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Abstract 11 

Cellular networks are intrinsically subject to stochastic fluctuations, but analysis of the resulting 12 

noise remained largely limited to gene expression.  The pathway controlling chemotaxis of 13 

Escherichia coli provides one example where posttranslational signaling noise has been deduced 14 

from cellular behavior. This noise was proposed to result from stochasticity in chemoreceptor 15 

methylation, and it is believed to enhance environment exploration by bacteria. Here we 16 

combined single-cell FRET measurements with analysis based on the fluctuation-dissipation 17 

theorem (FDT) to characterize origins of activity fluctuations within the chemotaxis pathway. 18 

We observed surprisingly large methylation-independent thermal fluctuations of receptor 19 

activity, which contribute to noise comparably to the energy-consuming methylation dynamics. 20 

Interactions between clustered receptors involved in amplification of chemotactic signals are also 21 

necessary to produce the observed large activity fluctuations. Our work thus shows that the high 22 
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response sensitivity of this cellular pathway also increases its susceptibility to noise, from 23 

thermal and out-of-equilibrium processes.   24 
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Introduction 25 

 26 

It is well established that cellular processes are intrinsically stochastic and therefore prone to 27 

fluctuations [1-3]. The best-characterized examples of cellular noise relate to the variability in 28 

expression of genes or proteins, observed either across a population of genetically identical cells 29 

or within one cell over time [4, 5]. The molecular origins and physiological effects of such 30 

expression noise are comparatively well understood [2-4, 6-8]. In contrast, noise that arises in 31 

cellular networks at the posttranslational level remains much less characterized. Although such 32 

noise is expected to be ubiquitous, e.g., in signaling networks, it was mostly observed indirectly 33 

through its effects on gene expression or cell behavior [1, 3].  34 

Chemotaxis of Escherichia coli, a bacterial model for signal transduction, previously provided 35 

one example where signaling noise has been predicted based on analyses of cell motility and 36 

flagellar rotation [9-15]. E. coli swims by a succession of straight runs during which the 37 

bacterium advances, that are interrupted by short reorientations, or tumbles, which results in a 38 

random walk. In chemical gradients, this random walk becomes biased by lengthening the runs 39 

towards more favorable conditions. The chemotaxis pathway controlling this behavior is 40 

composed of two modules, one mediating signal transduction and another adaptation, that 41 

operate on different time scales [16-18] (Figure 1 – Figure Supplement 1A). The signal 42 

transduction module includes sensory complexes consisting of the dimers of transmembrane 43 

receptors, the kinase CheA and the scaffold protein CheW. Signaling by these complexes can be 44 

understood in terms of a two-state model: In the absence of stimulation, receptor dimers are at 45 

equilibrium between the active (ON) and inactive (OFF) states, resulting in an intermediate level 46 

of autophosphorylation activity of the receptor-associated CheA. Positive chemotactic stimuli 47 
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(attractants) shift the equilibrium towards the OFF state, thus inhibiting CheA, whereas repellent 48 

stimulation has the opposite effect. Downstream signal transduction occurs via phosphorylation 49 

of the response regulator CheY that can subsequently bind to the flagellar motors to induce 50 

tumbles. CheY is dephosphorylated with the help of the phosphatase CheZ. All reactions within 51 

the signal transduction module occur within a few hundred milliseconds [19], ensuring that 52 

swimming bacteria can faithfully monitor their current local environment.     53 

The adaptation module operates on a much longer time scale of seconds to minutes. It includes 54 

two enzymes, the methyltransferase CheR and the methylesterase CheB, which add or remove 55 

respectively methyl groups at four specific glutamyl residues of the chemoreceptors. Since 56 

receptor methylation increases the activity of the chemosensory complexes, these changes 57 

gradually compensate for the effects of both attractant and repellent stimulation via a negative 58 

feedback loop [20-22]. This enables bacteria to robustly maintain an intermediate steady-state 59 

activity of CheA, and thus the level of CheY phosphorylation and frequency of cell tumbles, 60 

even in the presence of steady background stimulation. Notably, in both major E. coli 61 

chemoreceptors Tar and Tsr, two of the four methylated residues are initially encoded as 62 

glutamines, e.g. Tar is expressed as TarQEQE. Glutamines are functionally similar to methylated 63 

glutamates [23-26], and they are subsequently deamidated to glutamates by CheB [27, 28].  64 

Despite this importance of the adaptation system for robust maintenance of the average signaling 65 

output, it was suggested that the relatively small number of methylation enzymes [29] and their 66 

slow exchange rates at their receptor substrates [30, 31] lead to fluctuations of the level of 67 

phosphorylated CheY [9, 10, 12, 32, 33]. Further amplified by the cooperative response of the 68 

flagellar motor [32, 34], these fluctuations were proposed to explain the observed large variation 69 

in the motor rotation [9, 10, 15] and in the swimming behavior [9, 11, 13, 35] of individual cells 70 
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over time. Subsequent theoretical analyses suggested that such behavioral fluctuations might 71 

provide physiological benefit, by enhancing environmental exploration [10, 36-40].  72 

Another distinctive feature of the bacterial chemotaxis pathway is the clustering of 73 

chemoreceptors in large signaling arrays, formed through a complex network of interactions 74 

between trimers of receptor dimers, CheA and CheW [16]. Although signaling arrays are stable 75 

on the time scale of signal transduction [31, 41], they appear to locally reorganize within minutes 76 

[42]. Within arrays, the activity states of neighboring receptors are coupled, resulting in 77 

amplification and integration of chemotactic signals [24, 25, 43-48]. These allosteric receptor 78 

interactions have been previously described using either the Monod-Wyman-Changeux (MWC) 79 

model [47] which assumes that receptors operate in units (signaling teams) of 10-20 dimers 80 

where activities of individual receptors are tightly coupled [24, 46-49] or using an Ising model of 81 

a receptor lattice with intermediate coupling [45, 46]. In both models, the sensitivity of signaling 82 

arrays is highest at intermediate levels of receptor activity where receptors can easily switch 83 

between ON and OFF states, with optimal intermediate activity being maintained by the 84 

adaptation system [43, 44]. Another connection between the adaptation system and receptor 85 

clustering is through adaptation assistance neighborhoods, where adaptation enzymes that are 86 

transiently tethered to one receptor molecule can methylate (or demethylate) multiple 87 

neighboring receptors [30].  88 

In this work we directly quantify signaling noise in E. coli chemotaxis, using Förster 89 

(fluorescence) resonance energy transfer (FRET) to monitor pathway activity in single cells and 90 

with high time resolution. We show that the pathway activity fluctuations arise from interplay of 91 

multiple factors, including not only the stochasticity of the methylation system but also 92 

cooperative interactions and slow rearrangements of receptors within clusters. Finally, using 93 
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analysis based on the fluctuation-dissipation theorem (FDT) we could distinguish between 94 

equilibrium and out-of-equilibrium fluctuations within the chemotaxis network and elucidate 95 

respective contributions of receptor clusters and methylation to the overall noise.    96 

 97 

 98 

Results 99 

 100 

Fluctuations of chemotaxis pathway activity in single cells 101 

To perform time-resolved measurements of the chemotaxis pathway activity in individual E. coli 102 

cells, we adapted the microscopy-based ratiometric FRET assay [50] that relies on the 103 

phosphorylation-dependent interaction between CheY, fused to yellow fluorescent protein 104 

(CheY-YFP), and its phosphatase CheZ, fused to cyan fluorescent protein (CheZ-CFP) (Figure 1 105 

– Figure Supplement 1A). The amount of this complex, and thus the level of FRET, provides a 106 

direct intracellular readout of CheA activity [26, 50-52]. In previous studies where this assay was 107 

applied to investigate chemotactic signaling in E. coli populations [18, 24, 26, 42, 44, 50-60], 108 

bacteria expressing the FRET pair were immobilized in a flow chamber and fluorescent signals 109 

were collected using photon counters from an area containing several hundred cells [50]. Here, 110 

we used a similar setup but instead imaged fluorescence of the FRET pair with an electron 111 

multiplication charge-coupled device (EM-CCD) camera (see Materials and methods and Figure 112 

1 – Figure Supplement 1B, C).  113 

As done previously [24, 26, 52, 55], we analyzed E. coli cells that express the CheY-YFP/CheZ-114 

CFP FRET pair instead of the native CheY and CheZ and have Tar as the only chemoreceptor 115 

(see Materials and methods). The level of Tar expression in these cells and under our conditions 116 
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is ~104 dimers per cell [24, 26], comparable to the total level of endogenous chemoreceptors 117 

[29]. When integrated over the population, the chemotactic response of these cells measured 118 

using EM-CCD (Figure 1A and Figure 1 – Figure Supplement 2, upper panel) was very similar 119 

to the one observed previously using area detectors [51, 55]. When bacteria in the flow chamber 120 

were stimulated with the Tar-specific chemoattractant α-methyl-DL-aspartate (MeAsp), the ratio 121 

of the YFP to CFP fluorescence (FRET ratio, ܴሺݐሻ =  ሻ) first rapidly decreased. 122ݐሺ�ܨܥ/ሻݐሺ�ܨܻ

This is consistent with the fast attractant-mediated inhibition of the kinase activity, which results 123 

in decreased formation of the FRET complex, and therefore reduced energy transfer from the 124 

donor (CFP) to the acceptor (YFP) fluorophore. As 10 µM MeAsp is known to fully inhibit the 125 

kinase activity in this strain [24, 26], the value of the FRET ratio immediately after stimulation 126 

reflects the zero activity baseline. Subsequently, the pathway adapted to the new background 127 

level of attractant via the CheR-dependent increase in receptor methylation. But as previously 128 

reported adaptation of Tar-only cells to high levels of MeAsp was only partial [53-55], meaning 129 

that the adapted pathway activity remained lower than in buffer. Subsequent removal of 130 

attractant resulted in a transient increase in kinase activity, followed by the CheB-mediated 131 

adaptation through the demethylation of receptors. 132 

Although the FRET ratio measured for individual cells during the same experiment was 133 

expectedly noisier than the population-averaged data, both the initial response and subsequent 134 

adaptation were clearly distinguishable (Figure 1A and Figure 1 – Figure Supplement 2, lower 135 

panel). In contrast to the population measurement, however, a majority of individual cells also 136 

exhibited large fluctuations in the FRET ratio on the time scale of 10-100 sec. For cells adapted 137 

in buffer, the amplitude of these fluctuations could be as large as the response to strong attractant 138 

stimulus. Confirming that this low-frequency noise reflects fluctuations of the pathway activity, 139 
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it was not observed when imaging either fluorescent beads or the same FRET pair in receptorless 140 

cells that do not activate CheA (Figure 1 – Figure Supplement 3 A, B). Furthermore, inhibition 141 

of the pathway activity by saturating stimulation with 10 µM or 25 µM MeAsp also transiently 142 

suppressed long-term fluctuations, which subsequently (partly) reappeared upon (partial) 143 

recovery of the pathway activity due to adaptation (Figure 1A and Figure 1 – Figure Supplement 144 

2). In contrast, the higher-frequency noise in the FRET ratio could be observed in all strains and 145 

conditions, including receptorless cells, indicating that it represents the noise of the 146 

measurement. High-frequency noise was also observed in the control measurements using 147 

fluorescent beads, although its magnitude was lower, consistent with higher brightness of beads 148 

compared to the YFP/CFP expressing cells.  149 

To analyze these activity fluctuations in greater detail, we computed the power spectral density 150 

(PSD) of the single-cell FRET ratio, ݏோሺ߱ሻ (see Materials and methods). The PSD extracts the 151 

average spectral content of the temporal variations of the single-cell FRET ratio, i.e. determines 152 

the frequencies at which this ratio fluctuates, with ݏோሺ߱ሻ representing the magnitude of 153 

fluctuations at a given frequency ߱. We observed that at high frequency (߱ > 0.1 Hz) the PSD 154 

kept a constant frequency-independent low value that was similar in all strains (Figure 1B). We 155 

thus conclude that the noise in the FRET ratio in this frequency range is dominated by the shot 156 

noise of the measurement. At lower frequency, however, the PSD measured for the Tar-157 

expressing cells adapted in buffer increased dramatically (roughly as ͳ/߱), reaching a low 158 

frequency plateau at ߱/ʹ� ≃ Ͳ.Ͳͳͷ Hz. A similar result was obtained for cells expressing Tar in 159 

the unmodified (TarEEEE) state, where all glutamates are directly available for methylation by 160 

CheR (Figure 1 – Figure Supplement 4A). The increase of the PSD at low frequency was also 161 

observed for cells adapted to either 10 or 25 µM MeAsp (Figure 1B and Figure 1 – Figure 162 
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Supplement 4A), although the amplitude of this increase was smaller than for the buffer-adapted 163 

cells, apparently consistent with their lower pathway activity (Figure 1A and Figure 1 – Figure 164 

Supplement 2). The receptorless strain showed nearly constant noise level over the entire 165 

frequency range, as expected for white shot noise, although the PSD increased weakly at the 166 

lowest frequency. As such increase was not observed for the control using fluorescent beads 167 

(Figure 1 – Figure Supplement 3 A), it might be due to the slow drift of the FRET ratio arising as 168 

a consequence of the slightly different bleaching rates of CFP and YFP, but possibly also to slow 169 

changes in cell physiology. In any case, the contribution of this low-frequency component to the 170 

overall PSD of the Tar-expressing cells is only marginal (note the log scale in Figure 1B), and 171 

subtracting it did not markedly change our results (Figure 1 – Figure Supplement 5).     172 

The PSD was further used to calculate the average time autocorrelation function of the single-173 

cell FRET ratio, which reflects the characteristic time scale of activity fluctuations (see Materials 174 

and methods). For cells adapted in buffer, the autocorrelation time constant was 9.5 ± 0.5 s, as 175 

determined by an exponential fit to the autocorrelation function (Figure 1D). This value is 176 

similar to the characteristic time of the pathway activity fluctuation previously deduced from 177 

behavioral studies [9, 14]. The same characteristic time was observed in MeAsp-adapted cells, 178 

although the amplitude of the correlation was considerably smaller in this case (Figure 1D and 179 

Figure 1 – Figure Supplement 4B). Interestingly, at longer times the autocorrelation function 180 

becomes weakly negative, indicating an overshoot that is likely caused by the negative feedback 181 

in the adaptation system [61]. As expected, no autocorrelation was observed for the receptorless 182 

cells.     183 

Finally, the variance of activity was evaluated from the PSD using Parseval’s formula [62]. After 184 

subtracting the variance measured for the receptorless strain, which reflects the contribution of 185 
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the shot noise, the specific variance of the FRET ratio for cells adapted in buffer was ۃΔܴଶۄ+  =186  Ͳ.ͲͲͶ͸ ±  Ͳ.ͲͲͲʹ (where “+” refers to the presence of adaptation enzymes, CheR+ CheB+). As 187 

shown previously [50], the FRET ratio R is related to the relative pathway activity ۄܣۃ as ܴ =188 ۄܣۃ ߣ  +  is the conversion factor and µ is a constant corresponding to the baseline 189 ߣ where ,ߤ

FRET ratio at zero pathway activity (i.e., upon stimulation with saturating attractant 190 

concentration; Figure 1A). The value ߣ = Ͳ.ͳͲ ± Ͳ.Ͳͳ could be estimated as the mean difference 191 

between the measured FRET ratio values corresponding to the fully active (i.e., ۄܣۃ = ͳ) and 192 

fully inactive (i.e., ۄܣۃ = Ͳ) pathway (see Materials and methods). The calculated variance of the 193 

pathway activity was ۃΔܣଶۄ+  =  Ͳ.Ͷ͸ ±  Ͳ.ͲͶ, indicating concerted activity fluctuations across 194 

much of the signaling array. 195 

 196 

 197 

Figure 1. Fluctuations of the chemotaxis pathway activity in individual CheR+ CheB+ cells. (A) Time course of 198 

the FRET measurements for the CheR+ CheB+ strain expressing the FRET pair CheY-YFP and CheZ-CFP and Tar 199 
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as the sole receptor (see Materials and methods for details of expression), for cell population (upper panel) and for 200 

representative single cells (lower panel). Cells immobilized in a flow chamber under steady flow (see Materials and 201 

methods and Figure 1 – Figure Supplement 1B) were initially adapted in buffer (red) and subsequently stimulated by 202 

addition and subsequent removal of indicated concentrations of a non-metabolizable chemoattractant MeAsp (blue 203 

and green). The measurement traces for single cells have been shifted along the y-axis to facilitate visualization. (B) 204 

Power spectral density (PSD) of the FRET ratio for single cells adapted in buffer (red curve) or in 10 µM MeAsp 205 

(blue curve), as well as for the control receptorless strain in buffer (black curve). (C) The corresponding time 206 

autocorrelation functions of the single-cell FRET ratio. Dashed lines show fits by exponential decay (see Materials 207 

and methods). The error bars represent standard errors of the mean (SEM), and the sample sizes are 265 (buffer), 69 208 

(10 µM) and 103 (receptorless control) single cells coming from at least three independent experiments in each case. 209 

 210 

Activity fluctuations in absence of adaptation system  211 

We next monitored the single-cell pathway activity in a strain lacking CheR and CheB, to test 212 

whether the observed fluctuations could be solely explained by the action of the adaptation 213 

system. Given the observed dependence of the fluctuations on the level of pathway activity, we 214 

first analyzed a ΔcheRΔcheB strain that was engineered to express Tar receptor in one-modified 215 

state (TarQEEE). This closely mimics the average modification state and intermediate activity of 216 

Tar in CheR+ CheB+ cells adapted in buffer [26, 51]. Expectedly, ΔcheRΔcheB TarQEEE cells 217 

responded to MeAsp but showed no adaptation comparable to CheR+ CheB+ cells (Figure 2A). 218 

But despite the lack of the adaptation system, pathway activity in individual ΔcheRΔcheB 219 

TarQEEE cells showed pronounced long-term fluctuations when cells were equilibrated in buffer 220 

(Figure 2A, lower panel). These methylation-independent long-term fluctuations were 221 

suppressed upon saturating pathway inhibition with 30 µM MeAsp, leaving only the shot noise 222 

of the measurement.  223 
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In contrast to TarQEEE, ΔcheRΔcheB cells expressing the half-modified TarQEQE as the sole 224 

receptor showed no long-term activity fluctuations in buffer (Figure 2B). Because TarQEQE is 225 

known to be highly active (i.e., strongly biased towards the ON state) in absence of attractants 226 

[26, 52] and therefore insensitive to stimulation, we lowered its activity to an intermediate value 227 

by stimulating cells with 30 µM MeAsp (Figure 2B, upper panel). This partial stimulation indeed 228 

restored low-frequency fluctuations in ΔcheRΔcheB TarQEQE cells (Figure 2B, lower panel). 229 

Again, these activity fluctuations were completely abolished upon saturating attractant 230 

stimulation. Cumulatively, these results clearly demonstrate that, at intermediate level of activity 231 

where the receptors are highly sensitive, pathway output fluctuates even in the absence of the 232 

methylation system. These fluctuations were clearly identifiable above shot noise in the PSD of 233 

the FRET ratio (Figure 2C), and they were absent under conditions of very low or very high 234 

activity. Notably, these methylation-independent fluctuations were slower than those observed in 235 

CheR+ CheB+ cells (Figure 2 – Figure Supplement 2), with a typical time scale of 34 ± 4 s, as 236 

determined by fitting the time autocorrelation functions with an exponential decay (Figure 2D), 237 

although this time might be slightly under-evaluated since it is already comparable to the total 238 

duration of acquisition (400 s). Their amplitude, evaluated again using Parseval’s formula, was 239 ۃΔܴଶۄ− = Ͳ.ͲͲʹͷ ±  Ͳ.ͲͲͲͳ, corresponding to ۃΔܣଶۄ−  =  Ͳ.ʹͷ ±  Ͳ.Ͳͳ, and thus roughly half 240 

of the amplitude of fluctuations observed in CheR+ CheB+ cells. 241 

 242 
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 243 

Figure 2. Pathway activity fluctuations in ΔcheRΔcheB cells. (A) Time course of population-averaged (black; 244 

upper panel) and typical single-cell (colors; lower panel) measurements of the FRET ratio for ΔcheRΔcheB strain 245 

expressing TarQEEE as the sole receptor. Measurements were performed as in Figure 1. Cells were first equilibrated 246 

in buffer (red) and subsequently stimulated by addition (blue) and subsequent removal of 30 µM MeAsp, saturating 247 

stimulus for this receptor. (B) Same as (A) but for ΔcheRΔcheB strain expressing TarQEQE as the sole receptor and 248 

upon stimulation with 30 µM (blue) and then 100 µM (green) MeAsp. Note that for this receptor, 30 µM MeAsp is 249 

the sub-saturating stimulus whereas 100 µM MeAsp is the saturating stimulus. The measurement traces for single 250 

cells in (A) and (B) have been shifted along the y-axis to facilitate visualization. (C) PSD of the single-cell FRET 251 

ratio for TarQEEE in buffer (blue) or in 30 µM MeAsp (cyan), TarQEQE in buffer (orange), in 30 µM MeAsp (red) or in 252 
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100 µM MeAsp (yellow). (D) Corresponding time autocorrelation functions of the single-cell FRET ratio for 253 

indicated strains/conditions. Dashed lines show fits by single exponential decay. Error bars represent standard errors 254 

of the mean (SEM), and the sample sizes are 153 (TarQEEE, buffer), 65 (TarQEEE, 30 µM), 471 (TarQEQE, buffer), 404 255 

(TarQEQE, 30 µM) and 136 (TarQEQE, 100 µM) single cells coming from at least three independent experiments in 256 

each case. 257 

 258 

Role of receptor clustering in signaling noise 259 

To investigate whether the observed fluctuations depend on clustering of chemotaxis receptors, 260 

we utilized a recently described CheW-X2 version of the adaptor protein CheW that disrupts 261 

formation of the receptor arrays without abolishing signaling [56]. This CheW mutant carries 262 

two amino acid replacements, R117D and F122S, which are believed to break the receptor arrays 263 

into smaller complexes consisting of two trimers of receptor dimers coupled to one CheA [44, 264 

56]. The CheW-X2 is expressed at a level similar to the native CheW [44]. Consistent with 265 

reported functionality of such complexes [44, 56, 63], a ΔcheRΔcheB strain expressing CheW-266 

X2 and TarQEQE showed basal activity and response to MeAsp which were similar to the 267 

respective strain expressing the native CheW (Figure 3A and Figure 3 – Figure Supplement 1). 268 

Nevertheless, this strain showed no apparent long-term fluctuations in the pathway activity 269 

above the shot noise, even when its activity was tuned to an intermediate level by addition of 10 270 

µM MeAsp (Figure 3A,B). Similarly, the array disruption allowed signaling but abolished the 271 

long-term activity fluctuations in CheR+ CheB+ cells equilibrated in buffer (Figure 3C,D). 272 

Importantly, buffer-adapted CheR+ CheB+ CheW-X2 cells had intermediate receptor activity and 273 

could respond to both attractant (MeAsp) and repellent (Ni2+) stimuli, i.e., both down- and 274 

upregulation of the pathway activity (Figure 3 – Figure Supplement 2). This confirms that the 275 

observed loss of fluctuations was not caused by locking the receptor in the extreme activity state. 276 
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In summary, these results demonstrate that the observed long-term fluctuations in activity, seen 277 

both with and without the receptor methylation system, require receptor clustering.  278 

 279 

 280 

Figure 3. Fluctuation analysis in CheW-X2 cells. (A) Population-averaged (upper panel) and typical single-cell 281 

(lower panel) measurements of the FRET ratio for ΔcheRΔcheB strain carrying CheW-X2 and TarQEQE as the sole 282 

receptor. Cells, which have a high activity in buffer, were first exposed to 100 µM MeAsp (saturating stimulus), and 283 

then to 10 µM MeAsp (sub-saturating stimulus), as indicated. The single-cell measurement traces have been shifted 284 

along the y-axis to facilitate visualization. (B) Power spectral density of the FRET ratio fluctuations in CheW-X2 285 

ΔcheRΔcheB TarQEQE cells at intermediate activity (i.e., with 10 µM MeAsp) (red) compared to the equivalent strain 286 



 

16 

 

carrying native (wild-type; WT) CheW and at 30 µM MeAsp (black – same data as Figure 2C). Error bars represent 287 

SEM, with sample sizes 404 (WT CheW; black) and 208 (CheW-X2; red) cells. (C) Same as (A) but for CheR+ 288 

CheB+ strain. The activity in buffer is at intermediate level (Figure 3 – Figure Supplement 2), with 300 µM MeAsp 289 

completely inhibiting the kinase activity. (D) Power spectral density of the FRET ratio fluctuations in CheR+ CheB+ 290 

CheW-X2 strain in buffer (red) compared to the native WT CheW (black – same data as Figure 1C). Error bars 291 

represent SEM, with sample sizes 265 (WT CheW; black) and 191 (CheW-X2; red) cells.  292 

 293 

Fluctuation-dissipation relation for receptor clusters  294 

We next used mathematical analysis to better understand the respective contributions of receptor 295 

clustering and the methylation enzymes to the observed fluctuations and to determine whether 296 

methylation-independent fluctuations are generated by some out-of-equilibrium random process. 297 

We considered the fluctuation-dissipation theorem (FDT), which postulates – for systems at 298 

equilibrium – that thermal fluctuations of a quantity are related, via temperature, to the response 299 

of this quantity to a small externally applied perturbation [64]. The FDT framework can be used 300 

to determine whether a system is at equilibrium, by comparing fluctuations and responses to 301 

small perturbations via their ratio, the so-called effective temperature ୣܶ୤୤ሺ߱ሻ [65-68]. In 302 

equilibrium systems the FDT is satisfied and ܶୣ ୤୤ሺ߱ሻ equals the physical temperature T. In out-303 

of-equilibrium (biological) systems, the deviation of ܶୣ ୤୤ሺ߱ሻ from T provides a first 304 

characterization of the underlying out-of-equilibrium noisy process generating the fluctuations, 305 

since ܶ ୣ୤୤ሺ߱ሻ is linked to the energy scale and frequency content of such process [65-68].  306 

In our case, the magnitude of activity fluctuations could be expressed as the PSD corrected for 307 

the measurement shot noise, ݏோሺ߱ሻ −  ߳௡ଶ, where ߳ ௡ଶ was experimentally determined as the PSD 308 

of the receptorless cells. We therefore define the effective temperature as: 309 ܶeܶffሺ߱ሻ = ோሺ߱ሻݏோሺ߱ሻܩ − ߳௡ଶ .                                                         ሺͳሻ 
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The dissipation ܩோሺ߱ሻ could be determined by formulating the fluctuation dissipation relation 310 

for the activity of individual receptors within the signaling array, using the Ising-like model [45, 311 

69, 70] to describe cooperative receptor interactions as (see Appendix, section 1): 312 

ோሺ߱ሻܩ = ଶߣ ʹ− ͵ܰଶۄܣۃሺͳ − ்ܰ ሻۄܣۃ Re(ĝሺ߱ሻ).                                         ሺʹሻ 

Here ۄܣۃ is the average activity around which fluctuations occur, estimated from experimental 313 

data as described above, ்ܰ is the total number of Tar dimers per cell, ܰ is the average number 314 

of effectively coupled allosteric signaling units in the cluster, and ߣ is defined as before. 315 

Consistent with several recent reports [44, 56, 63] and with our analysis of the apparent response 316 

cooperativity in the CheW-X2 strain (Figure 3 – Figure Supplement 1 and Appendix, section 317 

1.4), we assumed that signaling units within the cluster correspond to trimers of receptor dimers. 318 

Finally, Re(ĝሺ߱ሻ) is the real part of the Fourier transform of the normalized step response 319 

function ݃ ሺݐሻ, which could be experimentally determined by measuring the FRET response to 320 

sufficiently small (subsaturating) stepwise attractant stimulation as ݃ ሺݐሻ = ∆ܴሺݐሻ/ሺ−ߣΧ஺∞߳଴ሻ, 321 

where ሺ−ߣΧ஺∞߳଴ሻ is the normalized stimulation strength (see Appendix, section 1.3).  322 

For subsaturating stimulation of the non-adapting ΔcheRΔcheB cells (Figure 2B), the normalized 323 

step response function ݃−ሺݐሻ exhibited a relatively rapid initial increase and then slowly 324 

approached its final value, possibly with a slight transient overshoot (Figure 4A). Nearly 325 

identical response dynamics was observed for weaker stimulations (Figure 4 – Figure 326 

Supplement 1), validating the small perturbation assumption of the FDT for this response 327 

function measurement. This slow response dynamics is consistent with a previous report that 328 

attributed it to gradual stimulation-dependent changes in packing of receptors within clusters 329 

[42]. Consistent with this interpretation, the CheW-X2 ΔcheRΔcheB strain with disrupted 330 
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receptor clustering showed neither comparable latency nor overshoot in its response (Figure 3 – 331 

Figure Supplement 3).  332 

As the pathway activity in the CheW-X2 in ΔcheRΔcheB strain also showed no long-term 333 

fluctuations (Figure 3B,C), we hypothesized that these fluctuations might be indeed caused by 334 

the slow response dynamics stimulated by some random process. We thus calculated the 335 

corresponding dissipation using Equation (2), considering that under our conditions ்ܰ ∼ ͳͲସ
 336 

[26] and ܰ ∼ ͳͶ [26, 53, 58, 60] (see Table 1 for all parameter values). At low frequencies, the 337 

dissipation ܩோሺ߱ሻ was approximately equal to the shot-noise corrected ݏோሺ߱ሻ at ۄܣۃ ≃0.5 338 

(Figure 4B), as predicted by Equation (1) for equilibrium systems where ܶୣ ୤୤ሺ߱ሻ equals T. 339 

Consistently, the corresponding ratio  ܶ/ eܶffሺ߱ሻ was nearly independent of ߱ and close to unity 340 

in the range of frequencies for which ݏோሺ߱ሻ is above the measurement noise (Figure 4B Inset). 341 

This suggested that in absence of adaptation enzymes the system is close to equilibrium and 342 

thermal fluctuations are the major source of noise. Although the deviation of ܶ/ eܶffሺ߱ሻ from 343 

unity might indicate second-order contributions of out-of-equilibrium processes, it is comparable 344 

to what was observed for other equilibrium systems with measurement methods of similar 345 

precision [66, 71, 72]. Thus, an equilibrium model can fairly accurately describe the details of 346 

observed long-time activity fluctuations in ΔcheRΔcheB cells. This agreement suggests that the 347 

receptor cluster in these cells largely acts as a passive system, where thermal fluctuations 348 

stimulate the long-term response dynamics, possibly due to slow changes in receptor packing 349 

within clusters, to generate activity fluctuations. 350 

Furthermore, the PSD of ΔcheRΔcheB cells followed the scaling ۄܣۃሺͳ −  ሻ, which is 351ۄܣۃ

expected from the underlying receptor activity being a two-state variable, as evident for 352 

subpopulations of cells sorted according to their activity (Figure 4 – Figure Supplement 2), with 353 
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which our FDT analysis is consistent (Equation (2)). Fluctuations were apparently unaffected by 354 

the expression level of Tar, in the tested range of induction (Figure 4 – Figure Supplement 3). In 355 

the FDT framework, this implies that  ܰଶ/்ܰ must be constant for varying receptor expression, 356 

and previous measurements indeed suggest that the cooperativity rises with the expression level 357 

of TarQEQE in a way that ܰ ଶ/்ܰ remains unchanged [26].  358 

To evaluate the respective effects of signal amplification and the slow dynamics of the cluster 359 

activity response, we performed stochastic simulations of a simple model of sensory complexes 360 

without adaptation and under thermal noise (see Appendix, section 4). In this model, receptors 361 

are clustered in signaling teams that respond to allosterically amplified free energy changes on an 362 

effective time scale averaging the fast switching dynamics and the slow dynamics of the receptor 363 

cluster, which accounts qualitatively for the pathway behavior. Expectedly, larger amplification 364 

led to larger fluctuations, and the time scale of the fluctuations followed the imposed response 365 

time scale of the cluster. Less trivially, slower response also led to higher maximal amplitude of 366 

the fluctuations (Figure 4 – Figure Supplement 4). 367 

 368 



 

20 

 

 369 

Figure 4. Fluctuation-dissipation analysis of the pathway activity. (A) Step response function ݃ሺݐሻ both in 370 

presence (red) and in absence (blue) of the adaptation enzymes, evaluated in cells expressing TarQEQE that respond to 371 

a step change from buffer to 0.3 µM MeAsp (CheR+ CheB+) or 30 µM MeAsp (ΔcheRΔcheB). The step response 372 

function was calculated from the measurements shown in Figure 4 – Figure Supplement 5 and in Figure 2B as 373 

described in text and in Appendix, section 1.3. (B,C) The PSD of the FRET ratio fluctuations ݏோሺ߱ሻ at ۄܣۃ =  Ͳ.ͷ 374 

(blue in B and red in C), and the corresponding dissipation ܩோሺ߱ሻ (black) calculated using Equation (2), for 375 

ΔcheRΔcheB (B) and CheR+CheB+ (C) cells. The measurement shot noise ߳௡ଶ, determined as the PSD of the 376 

receptorless cells (Figure 1B), was subtracted from ݏோሺ߱ሻ. Insets show the ratio between the physical and effective 377 

temperatures, calculated using Equation (1). Dashed and dotted lines in B and C indicate ܶ / eܶffሺ߱ሻ =  ͳ and 378 ܶ/ eܶffሺ߱ሻ =  Ͳ, respectively. (D) Contribution of thermal noise (blue) and the adaptation enzyme dynamics (red) to 379 

the PSD in CheR+ CheB+ cells, calculated from Equation (3) as explained in Appendix, section 3. In all panels, error 380 

bars represent SEM, with sample sizes for the power spectra calculations being 540 (ΔcheRΔcheB) and 468 (CheR+ 381 

CheB+; aggregating data from cells expressing TarQEQE and TarEEEE as sole receptor) single cells from at least five 382 

biological replicates. 383 
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 384 

Out-of-equilibrium dynamics in presence of adaptation system 385 

The normalized step response function of CheR+ CheB+ cells, ݃+ሺݐሻ (Figure 4A), was 386 

determined using weak stimulation by 0.3 µM MeAsp, with the activity change Δۄܣۃ/ܣ = Ͳ.ʹͷ 387 

(Figure 4 – Figure Supplement 5 and Appendix, section 1.3). Describing adaptation according to 388 

the classical two-state models of receptors [20, 60, 73], the responses of ΔcheRΔcheB and CheR+ 389 

CheB+ cells could be linked via the rate of adaptation ߱ோ஻, which yielded ߱ ோ஻ = Ͳ.Ͳ͸ ±390 Ͳ.Ͳͳ Hz (Appendix, section 2 and Figure 4 – Figure Supplement 6), consistent with previous 391 

estimates [14].  392 

The corresponding dissipation ܩோ+ሺ߱ሻ, calculated as above according to Equation (2), differed 393 

strongly from the PSD of the activity fluctuations (Figure 4C), confirming that the system 394 

operates out of equilibrium. The corresponding ܶ/ eܶffሺ߱ሻ << 1 (Figure 4D Inset) is consistent 395 

with strong out-of-equilibrium drive. It decreased at low frequencies, crossing zero at ߱/ʹ� ≃396 Ͳ.Ͳͳͷ Hz where ܶ effሺ߱ሻ diverges (Figure 4 – Figure Supplement 7) and dissipation becomes 397 

negative. Such crossing indicates a transition to the range of frequencies where the active process 398 

dominates [66, 74], with the frequency of divergence of eܶffሺ߱ሻ representing interplay between 399 

the time scales of the passive receptor response and adaptation (Appendix, section 2.2).  400 

To further separate specific contributions of the methylation system and thermally activated 401 

receptor cluster rearrangements to the power spectrum of activity fluctuations in CheR+ CheB+ 402 

cells, we followed previous modeling approaches [75-77] (Appendix, section 3). Assuming that 403 

thermal noise behaves the same in presence and in absence of the methylation system, ݏோ+ሺ߱ሻ can 404 

be decomposed into a ‘’thermal’’ contribution ݏோ் ሺ߱ሻ and a contribution of the methylation noise 405 ݏோ௠ሺ߱ሻ:  406 
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ோ+ሺ߱ሻݏ = ோ௠ሺ߱ሻݏ + ோ்ݏ ሺ߱ሻ = ோ௠ሺ߱ሻݏ + |݃+ሺ߱ሻ݃−ሺ߱ሻ|ଶ  ோ−ሺ߱ሻ.                           ሺ͵ሻݏ

Although relatively noisy, particularly at low frequencies, ݏோ௠ሺ߱ሻ inferred from equation (3) 407 

peaked around ߱ ௣௘௔௞/ʹ� =  Ͳ.Ͳͳ Hz (Figure 4D), which equals the independently determined 408 

adaptation rate (see above), ߱௣௘௔௞ ≃ ߱ோ஻ = Ͳ.Ͳ͸ Hz. The contribution of the thermal noise 409 ݏோ் ሺ߱ሻ had a similar magnitude but dominated at lower frequencies. The power spectrum of the 410 

CheR and CheB binding events was inferred from ݏோ௠ሺ߱ሻ using the previous model and previous 411 

conclusion that the methylation-dependent activity fluctuations mainly arise from the intermittent 412 

binding of the small number of CheR and CheB molecules to the receptors [33]. This spectrum 413 

was consistent with the common assumption that CheR (CheB) loads and acts only on the 414 

inactive (active) receptor (Appendix, section 3 and Figure 4 – Figure Supplement 8).   415 

We further extended our simulation model of the receptor array composed of independent 416 

signaling teams, to test whether we can reproduce the observed power spectrum in presence of 417 

adaptation enzymes. Consistent with the large excess of receptors compared to the methylation 418 

enzymes [29], in these simulations only one CheR (or CheB) molecule can bind to the inactive 419 

(respectively active) receptor team, methylate (respectively demethylate) the receptors, and 420 

unbind once the team has turned active (respectively inactive) (Appendix, section 4). The 421 

simulations agreed qualitatively well with the experiments, including the power spectra of 422 

CheR/CheB binding and effective temperature (Figure 4 – Figure Supplement 9), although 423 

absolute amplitudes of the fluctuations were clearly underestimated by the model, as already 424 

observed in a previous theoretical work [74]. The simulation also reproduced the loss of slow 425 

fluctuations upon disruption of clusters in CheR+ CheB+ cells, which arises from the dependence 426 

of ݏோሺ߱ሻ on the size N of signaling teams. In contrast, simulating less efficient neighborhood 427 
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assistance by reducing the (de)methylation rate of the bound enzymes had only modest effects 428 

(Figure 4 – Figure Supplement 9C).   429 

 430 

Discussion 431 

 432 

Stochastic activity fluctuations are likely to have major impact on signal processing within 433 

cellular networks [1, 3]. Nevertheless, direct visualization and characterization of such 434 

fluctuations at the posttranslational level remain limited to a small number of cases [78, 79] 435 

primarily due to high requirements for the sensitivity and time resolution of the necessary single-436 

cell measurements. Although fluctuations of the signaling activity can in some cases be deduced 437 

from the downstream output of the network, either gene expression [80, 81] or behavior [9, 10, 438 

14, 33], this output may strongly filter and reshape fluctuations. Consequently, the theoretical 439 

framework for the analysis of noise at the posttranslational level remains less developed than for 440 

variations in gene expression [4, 6].  441 

Here we directly monitored activity fluctuations in the chemotaxis pathway of E. coli, a common 442 

model for quantitative analysis of signal transduction [43, 82, 83]. One fascinating feature of the 443 

chemotaxis pathway is the amplification of chemotactic signals through cooperative interactions 444 

within the clusters (arrays) of chemoreceptors, where at least ~10-20 receptor dimers show 445 

concerted transitions between active and inactive states [24, 25, 45-48]. The pathway is also 446 

robust against external and internal perturbations, largely thanks to its methylation-based 447 

adaptation system [20, 52, 84-86]. At the same time, the stochastic activity of the adaptation 448 

enzymes was also proposed as the reason for the observed strong variability in the signaling 449 

output, i.e. the duration of straight runs of the swimming cells [9, 10, 33]. Indeed, inspired by so-450 
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called fluctuation-response theorems, previous analyses established a fluctuation-response 451 

relation between the adaptation time to stimuli (called response time) and the typical time scale 452 

of fluctuations of the tumbling rate in individual E. coli cells [10, 14] – which we confirmed at 453 

the level of CheY phosphorylation (߱௣௘௔௞ ≃ ߱ோ஻) – demonstrating that behavioral fluctuations 454 

originate within the chemotaxis pathway and pointing to the methylation system as their likely 455 

cause. Subsequently, the fluctuations in straight run durations were proposed to enhance 456 

environmental exploration, partly since the occasional long run allows exploring wider territories 457 

[10, 15, 37, 39, 40].   458 

Here we combined experimental and mathematical analyses to demonstrate that both, the 459 

adaptation system and receptor clustering contribute to the signaling noise in the chemotaxis 460 

pathway. Experimentally, we adapted the FRET-based assay that was previously applied to study 461 

average signaling properties in cell populations [18, 24, 26, 42, 44, 50-60], to be used at the 462 

single-cell level. Whereas previous studies have relied on the output provided by flagellar motor 463 

rotation [9, 14], using FRET enabled us to characterize the activity fluctuations directly, before 464 

their amplification by the motor. Our measurements showed that fluctuations can be comparable 465 

to the average adapted activity of the pathway and thus significantly larger than previous 466 

estimates [32]. This surprisingly large amplitude of fluctuations indicates concerted variations of 467 

receptor activity across the signaling arrays containing hundreds to thousands of receptors. 468 

Furthermore, we showed that the stochasticity of receptor methylation could not be the sole 469 

cause of the pathway noise, because activity fluctuations were also observed in absence of the 470 

methylation system. In contrast, disruption of receptor clustering completely abolished these 471 

long-term activity fluctuations, even in presence of the methylation system, implying that 472 

receptor interactions are essential for the observed fluctuations.  473 
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To better understand the nature of the observed fluctuations, we applied analysis based on the 474 

fluctuation-dissipation theorem (FDT), following a recent theoretical study [74]. The FDT 475 

establishes a fundamental relationship between thermal fluctuations and the response to 476 

externally applied perturbations for an equilibrium system. Although being a powerful tool for 477 

studying equilibrium and out-of-equilibrium systems in physics [64], so far it has found only 478 

limited application in biology [6, 65, 67, 87, 88]. For the chemotaxis system, the FDT in its 479 

equilibrium form was used to predict the magnitude of thermally activated ligand binding noise 480 

with implications for maximal sensing accuracy [77, 88]. The present approach is also 481 

complementary to the previous fluctuation-response analysis mentioned above [10, 14], itself 482 

conceptually related to the fluctuation theorems extending the FDT for certain systems in non-483 

equilibrium steady states [14, 89]. Comparison of fluctuations and dissipation to evaluate 484 

whether the system deviates from the FDT, together with the analysis of mutants deficient in 485 

adaptation and/or clustering, enabled to identify multiple factors contributing to the pathway 486 

noise. These factors include (i) the input thermal noise, (ii) the amplification of this noise by 487 

cooperative interactions among receptors, (iii) the delayed response function of receptor clusters, 488 

and (iv) the dynamics of the methylation system (Figure 5).  489 

Unexpectedly, the activity fluctuations in absence of the adaptation system could be explained 490 

for the most part by thermal noise acting on the receptors, which is amplified through the 491 

cooperative interactions of clustered receptors and subsequently converted into long-term 492 

pathway activity fluctuations by their slow response dynamics (Figure 5A). The contribution of 493 

out-of-equilibrium processes to these activity fluctuations seems to be minor if any. This 494 

phenomenon demonstrates that thermal noise can induce measurable fluctuations in activity of a 495 

cellular network, even in absence of active processes that are usually considered to be the main 496 
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contributors to cellular dynamics. Even more striking is the amplitude of these fluctuations, 497 

suggesting that up to a half of the chemoreceptor array – that may contain thousands of receptors 498 

– flips its activity. 499 

The slow cluster dynamics was recently observed using fluorescence anisotropy measurements 500 

and attributed to the stimulation-induced changes in packing of receptors within clusters [42]. 501 

Indeed, in our experiments both slow response and activity fluctuations were abolished by 502 

mutations that disrupt clustering, suggesting that it corresponds to some large-scale plasticity 503 

within the receptor array [44]. Interestingly, such stimulation-induced slow reconfiguration had 504 

been also proposed to modulate cooperativity within the receptor array in an earlier theoretical 505 

study [69]. Although the precise mechanism behind this slow dynamics was not yet 506 

characterized, meaning that it could neither be experimentally disentangled from signal 507 

amplification nor mechanistically modeled, our simulations suggest that while slow dynamics 508 

sets the time scale of activity fluctuations, both this dynamics and amplification contribute to 509 

their amplitude. It thus seems that this previously little considered feature of the receptor array 510 

plays a large role in producing and shaping the activity fluctuations. 511 

Our analysis also suggests that an effective subunit of the allosteric signaling teams corresponds 512 

to one trimer of dimers, rather than a dimer itself as assumed in previous computational models 513 

[26, 73]. This conclusion is consistent with several recent studies [44, 56, 63], and it could be 514 

easily reconciled with the previous formulations of the Monod-Wyman-Changeux models by 515 

rescaling the free-energy change per methylated glutamate by a factor of three. Since large size 516 

of the cooperative units implies fewer units per receptor array, it further helps to account for the 517 

large activity fluctuations even in absence of the methylation enzymes.  518 
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Notably, on the studied range of time scales the previously proposed contribution of the high-519 

frequency ligand binding noise [77, 88] to overall fluctuations must be very small, since the 520 

observed power spectral densities depended on activity but not on the absolute ligand 521 

concentration. The dynamics of CheY/CheZ interaction is also unlikely to contribute to the 522 

observed fluctuations because the turnover rate of this complex (> 1 Hz) [29, 52] is above the 523 

frequency range of our experiments. 524 

In the presence of the adaptation system the noise within receptor arrays is apparently added to 525 

the noise coming from the stochasticity of methylation events (Figure 5B), with both noise 526 

sources having comparable strength. The adaptation system not only shifts the frequency 527 

spectrum of fluctuations but also eliminates the latency of the response to stimuli, thus likely 528 

accelerating the response through its negative feedback activity. The statistics of methylation 529 

events inferred from the power spectra was compatible with previous understanding of the 530 

enzyme kinetics, including the hypothesis that methylation noise is enhanced by the 531 

ultrasensitivity to changes in the ratio of methylation enzymes [9, 10]. Nevertheless, receptor 532 

clustering is required for the observed activity fluctuations even in presence of the adaptation 533 

system (Figure 5C), likely because of signal amplification as well as accelerated adaptation 534 

dynamics within clusters due notably to assistance neighborhoods [30, 33, 56]. Our simulations 535 

suggested that the former likely plays a more prominent role in generating large activity 536 

fluctuations.  537 

Altogether, the overall picture of the signaling noise in the chemotaxis pathway is more complex 538 

than previously suggested, with the noise being first processed through a slow responding 539 

amplifier (the chemoreceptor cluster) and then fed back through the methylation system, 540 
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resulting in complex colored fluctuations of the pathway activity and therefore of the swimming 541 

behavior.  542 

More generally, our study provides another example of the general relation between fluctuations 543 

and response in biological systems and it demonstrates that FDT-based analysis can distinguish 544 

between active and passive processes also within an intracellular network. Although activity 545 

fluctuations in biological systems are commonly shaped by active, out-of-equilibrium processes, 546 

meaning that in many cases the FDT will not be satisfied [14], the properties of a system can 547 

nevertheless be inferred when studying the deviation of its behavior from the FDT [65-67, 87]. 548 

The approach of quantifying such deviations by means of an effective temperature, or 549 

fluctuation-dissipation ratio, has been used in a variety of out-of-equilibrium systems [68], from 550 

glasses to biological systems. Although in some systems, e.g. glasses, this ratio can have indeed 551 

properties normally associated with the thermodynamic temperature, in biological systems the 552 

effective temperature rather relates to the energy scale and frequency content of the underlying 553 

out-of-equilibrium processes. This relation was previously demonstrated for several systems, 554 

including the hair bundle of the inner ear [66] and active transport in eukaryotic cells [65, 67, 555 

87], and we show that it also applies to a signaling pathway. Notably, the present analysis differs 556 

both in its aims and technicalities from the aforementioned fluctuation-response analysis [10, 557 

14]. For instance, the FDT breakdown in CheR+CheB+ cells does not contradict the previously 558 

observed relation between fluctuation and adaptation time scales, since these two observations 559 

provide different information: that the noise source encompasses an out-of-equilibrium process 560 

and that the fluctuations originate in the chemotaxis pathway, respectively. An interesting 561 

emergent feature of our analysis is the negative effective temperature, which arises as a hallmark 562 

of the delayed adaptive negative feedback [74]. A similar effect was also observed in inner ear 563 
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hair bundles, where it is related to the mechanical adaptation feedback [66]. Negative dissipation 564 

associated to the negative temperature was predicted to indicate a reversal of causality, induced 565 

here by adaptation [74]: Whereas positive dissipation means that changes in receptor free energy 566 

induce activity changes, negative dissipation results from the methylation system counteracting 567 

preceding activity changes [74, 76, 90] and actively translating them into free energy changes, 568 

thus opposing the passive behavior of the receptors. Importantly, because the FDT-based 569 

analysis requires only knowledge of system’s fluctuations and its response, it is widely 570 

applicable for studying dynamics of diverse cell signaling processes, including those where 571 

molecular details are not known.  572 

 573 

Figure 5. Multiple sources of signaling fluctuation in the chemotaxis pathway. (A) In the absence of adaptation 574 

enzymes, thermal fluctuations stimulating – and amplified by – the dynamic receptor cluster lead to low frequency 575 

fluctuations (<0.01 Hz) around intermediate cluster activity. The blue springs symbolize the plasticity of the receptor 576 
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array, the green ⨁ its cooperativity. (B) In adapted wild-type cells, thermal fluctuations and fluctuations in the 577 

dynamics of CheR and CheB are amplified by the dynamic chemoreceptor cluster, which leads to fluctuations of the 578 

activity at frequencies around 0.03 Hz. (C) In the absence of clustering, responsive but non-amplifying receptor 579 

complexes do not produce observable activity fluctuations, whether or not adaptation enzymes are present. Graphs 580 

show the PSD of the FRET ratio measured in each respective case (black). In (A,C) the wild-type curve is shown for 581 

comparison (gray). 582 

  583 

Materials and methods 584 

 585 

Cell growth, media and sample preparation 586 

E. coli strains and plasmids are listed in Supplementary file S1A and S1B, respectively. Cells 587 

carrying two plasmids that encode respectively Tar in the indicated modification states and the 588 

FRET pair were grown at 30°C overnight in tryptone broth (TB) supplemented with appropriate 589 

antibiotics. The culture was subsequently diluted 17:1000 in TB containing antibiotics, 2 µM 590 

salicylate (unless otherwise stated) for induction of Tar and 200 µM isopropyl β-D-1-591 

thiogalactopyranoside (IPTG) for induction of the FRET pair, and grown at 34°C under vigorous 592 

shaking (275 rpm) to an OD600 = 0.55. Bacteria were harvested by centrifugation, washed thrice 593 

in tethering buffer (10 mM KPO4, 0.1 mM EDTA, 1 µM methionine, 10 mM lactic acid, pH 7) 594 

and stored at least 20 minutes at 4°C prior to the experiments.  595 

 596 

Microscopy 597 

Bacterial cells were attached to poly-lysine coated slides which were subsequently fixed at the 598 

bottom of a custom-made, air-tight flow chamber, which enables a constant flow of fresh 599 

tethering buffer using a syringe pump (Pump 11 Elite, Harvard Apparatus, Holliston, 600 
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Massachusetts, United States) at 0.5 ml/min. This flow was further used to stimulate cells with 601 

indicated concentrations of α-methyl-D,L-aspartate (MeAsp). The cells were observed at 40x 602 

magnification (NA = 0.95) using an automated inverted microscope (Nikon Ti Eclipse, Nikon 603 

Instruments, Tokyo, Japan) controlled by the NIS-Elements AR software (Nikon Instruments). 604 

The cells were illuminated using a 436/20 nm filtered LED light (X-cite exacte, Lumen 605 

Dynamics, Mississauga, Canada), and images were continuously recorded at a rate of 1 frame 606 

per second in two spectral channels corresponding to CFP fluorescence (472/30 nm) and YFP 607 

fluorescence (554/23 nm) using an optosplit (OptoSplit II, CAIRN Research, Faversham, United 608 

Kingdom) and the Andor Ixon 897-X3 EM-CCD camera (Andor Technology, Belfast, UK) with 609 

EM Gain 300 and exposure time of 1 s (Figure 1 – Figure Supplement 1B). For each 610 

measurement, the field of view was chosen to contain both a small region of high density with 611 

confluent cells and a few hundred well-separated single cells (Figure 1 – Figure Supplement 1C). 612 

During our approximately 30 min long measurements, the focus was maintained using the Nikon 613 

perfect focus system. 614 

 615 

Image processing and data analysis 616 

The image analysis was performed using the NIS-Elements AR software. The CFP and YFP 617 

images, each recorded by a half of the camera chip (256 x 512 px2, 1 px = 0.40 µm), were 618 

aligned with each other by manual image registration. A gray average of the two channels was 619 

then delineated to enhance contrast and create binary masks with a user-defined, experiment-620 

specific threshold. Individual cells were detected by segmentation of the thresholded image into 621 

individual objects, filtered according to size (3-50 µm2) and shape (excentricity < 0.86). This 622 

step resulted in a collection of distinct regions of interest (ROIs) for each frame of the movie. 623 
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The ROIs were then tracked from frame to frame, using the NIS build-in tracking algorithm. 624 

Only ROIs that could be tracked over the entire duration of the experiment were further 625 

analyzed. The selected ROIs were then inspected manually and those not representing individual 626 

single cells well attached to the cover glass were discarded. Each individual measurement 627 

contained on the order of 100 tracked single cells.  628 

All further analyses were carried out using MATLAB 8.4 R2014b (The MathWorks, Inc., 629 

Natick, Massachusetts, United States). For each tracked cell, the average CFP and YFP values 630 

over the ROI were extracted as a function of time. These values were also extracted for an ROI 631 

corresponding to the confluent population of cells. The ratio R of the YFP signal to the CFP 632 

signal was computed for both the single cells and the population, with the population response 633 

being used as a reference. Cells with a FRET ratio change of less than 10% of the population 634 

response were discarded as unresponsive. The PSD was computed over T=400-frames long 635 

segments as 636 

ோሺ߱ሻݏ                                                      = ଵ் ̅̅�ோ�̂ሺఠሻோ�̂∗ሺఠሻோۃ ̅2 ௜ۄ ,                                                                 ሺͷሻ 637 

where ܴ �̂ሺ߱ሻ is the discrete Fourier transform of the FRET ratio of cell ݅ at frequency ߱ /ʹ� , ܴ �̂∗
 638 

its complex conjugate,   .  ̅̅ ̅ represents a temporal average over the given time interval and ۄ⋅ۃ௜ an 639 

average over all single cells considered. The error for the PSD was evaluated as 640 

ଵே�் var ቀோ�̂ሺఠሻோ�̂∗ሺఠሻோ�̅̅ ̅2 ቁ௜, where ܰ ௖ is the number of cells. The time autocorrelation function is 641 

simply the inverse Fourier transform of the PSD. The time autocorrelation functions were fitted 642 

by ܥሺݐሻ = ଴ܥ expሺ−ݐ/�଴ሻ , for ݐ > Ͳ to measure the correlation time �଴, ܥ଴ being a free 643 

parameter accounting for the camera white shot noise. Although this fit was moderately accurate 644 

(Ͳ.ͻ͸ ≤ ܴଶ ≤ Ͳ.ͻͺ in all cases), it provided a simple estimate of the fluctuation time scale. 645 
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 646 

Quantification of measurement noise  647 

Contributions of technical fluctuations (vibrations, focus drift, etc.) and of the camera shot noise 648 

to the noise on the FRET ratio was quantified using fluorescent beads (BD FACSDivaTM CS&T 649 

Research beads #655050) that emit both in CFP and in YFP channels. The resulting shot noise 650 

was found to be perfectly white (Figure 1 – Figure Supplement 3A). Additional negative control 651 

experiments were performed using a receptorless strain, where no CheA-based signaling occurs. 652 

In this case, the noise in FRET ratio was also mostly white, except at very low frequency (Figure 653 

1 – Figure Supplement 3B). Where indicated, the power spectra of other strains were corrected 654 

by subtracting the power spectrum of the receptorless strain, to obtain the ‘pure’ activity 655 

fluctuation spectra.  656 

 657 

Evaluation of the conversion factor � 658 

The value of ߣ, Ͳ.ͳͲ ± Ͳ.Ͳͳ, converting FRET ratio changes to kinase activity changes, was 659 

estimated using data for the ΔcheRΔcheB TarQEQE strain as ߣ = ۄሺͲሻ ܴ̅ۃ −  the 660 ,ۄሻܯߤ ሺͳͲͲܴ̅ۃ

difference, averaged over all cells, between the FRET ratio in buffer, where the activity should 661 

be maximal (i.e., equal to one), and the ratio upon saturating stimulation with 100 µM MeAsp. A 662 

similar value ߣ = Ͳ.Ͳͻ ± Ͳ.Ͳͳ could be estimated in the adaptation-proficient strains, as the 663 

difference between the minimal FRET ratio value reached just after stimulation with 100 µM 664 

MeAsp and the maximal value reached upon removal of this stimulus. However, this latter value 665 

was slightly less precise because it is not certain that full receptor activity is reached upon 666 

stimulation removal, and the more reliable ΔcheRΔcheB value was used in all cases.  667 

 668 
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Activity sorting 669 

For TarQEQE receptors in non-adapting strains, we assumed that all the receptors are fully active 670 

in buffer conditions and fully inactive upon stimulation with 100 µM MeAsp. The pathway 671 

activity in each cell was thus evaluated as ܣ =  ͳ − ோ̅ሺ௣௥௘ௌ௧௜௠−ଷ଴�ெሻ− ோ̅ሺଷ଴ �ெሻோ̅ ሺ௣௥௘ௌ௧௜௠−ଵ଴଴ �ெሻ −ோ̅ሺଵ଴଴ �ெሻ. The use of the 672 

two different prestimulus values in buffer enables to minimize the effect of FRET baseline 673 

variation due to bleaching of fluorophores during image acquisition. Cells were then sorted 674 

according to their activity and divided into ݊ equally populated subpopulations, and for each 675 

subpopulation the average PSD ݏۃோሺ߱ሻۄ஺ at average activity A of the subpopulation was 676 

evaluated for the set of frequencies displayed in Figure 4 – Figure Supplement 2. This procedure 677 

was implemented for several values of n, namely ݊ = ͳͲ, ͻ, ͸, ͷ and Ͷ, and the whole resulting 678 

data was used to plot ݏۃோሺ߱ሻۄ஺ as a function of A (Figure 4 – Figure Supplement 2A). 679 
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 963 

Figure 1 – Figure Supplement 1. Schematic representation of the FRET experiment. (A) 964 

The phosphorylation-dependent monitoring of the chemotaxis pathway activity via FRET. CheY 965 

and CheZ are tagged with the two components of a FRET pair of fluorophores, so that the level 966 

of energy transfer represents the amount of CheY-CheZ interaction. This quantity reflects then 967 

the fraction of phosphorylated CheY-P, which represents the average fraction of active CheA 968 

(Aa) on the second time scale, because of the rapid cycle of (de)phosphorylation of CheY by 969 

CheAa and CheZ. See text for further explanations. (B) Schematic of the experimental device. 970 

Media containing chemoeffectors are flown over the cells attached to a coverslip. Cell 971 
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fluorescence is observed simultaneously in two spectral channels separated by an optosplit and 972 

an EM-CCD camera. (C) Typical recorded image, showing in the order of a hundred single cells 973 

and a small group of cells, the FRET measurement of which is used as a reference during the 974 

experiment.  975 

  976 
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 977 

 978 

Figure 1 – Figure Supplement 2. Additional FRET measurement for CheR+ CheB+ cells. 979 

Population averaged FRET ratio (top) and corresponding single cell FRET ratios (bottom), for a 980 

typical FRET experiment, with adaptation-proficient strain expressing TarQEQE as the sole 981 

receptor. Cells initially adapted in buffer were stimulated with 25 µM MeAsp, before returning 982 

to buffer. FRET ratios for individual cells have been shifted to facilitate visualization. 983 

  984 
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 985 

Figure 1 – Figure Supplement 3. Negative controls. (A,B) Average (top) and individual 986 

(bottom) measurements of the YFP/CFP ratio for fluorescent beads emitting both in CFP and 987 

YFP channels (A) and for receptorless cells expressing FRET pair (B). (C,D) The corresponding 988 

PSDs of the fluorescent beads and of the receptorless cells. Error bars represent standard errors 989 

of the mean (SEM) and sample sizes are 189 (beads) and 103 (receptorless strain) single objects. 990 

  991 
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 992 

Figure 1 – Figure Supplement 4. Additional analyses for CheR+ CheB+ cells. Same as Figure 993 

1B,C but also including the PSDs (A) and time autocorrelation functions (B) of the FRET ratio 994 

measured for CheR+ CheB+ cells expressing TarEEEE and adapted in buffer or expressing TarQEQE 995 

and adapted to 25 µM MeAsp. The error bars represent SEM, and the sample sizes are 103 996 

(receptorless strain), 203 (TarEEEE in buffer), 265 (TarQEQE in buffer), 69 (10 µM) and 219 (25 997 

µM) single cells coming from at least three independent experiments in each case. 998 

 999 
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 1001 

Figure 1 – Figure Supplement 5. Correction of the PSDs for CheR+ CheB+ cells for 1002 

measurement noise. (A) The PSDs for the different conditions (colors as in Figure Supplement 1003 

4) from which the PSD of the receptorless strain (representing measurement noise) was 1004 

subtracted. (B) Same curves as (A) but with added constant value (9×10-4 s), in order to compare 1005 

with Figure 1B.  Statistics is as in Figure 1 – Figure supplement 4. 1006 
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 1008 

Figure 2 – Figure Supplement 1. Correction of the PSDs for ΔcheRΔcheB cells for 1009 

measurement noise. Same as Figure 1 – Figure Supplement 5 but for ΔcheRΔcheB cells. 1010 

Statistics is as in the main Figure 2.  1011 

  1012 
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 1013 

Figure 2 – Figure Supplement 2. Comparison of ΔcheRΔcheB and CheR+ CheB+ power 1014 

spectra. The PSDs of the FRET ratio are plotted for the ΔcheRΔcheB strain expressing TarQEQE 1015 

as sole receptor and stimulated with 30 µM MeAsp (blue) and the CheR+ CheB+ strain 1016 

expressing TarQEQE as sole receptor and adapted in buffer (red).  The error bars represent 1017 

standard errors of the mean (SEM), and the sample sizes are 265 (CheR+ CheB+)  and 540 1018 

(ΔcheRΔcheB) single cells coming from at least three independent experiments in each case. 1019 

 1020 
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 1021 

Figure 3 – Figure Supplement 1. Dose response to MeAsp of ΔcheRΔcheB CheW-X2 cells 1022 

expressing TarQEQE. (A) Example of the FRET ratio (R) decreasing as increasing amounts of 1023 

MeAsp were delivered to the cells. (B) The activity averaged over two biological replicates was 1024 

estimated as (ܴሺܿሻ – ܴ௠௜௡)/ሺܴ௠௔௫ – ܴ௠௜௡ሻ, plotted as a function of MeAsp concentration c, 1025 

and fitted using the Monod-Wyman-Changeux model, assuming a free energy difference in 1026 

absence of ligand ߛሺ݉ = ʹሻ = −ͳ, yielding a cooperativity number N = 1.73 and a binding 1027 

constant to inactive receptors KOFF = 3.92 µM. Fitting with a Hill function yields a Hill exponent 1028 

H = 1.4  and a concentration of half-maximal response EC50 = 8.3 µM. Error bars indicate SEM. 1029 

Measurements were carried out on confluent populations of cells. 1030 

 1031 
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 1032 

Figure 3 – Figure Supplement 2. Response of CheR+ CheB+ strain expressing CheW-X2 1033 

and TarQEQE to attractant MeAsp and repellent Ni2+. The activity dropped in response to 1034 

MeAsp and increased in response to Ni2+, added at indicated concentrations, demonstrating that 1035 

the cells have indeed an intermediate level of adapted kinase activity. The buffer for this 1036 

experiment did not contain EDTA, an ion chelator for Ni2+. 1037 
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 1039 

 1040 

Figure 3 – Figure Supplement 3. Response function for ΔcheRΔcheB CheW-X2 cells 1041 

expressing TarQEQE as sole receptor. The strain was subjected to 10 µM MeAsp to measure the 1042 

response. Error bars indicate SEM and sample size is 120 single cells, in 3 biological replicates. 1043 
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 1045 

Figure 4 – Figure Supplement 1. Validation of the linear response regime in ΔcheRΔcheB 1046 

cells. Response functions measured for stimulations by increasing MeAsp concentration from 25 1047 

to 30 µM, corresponding to an average activity change of 0.2 (blue), from 0 to 25 µM, 1048 

corresponding to an average activity change of 0.4 (red), and from 0 to 30 µM corresponding to 1049 

an average activity change of 0.6 (green; data from the main figure). Error bars represent SEM 1050 

and sample sizes are 339 (Δܣ = Ͳ.ʹ and Δܣ = Ͳ.Ͷ) and 540 (Δܣ = Ͳ.͸) single cells in at least 1051 

three biological replicates.  1052 
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 1053 

 1054 

 1055 

Figure 4 – Figure Supplement 2. Power spectral density computed on subsets of the cell 1056 

populations sorted according to their activity. (A) The PSD as a function of the average 1057 

activity of the subsets, for the indicated frequencies (dots) in the ΔcheRΔcheB strain expressing 1058 

TarQEQE. The lines correspond to best fits by ݏۃோሺ߱ሻۄ஺  = ሺ͵Ͳሻ(ͳܣሺ߱ሻܥ  −  ሺ͵Ͳሻ) for each 1059ܣ

frequency considered. (B) The PSD as a function of frequency for subsets of cells sorted 1060 

according to their activity as indicated in the legend. The error bars correspond to SEM, sample 1061 

sizes are as described in Materials and methods, varying from 54 to 135 cells depending on the 1062 

point, taken from at least 5 biological replicates. 1063 
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 1065 

 1066 

Figure 4 – Figure Supplement 3. Effect of the receptor expression level on the noise in 1067 

ΔcheRΔcheB cells. The ΔcheRΔcheB strain expressing TarQEQE as the sole receptor from a 1068 

plasmid under salicylate induction, was induced by 0.75 µM, 2 µM (standard experimental 1069 

condition used in the main text) or 5µM salicylate, resulting in approximately two-fold 1070 

difference between the protein numbers [26]. The power spectral density of fluctuation in cells 1071 

prestimulated with 30 µM MeAsp, with average activity A = 0.5, was the same in all conditions. 1072 

Error bars indicate SEM and sample sizes are 237 (5µM), 540 (2 µM) and 187 (0.75 µM) cells in 1073 

at least three biological replicates. 1074 
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 1077 

Figure 4 – Figure Supplement 4. Power spectra of thermal fluctuations in a simulated 1078 

model of the sensory cluster. The model describes behavior of cooperative receptor complexes 1079 

without adaptation (see Appendix, section 4). Dependence of the PSD of the mean activity of the 1080 

receptor cluster ݏ஺ሺ߱ሻ on the rate of cluster response ݓ௔ to free energy perturbations at fixed 1081 

number of allosteric units per team N = 14 (A) and on N at fixed ݓ௔ = 0.25 s-1  (B). The total 1082 

number of chemoreceptors was kept constant in all cases.   1083 
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  1084 

Figure 4 – Figure Supplement 5. Example of FRET measurement used for the evaluation of 1085 �+ሺ�ሻ. A CheR+ CheB+ strain expressing TarQEQE as sole receptor and the CheY-YFP/CheZ-CFP 1086 

FRET pair, equilibrated in buffer (red), was briefly stimulated with a saturating amount of 1087 

MeAsp (25 µM; green) to evaluate the FRET ratio at zero activity, re-equilibrated in buffer, and 1088 

then stimulated with a subsaturating amount of MeAsp (0.3 µM; blue). The FRET ratio was 1089 

measured on an area of confluent cells. Normalized responses to 0.3 µM MeAsp from five 1090 

independent replicates of this experiment were averaged to compute the step response function 1091 

of Figure 4A. 1092 
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 1094 

Figure 4 – Figure Supplement 6. Evaluation of the adaptation time. The normalized step 1095 

response function in CheR+ CheB+, ݃+ሺݐሻ, from Figure 4A is plotted alongside its fits by 1096 

Equation (A.30) of the Appendix, using the normalized step response function in ΔcheRΔcheB 1097 

strain, ݃ −ሺݐሻ, and the rate of adaptation at the activity level ߱ோ஻, for various values of ߱ோ஻. The 1098 

best fit was with ߱ ோ஻ = Ͳ.Ͳ͸. The response function was measured over five areas of confluent 1099 

cells from as many independent experiments. 1100 

1101 
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 1102 

Figure 4 – Figure Supplement 7. Calculated effective temperatures. Plots show the inverse of 1103 

the quantities plotted in insets of Figure 4B,C, for ΔcheRΔcheB and for CheR+ CheB+ cells 1104 

respectively. Dashed lines represent eܶff  =  Ͳ (CheR+ CheB+) and ܶ eff  =  ܶ (ΔcheRΔcheB). 1105 

Error bars and statistics are as in the main figure. 1106 

 1107 

  1108 
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 1109 

Figure 4 – Figure Supplement 8. Inferred spectrum of the binding dynamics of CheR and 1110 

CheB. Spectrum was calculated in the frequency range where measurement noise is not 1111 

dominant, using Equation (A.37). Error bars represent SEM, sample size as in the main figure. 1112 
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 1114 

 1115 

Figure 4 – Figure Supplement 9. Simulation of the pathway activity fluctuations in 1116 

adapting cells. (A) Simulated response function for the model described in section 4 of 1117 

Appendix. Comparison with experiments was used to calibrate the time scales of the model. A 1118 

unique time scale ݓ௔ = Ͳ.ʹͷ s-1 was used to model the response of the cluster to free energy 1119 

perturbations, averaging fast switching and long-term cluster dynamics, which is then not fully 1120 

accounted for in this model (as in Figure Supplement 4). (B) Power spectrum of CheR and CheB 1121 

binding to the receptors, showing features similar to its experimental equivalent, plotted in inset 1122 

of Figure 4D. (C) The PSD of the level of phosphorylated CheY in the model simulations 1123 

(black), which shows similarities with the contribution of methylation-enzymes dynamics to the 1124 
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PSD of the FRET ratio plotted in main Figure 4D. The PSD amplitude in the simulation was 100 1125 

times smaller than its experimental counterpart (since ݏோ  = ஺ݏ ଶߣ ≃  Ͳ.Ͳͳ ݏ஺), indicating that 1126 

activity perturbations 10 times smaller than in experiment. The PSD was also determined when 1127 

the cooperativity was reduced from its standard value of 14 to 2, mimicking the CheW-X2 strain 1128 

(blue); and when the specific rate of (de)methylation was decreased from its standard value 1129 ߱௠  =  ͳ to 0.16 s-1, mimicking reduced efficiency of (de)methylation in absence of 1130 

neighborhood assistance (green). (D) Inverse effective temperature inferred from (A) and (C) in 1131 

the simulations, showing behavior similar to the experiments, notably the characteristic sign 1132 

inversion as in Figure 4C. Differences emerged at very low frequencies, presumably because the 1133 

model does not take long-term receptor array dynamics into account. In the simulated MWC 1134 

model of cooperative teams, the fluctuation-dissipation relation can be written for the receptor 1135 

team, which leads to effective temperature values similar to the experiments (see Appendix, 1136 

section 4). 1137 

  1138 
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Supplementary File S1. List of strains and plasmids used in the study 1139 

 1140 

Table 1. Parameters of the FDT analysis 1141 

Parameter Value ߣ Ͳ.ͳͲ ± Ͳ.Ͳͳ ܰ ͳͶ ۄܣۃ Ͳ.ͷ Χ஺∞ ܰۄܣۃሺͳ −  ሻ ்ܰ ͳͲସ ߳௡ଶ Ͳ.ͻ ͳͲ−ଷۄܣۃ

 1142 

  1143 
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Appendix 1144 

This Appendix presents four partially independent theoretical derivations of equations and 1145 

concepts presented in the main text. 1146 

 1147 

1. Modeling activity fluctuations in the framework of fluctuation-dissipation relation  1148 

1.1. Fluctuation dissipation relation and effective temperature 1149 

In a system at equilibrium, a fluctuation-dissipation relation links the thermal fluctuations of any 1150 

physical quantity to its response to an external small perturbation applied to the system via the 1151 

temperature. It extends the corresponding fluctuation-response relation, which links the 1152 

amplitudes of the fluctuation and the response, including their evolution in time. For the quantity 1153 ܽ, it reads [64]: 1154 

                                                    − ݐ݀݀ ,ݐ௔ሺܥ Ͳሻ =  ݇ܶ ߲Δܽሺݐሻ߲ΔℎሺͲሻ,                                                            ሺܣ. ͳሻ 

Where: 1155 

 ܥ௔ሺݐ, Ͳሻ = ۄሻܽሺͲሻݐሺܽۃ  −  is the time autocorrelation function of ܽ,  1156 ۄሺͲሻܽۃۄሻݐሺܽۃ

 ℎ is the conjugate of ܽ in the Hamiltonian of the system, that is the Hamiltonian (i.e. the 1157 

free energy) can be written ܪ = ௨௡௣௘௥௧௨௥௕௘ௗܪ   −  ܽℎ  1158 

 డΔ௔ሺ௧ሻడΔℎሺ଴ሻ is the response of ܽ at time t > 0 to the small impulse perturbation Δℎ applied 1159 

transiently at time 0. It is called impulse response function, usually denoted �௔ሺݐሻ. 1160 

This relation can also be expressed in Fourier space (decomposing all temporal signals in terms 1161 

of periodic functions) as: ݏ௔ሺ߱ሻ = − ଶ ௞்ఠ  ሻ, typically referred to as “dynamic susceptibility”. 1163ݐ௔ሺ߱ሻ is the power spectrum of ܽ and 1162 �̂௔ሺ߱ሻ is the Fourier transform of �௔ሺݏ ௔ሺ߱ሻ, wherê� ݉ܫ
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In a system which is not at equilibrium, but nonetheless at steady state, one can define the so-1164 

called fluctuation-dissipation ratio [68]:  1165 

                                                                 ݇Tୣ ୤୤ሺωሻkT  = − .ܣ௔ሺ߱ሻ.                                             ሺ̂� ݉ܫܶ݇ʹ௔ሺ߱ሻݏ߱ ʹሻ 

This FDT ratio is a way to quantify some ‘’distance to equilibrium’’, introducing the effective 1166 

temperature Tୣ ୤୤ሺ߱ሻ. The system is in equilibrium only if the ratio equals one at all frequencies. 1167 

 1168 

1.2. Choice of model for the chemotaxis pathway 1169 

We model the receptors by two-state objects, being either kinase activating (ON) or kinase 1170 

inhibiting (OFF). The free energy difference between ON and OFF is ∆ ଴݂ = ሺ݉ሻߛ + �ሺܿሻ for a 1171 

single receptor, with �ሺܿሻ = ln ቀቀͳ + ௖�ೀ��ቁ ቀͳ + ௖�ೀಿቁ⁄ ቁ being the contribution of attractant 1172 

binding and ߛሺ݉ሻ = ݇଴ − ݇ଵ݉ being the contribution of the receptor methylation.  1173 

Two models can describe the coupling between neighboring receptors and kinases in the 1174 

chemoreceptor cluster, the Monod-Wyman-Changeux (MWC) and the Ising models [46, 48, 73, 1175 

91]. The MWC model considers that receptors are grouped by teams of ܰெ�஼ infinitely coupled 1176 

receptors and their associated kinases. The Hamiltonian of the whole chemoreceptor cluster 1177 

is ܪெ�஼ = ∑ ( ௝ܽ ∑ Δ ଴݂ሺ݇ሻேಾ�಴௞=଴ )ே೟��೘௝=ଵ , ௝ܽ being the Boolean state of team ݆. The Ising model on 1178 

the contrary considers finite coupling between receptors, and the Hamiltonian of the cluster is 1179                                                     ܪ�ெ = ௜௡௧ܪ  + ∑௞=ଵே� ܽ௞  ∆ ଴݂ሺ݇ሻ,                                                      ሺܣ. ͵ሻ 

where ܽ ௞ is now the state of the single receptor dimer k and ܪ௜௡௧ describes the coupling between 1180 

and among receptors and kinases. The interaction term ܪ௜௡௧ can be written in all generality 1181 ܪ௜௡௧ = ௔௔ܬ− ∑ ሺܣ௜ − Ͳ.ͷሻ ௜ܵ,௝(ܣ௝ − Ͳ.ͷ)௜,௝ − ௔௥ܬ ∑ ሺܣ௜ − Ͳ.ͷሻ ௜ܸ,௞ሺܽ௞ − Ͳ.ͷሻ௜,௞ − ௥௥ܬ ∑ ሺܽ௟ −௟,௞1182 
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Ͳ.ͷሻ ௟ܹ,௞ሺܽ௞ − Ͳ.ͷሻ, where ܬ are the coupling strengths, ܵ, ܸ and ܹ  describe the network by 1183 

determining whether two components are coupled and ܣ௜ is the Boolean activity of the kinase i.  1184 

At steady state, the average activity of the cluster is given in both cases by 1185 

ܣ                                      = ۄܽۃ = ͳܼ ∬ ͳ்ܰ ∑ ܽ௞ே�
௞=ଵ exp(−ܪߚሺ{ܽ௞}ሻ) ∏݀ܽ௞ ,                               ሺܣ. Ͷሻ 

 where ܼ  is a normalization factor, and ்ܰ is the total number of Tar dimers. In the MWC, it is 1186 

solved exactly as  ܣெ�஼  = ሺͳ + expሺܰெ�஼  ∆ ଴݂ሻሻ−ଵ. In the Is, analytical solutions exist only for 1187 

a limited set of network topologies, but numerical solutions in most cases are well fitted by 1188 

௦�ܣ                                                                     = ͳͳ + expሺܰ ∆ ଴݂ሻ,                                                       ሺܣ. ͷሻ 

where ܰ  is a fitted parameter, corresponding to an effective ‘’team size’’, which is proportional 1189 

to the average number of neighboring receptors with the same activity (see 1.4).  1190 

The MWC does not allow individual receptors to fluctuate within their team nor any team 1191 

rearrangement. This is unsatisfactory since individual receptors are expected to undergo 1192 

independent thermal and/or active perturbations and the slow dynamics in the ΔcheRΔcheB 1193 

strain might come from some remodeling of teams of receptors with the same activity [69]. The 1194 

Ising model, which possesses those two properties, was therefore preferred. 1195 

Finally, the average methylation state of the receptor evolves under the action of CheR and CheB 1196 

according to 1197 

ݐ݀݉݀                                                                 =  ݇ோ  ሺͳ − .ܣሺ                                                     ,ܣ ሻ – ݇஻ܣ ͸ሻ 

with ݇ோ and ݇ ஻ being the rates of methylation and de-methylation, respectively [60]. 1198 

 1199 

1.3. Phenomenological step response function 1200 
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To define the effective temperature (Equation (A.2)), the activity state of a single receptor 1201 

dimer, ܽ, will be used as the variable. Considering the definition of the dynamic susceptibility 1202 

(paragraph 1.1) and Equation (A.3), within the Ising model, the dynamic susceptibility �௔ሺݐሻ in 1203 

response to a perturbation +߳ of the free energy difference ∆ ଴݂ is 1204 

= ۄሻݐሺܽߜۃ                                                         ∫ −߳ሺ�ሻ �௔ሺݐ − �ሻ ݀�௧
−∞ ,                                           ሺܣ. ͹ሻ 

where ۄ⋅ۃ is an ensemble average. In the case of a constant perturbation ߳଴ starting at t = 0, 1205 

= ۄሻݐሺܽߜۃ                                                                     −߳଴ ∫ �௔ሺ�ሻ ݀�௧
଴ .                                               ሺܣ. ͺሻ 

In the absence of adaptation enzymes, Equation (A.5) implies that at steady state  ܽߜۃሺ+∞ሻۄ ሺͳ ۄܽۃ ܰ−  1206= −  ሻ ߳଴, which yields 1207ۄܽۃ

                                                     ∫ �௔−ሺ�ሻ ݀�+∞
଴ = ሺͳۄܽۃܰ − ሻۄܽۃ ≡ Χ஺∞ .                                        ሺܣ. ͻሻ 

Here and in the following, we use a superscript ‘-’ to refer to quantities in the ΔcheRΔcheB case, 1208 

and superscript ‘+’ for the CheR+CheB+ case. 1209 

In the all models so far, the activity switches very rapidly to its steady state value ܽߜۃሺ+∞ሻ1210 ,ۄ 

meaning that �௔−ሺ�ሻ is well approximated by a delta function. However, as observed in Fig. 4A 1211 

of the main text, step stimulation with MeAsp, which corresponds to the application of a constant 1212 ߳଴ to the receptors, induces also a long term dynamics of the activity, not captured by the 1213 

models. A phenomenological description of this long term dynamics was therefore used, leading 1214 

to a more complex form of �௔−ሺ�ሻ.  1215 
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We experimentally defined the step response function ݃−ሺݐሻ, measured as the response of a 1216 ∆ܿℎܴ݁Δܿℎ݁ܤ strain to small step-like attractant stimulation, as 1217 

                           ݃−ሺݐሻ ≡ Χ஺∞߳଴−ۄሻݐሺܽߜۃ = ۄሺ+∞ሻܽߜۃۄሻݐሺܽߜۃ = ∆ܴሺݐሻ−ߣΧ஺∞߳଴ = ∆ܴሺݐሻ∆ܴሺ+∞ሻ,                                ሺܣ. ͳͲሻ 

which goes from 0 at ݐ = Ͳ to ͳ at ݐ = +∞.  1218 

Combining Equations (A.8), (A.9) and (A.10), the dynamic susceptibility of a receptor in 1219 

the ∆ܿℎܴ݁Δܿℎ݁ܤ strain is ∫ �௔−ሺ�ሻ ݀�௧଴ = Χ஺∞ ݃−ሺݐሻ, which is expressed in Fourier space as 1220 �̂௔−ሺ߱ሻ = Χ஺∞ ݅߱݃̂−ሺ߱ሻ                                                          ሺܣ. ͳͳሻ 

Here the Fourier transform of x is defined as 1221 

ሺ߱ሻݔ̂ =  ∫ ∞+ሻ݁−௜ఠ௧ݐሺݔ
−∞ .ܣሺ                                                    ݐ݀ ͳʹሻ 

In the CheR+ CheB+ case, by analogy we experimentally define the step response function to 1222 

small step-like attractant stimulation as: 1223 

                                                           ݃+ሺݐሻ ≡ Χ஺∞߳଴−ۄሻݐሺ+ܽߜۃ = ∆ܴ+ሺݐሻ−λΧ஺∞߳଴ ,                                              ሺܣ. ͳ͵ሻ 

Here ∆ܴ+ሺݐሻ is the measured YFP/CFP ratio during a small stimulation of free energy ߳଴ in 1224 

CheR+ CheB+ cells expressing Tar only and λ is the experimentally determined proportionality 1225 

factor between FRET ratio and activity. Since the response is adaptive, the stimulation 1226 

−λΧ஺∞߳଴ cannot be deduced from the final change in FRET ratio (∆ܴ(+∞)). It was rather 1227 

computed using ۄܣۃ  =  Ͳ.ͷ and ߳ ଴ = lnሺͳ + Δܿ/ܭ௢௙௙ሻ, with ܭ௢௙௙ = 7 µM, which is lower than 1228 

the value typically used for WT cells (ܭ௢௙௙ = 18 µM) [92], to account for the increased 1229 

sensitivity of the Tar-only strain at our expression level [57]. 1230 

Similarly to the ∆ܿℎܴ݁ܿℎ݁ܤ case, the following relation holds:  1231 �̂௔+ሺ߱ሻ = Χ஺∞ ݅߱݃̂+ሺ߱ሻ                                                      ሺܣ. ͳͶሻ 
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 1232 

1.3.1. Role of CheY/CheZ dynamics 1233 

In the previous sections, we have assumed that the concentration of CheY-P follows 1234 

instantaneously the average activity of the cell. In practice, however, [CheY-P] is delayed 1235 

compared to the activity. The CheY phosphorylation (by CheA)-dephosphorylation (by CheZ) 1236 

cycle can be modeled by [93]: 1237 ݀ݐ݀ݕ = ߱஺௒ܣሺݕ௧௢௧ − ሻݕ − ߱௓௒ܼݕ                                            ሺܣ. ͳͷሻ 

In Fourier space, assuming that CheZ is abundant, the CheY-P perturbation ݕߜሺ߱ሻ follows the 1238 

activity perturbation as [93]: 1239 ݕߜሺ߱ሻ = ௠௔௫ݕߜ  ߱௒߱௒ + ݅߱ .ܣሺ߱ሻ                                          ሺܽߜ  ͳ͸ሻ 

The characteristic frequency is ߱௒ = ʹHz [93], which lies in the range of frequencies for which 1240 

our measurements are dominated by instrumental noise. Therefore CheY/CheZ dynamics was 1241 

neglected. 1242 

1.3.2. Effect of diffusive smoothing of the step function 1243 

We assumed a step increase of the attractant concentration when measuring the response 1244 

functions. In practice, because of mixing while delivering the media to the cells, the attractant 1245 

concentration step is smoothed and it takes about 1 s to reach maximal concentration. We note 1246 ߳ሺݐሻ = ߳଴߳௦ሺݐሻ the actual experimental free energy change experienced by the cells, with ߳௦ሺݐሻ a 1247 

function which is zero for ݐ < Ͳ, and rise to 1 in a time scale of the order of 1 s. Typically, 1248 ߳௦ሺݐሻ = ͳ − exp ሺ−ݐ/�௦ሻ with �௦ = Ͳ.ͷ s. In Fourier space, the actually measured activity change 1249 

is  1250 

ۄ௠௘௔௦ሺ߱ሻܽߜۃ = −Χ஺∞߳଴   �௔ሺ߱ሻΧ஺∞ ߳௦ሺ߱ሻ                                       ሺܣ. ͳ͹ሻ   
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Equations (A.7, A.10, A.13) and (A.17) yield a relation between the actually measured response 1251 

functions ݃ ௠௘௔௦± ሺ߱ሻ and their ideal counterpart ݃௜ௗ௘௔௟± ሺ߱ሻ – if the perturbation were purely step-1252 

like: 1253 ܽߜۃ௠௘௔௦ሺݐሻۄ−Χ஺∞߳଴ ≡ ݃௠௘௔௦± ሺ߱ሻ = ݅߱߳௦ሺ߱ሻ  ݃௜ௗ௘௔௟± ሺ߱ሻ                                      ሺܣ. ͳͺሻ 

For the typical exponential perturbation, when ߱ ≠ Ͳ, 1254 

݅߱߳௦ሺ߱ሻ = ͳ − ݅߱�௦ͳ + ݅߱�௦  .                                                        ሺܣ. ͳͻሻ 

Equation (A.19) reduces to 1 in the range of frequencies for which our measurement is above 1255 

noise, and ݃௠௘௔௦± ሺ߱ሻ = ݃௜ௗ௘௔௟± ሺ߱ሻ was assumed for most of the analysis. Only for measuring the 1256 

time scale of adaptation ߱ோ஻ and the relation between ݃+ and ݃− (section 2.1 of this 1257 

supplement) was the full Equation (A.18) needed. 1258 

 1259 

1.4. Definition of the effective temperature 1260 

Equations (A.2) and (A.11) or (A.14) lead to: 1261 

                                                               ݇Tୣ ୤୤ሺωሻkT  = − .ܣ௔ሺ߱ሻʹ Χ஺∞ܴ݁(݃̂ሺ߱ሻ),                                         ሺݏ ʹͲሻ 

Thus, to compute the effective temperature, we need to evaluate the power spectral density 1262 

(PSD) of the activity of a single receptor dimer, ݏ௔ሺ߱ሻ. We experimentally have access to the 1263 

PSD of the YFP/CFP ratio, the fluctuations of which are proportional to the ones of the average 1264 

activity of the cell ܣ௖௘௟௟ with the factor ߣ, modulo the camera noise, so that  1265 

ோሺ߱ሻݏ                                                              = ஺��೗೗ሺ߱ሻݏ ଶߣ + ߳௡ଶ.                                                   ሺܣ. ʹͳሻ 
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The average activity of the cell is given by ܣ௖௘௟௟ = ଵே� ∑ ܽ௞ே�௞=ଵ , so that  1266 

஺��೗೗ሺ߱ሻݏ                                                 =  ͳܶܰଶ் ∑ ∑ ∗′௞ܽߜ௞ሺ߱ሻܽߜۃ ሺ߱ሻۄே�
௞′=ଵ

ே�
௞=ଵ ,                               ሺܣ. ʹʹሻ 

Since receptors are coupled, ܽߜۃ௞ሺ߱ሻ ܽߜ௞′ሺ߱ሻۄ is not necessarily zero. In the Ising model, we 1267 

have ܽߜۃ௞ሺ߱ሻܽߜ௞′∗ ሺ߱ሻۄ =  ௞௞′ሻ is the correlation function 1268ݎሺܥ ௞௞′ሻ, whereݎሺܥ ۄ௞ሺ߱ሻ|ଶܽߜ|ۃ 

between receptors distant from ݎ௞௞′ on the lattice, which decreases exponentially on a given 1269 

length scale [94], so that ∑ ∑ ∗′௞ܽߜ௞ሺ߱ሻܽߜۃ ሺ߱ሻۄே�௞′=ଵே�௞=ଵ = ்ܰ ௥ܰ ܰ where ,ۄ௞ሺ߱ሻ|ଶܽߜ|ۃ  ௥ is the 1270 

average number of correlated receptors in the cluster (the loose equivalent of the team size of the 1271 

MWC model), which is expected to be proportional to the cooperativity number N (Equation 1272 

A.5).  1273 

To accurately count the number of correlated receptors, we noted that recent works measured in 1274 

vitro [63] and in vivo [44, 56] the response function of the minimal functional chemosensory 1275 

assembly, believed to consist of two trimers of receptor dimers (TD) coupled to one CheA dimer, 1276 

and found a cooperativity number close to 2. The dose-response curve of ΔcheRΔcheB CheW-1277 

X2 expressing TarQEQE, featuring such minimal complexes [44, 56], was fitted using Equation 1278 

(A.5) (Figure 3 – Figure Supplement 1), also yielding N≃2. These results strongly suggest that ܰ 1279 

effectively accounts for the number of TDs coupled in a “signaling team”, thus ௥ܰ  =  ͵ܰ and: 1280 

஺��೗೗ሺ߱ሻݏ                                                                = ͵்ܰܰ .ܣ௔ሺ߱ሻ                                                           ሺݏ ʹ͵ሻ 

Finally, Equations (A.9), (A.20), (A.21) and (A.23) yield: 1281 

                                                    ݇Tୣ ୤୤ሺωሻkT  = − ்ܰ͸ ߣଶܰଶܣሺͳ − ோሺ߱ሻݏ   ሻܣ − ߳௡ଶܴ݁(݃̂ሺ߱ሻ) ,                          ሺܣ. ʹͶሻ 
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corresponding to Equation (1) and (2) of the main text, which defines the dissipation ܩோሺ߱ሻ ଶߣ ʹ− 1282= ଷே2஺ሺଵ−஺ሻே� Re(ĝሺ߱ሻ).  1283 

Note that although we expressed the fluctuation dissipation relation in terms of activity, which 1284 

allows us to directly compare the analysis with experimental data, this relation can be formulated 1285 

for any variable (e.g., receptor conformation) that itself determines the activity.    1286 
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2. Link between the response functions in ΔcheRΔcheB and CheR+ CheB+ cases 1287 

In presence of the adaptation system, the receptor cluster is assumed to respond to free energy 1288 

perturbations in the same way as in the adaptation-deficient cells, but this response induces a 1289 

methylation change adding up to the free energy perturbation. In Fourier space, for a small 1290 

perturbation of the free energy difference ߳ሺ߱ሻ, the resulting perturbations for the average 1291 

activity and methylation are then given – from Equations (A.6) and (A.7) – by the set of 1292 

equations:  1293 ܽߜۃ+ሺ߱ሻۄ   =    Χ஺∞  ݅߱݃̂−ሺ߱ሻ  ሺ−߳ሺ߱ሻ +  ݇ଵ ݉ߜۃሺ߱ሻۄሻ                               ሺܣ. ʹͷሻ ݅߱ ۄ݉ߜۃ  =  − ሺ݇ோ +  ݇஻ሻ ܽߜۃ+ሺ߱ሻۄ                                                     ሺܣ. ʹ͸ሻ 

Defining ߱ ோ஻ = Χ஺∞݇ଵሺ݇ோ + ݇஻ሻ, the activity dependent rate of adaptation, this set of equations 1294 

is easily solved as 1295 

ۄሺ߱ሻ+ܽߜۃ   = Χ஺∞ ݅߱ ݃̂−ሺ߱ሻͳ + ߱ோ஻ ݃̂−ሺ߱ሻ (−߳ሺ߱ሻ)                                              ሺܣ. ʹ͹ሻ 

We thus inferred the dynamic susceptibility in CheR+ CheB+ as  1296 

�̂௔+ሺ߱ሻ = Χ஺∞ ݅߱ ݃̂−ሺ߱ሻͳ + ߱ோ஻ ݃̂−ሺ߱ሻ                                                             ሺܣ. ʹͺሻ 

Note that the ∆ܿℎܴ݁∆ܿℎ݁ܤ case is obtained again if ߱ோ஻ = Ͳ. 1297 

From Equation (A.14), the step response functions in the CheR+ CheB+ and ∆ܿℎܴ݁∆ܿℎ݁ܤcases 1298 

are linked by: 1299 

݃̂+ሺ߱ሻ = ݃̂−ሺ߱ሻͳ + ߱ோ஻ ݃̂−ሺ߱ሻ                                                             ሺܣ. ʹͻሻ 

 1300 

2.1. Effect of diffusive smoothing of the step function 1301 
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In the case where the stimulation is not a perfect step function, modeled by ߳ሺ߱ሻ =  ߳଴߳௦ሺ߱ሻ, 1302 

using Equations (A.17) and (A.18), the relation of equivalence can be easily shown to become: 1303 

݃̂௠௘௔௦+ ሺ߱ሻ = ݅߱߳௦ሺ߱ሻ  ݃̂௠௘௔௦− ሺ߱ሻ݅߱߳௦ሺ߱ሻ + ߱ோ஻ ݃̂௠௘௔௦−  ሺ߱ሻ.                                                 ሺܣ. ͵Ͳሻ 

Using ߳௦ሺݐሻ = ͳ − exp ቀ− ௧�ೞቁ, with �௦ = Ͳ.ͷ s, the equivalent of Equation (A.30) in real space 1304 

was fitted using the experimentally determined  ݃̂௠௘௔௦− ሺ߱ሻ and  ݃̂௠௘௔௦+ ሺ߱ሻ, with ߱ோ஻ as a free 1305 

parameter, yielding ߱ோ஻  =  Ͳ.Ͳ͸ Hz (Figure 4 - Figure Supplement 5). 1306 

 1307 

2.2. Frequency of effective temperature divergence 1308 

In the CheR+ CheB+ case, the effective temperature diverges when Re݃̂+ሺ߱ሻ = Ͳ. Equation 1309 

(A.29) thus yield an implicit equation for the frequency at which this divergence occurs, 1310 −Re݃−(߱ௗ௩௚)  = ߱ோ஻ |݃−(߱ௗ௩௚)|ଶ
, which has a solution since Re݃−ሺ߱ሻ is negative. This 1311 

equation clearly represents a balance between the action of the cluster cooperative response 1312 

(represented by ݃−) and adaptation (represented by ߱ோ஻). The solution is however not trivial, in 1313 

particular ߱ௗ௩௚ ≠ ߱ோ஻, and will depend on both the time scales of cluster dynamics and 1314 

adaptation. Notably, in [74] the typical time scale of the cluster dynamics was chosen to be much 1315 

shorter than the one suggested by our measurements, resulting in higher frequency of effective 1316 

temperature divergence. 1317 

  1318 
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3. Separating the contribution of methylation enzymes dynamics to the PSD in CheR+ 
1319 

CheB+ cells 1320 

A complementary approach to the modeling of the fluctuating activity of chemoreceptor clusters, 1321 

which has been used in a number of previous theoretical works [75-77], is to introduce noise 1322 

terms in equations (A.25) and (A.26), which describe the average behavior of the system, in 1323 

order to describe the behavior of single receptor k: 1324 

௞ሺ߱ሻܽߜ =    Χ஺∞  ݅߱݃̂−ሺ߱ሻ  (−߳௞ሺ߱ሻ +  ݇ଵ݉ߜ௞ሺ߱ሻ)                              ሺܣ. ͵ͳሻ 

௞݉ߜ ߱݅ =  −  ሺ݇ோ +  ݇஻ሻܽߜ௞ሺ߱ሻ + ௞ሺ߱ሻݎߜ + .ܣ௞ሺ߱ሻ                            ሺܾߜ ͵ʹሻ 

Here ߳ ௞ሺ߱ሻ represents thermal noise acting on the receptor, and ݎߜ௞ሺ߱ሻ and ܾߜ௞ሺ߱ሻ represent 1325 

noise coming from the intermittent action of CheR and CheB, respectively (see below for 1326 

possible interpretation of these fluctuations). 1327 

This set of equations is easily solved as  1328 

௞ሺ߱ሻܽߜ = Χ஺∞ ݃̂+ሺ߱ሻሺ−݅߱߳௞ሺ߱ሻ + ݇ଵሺݎߜ௞ + .ܣ௞ሻሻ,                              ሺܾߜ ͵͵ሻ 

where  ݃̂+ሺ߱ሻ is defined by Equation (A.29), and can be measured using Equation (A.13). 1329 

Assuming that the power spectra of  ݎߜ௞ and ܾߜ௞ are identical, denoted ݏ௥௕ሺ߱ሻ, the power 1330 

spectrum of the activity of one receptor is: 1331 

௔+ሺ߱ሻݏ = |Χ஺∞ ݃̂+ሺ߱ሻ|ଶ(߱ଶݏఢሺ߱ሻ +  ʹ݇ଵଶݏ௥௕ሺ߱ሻ).                                 ሺܣ. ͵Ͷሻ 

This equation highlights the contributions of thermal fluctuations and methylation noise to the 1332 

PSD. If the methylation system is absent, this latter equation reduces to the ΔcheRΔcheB case: 1333 
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௔−ሺ߱ሻݏ = |Χ஺∞ ݃̂−ሺ߱ሻ|ଶ  ߱ଶݏఢሺ߱ሻ.                                                       ሺܣ. ͵ͷሻ 

Under the non-trivial assumption that the thermal noise term (which can be explicitly evaluated 1334 

using the FDT, Equation (A.20)) remains the same whether adaptation enzymes are present or 1335 

not, the contribution of the enzymes to the PSD in CheR+ CheB+ is: 1336 

௔௠ሺ߱ሻݏ = ௔+ሺ߱ሻݏ − |݃+ሺ߱ሻ݃−ሺ߱ሻ|ଶ ௔−ሺ߱ሻݏ = |kଵΧ஺∞ ݃̂+ሺ߱ሻ|ଶݏ௥௕ሺ߱ሻ,                      ሺܣ. ͵͸ሻ 

which yields in terms of the FRET ratio, from equations (A.21) and (A.23): 1337 

ோ௠ሺ߱ሻݏ = ோ+ሺ߱ሻݏ − |݃+ሺ߱ሻ݃−ሺ߱ሻ|ଶ ோ−ሺ߱ሻݏ = ଶ்ܰߣܰ͵ |kଵΧ஺∞ ݃̂+ሺ߱ሻ|ଶݏ௥௕ሺ߱ሻ.                ሺܣ. ͵͹ሻ 

Here the thermal noise contribution in presence of adaptation is ݏோ் ሺ߱ሻ = |௚+ሺఠሻ௚−ሺఠሻ|ଶ  ோ−ሺ߱ሻ. 1338ݏ

3.1.  Possible interpretation of the methylation-based noise term 1339 

The non-perturbative equation for the evolution of the methylation of receptor k reads:  1340 

݀݉௞݀ݐ =  − ௕ܾ௞ܽ௞ݓ  + ௥ܾ௥ሺͳݓ − ܽ௞ሻ                                               ሺܣ. ͵ͺሻ  
Here ܾ ௞ and ݎ௞ evaluate whether, respectively, CheB or CheR is present on the site to act on the 1341 

receptor, with respective rates ݓ௕ and ݓ௥, in an activity-dependent manner. This equation 1342 

accounts for the fact that CheR and CheB, which are in low amounts compared to the total 1343 

amount of receptors, bind and unbind in the vicinity of only a given number of receptors. Hence 1344 

not all receptors are (de)methylated at a given time [33]. The ensemble average of equation 1345 

(A.38), describing the average methylation dynamics, is: 1346 
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ݐ݀ۄ݉ۃ݀ =  − ௕ݓ  ஻்ܰܰ ۄܣۃ  + ௥ݓ ோ்ܰܰ ሺͳ − .ܣሻ                                                ሺۄܣۃ ͵ͻሻ  
This identifies the ensemble averaged rate of (de)methylation, ݇ோ = ௥ݓ  ே�ே� (݇஻ = ௕ݓ  ேಳே�). 1347 

Subtracting equation (A.39) from equation (A.38) leads to the perturbative equation (A.32). This 1348 

enables to define ܾߜ௞ and ݎߜ௞as: 1349 

௞ݎߜ = ௥ሺͳݓ − ሻۄܣۃ ௞ݎ) − ோ்ܰܰ)                                                  ሺܣ. ͶͲሻ 

௞ܾߜ = ۄܣۃ௕ݓ (ܾ௞ − ஻்ܰܰ)                                                         ሺܣ. Ͷͳሻ 

These equations enable to identify ݎߜ௞ (ܾߜ௞) as the fluctuations in occupancy of a given receptor 1350 

by CheR (CheB) and thus ݏ௥௕ሺ߱ሻ as the power spectrum of enzyme binding dynamics.  1351 

Although noisy, ݏ௥௕ሺ߱ሻ appeared to decrease at low frequency (Figure 4 – Figure Supplement 1352 

8). Such a decrease indicates anti-correlations [95] in the binding dynamics of the methylation 1353 

enzymes at their substrates, which is consistent with the common assumption that CheR (CheB) 1354 

loads and acts only on the inactive (active) receptor. For the example of CheR, this activity 1355 

dependence implies that once receptor is active, it will not allow CheR to reload and restart 1356 

acting until it switches back into the inactive state, thus introducing a delay in the rebinding of 1357 

the enzyme. As a consequence, enzyme binding anti-correlates on the time scale of this delay.   1358 

  1359 
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4. Simulation of a simplified model for the array of receptors 1360 

In order to reproduce semi-qualitatively the features of the CheR+ CheB+ behavior displayed in 1361 

Figure 4, a simple model of the receptor array was simulated. The standard values of all 1362 

simulation parameters are given in Appendix – Table 1. The simulated array is composed of 1363 

tܰୣam = ͵ͲͲ independent MWC signaling teams. The MWC model was chosen for simplicity, 1364 

and it is expected to lead to qualitative but not necessarily quantitative match between 1365 

simulations and experiments. Each signaling team is composed of ௥ܰ௖௣ =  ͵ܰ receptor dimers – 1366 

each of which counts 8 methylation sites. The Boolean activity ܽ௞ of the signaling team evolves 1367 

according to: 1368 

݀ܽ௞݀ݐ = ௔ݓ− (ܽ௞ − ͳͳ + ݁�) , ܨ  = ܰ Δ ଴݂ − ݇ଵ(݉௞ − ௥ܰ௖௣ ݉଴)                      ሺܣ. Ͷʹሻ 

Here, Δ ଴݂ is the attractant dependant stimulation, ݓ௔is the flipping rate of the kinase and ݉௞ is 1369 

the total methylation level of the team.  1370 

If ݉௞ is fixed, Equation (A.42) is a simple model for the ΔcheRΔcheB case. Since the activity of 1371 

a single team can only take 0 or 1 as a value, it fluctuates between these two values, being only 1372 

on average equal to ͳ/ሺͳ + ݁�ሻ. Since the teams are uncoordinated, the average activity of the 1373 

whole cluster will fluctuate as well. This dynamics represents the thermal fluctuations in a MWC 1374 

model. This dynamics was simulated for T = 1000 s after an equilibration period from a random 1375 

initial condition of same duration, for ݊ =  ͳͲͲ repeats, with ܨ = Ͳ, i.e. ۄܽۃ = Ͳ.ͷ. Increasing 1376 

latencies in the response to stimulations of the receptor cluster were modeled by decreasing ݓ௔, 1377 

for a fixed amplification factor ܰ  =  ͳͶ. As expected, the thermal fluctuations were slower for 1378 

lower ݓ௔. The maximal amplitude of the fluctuations was also larger when ݓ௔ was larger (Figure 1379 
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4 – Figure Supplement 4). Increasing N while keeping the total number of receptors constant (i.e. 1380 

decreasing ܰ ௧௘௔௠ accordingly), at fixed ݓ௔, led to an increased amplitude of the fluctuations, 1381 

their temporal dependences being however not affected (Figure 4 – Figure Supplement 4). The 1382 

power spectra however differed from experimental data. The amplitude was underestimated 1383 

because the MWC does not allow applying thermal fluctuations to individual receptor. The time 1384 

dependence was also different because we modeled the slow receptor cluster dynamics by 1385 

lengthening the switching rate ݓ௔, which is the only time scale of the model, where in reality 1386 

they probably are different processes.  1387 

In the CheR+ CheB+ case, the methylation level evolves according to: 1388 

݀݉௞݀ݐ = ௠ݓ ቀݎ௞ &(݉௞ < ͺ ௥ܰ௖௣) − ܾ௞ &ሺ݉௞ > Ͳሻቁ                                    ሺܣ. Ͷ͵ሻ 

Here ݎ௞  (ܾ௞) represents whether a CheR (CheB) protein is tethered to the team. Importantly, the 1389 

model assumes that only one enzyme may be tethered to the team at a time. (De)methylation 1390 

occurs at the rate ݓ௠ if CheR (CheB) is present and ݉௞ has not reached its maximal (minimal) 1391 

value. The enzyme tethering dynamics is given by the set of equation:  1392 

ݐ௞݀ݎ݀ = ௟ሺͳݓ − ௞ሻሺͳݎ − ܾ௞ሻሺͳ − ܽ௞ሻ − .ܣ௞ܽ௞                                    ሺݎ௨ݓ ͶͶሻ 

ܾ݀௞݀ݐ = ௟ሺͳݓ − ௞ሻሺͳݎ − ܾ௞ሻܽ௞ − ௨ܾ௞ሺͳݓ − ܽ௞ሻ                                   ሺܣ. Ͷͷሻ 

under the constraint ∑ ܾ௞௞ ≤ ܾ௧௢௧ and ∑ ௞௞ݎ ≤  ௧௢௧. This means that CheR (CheB) may only 1393ݎ

load, if free enzymes are available, on free inactive (active) receptors with rate ݓ௟ and unload 1394 

once the receptor turned active (inactive) with rate ݓ௨.  1395 
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The typical dynamics in the simulation will then be the following. Take, for example, a weakly 1396 

methylated team. Its activity will get to zero (Equation (A.42)). If free CheR is available, it will 1397 

load on the team (Equation (A.44)) and methylate it (Equation (A.43)), until the methylation 1398 

level is high enough to activate the team (Equation (A.42)). CheR will then unload (Equation 1399 

(A.44)), and a hypothetic free CheB can then load on the team (Equation (A.45)) to demethylate 1400 

it and bring it to its initial state. 1401 

The level of phosphorylated CheY of the simulated cell, also used as an output of the model, 1402 

evolves according to: 1403 

ݐ݀ݕ݀  = ௬ݓ  ቌ ͳ௧ܰ௘௔௠ ∑ ܽ௞ே೟��೘
௞=ଵ − .ܣቍ                                                   ሺݕ Ͷ͸ሻ 

Output quantities were averaged over n = 100 independent simulations of single cells. 1404 

In practice, ݓ௨, ݓ௟ and ݓ௔were chosen of the same order of magnitude, and they were the 1405 

slowest dynamics, whereas ݓ௠ was the fastest, in order to obtain reasonable dynamics.  1406 

Starting from a random initial condition, the system was let to equilibrate at Δ ଴݂ =  Ͳ for 100 1407 

times the slowest time scale of the system (ͳ/ݓ௟). The system was then challenged with free 1408 

energy perturbation Δ ଴݂ = ln ሺͳ + Ͳ.͵/͹ሻ (mimicking the experimental conditions) to measure 1409 

the step response function, computed as ݃௦௜௠௨ሺݐሻ = Δ௬ሺ௧ሻே౛౜౜Δ௙0. Figure 4 – Figure Supplement 9A 1410 

shows the normalized step response function compared to its experimental counterpart with 1411 

excellent agreement (although absolute amplitudes differed moderately).  1412 

A T = 800 s equilibrated run was further used to compute power spectra, using Equation (5) of 1413 

the main text. The power spectra of ݎ௞ and ܾ ௞, corresponding to the inferred ݏ௥௕ሺ߱ሻ defined in 1414 
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Equation (A.36), show good qualitative agreement with the experimental data, with a transition 1415 

from high values at frequencies larger than 0.01 Hz to low values below this threshold (Figure 4 1416 

– Figure Supplement 9B). This transition indicates anti-correlations in the occupancy of the 1417 

receptor teams by the enzymes, which emerge from their activity-dependant loading and 1418 

unloading. The two spectra are equal within noise by construction of the model (r and b play 1419 

symmetric roles). Furthermore, the simulated power spectrum of the activity ݏ஺ሺ߱ሻ was similar 1420 

to the experimental power spectrum corrected for long term cluster dynamics (compare Figure 1421 

4D with Figure 4 – Figure Supplement 9C). The amplitude of the power spectrum was however 1422 

~100 fold lower than in experiments, but in line with previous simulations [74].  1423 

Finally, from the power spectrum of the CheY-P level ݏ௒ሺ߱ሻ, which was very close to ݏ஺ሺ߱ሻ, an 1424 

effective temperature can be computed as 1425 

TTୣ ୤୤  = ሺͳۄAۃʹ − ሻ௧ܰ௘௔௠ۄAۃ ݃̂௦௜௠௨ሺ߱ሻݏ௒ሺ߱ሻ                                                   ሺܣ. Ͷ͹ሻ 

 It compares qualitatively well with the experimental effective temperature, with concordant 1426 

frequencies of divergence (Figure 4 – Figure Supplement 9D). Differences appear for the lowest 1427 

frequencies, probably because of the long-term dynamics of the receptor clusters, which was not 1428 

accounted for by these simulations. 1429 

All things being otherwise equal, modifying ܰ to 2 and ܰ ௧௘௔௠ to 2100, which models the 1430 

disruption of the chemoreceptor clusters into individual trimers of dimers, reduced strongly the 1431 

fluctuations in activity (Figure 4 – Figure Supplement 9C). Decreasing the specific rate of 1432 

receptor (de)methylation when the enzyme is bound to the receptors, ݓ௠, to ݓ௠ = Ͳ.Ͳͳ͸ s-1 had 1433 

however little effect (Figure 4 – Figure Supplement 9C). Note that in both cases the adaptation 1434 
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time is reduced by a similar factor (7 and 6, respectively), since this time is proportional to the 1435 

product ܰ ߱௠, as evident from equations (A.41) and (A.42). 1436 

Conditional tethering of the adaptation enzymes to the receptors therefore seems to account 1437 

relatively well for the observed dynamics. One important discrepancy between simulations and 1438 

experiments is in the amplitudes of the fluctuations, which are much larger than expected in 1439 

experiments, when the simple MWC model is considered.  1440 

Appendix-Table 1 1441 

Parameter Value Reference 

ܰ 14 
This study (based on 
experimental values) 

௧ܰ௘௔௠ 300 
This study (based on 
experimental values) ݇ଵ 0.016 Adapted from [96] 

 ௠ 1 s-1 This studyݓ

 ௟ 0.15 s-1 This studyݓ

 ௨ 0.5 s-1 This studyݓ

 ௬ 1 s-1 [93]ݓ

 ௔ 0.25 s-1 This studyݓ

ܾ௧௢௧ 240 [29] 

 ௧௢௧ 140 [29]ݎ

 1442 
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