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Abstract Growth and development of plants is ultimately driven by light energy captured

through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes,

including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP

biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish

MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA.

We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions

appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria,

and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A

MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between

tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals

substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be

monitored in the living plant.

DOI: 10.7554/eLife.26770.001

Introduction
ATP is universal in cells. It is used as a metabolic building block and as a cofactor to couple exer-

gonic and endergonic reactions, making ATP as fundamental to life as proton gradients and the

genetic code. An additional function as a biological hydrotrope to keep proteins soluble was further

suggested (Mandl et al., 1952; Patel et al., 2017). De-phosphorylation to ADP and AMP, and re-

phosphorylation to ATP allow high energy fluxes based on relatively small pool sizes in the cell

(Rich, 2003). The major sites of ATP synthesis are ATP synthases driven by the proton motive force

established across the inner membrane of the mitochondria, and the plastid thylakoids in plants. The
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ATP produced typically fuels the wide range of energy-demanding processes, such as motility, trans-

port, and gene expression, in other parts of the cell, although plastids also consume substantial

amounts of ATP in the Calvin-Benson cycle, to an extent that varies substantially with the light/dark

cycle. Coupling of these interactions requires ATP/ADP exchange between the organelles and cyto-

sol. Thus, regulation of cytosolic and organelle ATP levels, and ATP/ADP transport across the mito-

chondrial and plastid envelope, give rise to particularly complex ATP dynamics in plant cells, that is

critically dependent on the tissue type and external conditions (Neuhaus et al., 1997; Flügge, 1998;

Reiser et al., 2004; Haferkamp et al., 2011). The exact nature of the interplay between mitochon-

dria and chloroplasts in maintaining cytosolic and nuclear ATP homeostasis, especially under change-

able conditions, such as light–dark cycles or varying O2/CO2 status, has been investigated for

decades, predominantly using biochemical techniques or in vivo NMR (Bailleul et al., 2015;

Gardeström and Igamberdiev, 2016). For example, insight into subcellular adenine nucleotide

pools have been possible through rapid membrane filter-based fractionation of leaf protoplasts,

revealing a complex and dynamic interplay between the three cell compartments (Lilley et al.,

1982; Stitt et al., 1982; Gardeström and Wigge, 1988; Krömer and Heldt, 1991; Krömer et al.,

1993). The current consensus is that cytosolic ATP is mainly provided by the mitochondria, both in

the dark, but also in the light, when photorespiration can be the main driver of ATP synthesis

(Igamberdiev et al., 2001). Little is known, however, about differences between organs, tissues and

cells and about the characteristics of their specific responses over time.

Similar challenges apply to other physiological and metabolic parameters, such as pH, free Ca2+,

potentials of thiol redox couples, and concentrations of small molecules including plant growth regu-

lators. However, development of in situ reporters has provided increasingly sophisticated under-

standing of their in vivo behaviour (De Michele et al., 2014; Uslu and Grossmann, 2016). For

example, detailed insights into subcellular pH gradients and their dynamics have turned out to play

a critical role in membrane transport, protein degradation, and energy and ion homeostasis

(Schwarzländer et al., 2012; Luo et al., 2015). Likewise, the spatiotemporal characteristics of free

Ca2+ transients are central to signalling in stress responses and plant-microbe interactions

(Choi et al., 2014b; Keinath et al., 2015). The ability to separately monitor redox potentials of the

subcellular glutathione pools has revealed a far more reducing cytosolic redox landscape than previ-

ously anticipated, and has led to novel concepts of redox regulation and signalling (Marty et al.,

2009; Morgan et al., 2013; Schwarzländer et al., 2016).

Recently, several different fluorescent sensor proteins for ATP have been engineered (Berg et al.,

2009; Imamura et al., 2009; Kotera et al., 2010; Nakano et al., 2011; Tantama et al., 2013;

Yoshida et al., 2016). ‘Perceval’ is based on a single circularly permuted mVenus protein fused to

the bacterial regulatory protein GlnK1 from Methanococcus jannaschii. Competitive binding of ATP

and ADP to GlnK1 result in inverse changes of two excitation maxima to provide a ratiometric read-

out of ATP:ADP (Berg et al., 2009). The ‘PercevalHR’ variant was obtained by mutagenesis, and has

an improved dynamic range of about 4 (Tantama et al., 2013). However, both variants are strongly

pH-sensitive, requiring pH measurement and correction for meaningful in vivo measurements. By

contrast, the ratiometric ATeam sensor family was introduced as far less pH-sensitive. ATeam sen-

sors share their overall design with the widely used Förster Resonance Energy Transfer (FRET) sen-

sors of the Cameleon family, making use of the e-subunit fragment of ATP synthase from Bacillus sp.

PS3 for reversible ATP binding (Imamura et al., 2009; Kotera et al., 2010). ATP binding to the e-

subunit induces a conformational change in the sensor structure modifying the relative orientation of

the N- and C-terminal donor and acceptor fluorophores (monomeric super-enhanced cyan fluores-

cent protein (mseCFP); circularly permuted monomeric Venus (cp173-mVenus), a variant of yellow

fluorescent protein), increasing FRET efficiency. Both sensor classes have provided insights into sub-

cellular ATP dynamics in animals (Ando et al., 2012; Tarasov et al., 2012; Li et al., 2015;

Merrins et al., 2016). However, to date, there is only one report on their use in plants

(Hatsugai et al., 2012), and establishment of reliable fluorescence-based ATP monitoring in plants

has been lacking. This is despite the prominent role of ATP in the physiological network of plants,

including two ATP-producing organelles and frequently fluctuating environmental conditions that

determine the development of their flexible body plan.

In this work, we set out to establish protocols for ATP sensing in plants. First, we generate Arabi-

dopsis lines expressing the biosensor ATeam1.03-nD/nA in the cytosol, mitochondrial matrix or the

plastid stroma, and demonstrate that plants harbouring the probe in the cytosol or plastids are
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stable and show no phenotypic change. By contrast, lines expressing mitochondrial sensors are

dwarfed, but still viable. Second, we validate the biochemical characteristics of the ATeam 1.03-nD/

nA sensor in vitro under conditions typically encountered in plant systems. Third, we develop an ex

situ assay for isolated mitochondria to probe ATP transport and synthesis. Fourth, we map tissue dif-

ferences and gradients of cytosolic MgATP2- concentrations in living seedlings, including cell-to-cell

variation in root hairs that inversely correlates with the rate of growth. Finally, we demonstrate how

progressive hypoxia leads to characteristic time-dependent changes in MgATP2- dynamics.

Results

Generation of Arabidopsis lines for ATP sensing in the cytosol,
chloroplasts and mitochondria
To establish ATP measurements in living plants, we generated Arabidopsis lines expressing

ATeam1.03-nD/nA in the cytosol, the chloroplast stroma, and the mitochondrial matrix. We selected

at least three independent lines for each compartment based on fluorophore expression, two of

which were propagated to homozygosity. Despite expression being driven by a CaMV 35S pro-

moter, we did not observe strong sensor silencing in subsequent generations contrary to frequent

observations for other sensors (Pei et al., 2000; Deuschle et al., 2006; Chaudhuri et al., 2008;

Yang et al., 2010; Jones et al., 2014; Behera et al., 2015; Loro et al., 2016; Schwarzländer et al.,

2016). Fluorescence in the peripheral cytoplasm, as well as in trans-vacuolar strands and the nucleo-

plasm, demonstrated cytosolic expression, whilst co-localisation with chlorophyll auto-fluorescence

confirmed chloroplast expression (Figure 1A). Furthermore, all independent lines for cytosol or plas-

tid expression showed a wild-type-like phenotype at the whole plant level (Figure 1B), which was

validated by detailed phenotyping quantifying root length, rosette size, inflorescence height and

number of siliques (Figure 1—figure supplements 2 and 3). By contrast, transformants for mito-

chondrial expression showed a consistently weaker fluorescence and a strong developmental pheno-

type (Figure 1A,B; Figure 1—figure supplement 2). The sensor fluorescence co-localised with the

mitochondrial matrix marker MitoTracker, but the organisation of the labelled organelles was per-

turbed, suggesting abnormal some degree of mitochondrial abnormality. Nevertheless, transform-

ants flowered after 14 weeks and set seed, allowing their propagation. Despite these observations,

we recorded the fluorescence of Venus and CFP in five-day-old seedlings (Figure 1—figure supple-

ment 1) and found markedly lower Venus/CFP ratios in mitochondria while cytosol and chloroplasts

were similar (Figure 1C; Figure 1—figure supplement 1).

In vitro characterisation of purified sensor protein revealing specificity
for MgATP2-

To interpret in vivo measurements in the Arabidopsis sensor lines, we aimed for an in-depth under-

standing of key sensor characteristics. The Kd(ATP), nucleotide specificity and pH sensitivity of the

original ATeam family variants were characterised for use in animal cells at 37˚C (Imamura et al.,

2009). While the newer ATeam1.03-nD/nA variant shows an improved dynamic range (Kotera et al.,

2010), its other properties have not been characterised in detail, particularly at the pH and tempera-

ture conditions likely to be experienced in the plant cytosol, mitochondrial matrix or plastid stroma.

We therefore characterised purified ATeam1.03-nD/nA protein in vitro (Figure 2A). The sensor emis-

sion spectrum showed a well-defined ratiometric shift in response to ATP. The mseCFP peak (475

nm) decreased and the cp173-mVenus peak (527 nm) increased, with increasing ATP concentrations

in the high micromolar/low millimolar range (Figure 2B). The isosbestic point was at 512 nm. Purified

protein was stable at �86˚C and retained the same dynamic range of the freshly purified sensor.

However, non-frozen storage caused a decline of sensor responsiveness over time, arising from sen-

sor degradation, probably by proteolysis, explaining the diminished dynamic range by separation of

the two chromophores (Figure 2—figure supplement 1A). Hence, aliquots of purified protein were

frozen immediately after purification and stored at �86˚C. The ATP response of the sensor, deter-

mined at 25˚C, was sigmoidal with a spectroscopic dynamic range of 4.0, higher than previously

reported at 3.2 (Kotera et al., 2010). The Kd(ATP) was 0.74 mM with a Hill coefficient of 1.02, com-

patible with a single ATP binding site in the ATP synthase e-subunit (Yagi et al., 2007) (Figure 2C).

The sensor showed no response to ADP and AMP, in agreement with previous reports using other

De Col et al. eLife 2017;6:e26770. DOI: 10.7554/eLife.26770 3 of 29

Tools and resources Plant Biology

http://dx.doi.org/10.7554/eLife.26770


nucleotides, including GTP (Imamura et al., 2009), and confirms the selectivity for ATP. Mg2+ titra-

tion under saturating ATP showed a strong Mg2+ dependence, indicating that the sensor responds

selectively to MgATP2-, and not to ATP4- (Figure 2D,E). In the absence of ATP, the sensor signals

were pH-stable from pH 6.5 to 8.5 (Figure 2F), consistent with the absence of direct pH effects on

the fluorophores. Insensitivity to pH was also observed at partially saturating and saturating ATP

Figure 1. ATeam expression in stable Arabidopsis lines. ATeam1.03-nD/nA was expressed under the control of a 35S promoter as unfused protein for

localisation in the cytosol, as a fusion with the transketolase target peptide (TkTp) for plastid targeting or fused to the Nicotiana plumbaginifolia b-

ATPase for mitochondrial targeting. (A) Five-day-old seedlings grown vertically on half-strength MS +1% (w/v) sucrose medium plates were used for

CLSM. Venus (green) fluorescence was recorded alongside the chlorophyll fluorescence in cotelydon cells or the mitochondrial marker MitoTracker

Orange in cells of the hypocotyl. The merge image shows both fluorescence channels projected on the respective bright field image. (B) Phenotypes of

multiple independent lines per construct were compared and a representative image is shown after growth for five weeks on soil. (C) For a ratiometric

analysis, fluorescence of Venus and CFP was assessed in hypocotyl cells of five-day-old seedlings grown as in (A) with power of the 458 nm laser set to

10% (cytosolic and plastidic) and 30% (mitochondrial) of maximal power. Regions of interest (ROIs) of similar size, indicated by dotted lines, were

defined to calculate the Venus/CFP ratio shown in the graph. n = 36 (cytosol/plastid) or 105 (mitochondria) ROIs in 12 (cytosol/plastid) or 22

(mitochondria) images from 4 (cytosol/plastid) or 6 (mitochondria) individual plants; error bars = SD. ns: p>0.05, ***p�0.001 (t test). Scale bar (all

panels) = 10 mm.

DOI: 10.7554/eLife.26770.002

The following figure supplements are available for figure 1:

Figure supplement 1. Ratiometric imaging of ATeam in cellular compartments of Arabidopsis seedlings.

DOI: 10.7554/eLife.26770.003

Figure supplement 2. Whole plant phenotyping of homozygous ATeam lines.

DOI: 10.7554/eLife.26770.004

Figure supplement 3. Whole plant phenotyping of heterozygous ATeam lines.

DOI: 10.7554/eLife.26770.005

Figure supplement 4. Phenotyping of Arabidopsis expressing mitochondrial sensor proteins.

DOI: 10.7554/eLife.26770.006
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from pH 7.5 to 8.5, although the spectroscopic sensor response range was diminished below pH 7.0.

This decrease in ratio was due to a bona fide FRET response (mseCFP donor signal increasing,

cp173-mVenus acceptor signal decreasing; Figure 2—figure supplement 1B), and correlated with

the decrease in the MgATP2- species as the pH was lowered. We infer that the sensor response

reports the MgATP2- concentration, which itself depends on ambient Mg2+ concentration and pH

(O’Sullivan and Perrin, 1961; Storer and Cornish-Bowden, 1976; Adolfsen and Moudrianakis,

1978). Since MgATP2- is the species that acts as the cofactor for the large majority of ATP-depen-

dent proteins, the sensor provides a readout of the physiologically significant proportion of the ATP

Figure 2. Characteristics of purified ATeam1.03-nD/nA. (A) A cyan fluorescent protein (CFP, PDB: 2WSN) and a variant of the yellow fluorescent protein

(Venus, PDB: 3EKJ) were manually linked by the e-subunit of Bacillus subtilis ATP synthase in the MgATP2--bound (PDB: 2E5Y) and MgATP2--free (PDB:

4XD7) state to generate a hypothetical structural model of ATeam. FRET efficiency in the absence or presence of MgATP2- is indicated by a grey arrow.

(B) Normalised ATeam emission spectra (excitation at 435 ± 5 nm) in the presence of increasing ATP concentrations and an excess in Mg2+ by 2 mM.

(C) ATeam was excited at 435 ± 5 nm and the ratio of emission at 527 nm (cp173-Venus) and 475 nm (mseCFP) at 25˚C in the presence of adenine

nucleotides is plotted. The Boltzmann function was used to fit MgATP2--binding data. (D) Structure of MgATP2-. Its stability depends on pH and on the

free Mg2+ concentration. (E) ATeam Venus/CFP ratios in 4 mM ATP (black points) and 0 mM ATP (grey points) titrated with increasing concentrations of

MgCl2. The grey triangle shows the Venus/CFP ratio in the presence of 4 mM ATP and 20 mM NaCl. (F) ATeam Venus/CFP ratios at different pH and in

the presence of 0 (light grey), 0.5 (dark grey) and 4 mM (black) MgATP. Data in (B), (C) and (F) is averaged from four technical replicates and error bars

are represented as SD, but too small to be displayed.

DOI: 10.7554/eLife.26770.007

The following figure supplement is available for figure 2:

Figure supplement 1. Characteristics of purified ATeam1.03-nD/nA.

DOI: 10.7554/eLife.26770.008
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pool that is visible for those proteins. The MgATP2- response of the sensor will be referred to as

ATP response for simplicity in sections of this work.

Establishing an ex situ assay to monitor mitochondrial ATP dynamics
In vivo ATP dynamics in the cell are governed by production and consumption. On the production

side, mitochondria export ATP to the cytosol (and the nucleus in turn by diffusion), facilitated by oxi-

dative phosphorylation at the matrix surface of the inner mitochondrial membrane and membrane

gradient-driven ATP extrusion by a very active ADP/ATP carrier (AAC) system (Haferkamp et al.,

2011; Gout et al., 2014). We hypothesised that supplementing purified, functional mitochondria

with external sensor protein would allow monitoring of ATP transport fluxes into and out of the mito-

chondria, and also dissect the role of adenylate kinase (AK), which is thought to be localised to the

intermembrane space (Figure 3A). Such a system would remove the influence of other cellular pro-

cesses that impact on MgATP2- concentration in the cytosol, including ATP hydrolysis, transport

across membranes of other cell compartments, as well as changes in pH and Mg2+ concentrations.

We supplemented freshly isolated Arabidopsis seedling mitochondria with

purified recombinant ATeam sensor protein using the same medium as used for in vitro sensor char-

acterisation (Figure 3B). The medium contained Mg2+ and Pi in excess, and was set to pH 7.5 to

Figure 3. ATP fluxes in isolated Arabidopsis mitochondria. (A) Pure intact mitochondria isolated from two-week-

old Arabidopsis seedlings were mixed with basic incubation medium and purified ATeam in 96-well microtiter

plates. Mitochondria were fed with succinate as a respiratory substrate to fuel the tricarboxylic acid (TCA) cycle

and the electron transport chain (ETC). ATP, chemiosmotically generated by ATP synthase (complex V) in the

matrix, is exchanged for ADP through the ADP/ATP carrier (AAC), while ATP generated by adenylate kinase (AK)

in the intermembrane space does not require transport across the inner mitochondrial membrane.

Extramitochondrial ATP exported from the mitochondria is sensed by ATeam in the medium as MgATP2-. (B, C)

ATeam was used as shown in (A) and 10 mM succinate was added either before (B) or after (C) ADP at

concentrations between 0 and 4 mM. ATP was added to 4 mM as reference at the indicated time point (red

traces). n (technical replicates) = 4; error bars = SD. Lower panels show polarographic oxygen consumption assays

performed with a Clark-type electrode in parallel. Mitochondria, succinate and ADP were added to the basic

incubation medium as indicated. A representative trace from an individual experiment is shown and oxygen

consumption rates (nmol min�1 mg�1 protein) for each respiratory state are given as mean ± SD from three

technical replicates.

DOI: 10.7554/eLife.26770.009
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resemble cytosolic pH (Ratcliffe, 1997; Schulte et al., 2006). The exact concentration of the sensor

is not critical, because the ratiometric FRET readout is self-normalising, although very low or very

high sensor concentrations were avoided, to prevent low signal-to-noise, or ATP-buffering by the

sensor itself when close to its Kd(ATP).

The FRET ratio did not change on addition of succinate as respiratory substrate in the absence of

ADP, but subsequent addition of ADP led to an increase in FRET that plateaued at a steady state

value depending on the ADP concentration (Figure 3B). Polarographic oxygen consumption assays

performed in parallel confirmed respiratory activity responses and coupling of the mitochondria with

a respiratory control coefficient of around 2 (Figure 3B), and confirmed that the sensor responded

rapidly to ATP generated by respiring mitochondria and exchanged by the AAC. Nevertheless, addi-

tion of ADP before succinate revealed that ADP alone was sufficient to cause the sensor to respond

in a dose-dependent manner, although with smaller FRET increases (Figure 3C). Considering the

sensor does not respond to ADP (see Figure 2C), the response is indicative of ATP production in

the absence of active respiration. FRET ratios increased further after subsequent addition of succi-

nate, reaching a similar plateau value to before. Production of ATP from ADP alone in the absence

of a respiratory substrate ruled out ATP synthase activity, but would be consistent with AK activity

leading to conversion of ADP to ATP and AMP (Busch and Ninnemann, 1996). This implies that the

assay provides an integrated readout of the combined activities of ATP synthase, AK and the AAC.

Dissection of mitochondrial ATP production, ATP/ADP exchange, and
adenylate kinase activity
The mitochondrial assay allows investigation of the role of AK and AAC in controlling mitochondrial

ATP dynamics. To test whether AK is involved in ATP production in the absence of respiratory elec-

tron transport, we predicted that ATP production would be sensitive to the presence of AMP driven

by mass action, in a fully reversible reaction catalysed by AK (Figure 4A). Consistent with this view,

addition of AMP following the increase in FRET ratio triggered by ADP, led to a gradual, dose-

dependent decrease of FRET (Figure 4B). Likewise, the presence of AMP before addition of ADP,

inhibited ADP-induced ATP generation (Figure 4C).

To test the role of AAC-mediated ADP/ATP exchange across the inner membrane (Figure 4D),

we added carboxyatractyloside (cAT) to block the AAC (Figure 4E). Addition of 4 mM ADP in the

absence of respiratory activity resulted in a similar FRET increase in both control and cAT-treated

mitochondria, suggesting that AK-derived ATP did not rely on AAC-mediated ADP or ATP transport.

Subsequent energization by succinate lead to a slight but reproducible further increase in the con-

trol, which was absent for the cAT-treated mitochondria. This difference shows that matrix-exposed

ATP synthase cannot contribute in the presence of cAT and validates effective AAC inhibition. At

lower concentrations of ADP (0.5 mM), when ATP production by AK is close to the detection limit

(see Figure 3C), succinate gave an increase in detectable MgATP2- in the absence of cAT, but this

was almost completely abolished in the presence of cAT (Figure 4E). This is consistent with localisa-

tion of AK outside the inner mitochondrial membrane and supports localisation in the mitochondrial

intermembrane space, as reported previously for other plant species (Day et al., 1979;

Birkenhead et al., 1982; Stitt et al., 1982; Roberts et al., 1997; Zancani et al., 2001), but con-

trasts the situation in mammals where AK3 isoforms are also present in the matrix (Schulz, 1987).

By exploiting the differential sensitivity of AK and the AAC/ATP synthase system to ADP, it is pos-

sible to minimise the contribution of AK to ATP production, and use low ADP concentrations (0.5

mM) to selectively monitor ATP produced by ATP synthases and AAC activity (Figure 4C). ATP syn-

thesis then strictly depends on ADP import, ATP synthase functionality, the proton motive force and

functional electron transport (Figure 4F). Treatment with specific inhibitors that cover those four

functional levels consistently prevented the FRET increase in response to mitochondrial energization

by succinate (Figure 4D–F), validating the assay as a means to monitor functional changes at specific

steps in bioenergetic pathways.

High-throughput measurements of MgATP2- in planta by fluorimetry
To allow for high-throughput measurements of MgATP2- levels in planta, we optimised a microtiter

plate fluorimetry setup for plant tissues and whole seedlings. Ratiometric analysis makes measure-

ments independent of sensor expression level, as well as tissue amount and shape, provided there is
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sufficient signal-to-noise and little interference from tissue auto-fluorescence. Emission spectra were

recorded with excitation at 435 nm from seven-day-old intact Arabidopsis seedlings

(Sweetlove et al., 2007), and leaf disks of four-week-old plants expressing cytosolic ATeam

(Figure 5A,B). Both sample types showed fluorescence spectra that were practically identical with

the purified sensor protein, while auto-fluorescence was low by comparison. Chlorophyll fluores-

cence was effectively separated and did not cause any significant interference. This was indepen-

dently confirmed also for the chloroplastic sensor by confocal microscopy at the individual

chloroplast level (Figure 5—figure supplement 2).

Figure 4. Modulating the ATP production in isolated Arabidopsis mitochondria. (A) Reaction catalysed by adenylate kinase (AK). (B, C) ATeam was

used in a setup as shown in Figure 3A. Isolated mitochondria and purified ATeam were mixed with AMP between 0 (light grey) and 32 (black) mM

either after (B) or before (C) the addition of 4 mM ADP and the ATeam Venus/CFP ratio was recorded. n (technical replicates) = 4. (D) Representation of

the mitochondrial electron transport chain (complexes I-IV) that generates a proton motive force (Dp) used by the ATP synthase (complex V) to produce

ATP. The ADP/ATP carrier (AAC) transports ATP from the mitochondrial matrix to the intermembrane space (IMS) in exchange for ADP. Treatments that

diminish mitochondrial ATP production or transport and their site of action are indicated. (E) Untreated mitochondria (black symbols) or mitochondria

treated with 10 mM cAT (red symbols) were fed with ADP at 0.5 mM (circles) or 4 mM (triangles) followed by 10 mM succinate. (F) The inhibitory effect of

treatments summarised in (F) on mitochondrial ATP production was calculated through the Venus/CFP increase after addition of ADP (grey), ADP and

succinate (black) or ADP and succinate under inhibition (red). cAT, carboxyatractyloside; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; KCN,

potassium cyanide. E and F show the mean of three technical replicates; error bars = SD.

DOI: 10.7554/eLife.26770.010
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Figure 5. Fluorimetry setup to monitor MgATP2- dynamics in planta. (A,B) Seven-day-old Arabidopsis seedlings (two per well; A) or leaf discs of

individual four-week-old plants (B) were submerged in imaging medium on 96-well microtiter plates. Fluorescence of plant material stably expressing

cytosolic ATeam was checked with an epifluorescence microscope equipped with a GFP filter and compared to wild-type Col-0. Fluorescence emission

spectra between 460 and 600 nm were recorded using a plate reader and an excitation wavelength of 435 ± 10 nm. n = 5; error bars = SD. (C–E) Per

well, two seven-day-old Arabidopsis seedlings expressing no sensor (Col-0) or cytosolic ATeam were excited at 435 ± 10 nm and the emission at

483 ± 9 nm (mseCFP) and 539 ± 6.5 nm (cp173-Venus) was recorded. CCCP (100 mM), antimycin A (100 mM) or adenine (10 mM) were added where

indicated (black data points) while control plants were left untreated (grey data points). Emission in wells with Col-0 plants was averaged and

subtracted from that of ATeam-expressing plants to correct for background fluorescence. Data shown and used for background subtraction is the

average of 3–4 wells and error bars are SD. Insets show the fluorescence emission intensity (I) of Venus and CFP in representative individual wells.

DOI: 10.7554/eLife.26770.011

The following figure supplements are available for figure 5:

Figure supplement 1. Fluorometric readings of MgATP2- dynamics in Arabidopsis seedlings.

DOI: 10.7554/eLife.26770.012

Figure supplement 2. Impact of chlorophyll fluorescence on the ATeam signal.

DOI: 10.7554/eLife.26770.013

Figure supplement 3. The effect of CCCP and antimycin A treatments on the ATeam response at different medium pH.

DOI: 10.7554/eLife.26770.014
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To assess the speed and range of the sensor response in vivo, we monitored the FRET ratio of

seedlings in microtiter plates over time in the presence and absence of carbonyl cyanide m-chloro-

phenyl hydrazone (CCCP), antimycin A, and adenine, to modify endogenous MgATP2- concentra-

tions. CCCP dissipates proton gradients over cell membranes, inhibiting ATP production and

increasing ATP consumption; antimycin A inhibits mitochondrial electron transport at complex III

(Figure 4D); while adenine feeding has been demonstrated to lead to an increase of the cellular

MgATP2- concentration by acting as a substrate for ATP synthesis (Loef et al., 2001; Gout et al.,

2014). We focused on the cytosol as an integration space for ATP fluxes from and to other subcellu-

lar locations, where steady-state concentration of MgATP2- is set by the interplay of numerous syn-

thesis, hydrolysis and transport processes.

CCCP and antimycin A both triggered a rapid and pronounced decrease in FRET, while adenine

led to a modest, but reproducible increase (Figure 5C,D,E; Figure 5—figure supplement 1). Vary-

ing the medium pH between 6.0 and 8.5 showed that the decrease in FRET after antimycin A treat-

ment was independent of pH. Also after CCCP addition, only a small fraction of the response was

due to cytosolic acidification, and destabilisation of MgATP2- in turn (Figure 5—figure supplement

3). The maximal spectroscopic response range was about 3, slightly lower than the range in vitro,

which is partially accounted for by the excitation wavelength and emission bandwidth used. We infer

that the sensor was intact and functional in vivo. High, but not fully saturated FRET, at steady state

allowed an estimate of cytosolic MgATP2- concentrations in the range of about 2 mM, averaged

over seedling tissues. This is consistent with previous estimations and textbook values (Taiz et al.,

2015), but higher than reported in other cases (Gout et al., 2014).

A MgATP2- map of the Arabidopsis seedling
Heterogeneity and gradients between tissues and cells have been of major interest in plant hormone

signalling and development, and fluorescent sensors for abscisic acid and auxin were introduced

recently (Brunoud et al., 2012; Wend et al., 2013; Jones et al., 2014; Waadt et al., 2014). Analo-

gous insights are largely lacking for metabolites and co-factors, despite the fact that metabolism

underpins development (Sweetlove et al., 2017), and that abiotic factors, such as hypoxia, act as

signals (Considine et al., 2017). To measure potential differences in cytosolic MgATP2- concentra-

tions between tissues and cells in vivo, we performed a confocal microscopy analysis of intact five-

day-old Arabidopsis seedlings (Figure 6A). The seedlings were kept in the dark for 30 min before

image acquisition to avoid potential effects of active photosynthesis. An overview of FRET across

the seedlings revealed large tissue differences. Cotyledons displayed high values, which were lower

in the hypocotyl and dropped abruptly at the shoot–root transition. The root showed low values

which then increased in the root tip. The relative differences were reproducibly observed between

individual seedlings, and consistent in independent sensor lines (#1.1, #3.6; Figure 6B; Figure 6—

figure supplement 1). The area around the shoot apex showed low ratios, comparable with those of

the root, in many but not all individuals. By contrast, differences between tissues were less pro-

nounced in etiolated five-day-old seedlings under identical conditions (Figure 6C,D), with compara-

tively lower FRET in the shoots and higher FRET in the roots. The steep gradient at the shoot–root

transition was also absent, indicating that photo-morphogenesis is required for its formation.

To test whether the ratios observed could be attributed to MgATP2- concentrations rather than

optical artefacts from the different tissue geometries, or other biochemical modifications of the sen-

sors, CCCP was used to deplete MgATP2-. In addition, the medium buffer pH was set to 7.5 to avoid

destabilisation of MgATP2- as a result of cytosolic acidification. In the presence of CCCP, FRET ratios

decreased towards a similar minimum value in all tissues and tissue heterogeneity was gradually

abolished (Figure 6—figure supplement 2A,B). Tissue-specific kinetics that could be resolved by

CLSM may reflect differential capacity of tissues to maintain MgATP2- concentrations or simply dif-

ferential penetration by CCCP. To independently validate the overall difference between shoot and

root, we used the microtiter well fluorimetry approach to measure shoot and root samples sepa-

rately, as attempted previously in tissue extracts (Mustroph et al., 2006). The full spectra indicated

bona fide FRET differences, which were abolished by CCCP treatment (Figure 6—figure supple-

ment 2C,D). It is important to note that relative and normalised FRET changes, but not absolute

FRET values, can be compared between different fluorimetry/microscopy setups due to different

excitation and emission detector configurations.
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Figure 6. A MgATP2- map of the Arabidopsis seedling. (A) To map the MgATP2- levels in tissues of Arabidopsis

seedlings, three-day-old (whole seedling) or five-day-old (close-ups) plants expressing cytosolic ATeam were

analysed by CLSM. Fluorescence of Venus (green) and CFP (magenta) was recorded and the ratio is plotted as a

false-color image where high Venus/CFP values (red) correspond to high MgATP2- levels. In the close-ups, Venus/

Figure 6 continued on next page
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The conclusion that in vivo FRET heterogeneity reliably registered MgATP2- heterogeneity,

prompted us to further resolve differences at the cellular level. Comparing pavement and guard cells

of abaxial cotyledon epidermis by a region of interest (ROI) analysis did not reveal any differences in

our hands (Figure 7A). A previous report from older, true leaves had shown higher MgATP2- concen-

trations in guard cells than in pavement cells, suggesting that differences can be induced depending

on developmental and environmental conditions (Hatsugai et al., 2012). Analysis of seven cell layers

of the shoot–root transition zone revealed a continuous gradient, indicating that neighbouring cells

can maintain different, but stable, MgATP2- gradients (Figure 7B). At the root tip, cap cells showed

low MgATP2-. Similarly, low FRET values were observed at wounding sites (Figure 7C). A hotspot of

high MgATP2- levels was localised in the columella just below the quiescent centre (Figure 7D).

Root hair growth speed is correlated with MgATP2- levels as indicated
by light sheet fluorescence microscopy
High respiration has been found during pollen tube growth (Dickinson, 1965) and the same is likely

for other rapidly tip-growing cells, such as root hairs. On the one hand, high respiration rates may

give rise to high ATP levels; on the other, high demand during rapid growth may nevertheless cause

ATP depletion. Addressing the question of the relationship between ATP levels and growth of single

cells has previously been technically impossible. We employed light sheet fluorescence microscopy

(LSFM) for 4D imaging of the growing Arabidopsis root to quantify growth rates and FRET of the

individual root hairs (Figure 8A). We measured both growth speed and FRET ratio of individual hair

cells (Figure 8B). While the most rapidly growing 20% of hair cells elongated eight times more

quickly than the slowest 20%, the latter showed an increase in their FRET ratio indicating that their

cytosolic MgATP2- concentration was increased (Figure 8C,D). Indeed, the average growth speed

was inversely correlated with cytosolic MgATP2- content and lowered MgATP2- was exclusively

detected in rapidly growing hair cells (Figure 8E). Interestingly, there was no evidence for oscilla-

tions in MgATP2- levels similar to those observed for Ca2+ (Hepler et al., 2001; Monshausen et al.,

2008; Candeo et al., 2017), as FRET ratios remained stable and did not show any periodic oscilla-

tions in the order of seconds, as validated by Fourier analysis (Figure 9).

In vivo monitoring of the decline in cytosolic MgATP2- levels during
hypoxia
Several stress conditions have been correlated with a cellular energy crisis. Hypoxia has a direct

impact on mitochondrial ATP production, since lack of oxygen as final electron acceptor inhibits the

respiratory chain. However, flexible metabolic responses have been described in response to hyp-

oxia to prolong maintenance of cellular energy supply (Geigenberger et al., 2000; Geigen-

berger, 2003; van Dongen et al., 2009; Zabalza et al., 2009; van Dongen and Licausi, 2015). To

monitor MgATP2- dynamics during the progression of hypoxia, we used oxygen-proof, transparent

tape to seal medium-filled wells containing individual seedlings grown on agar plates and in liquid

culture, leaving no residual air space (Figure 10; Figure 10—figure supplement 1). The experiments

were carried out in the dark (except for excitation flashes for fluorimetric readings) to avoid oxygen

evolution by photosynthesis. Seedlings in non-sealed wells served as controls. All FRET ratios

Figure 6 continued

CFP ratios were analysed in the indicated regions of interest. Scale bar = 500 mm. (B) Graphs represent data from

two independent lines. n (per line) = 6; error bars = SD. Data from both lines were pooled for a statistical analysis

with a one-way ANOVA followed by the Tukey test (p�0.05) and different letters indicate significant differences.

The experiment was repeated two times with consistent results. (C, D) CLSM analysis of five-day-old seedlings

either grown in the light or etiolated in the dark. SRT, shoot-root transition. n (seedlings per condition) = 11; error

bars = SD. ns: p>0.05, ***p�0.001 (two-way ANOVA followed by the Tukey test).

DOI: 10.7554/eLife.26770.015

The following figure supplements are available for figure 6:

Figure supplement 1. A MgATP2- map of the Arabidopsis seedling.

DOI: 10.7554/eLife.26770.016

Figure supplement 2. The effect of CCCP on the ATeam response in different Arabidopsis seedling tissues.

DOI: 10.7554/eLife.26770.017
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Figure 7. Local MgATP2- heterogeneity in Arabidopsis seedling cells and tissues. Fluorescence of Venus (green)

and CFP (magenta) from cytosolic ATeam was recorded by CLSM in five-day-old Arabidopsis seedlings. The ratio

is plotted as a false-color image where high Venus/CFP values (red) correspond to high MgATP2- levels. (A) Venus/

CFP ratios were assessed in indicated regions of interest to compare guard cells and pavement cells of the

cotyledon epidermis. n = 24 pairs of pavement and guard cell from five individual plants; error bars = SD. ns:

p>0.05 (t test). Scale bar = 20 mm. (B) Venus/CFP ratios were assessed in indicated cell layers at the shoot–root

transition. Region of interest analysis of successive cell layers is indicated in grey scale. n = 11; error bars = SD.

Different letters indicate statistical differences in a one-way ANOVA followed by the Tukey test (p�0.05). Scale

bar = 100 mm. (C) Cotyledons were wounded with a needle and Venus/CFP ratios were assessed in the indicated

Figure 7 continued on next page
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showed an initial decrease immediately after immersion. This was followed by a phase of steady

decrease for sealed seedlings, while unsealed seedlings retained FRET ratios around the starting val-

ues. Re-oxygenation by removal of the seal allowed full recovery to control values, while maintaining

the seal led to a phase of sharp decrease and plateauing of FRET ratios at low values, similar to

Figure 7 continued

regions of interest representing wounded or unwounded tissue. n = 5; error bars = SD, ***p�0.001 (t test). Scale

bar = 500 mm. (D) The Venus/CFP ratio was assessed in two regions of interest at the root tip. n = 12; error bars =

SD, ***p�0.001 (t test). Scale bar = 100 mm.

DOI: 10.7554/eLife.26770.018

Figure 8. Light sheet fluorescence microscopy (LSFM) analysis of MgATP2- levels in growing root hair cells. Hair

cell growth on roots from six-day-old seedlings expressing cytosolic ATeam was followed for 10 min by LSFM. (A)

Maximum projection of the Venus signal in the elongation and lower maturation zone generated from 4D in vivo

imaging data of the growing Arabidopsis root. Scale bar = 100 mm. (B) Representative root area with hair cells in

different developmental stages. Fluorescence of Venus (green) and CFP (magenta) was recorded and the ratio is

plotted as false-color images over three time points. Scale bars = 100 mm. Five times magnified image sections

exemplify (1) a slow-growing and (2) a fast-growing hair cell. (C) Hair cells in the top and bottom 20% quantile

interval of growth speed and (D) the corresponding cytosolic ATeam FRET ratio measured in the tip of the same

cells. n = 48 hair cells from six roots; error bars = SD, *p�0.05, ***p�0.001 (t test). (E) Growth speed of individual

hair cells as function of their cytosolic ATeam FRET ratio. Values of the slowest and fastest growing cells as

included in (C) and (D) are indicated in red and blue; line indicates linear regression. Significance of correlation,

expressed as a p-value determined by an F test, and the coefficient of determination (R2) based on all data points

are provided.

DOI: 10.7554/eLife.26770.019

De Col et al. eLife 2017;6:e26770. DOI: 10.7554/eLife.26770 14 of 29

Tools and resources Plant Biology

http://dx.doi.org/10.7554/eLife.26770.018
http://dx.doi.org/10.7554/eLife.26770.019
http://dx.doi.org/10.7554/eLife.26770


Figure 9. Oscillation analysis in root hair cells. FRET analyses in root hair tips of six-day-old seedlings expressing

(A) NES-Yellow Cameleon 3.6 and (B) cytosolic ATeam1.03-nD/nA by LSFM. Oscillations of three representative

root hairs are shown as normalised Venus/CFP ratios and power spectral density (PSD) spectra by Fourier analysis.

The mean PSD spectra represent 22 root hairs each. Error bars = SEM. Note the presence of typical Ca2+

oscillations around 0.05 Hz in the Cameleon dataset, which were absent in the ATeam dataset.

DOI: 10.7554/eLife.26770.020
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those seen for CCCP treatment. While the response characteristics were reproducible, the onset and

rates of the different phases varied between individual seedlings, probably as a result of differences

in biomass, respiration rate and the rate of oxygen decrease in turn. The hypoxia model demon-

strates the possibility to reliably monitor subcellular MgATP2- dynamics live during stress insult, and

may be flexibly adjusted to other external conditions, tissues and genetic backgrounds.

Discussion

Fluorescent monitoring to understand ATP dynamics
Fluorescent ATP sensors were initially engineered for mammalian cells and tissues (Berg et al.,

2009; Imamura et al., 2009; Kotera et al., 2010; Nakano et al., 2011; Tantama et al., 2013),

where their use has allowed novel insights, such as subcellular ATP concentration gradients between

compartments in situ, visualisation of stimulus-induced energy dynamics in neurons, responsiveness

of ATP-sensitive K+ channel activity in single cells and synchronisation of Ca2+ and ATP dynamics in

HeLa cells with histamine stimulation. With the exception of one report on cell death induced by

hypersensitive response (Hatsugai et al., 2012), fluorescence ATP measurements have been lacking

in plant research. Live-cell fluorescent monitoring complements widespread standard approaches,

such as luminescent or HPLC-based ATP determinations in biological extracts, or radioisotope-based

techniques for membrane transport assays (Manfredi et al., 2002; Khlyntseva et al., 2009;

Lorenz et al., 2015; Monné et al., 2015). While those techniques offer high sensitivity and accuracy

in quantifying ATP, and other nucleotides, in extracts, they provide endpoint measurements after

removal from the functional biological system and have limited use for resolving the ATP concentra-

tion over time at the (sub)cellular and tissue level. Yet, high flux rates, rapid fluctuations and (sub)cel-

lular gradients are fundamental characteristics of cellular energy physiology. Non-destructive live

measurement of ATP has been available by 31P-NMR spectroscopy, which offers the additional bene-

fit of also measuring ADP and other di- and tri-nucleotides (Gout et al., 2014). However, 31P-NMR is

Figure 10. Arabidopsis MgATP2- dynamics under low oxygen. Ten-day-old Arabidopsis seedlings, grown vertically

on plates, were submerged in imaging medium on 96-well microtiter plates. Per well, three seedlings expressing

no sensor (Col-0) or cytosolic ATeam were excited at 435 ± 10 nm, and the emission at 483 ± 9 nm (mseCFP) and

539 ± 6.5 nm (cp173-Venus) was recorded. Wells were either left open (grey), sealed with an oxygen-proof,

transparent qPCR film (black) or sealed for 15.5 hr before the film was removed to reoxygenate the samples (red).

Emission in wells with Col-0 plants was averaged and subtracted from that of ATeam-expressing plants to correct

for background fluorescence. Data shown and used for background subtraction is the mean of 9–12 wells and

error bars are SD.

DOI: 10.7554/eLife.26770.021

The following figure supplement is available for figure 10:

Figure supplement 1. Arabidopsis MgATP2- dynamics under low oxygen.

DOI: 10.7554/eLife.26770.022
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limited in spatial resolution and sensitivity. The superior sensitivity of fluorescence-based MgATP2-

monitoring is demonstrated in the experiments with isolated Arabidopsis mitochondria (Figure 3),

where changes in the MgATP2- concentration were monitored with time resolution in the order of

seconds on only 20 mg of mitochondrial protein. The spatial resolution of fluorescent ATP sensing is

highlighted by its ability to detect MgATP2- levels in individual cells (Figure 7) and single chloro-

plasts (Figure 1; Figure 5—figure supplement 2), making ATP-binding probes a particularly versa-

tile technique in tissue and cell physiology.

Arabidopsis lines for monitoring MgATP2- in the cytosol, chloroplasts
and mitochondria
Governance of cytosolic ATP levels by two bioenergetic organelles in green plant cells raises impor-

tant questions about the regulatory basis of subcellular ATP control (Gardeström and Igamberdiev,

2016). The cytosolic sensor lines indicated no differences in ratio between cytosol and nucleoplasm,

indicative of rapid diffusion between the two locations and in line with previous observations for free

Ca2+ concentrations and glutathione redox potential (Loro et al., 2012; Schwarzländer et al.,

2016). The chloroplast sensor lines provide a good FRET signal, even in the presence of chlorophyll

(Figure 5—figure supplement 2). These lines will be a valuable tool to dissect the impact of photo-

synthesis on subcellular ATP, and investigations are currently underway in our labs. While no devel-

opmental phenotype was observed for the cytosolic and plastidic sensor lines (Figure 1; Figure 1—

figure supplements 2 and 3), the strong phenotype that systematically resulted from sensor tar-

geted to the mitochondrial matrix (Figure 1C; Figure 1—figure supplement 2) requires caution. It

cannot be ruled out that ATP homeostasis is generally perturbed in those sensor lines,

although sensor-based measurements in mammalian cells have also indicated lowered ATP in the

matrix, which can be accounted for by membrane potential-driven AAC-mediated ATP export

(Imamura et al., 2009). The reason for the stunted phenotype is currently unclear. Interference with

matrix ATP homeostasis by ATP buffering appears unlikely, especially since similar phenotypes of

variable severity can also be observed for other mitochondrially targeted sensors (Figure 1—figure

supplement 4); similar issues were also noted in yeast (Schwarzländer et al., 2016). Clogging of

the TIM/TOM machinery by import arrest of the synthetic sensor construct may account for the

observed effects.

Sensor characteristics and limitations revealed in vitro
Purified ATeam1.03-nD/nA was selective for MgATP2- (Figure 2), refining previous characterisations

of the parent sensor ATeam1.03 (Imamura et al., 2009). The sensor does not report on energy

charge set by the ATP:ADP ratio directly (Pradet and Raymond, 1983), without an additional

assumption that the total adenosine pool is constant. In vivo, de novo synthesis and degradation are

unlikely to change the total adenosine pool as rapidly as ATP/ADP/AMP-cycling by (de-)phosphory-

lation. Hence, the MgATP2- changes induced by inhibitor treatments and during hypoxia are likely to

also reflect decreased energy charge. By contrast, differences in steady-state ATP levels between

cells and tissues and organs may reflect constitutive differences in total adenylate pool sizes. Combi-

natorial analyses with sensors that directly respond to energy charge, such as variants of Perceval

(Tantama et al., 2013), will be desirable in the future. However, the currently available ATP:ADP

sensors suffer from serious pH sensitivity, which adds a level of complexity to the meaningful inter-

pretation in planta, where pronounced pH fluctuations can occur.

A dynamic assay to dissect ATP fluxes of isolated mitochondria
A key innovation from fluorescent protein-based sensing has been the ability to monitor biochemis-

try as it occurs in the intact biological system. Nevertheless, mechanistic conclusions have often

been problematic based on attempts to link in vitro reductionism with in vivo complexity, and the

challenges in bringing intact systems under experimental control. The ATP assays that we establish

for isolated mitochondria introduce a useful intermediate (Figures 3 and 4). Despite the use of

whole organelles as complex multi-functional units, the different steps of ATP dynamics can be mon-

itored and interpreted mechanistically. Substrate feeding and inhibitor treatments allow for tight

control over the functional state of the organelle, and controlled manipulation of ATP physiology.

For example, we were able to distinguish the phosphorylation activities of ATP synthase and AK,
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and monitor either activity by exploiting their differential characteristics, including their sub-mito-

chondrial exposure to the matrix and the intermembrane space, respectively. Perturbation of mito-

chondrial function was observed with high sensitivity and kinetically resolved following inhibition of

defined players in mitochondrial ATP production. Substrates and inhibitors are well suited to modu-

late respiratory activity, capacity and efficiency, and to induce transitions in ATP dynamics. They may

be applied to dissect bioenergetic rearrangements in respiratory mutants in the future.

The current understanding of cellular bioenergetics has been driven by dynamic measurements in

isolated mitochondria and chloroplasts, e.g. of oxygen consumption or Ca2+ transport. Yet, monitor-

ing ATP dynamics, as the central product, has typically relied on indirect inference, or reconstruction

of time-resolved data from individual samples (Attucci et al., 1991). The fluorescent biosensor-

based ATP assay concept introduces a complementary method to continuously and dynamically

monitor ATP transport fluxes from and into cells and isolated organelles, as demonstrated using

plant mitochondria. Since the sensor protein is added externally to the samples, and does not

require transgenic sensor expression by the samples, cell components from any species can be stud-

ied for ATP generation, consumption and membrane transport. The assays may be further expanded

to study membrane transport dynamics. For instance, the response of ATP transport across the chlo-

roplast envelope to changes in photosynthetic activity should be readily detectable making it possi-

ble to address as yet unresolved questions about transport efficiency, directionality and routes,

under controlled external conditions (Haferkamp et al., 2011; Gardeström and Igamberdiev,

2016). The assay principle is adaptable to other subcellular structures, and potentially even lipo-

some, cell, and tissue systems. It may also facilitate the improvement of ATP-coupled enzyme assays.

Monitoring ATP export and uptake by cells may be of specific interest to address current questions

about intercellular ATP fluxes and the signalling function of extracellular ATP (Kim et al., 2006;

Tanaka et al., 2010; Choi et al., 2014a). ATeam variants with higher affinities to match lower ATP

concentration ranges have been engineered, and are also likely to be specific for

MgATP2- (Imamura et al., 2009).

Monitoring ATP in planta by three sensor detection approaches
We have performed live sensing of ATP in planta by three distinct in vivo techniques. Microtiter

plate-based fluorimetry (Figures 3–5 and 10), CLSM (Figures 1, 6 and 7) and LSFM (Figures 8 and

9) complement another to investigate the dynamics and distribution of ATP in living plant tissues.

While CLSM has been extensively used in combination with other fluorescent protein sensors in

plants, LSFM has only recently been adjusted to enable FRET-based Ca2+ measurements in Arabi-

dopsis roots (Costa et al., 2013; Candeo et al., 2017). Microtiter plate-based fluorimetry has been

widely used for cultured animal cells and yeast (Birk et al., 2013; Morgan et al., 2016), but rarely in

plant tissues (Rosenwasser et al., 2010, 2011), and a rigorous technical validation was missing. Our

analysis shows that careful adjustment of fluorimetric settings, with the sensor properties and the

characteristics of the tissue can make plate reader-based measurements a robust approach for con-

tinuous monitoring of fluorescent protein sensors over extended time periods. While heterogeneity

between cells and tissues is averaged, large sample numbers can be assessed in parallel enabling

robust controls and accounting for biological variability. Genetic targeting of the sensor to a specific

subcellular location where it responds to the local ATP levels means that the resolution of subcellular

physiology is maintained. Further, side-by-side measurements of different sensors in different tissues

or cell compartments may allow monitoring and dissecting the interplay of different physiological

responses to the same stimulus. For instance, the impact of hypoxia on cyto-nuclear ATP, pH and

Ca2+, or the impact of illumination on the ATP concentration in the cytosol and the chloroplast

stroma may be assessed. Parallel side-by-side monitoring provides an alternative to multiplexing of

several sensors co-expressed in the same plant. The robustness of the assay may even be suitable

for genetic or chemical biological screens (Dejonghe and Russinova, 2017) based on fluorescent

sensors in the future.

Sensing and manipulating MgATP2- in vivo
Decreasing and increasing the cytosolic MgATP2- levels in vivo by chemical treatments resulted in a

reliable response that covered nearly the full theoretical dynamic range of the sensor (Figure 5). We

infer that the sensor is functional in vivo, and not affected by proteolytic cleavage. The effective
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decrease of MgATP2- after inhibition with antimycin A validated the role of mitochondria as major

suppliers of cytosolic ATP, as the loss of respiration-derived ATP could not be replaced. Neverthe-

less, the response kinetics to the chemical treatments appeared to be dominated by tissue uptake

rate. Monitoring the treatments by CLSM indicated varying response rates depending on tissue type

(Figure 6—figure supplement 2). Yet, all tissues gradually adopted a similarly low FRET ratio of the

MgATP2--free sensor. The ability to drive the sensor to its extremes in vivo allows the conversion of

in vivo FRET ratios to absolute MgATP2- concentrations, as routinely done in Ca2+ sensing

(Palmer and Tsien, 2006), and thiol redox sensing (Schwarzländer et al., 2008). Since the conver-

sion requires additional assumptions, and becomes inaccurate towards the non-linear response

range of the sensor, a fully quantitative approach has been criticised. In this work we use the FRET

values as direct representation of the in vivo dynamics and relative differences (Wagner et al.,

2015b). When conversion to absolute concentrations is desired, they should be regarded as an esti-

mate. Here about 2 mM MgATP2- can be estimated for the cytosol at steady state in the dark (Fig-

ures 2 and 5). This concentration value complements ATP determinations normalised to chlorophyll

contents by protoplast fractionation (Stitt et al., 1982; Gardeström and Wigge, 1988) and by NMR

(Gout et al., 2014).

Towards an integrated understanding of energy physiology in
development and under stress
CLSM resolved organ, tissue and cell differences to give a detailed MgATP2- map of the Arabidopsis

seedling (Figures 6 and 7). Similar maps have been generated for hormone distribution (e.g. auxin

and abscisic acid Brunoud et al., 2012; Jones et al., 2014) to study plant development. For central

metabolites high-resolution transcriptional analysis has aimed to generate tissue maps

(Chaudhuri et al., 2008), but direct in vivo mapping across tissues and organs has not been under-

taken. Differences in the MgATP2- concentration between tissues and cells have not previously been

distinguishable with any reasonable resolution, and the MgATP2- map therefore unveils a surprisingly

heterogeneous and dynamic picture. Green tissues showed overall high MgATP2- concentration,

which are unlikely due to photosynthetic activity because the seedlings were dark-adapted. Etiola-

tion not only decreased MgATP2- in the green tissues, but also increased levels in the roots. The bio-

logical significance of tissue-specific MgATP2- heterogeneity deserves in-depth dissection in the

context of metabolism and development in the future. Since the map represents MgATP2-, as the

main bioavailable form of ATP, differences may, in principle, be due to ATP pool size, pH and/or

Mg2+. Many proteins bind MgATP2-, but the extent to which this affects the buffering of the pool

and the free concentration, which is available for binding by the sensor, is currently unknown.

With the appropriate caution, the map provides insight into MgATP2- distribution at system level

and the concept sets a reference point for expansion into several dimensions, including time, subcel-

lular compartment, and other genetic, biochemical or physiological parameters. Time-lapse imaging

can resolve the dynamic changes in a tissue, both during developmental processes and in response

to external stimuli. Our observation that the MgATP2- concentration increases with decreasing root

hair growth exemplifies the occurrence of such dynamics and provides evidence for the complex

relationship between cellular energy status and growth. Analogous maps can be generated for other

subcellular compartments, such as the plastids, to obtain a tissue-resolved map of subcellular

MgATP2- heterogeneity. Other sensors, e.g. for pH, Ca2+ or glutathione redox potential, may be

used and superimposed to gradually build up a comprehensive representation of the cell physiologi-

cal status of the whole plant. Superimposition with transcriptomic and proteomic maps (e.g.,

Chaudhuri et al., 2008; Li et al., 2016) may even allow correlation across the organisational levels

of the cell. Such systemic multi-dimension in vivo mapping will provide a novel foundation to model-

ling attempts of whole plant metabolism and to the understanding of how metabolism underpins

plant development.

Disruption of fresh oxygen supply to Arabidopsis seedlings resulted in a gradual decrease in the

cytosolic MgATP2- concentration (Figure 6), following expectations from previous work on plant

extracts and using NMR (Xia and Saglio, 1992; Geigenberger et al., 2000; Gout et al., 2001;

van Dongen et al., 2003). The decrease occurred in four phases and was fully reversible by re-oxy-

genation. FRET ratios initially declined slowly, however, after extended block of oxygen supply, a

sharp decrease in the MgATP2- concentration occurred to a new plateau level, which may represent

the lower sensitivity limit of the probe. The exact kinetics depended on the experimental setup and
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the type of tissue, yet the overall response was reproducible (Figure 10; Figure 10—figure supple-

ment 1). The rapid response and the gradual decrease together support the rationales that the cyto-

solic MgATP2- pool strictly depends on oxidative phosphorylation, that AK-based buffering may at

most delay MgATP2- depletion, but that a sharp MgATP2- depletion can be avoided, probably by

restructuring of metabolic fluxes (Geigenberger, 2003; Zabalza et al., 2009). The experimental

setup did not generate a sudden decrease in oxygen availability, but relied on dark respiration for

gradual oxygen depletion. The observed responses therefore represent the integrated effects of

dynamic progression of hypoxia and the compensating metabolic changes; as they may occur in a

situation of sudden (deep) water logging. Hypoxia-associated intracellular acidification may also

impact on the sensor response by influencing MgATP2- dissociation. Yet, these pH-induced changes

are not artefacts and carry physiological meaning, since a decrease in the concentration of MgATP2-

does not only affect the sensor, but also endogenous MgATP2--dependent proteins. Furthermore,

the pH controlled MgATP2- depletion treatments indicate only a minor contribution of pH (Fig-

ure 5—figure supplement 3) and prior work has suggested that cytosolic pH hardly decreases

below 7, even under anoxia (Gout et al., 2001; Schulte et al., 2006). As such, the hypoxia assays

demonstrate that ATeam1.03-nD/nA allows continuous monitoring of subcellular MgATP2- pools in

response to stress. Since the exact ATP kinetics are shaped by the cellular stress response machin-

ery, they will provide a sensitive and integrated readout for defects or modifications in mutants.

Conclusions and outlook
We have investigated mitochondrial bioenergetics, plant hypoxia responses and MgATP2- content in

plant tissues depending on growth conditions and development. These studies exemplify the versa-

tility of fluorescent ATP sensing to open new doors in plant biology. Their systematic follow up and

extrapolation will be required for a systems view of ATP in the future. Although ATP biochemistry

has been extensively studied in the last century, surprisingly large gaps remain in our understanding

of its dynamics within cells and whole plants. Sensing MgATP2- dynamically and with (sub)cellular res-

olution adds novel depth to the study of plant metabolism, development, signalling and stress

responses. Our understanding of plant microbe interactions, where the biochemistry underpinning

the localised and dynamic responses have been notoriously hard to capture, may benefit in particu-

lar. Other potential applications include the identification and in vivo validation of ATP transport sys-

tems, a better understanding of the coordination between plastids and mitochondria in ATP

production, an appraisal of the impact of uncoupling systems, the visualisation of energy parasitism

in diatoms, the extension of in situ enzyme assays and the mapping of MgATP2- to other sensor out-

puts and oxygen gradients in tissues. Optimisation of high affinity ATP sensors for the apoplast

could support investigations on extracellular ATP signalling. Additional sensors for AMP, ADP and

ATP:ADP ratio can be integrated into the methodological framework introduced here. Each time

that a biosensor for a new facet of cell physiology, e.g. for free Ca2+ or glutathione redox potential

(Allen et al., 1999; Pei et al., 2000; Meyer et al., 2007; Schwarzländer et al., 2008; Krebs et al.,

2012; Loro et al., 2012; Wagner et al., 2015b), has been introduced into plant research, this has

yielded a burst of discovery. We expect ATP sensing to be no exception.

Materials and methods

Cloning of sensor constructs and generation of plant lines
The ATeam1.03-nD/nA sequence was PCR-amplified from pENTR1A:ATeam1.03-nD/nA. The leader

sequence from Nicotiana plumbaginifolia ß-ATPase (Logan and Leaver, 2000) for mitochondrial

import was fused to the N-terminus by extension PCR. For constitutive plant expression under a

CaMV 35S promoter, this fusion and the unfused sequence for cyto-nuclear targeting were subcl-

oned into pDONR207 (Invitrogen Ltd, Carlsbad, CA) and ultimately pB7WG2 and pH2GW7, respec-

tively (Karimi et al., 2002). For targeting to the plastid stroma, the leader sequence from Nicotiana

tabacum transketolase (Wirtz and Hell, 2003; Schwarzländer et al., 2008) and the ATeam1.03-nD/

nA sequence were subcloned into pENTR/D-TOPO (Invitrogen Ltd) via NdeI/PstI and BamHI/XbaI

restriction sites, respectively. The fusion was cloned into pEarleyGate100 (Earley et al., 2006) for

35S-driven expression. Primer sequences are detailed in Supplementary file 1. The non-fused

sequence was also inserted into pETG10A for protein expression in Escherichia coli cells.
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Agrobacterium-mediated transformation of Arabidopsis thaliana (L.) Heynh. (accession Columbia,

Col-0) was performed by floral dip (Clough and Bent, 1998). Transformants and homozygous lines

were selected by chemical resistance and fluorescence intensity. Generation of the NES-YC3.6 Cam-

eleon line was described previously (Krebs et al., 2012).

Chemicals
Chemicals were purchased from Sigma-Aldrich (Taufkirchen, Germany). Stock solutions of ATP, ADP

and AMP were freshly supplemented with equimolar concentrations of MgCl2 except for Mg2+ titra-

tion. All stock solutions were adjusted to assay pH prior to use.

Plant culture
Where not indicated otherwise, Arabidopsis seedlings were grown from surface-sterilised seeds on

vertical plates containing half-strength Murashige and Skoog (MS) medium (Murashige and Skoog,

1962) with 1% (w/v) sucrose and 0.8% (w/v) Phytagel under long-day conditions (16 hr 80–120 mmol

photons m�2 s�1 at 22˚C, 8 hr dark at 18˚C) after stratification at 4˚C in the dark. For line preparation

of leaf discs, plants were germinated and grown on soil under long-day conditions (17˚C, 16 hr 50–

75 mmol photons m�2 s�1, 8 hr dark) after stratification at 4˚C in the dark.

Plant phenotyping
Seeds were stratified at 4˚C in the dark for 2 d on half-strength MS medium +1% (w/v) sucrose +1%

(w/v) MES +1% (w/v) Phytagel, pH 5.8 and seedlings were grown on the plates vertically side by side

with their corresponding controls for 5 d under long-day conditions (16 hr at 22˚C and 75–100 mmol

photons m�2 s�1, 8 hr at 18˚C and darkness). Primary root length was documented and quantified

using ImageJ. Plants were then individually transferred to Jiffy-pots, randomly distributed on stan-

dard greenhouse flats and grown in long-day (16 hr at 19˚C and 60–80 mE m�2 s�1, 8 hr at 17˚C and

darkness) growth chambers. Leaf rosette development was documented photographically and

rosette size was analysed with the custom Leaf Lab tool (Version 1.41) as described previously

(Wagner et al., 2015b). Height of the primary inflorescence was systematically captured with a cam-

era and quantified using ImageJ. Siliques were manually counted when the first siliques turned yel-

low but had not yet shattered.

Purification of ATeam1.03-nD/nA
E. coli strain Rosetta 2 (DE3) carrying pETG10A-ATeam1.03-nD/nA was grown in lysogeny broth (LB;

Bertani, 1951) medium at 37˚C to an OD600 of 0.2. The culture was transferred to 20˚C until cells

reached an OD600 of 0.6–0.8. Expression of 6�His-ATeam1.03-nD/nA was induced by isopropyl b-D-

1-thiogalactopyranoside at a final concentration of 0.2 mM overnight at 20˚C. Cells were collected

by centrifugation at 4000 g for 10 min at 4˚C and the pellet was resuspended in lysis buffer (100 mM

Tris-HCl, pH 8.0, 200 mM NaCl, 10 mM imidazole) supplemented with 1 mg/mL lysozyme, 0.1 mg/

mL DNaseI (Roche, Mannheim, Germany) and cOmplete protease inhibitor cocktail (Roche). After

30-min incubation on ice, cells were sonicated (3 � 2 min, 40% power output, 50% duty cycle). The

lysate was centrifuged at 40,000 g for 40 min at 4˚C and the supernatant was loaded onto a Ni-NTA

HisTrap column (GE Healthcare, Freiburg, Germany) and proteins were eluted with an imidazole gra-

dient (10–200 mM in 100 mM Tris-HCl, pH 8.0, 200 mM NaCl) using an ÄKTA Prime Plus chromatog-

raphy system (GE Healthcare). Fractions containing ATeam1.03-nD/nA were pooled, concentrated

by ultrafiltration and applied to a HiLoad 16/600 Superdex 200 column (GE Healthcare) pre-equili-

brated with 20 mM Tris-HCl, pH 8.0, 150 mM NaCl. Fractions containing intact ATeam1.03-nD/nA

were pooled, concentrated by ultrafiltration, supplemented with 20% (v/v) glycerol and stored at

�86˚C.

Characterisation of ATeam1.03-nD/nA in vitro
Concentration of purified ATeam1.03-nD/nA was quantified according to Bradford (1976). Protein

at a final concentration of 1 mM was mixed with basic incubation medium (0.3 M sucrose, 5 mM

KH2PO4, 50 mM TES-KOH, pH 7.5, 10 mM NaCl, 2 mM MgSO4, 0.1% (w/v) BSA) for all in vitro

assays, except for the Mg2+ titrations, in which MgSO4 was omitted from the basic incubation

medium. A FP-8300 spectrofluorometer (Jasco, Gross-Umstadt, Germany) at 25˚C was used to excite
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mseCFP at 435 ± 5 nm and emission spectra between 450 to 600 nm were recorded with a band-

width of 5 nm. Venus/CFP ratios were calculated as measure of FRET efficiency from the fluores-

cence emission intensities at 527 nm (cp173-Venus) and 475 (mseCFP) nm after blank correction.

Mitochondrial isolation and oxygen consumption assays
Arabidopsis seedlings were grown in hydroponic pots for 14 days as described by Sweetlove et al.

(2007) under long-day conditions (16 hr 50–75 mmol photons m�2s�1 at 22˚C; 8 hr dark at 18˚C).
Seedling mitochondria were isolated as described by Sweetlove et al. (2007) and

Schwarzländer et al. (2011). Oxygen consumption was assayed as described by Sweetlove et al.

(2002) and Schwarzländer et al. (2009) using two Clark-type electrodes (Oxytherm, Hansatech,

Norfolk, UK).

Multiwell plate reader-based fluorimetry
ATeam1.03-nD/nA was excited with monochromatic light at a wavelength of 435 ± 10 nm in a CLAR-

IOstar plate reader (BMG Labtech, Ortenberg, Germany). Emission was recorded at 483 ± 9 nm

(mseCFP) and 539 ± 6.5 nm (cp173-mVenus) using transparent 96-well plates (Sarstedt, Nümbrecht,

Germany). The internal temperature was kept at 25˚C, and the plate was orbitally shaken at 400 rpm

for 10 s after each cycle. For assays with isolated mitochondria, 20 mg total protein in basic incuba-

tion medium (0.3 M sucrose, 5 mM KH2PO4, 50 mM TES-KOH, pH 7.5, 10 mM NaCl, 2 mM MgSO4,

0.1% (w/v) BSA) were supplemented with 1 mM purified ATeam1.03-nD/nA in a total volume of 200

mL per well. Fluorescent background of the basic incubation medium was recorded and subtracted

from all data before analysis. For in vivo experiments with Arabidopsis seedlings and leaf discs, plant

material was submerged in 10 mM MES, pH 5.8, 5 mM KCl, 10 mM MgCl2, 10 mM CaCl2. Plates

were kept in the dark for at least 30 min before recording to minimise potential effects of active

photosynthesis. TES buffer was replaced with Bis-Tris-HCl (covering pH values between 6.0 and 7.0)

or Tris-HCl (covering pH values between 7.5 and 8.5) where indicated. To restrict supply with oxy-

gen, plates were sealed with ultra-clear films for qPCR (VWR, Langenfeld, Germany).

Confocal laser scanning microscopy and analysis
Confocal imaging was performed at 20˚C using a Zeiss LSM780 microscope and a �5 (EC Plan-Neo-

fluar, 0.16 N.A.),�10 (Plan-Apochromat, 0.3 N.A) or �40 lens (C-Apochromat, 1.20 N.A., water

immersion) using the procedure described previously (Wagner et al., 2015a). ATeam1.03-nD/nA

was excited at 458 nm and fluorescence of mseCFP and cp173-mVenus were measured at 465–500

nm and 526–561 nm, respectively, with the pinhole set to three airy units. Chlorophyll fluorescence

was collected at 650–695 nm. MitoTracker Orange was excited at 543 nm and emission was

recorded at 570–619 nm. Plants were dark-adapted for at least 30 min before image acquisition. Sin-

gle plane images were processed with a custom MATLAB-based software (Fricker, 2016) using x,y

noise filtering and fluorescence background subtraction.

Light sheet fluorescence microscopy and analysis
Hair cell growth on roots from six-day-old seedlings was followed for 10 min with images acquired

every 3 s. Each image was generated as a maximum intensity projection (MIP) of 15 stacks spaced

by 3 mm and the MIP acquisition time was 1 s, based on 50 ms exposure per stack and data transfer

time. The LSFM used was specifically designed to study plant roots (Costa et al., 2013;

Candeo et al., 2017). The source was a single-mode fibre-coupled laser emitting radiation at 442

nm (MDL-III-442, CNI) to excite ATeam mseCFP. A cylindrical lens in combination with a 10� water-

dipping microscope objective (Olympus UMPLFLN 10�W, 0.3 N.A.) created a thin sheet of laser

light on the sample (5-mm-thick and 800-mm-high in the vertical direction). The detection unit con-

sisted of a 20� water-dipping microscope objective (Olympus UMPLFLN 20�W, 0.5 N.A.), held

orthogonally to the excitation axis. An image splitter (dichroic filter at 505 nm, DMLP505, Thorlabs,

Newton, NY; band-pass filters, MF479-40 and MF535-22, Thorlabs, Newton, NY) and a fast camera

(Neo 5.5 sCMOS, ANDOR, Belfast, UK) enabled the simultaneous wide-field acquisition of two spec-

trally different images, as required for a FRET indicator. The system provided an intrinsic optical sec-

tioning with minimal light exposure of the sample, permitting a fast volumetric acquisition and long-

term imaging over a wide-field of view with single-cell detail. The seedlings were grown vertically in
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fluorinated ethylene propylene tubes filled with half-strength MS medium, 0.1% (w/v) sucrose; 0.05%

(w/v) MES, pH 5.8 (Tris), solidified by 0.5% (w/v) Phytagel as described in Candeo et al. (2017) and

kept in an imaging chamber filled with liquid MS-based medium lacking sucrose (half-strength MS

medium; 0.05% (w/v) MES; pH 5.8 (Tris)).

The Venus/CFP ratio at the tip of single root hairs was extracted with FIJI (https://fiji.sc/) after

image registration by using the Fiji plugin ‘Template Matching’ (https://sites.google.com/site/qing-

zongtseng/template-matching-ij-plugin). Finally, the Matlab Fast Fourier Transform was used to cal-

culate the power spectral densities from the normalised Venus/CFP time courses (Candeo et al.,

2017). To quantify the average speed growth of root hairs we measured their elongation during the

entire acquisition and divided by the time (10 min).
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Gout E, Rébeillé F, Douce R, Bligny R. 2014. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria:
unravelling the role of Mg2+ in cell respiration. PNAS 111:E4560–E4567. doi: 10.1073/pnas.1406251111,
PMID: 25313036

Haferkamp I, Fernie AR, Neuhaus HE. 2011. Adenine nucleotide transport in plants: much more than a
mitochondrial issue. Trends in Plant Science 16:507–515. doi: 10.1016/j.tplants.2011.04.001, PMID: 21622019

Hatsugai N, Perez Koldenkova V, Imamura H, Noji H, Nagai T. 2012. Changes in cytosolic ATP levels and
intracellular morphology during bacteria-induced hypersensitive cell death as revealed by real-time
fluorescence microscopy imaging. Plant and Cell Physiology 53:1768–1775. doi: 10.1093/pcp/pcs119, PMID: 22
942251

Hepler PK, Vidali L, Cheung AY. 2001. Polarized cell growth in higher plants. Annual Review of Cell and
Developmental Biology 17:159–187. doi: 10.1146/annurev.cellbio.17.1.159, PMID: 11687487

Igamberdiev AU, Bykova NV, Lea PJ, Gardeström P. 2001. The role of photorespiration in redox and energy
balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase.
Physiologia Plantarum 111:427–438. doi: 10.1034/j.1399-3054.2001.1110402.x, PMID: 11299007

Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H. 2009. Visualization of ATP
levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded
indicators. PNAS 106:15651–15656. doi: 10.1073/pnas.0904764106, PMID: 19720993

Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB. 2014. Abscisic acid dynamics
in roots detected with genetically encoded FRET sensors. eLife 3:e01741. doi: 10.7554/eLife.01741,
PMID: 24737862
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