosate—binds—GRM5 contributed 23% of the prediction, while

the target edge of epilepsy syndrome–treats–Felbamate contributed 12%.

Prior probability of treatment
The 755 treatments in Hetionet v1.0 are not evenly distributed between all compounds and diseases.

For example, methotrexate treats 19 diseases and hypertension is treated by 68 compounds. We

estimated a prior probability of treatment — based only on the treatment degree of the source com-

pound and target disease — on 744,975 permutations of the bipartite treatment network (Lizee and
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Himmelstein, 2016a). Methotrexate received a 79.6% prior probability of treating hypertension,

whereas a compound and disease that both had only one treatment received a prior of 0.12%.

Across the 209,168 compound–disease pairs, the prior predicted the known treatments with

AUROC = 97.9%. The strength of this association threatened to dominate our predictions. However,

not modeling the prior can lead to omitted-variable bias and confounded proxy variables. To

address the issue, we included the logit-transformed prior, without any regularization, as a term in

the model. This restricted model fitting to the 29,799 observations with a nonzero prior — corre-

sponding to the 387 compounds and 77 diseases with at least one treatment. To enable predictions

for all 209,168 observations, we set the prior for each compound–disease pair to the overall preva-

lence of positives (0.36%).

This method succeeded at accommodating the treatment degrees. The prior probabilities per-

formed poorly on the validation sets with AUROC = 54.1% on DrugCentral indications and

AUROC = 62.5% on clinical trials. This performance dropoff compared to training shows the danger

of encoding treatment degree into predictions. The benefits of our solution are highlighted by the

superior validation performance of our predictions compared to the prior (Figure 3).

Indication sets
We evaluated our predictions on four sets of indications as shown in Figure 3.

. Disease Modifying — the 755 disease-modifying treatments in PharmacotherapyDB v1.0.
These indications are included in the hetnet as treats edges and used to train the logistic
regression model. Due to edge dropout contamination and self-testing (Himmelstein, 2016h;
Lizee and Himmelstein, 2016b), overfitting could potentially inflate performance on this set.
Therefore, for the three remaining indication sets, we removed any observations that were
positives in this set.

. DrugCentral — We discovered the DrugCentral database after completing our physician cura-
tion for PharmacotherapyDB. This database contained 210 additional indications
(Himmelstein et al., 2016d). While we didn’t curate these indications, we observed a high
proportion of disease-modifying therapy.

. Clinical Trial — We compiled indications that have been investigated by clinical trial from Clini-
calTrials.gov (Himmelstein, 2016d). This set contains 5594 indications. Since these indications
were not manually curated and clinical trials often show a lack of efficacy, we expected lower
performance on this set.

. Symptomatic — 390 symptomatic indications from PharacotherapyDB. These edges are
included in the hetnet as palliates edges.

Only the Clinical Trial and DrugCentral indication sets were used for external validation, since the

Disease Modifying and Symptomatic indications were included in the hetnet. As an aside, several

additional indication catalogs have recently been published, which future studies may want to also

consider (Himmelstein et al., 2015e; Brown and Patel, 2017; Shameer et al., 2017; Sharp, 2017).

Realtime open science and thinklab
We conducted our study using Thinklab — a platform for real-time open collaborative science — on

which this study was the first project (Himmelstein et al., 2015c). We began the study by publicly

proposing the idea and inviting discussion (Himmelstein et al., 2015k). We continued by chronicling

our progress via discussions. We used Thinklab as the frontend to coordinate and report our analy-

ses and GitHub as the backend to host our code, data, and notebooks. On top of our Thinklab team

consisting of core contributors, we welcomed community contribution and review. In areas where

our expertise was lacking or advice would be helpful, we sought input from domain experts and

encouraged them to respond on Thinklab where their comments would be CC BY licensed and their

contribution rated and rewarded.

In total, 40 non-team members commented across 86 discussions, which generated 622 com-

ments and 191 notes (Figure 6). Thinklab content for this project totaled 145,771 words or 918,837

characters (Himmelstein and Lizee, 2016v). Using an estimated 7000 words per academic publica-

tion as a benchmark, Project Rephetio generated written content comparable in volume to 20.8 pub-

lications prior to its completion. We noticed several other benefits from using Thinklab including

forging a community of contributors (Patil and Siegel, 2009); receiving feedback during the early

stages when feedback was most actionable (Mietchen et al., 2015); disseminating our research
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without delay (Powell, 2016; Vale, 2015); opening avenues for external input (Allison et al., 2016);

facilitating problem-oriented teaching (Himmelstein et al., 2016t; Waldrop, 2015); and improving

our documentation by maintaining a publication-grade digital lab notebook (Giles, 2012).

Thinklab began winding down operations in July 2017 and has switched to a static state. While

users will no longer be able to add comments, the corpus of content remains browsable at https://

think-lab.github.io and available in machine-readable formats at dhimmel/thinklytics.

The preprint for this study is available at doi.org/bs4f (Himmelstein et al., 2016u). The manu-

script was written in markdown, originally on Thinklab at doi.org/bszr (Himmelstein et al., 2016v).

In August 2017, we switched to using the Manubot system to generate the manuscript. With Manu-

bot, a GitHub repository (dhimmel/rephetio-manuscript) tracks the manuscript’s source code, while

continuous integration automatically rebuilds the manuscript upon changes. As a result, the latest

version of the manuscript is always available at dhimmel.github.io/rephetio-manuscript. Additionally,

readers can leave feedback or questions for the Project Rephetio team via GitHub Issues.

Software and data availability
All software and datasets from Project Rephetio are publicly available on GitHub, Zenodo, or Fig-

share (Himmelstein et al., 2017b). Additional documentation for these materials is available in the

corresponding Thinklab discussions. For reader convenience, software, datasets, and Thinklab dis-

cussions have been cited throughout the manuscript as relevant. Copies of the most relevant Github

repositories are archived at: https://github.com/elifesciences-publications/hetionet; https://github.

com/elifesciences-publications/integrate; https://github.com/elifesciences-publications/

learn; https://github.com/elifesciences-publications/hetio and https://github.com/elifesciences-publi-

cations/rephetio-manuscript.
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Figure 6. The growth the Project Rephetio corpus on Thinklab over time. This figure shows Project Rephetio contributions by user over time. Each

band represented the cumulative contribution of a Thinklab user to discussions in Project Rephetio (Himmelstein and Lizee, 2016v). Users are ordered

by date of first contribution. Users who contributed over 4500 characters are named. The square root transformation of characters written per user

accentuates the activity of new contributors, thereby emphasizing collaboration and diverse input.
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Himmelstein DS, Piñero J. 2016d. Dhimmel/Disgenet V1.0: Processing The Disgenet Database Of Gene–Disease
Associations. Zenodo. https://doi.org/10.5281/zenodo.48426

Himmelstein DS, Pico AR. 2016a. Dhimmel/Pathways V2.0: Compiling Human Pathway Gene Sets. Zenodo.
https://doi.org/10.5281/zenodo.48810

Himmelstein DS. 2016g. User-Friendly Extensions To The Disease Ontology V1.0. Zenodo. https://doi.org/10.
5281/zenodo.45584

Himmelstein DS. 2016h. User-Friendly Extensions To Mesh V1.0. Zenodo. https://doi.org/10.5281/zenodo.45586
Himmelstein DS. 2016i. User-Friendly Extensions Of The Drugbank Database V1.0. Zenodo. https://doi.org/10.
5281/zenodo.45579

Himmelstein DS. 2016j. Extracting Tidy And User-Friendly Tsvs From Sider 4.1. Zenodo. https://doi.org/10.5281/
zenodo.45521

Himmelstein DS. 2016l. Processed Entrez Gene Datasets For Humans V1.0. Zenodo. DOI: https://doi.org/10.5281/
zenodo.45524

Himmelstein DS. 2016m. User-Friendly Anatomical Structures Data From The Uberon Ontology V1.0. Zenodo.
DOI: https://doi.org/10.5281/zenodo.45527

Himmelstein et al. eLife 2017;6:e26726. DOI: https://doi.org/10.7554/eLife.26726 30 of 35

Research article Computational and Systems Biology

https://doi.org/10.15363/thinklab.d62
https://doi.org/10.15363/thinklab.d62
https://doi.org/10.15363/thinklab.d110
https://doi.org/10.15363/thinklab.d136
https://doi.org/10.15363/thinklab.d112
https://doi.org/10.15363/thinklab.d112
https://doi.org/10.15363/thinklab.d115
https://doi.org/10.15363/thinklab.d115
https://doi.org/10.15363/thinklab.d182
https://doi.org/10.15363/thinklab.d178
https://doi.org/10.15363/thinklab.d178
https://doi.org/10.15363/thinklab.d185
https://doi.org/10.15363/thinklab.d185
https://doi.org/10.15363/thinklab.d212
https://doi.org/10.15363/thinklab.d212
https://doi.org/10.15363/thinklab.d229
https://doi.org/10.15363/thinklab.d229
https://doi.org/10.15363/thinklab.d228
https://doi.org/10.5281/zenodo.61571
https://doi.org/10.15363/thinklab.d215
https://doi.org/10.15363/thinklab.d215
https://doi.org/10.15363/thinklab.d216
https://doi.org/10.15363/thinklab.d216
https://doi.org/10.15363/thinklab.d220
https://doi.org/10.15363/thinklab.d220
https://doi.org/10.15363/thinklab.d210
https://doi.org/10.5281/zenodo.268568
https://doi.org/10.5281/zenodo.268654
https://doi.org/10.15363/thinklab.d231
https://doi.org/10.15363/thinklab.d231
https://doi.org/10.1371/journal.pcbi.1004259
https://doi.org/10.1371/journal.pcbi.1004259
http://www.ncbi.nlm.nih.gov/pubmed/26158728
https://doi.org/10.15363/thinklab.d80
https://doi.org/10.5281/zenodo.48443
https://doi.org/10.5281/zenodo.48427
https://doi.org/10.5281/zenodo.47664
https://doi.org/10.5281/zenodo.47664
https://doi.org/10.1101/087619
https://doi.org/10.1101/087619
https://doi.org/10.5281/zenodo.48426
https://doi.org/10.5281/zenodo.48810
https://doi.org/10.5281/zenodo.45584
https://doi.org/10.5281/zenodo.45584
https://doi.org/10.5281/zenodo.45586
https://doi.org/10.5281/zenodo.45579
https://doi.org/10.5281/zenodo.45579
https://doi.org/10.5281/zenodo.45521
https://doi.org/10.5281/zenodo.45521
https://doi.org/10.5281/zenodo.45524
https://doi.org/10.5281/zenodo.45524
https://doi.org/10.5281/zenodo.45527
https://doi.org/10.7554/eLife.26726


Himmelstein DS. 2016s. Dhimmel/Doaf V1.0: Processing The Doaf Database Of Gene–Disease Associations.
Zenodo. https://doi.org/10.5281/zenodo.48427

Himmelstein DS. 2016u. Dhimmel/Medline V1.0: Disease, Symptom, And Anatomy Cooccurence In Medline.
Zenodo. https://doi.org/10.5281/zenodo.48445

Himmelstein DS. 2016w. Dhimmel/Erc V1.0: Processing Human Evolutionary Rate Covaration Data. Zenodo.
DOI: https://doi.org/10.5281/zenodo.48444

Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT. 2016. In silico methods for drug repurposing and
pharmacology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 8:186–210. DOI: https://doi.org/
10.1002/wsbm.1337, PMID: 27080087

Hopkins AL. 2007. Network pharmacology. Nature Biotechnology 25:1110–1111. DOI: https://doi.org/10.1038/
nbt1007-1110, PMID: 17921993

Hopkins AL. 2008. Network pharmacology: the next paradigm in drug discovery. Nature Chemical Biology 4:
682–690. DOI: https://doi.org/10.1038/nchembio.118, PMID: 18936753

Hrynaszkiewicz I, Cockerill MJ. 2012. Open by default: a proposed copyright license and waiver agreement for
open access research and data in peer-reviewed journals. BMC Research Notes 5:494. DOI: https://doi.org/10.
1186/1756-0500-5-494, PMID: 22958225

Hrynaszkiewicz I. 2011. The need and drive for open data in biomedical publishing. Serials: The Journal for the
Serials Community 24:31–37. DOI: https://doi.org/10.1629/2431

Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O’Donovan C. 2015. The GOA
database: gene Ontology annotation updates for 2015. Nucleic Acids Research 43:D1057–D1063. DOI: https://
doi.org/10.1093/nar/gku1113, PMID: 25378336

Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. 2013. Computational drug repositioning: from data
to therapeutics. Clinical Pharmacology & Therapeutics 93:335–341. DOI: https://doi.org/10.1038/clpt.2013.1,
PMID: 23443757

Iorio F, Rittman T, Ge H, Menden M, Saez-Rodriguez J. 2013. Transcriptional data: a new gateway to drug
repositioning? Drug Discovery Today 18:350–357. DOI: https://doi.org/10.1016/j.drudis.2012.07.014, PMID: 22
897878

Iskar M, Zeller G, Zhao XM, van Noort V, Bork P. 2012. Drug discovery in the age of systems biology: the rise of
computational approaches for data integration. Current Opinion in Biotechnology 23:609–616 . DOI: https://
doi.org/10.1016/j.copbio.2011.11.010, PMID: 22153034

Jahromi SR, Togha M, Fesharaki SH, Najafi M, Moghadam NB, Kheradmand JA, Kazemi H, Gorji A. 2011.
Gastrointestinal adverse effects of antiepileptic drugs in intractable epileptic patients. Seizure 20:343–346.
DOI: https://doi.org/10.1016/j.seizure.2010.12.011, PMID: 21236703

Jaiswal G. 2013. Comparative analysis of Relational and Graph databases. IOSR Journal of Engineering 03:25–
27. DOI: https://doi.org/10.9790/3021-03822527

Johannessen Landmark C, Henning O, Johannessen SI. 2016. Proconvulsant effects of antidepressants - What is
the current evidence? Epilepsy & Behavior 61:287–291. DOI: https://doi.org/10.1016/j.yebeh.2016.01.029,
PMID: 26926001

Johannessen SI, Landmark CJ. 2010. Antiepileptic drug interactions - principles and clinical implications. Current
Neuropharmacology 8:254. DOI: https://doi.org/10.2174/157015910792246254, PMID: 21358975

Khankhanian P, Himmelstein D. 2016. Prediction in epilepsy. ThinkLab. https://doi.org/10.15363/thinklab.d224
[Accessed September 11, 2017].

Khare R, Burger JD, Aberdeen JS, Tresner-Kirsch DW, Corrales TJ, Hirchman L, Lu Z. 2015. Scaling drug
indication curation through crowdsourcing. Database 2015:bav016. DOI: https://doi.org/10.1093/database/
bav016, PMID: 25797061

Khare R, Li J, Lu Z. 2014. LabeledIn: cataloging labeled indications for human drugs. Journal of Biomedical
Informatics 52:448–456 . DOI: https://doi.org/10.1016/j.jbi.2014.08.004, PMID: 25220766

Kibbe WA, Arze C, Felix V, Mitraka E, Bolton E, Fu G, Mungall CJ, Binder JX, Malone J, Vasant D, Parkinson H,
Schriml LM. 2015. Disease Ontology 2015 update: an expanded and updated database of human diseases for
linking biomedical knowledge through disease data. Nucleic Acids Research 43:D1071–D1078. DOI: https://
doi.org/10.1093/nar/gku1011, PMID: 25348409

Kivela M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. 2014. Multilayer networks. Journal of
Complex Networks 2:203–271. DOI: https://doi.org/10.1093/comnet/cnu016

Knaus K. 2016. Anatomical Therapeutic Chemical Classification System (WHO). In: The SAGE Encyclopedia of
Pharmacology and Society. DOI: https://doi.org/10.4135/9781483349985.n37

Kuhn M, Letunic I, Jensen LJ, Bork P. 2016. The SIDER database of drugs and side effects. Nucleic Acids
Research 44:D1075–D1079. DOI: https://doi.org/10.1093/nar/gkv1075

Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen EL, Bohler A, Mélius J, Waagmeester A, Sinha SR, Miller
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