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Abstract Gut bacteria occupy the interface between the organism and the external

environment, contributing to homeostasis and disease. Yet, the causal role of the gut microbiota

during host aging is largely unexplored. Here, using the African turquoise killifish (Nothobranchius

furzeri), a naturally short-lived vertebrate, we show that the gut microbiota plays a key role in

modulating vertebrate life span. Recolonizing the gut of middle-age individuals with bacteria from

young donors resulted in life span extension and delayed behavioral decline. This intervention

prevented the decrease in microbial diversity associated with host aging and maintained a young-

like gut bacterial community, characterized by overrepresentation of the key genera

Exiguobacterium, Planococcus, Propionigenium and Psychrobacter. Our findings demonstrate that

the natural microbial gut community of young individuals can causally induce long-lasting beneficial

systemic effects that lead to life span extension in a vertebrate model.

DOI: 10.7554/eLife.27014.001

Introduction
Life expectancy of different species in nature is regulated by a complex combination of genetic and

non-genetic factors. Genetic manipulations in model organisms have revealed key conserved molec-

ular pathways, including the insulin-IGF1 and the mTOR pathways, which regulate aging and life

span across several species, spanning from yeast to mammals (Kapahi et al., 2010; Kenyon et al.,

1993; Lapierre and Hansen, 2012). Environmental interventions such as temperature and dietary

manipulations have also been importantly associated with life span modulation in several species.

Among these, lower temperatures (Conti et al., 2006; Miquel et al., 1976; Valenzano et al.,

2006a; Van Voorhies and Ward, 1999) and reduced nutrient intake (Fontana et al., 2010;

Mair and Dillin, 2008) are key environmental factors that have been associated with prolonged life

span.

Complex microbial communities covering external surfaces live at the interface between organ-

isms and the external environment – from roots and leaves in plants, to skin, mucosal surfaces and

gut in animals. These microbial communities participate in a wide range of key biological processes,

including nutrient absorption (Semova et al., 2012), development (Sommer and Bäckhed, 2013),

metabolism (Nicholson et al., 2012), immune modulation (Geva-Zatorsky et al., 2017), defense

against pathogens (Kamada et al., 2013; Schuijt et al., 2016) and disease (Sampson et al., 2016).

Individual gut microbiota (GM) composition changes dramatically in various diseases

(Baumgart and Carding, 2007; Garrett, 2015; Sokol et al., 2008) and during aging in flies, mice

and humans (Clark et al., 2015; Langille et al., 2014; O’Toole and Jeffery, 2015). Healthy GM is
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typically characterized by large bacterial taxonomic diversity, whereas frailty is associated with loss

of diversity and expansion of more pathogenic bacterial species (Claesson et al., 2012). Following

antibiotic treatment, pathogenic bacterial species, such as Clostridium difficile and Enterococcus fae-

calis, can restructure the human GM and cause severe chronic conditions that pose a major threat

for public health (Bäckhed et al., 2012; Cox and Blaser, 2015). Studies across different human age

cohorts have shown that large changes in the abundance of subdominant bacterial taxa in the gut

are a hallmark of aging; moreover, exceptionally long-lived individuals – including supercentenarians

– are characterized by the persistence of bacterial taxa associated with a more healthy status

(Biagi et al., 2016). While diversity-associated microbial taxa often decline during age, specific bac-

terial taxa, such as Clostridiales, are associated with malnutrition and increased frailty (O’Toole and

Jeffery, 2015). In flies, reducing GM dysbiosis by improving immune homeostasis promotes longer

life span (Guo et al., 2014; Li et al., 2016). Manipulating the GM towards a healthy state has the

therapeutic potential to improve health in specific diseases (Dodin and Katz, 2014; Kunde et al.,

2013). However, due to the lack of suitable short-lived vertebrate experimental models, it is not

known whether age-associated gut microbial community changes causally affect the aging process

and whether resetting a young GM in middle-age individuals can improve long-term health and

affect individual life span in normal aging individuals.

In this study, we develop the turquoise killifish (Nothobranchius furzeri), a naturally short-lived ver-

tebrate species with a life span of a few months in captivity (Valenzano et al., 2015), as a new

model organism to study aging in the host gut and microbiota. We show that turquoise killifish (TK)

have a complex GM (both in the wild and in captivity), similar in taxonomic diversity to that of mam-

mals. We also show that during aging the overall microbial diversity in the TK gut decreases, with

increased over-representation of pathogenic Proteobacteria. By acutely recolonizing middle-age

individuals with GM from young donors, we developed an intervention that enabled fish to live sig-

nificantly longer, remain more active at old age, and maintain a highly diverse GM. Transcriptome

analysis additionally revealed that gut aging is associated with increased inflammation and reduced

eLife digest Our bodies are home to lots of microorganisms, many of which are found

throughout the gut. Gut microbes play important roles in human health, where they cooperate with

our own cells to develop the immune system, synthesize essential vitamins, and help to absorb

nutrients. When the cooperation between our own cells and the gut microbes fails, the microbial

community within the gut can become a source of infection, sometimes leading to life-threatening

diseases.

Healthy individuals typically have many different types gut microbes, whereas people with poor

health, or older individuals, will often have less diverse and a higher percentage of disease-causing

microbes. For example, African turquoise killifish only live a few months, during which the

composition of their gut microbes undergoes dramatic changes. While young fish harbor highly

diverse microbial communities, older fish have less diverse communities and more microbes

associated with disease. Until now, it was not known whether manipulating the gut composition

could affect the aging process.

By using the killifish as a model for their study, Smith et al. revealed that gut microbes affect how

the fish survived and aged. When the guts of middle-aged fish were colonized with microbes

transferred from younger fish, the older fish lived longer and were more active later in life. These

fish also maintained a more diverse microbial community throughout their adulthood and shared key

microbes with young fish – possibly associated with the improved health benefits. These results

suggest that controlling the composition of the gut microbes can improve health and increase life

span.

The model system used in this study could provide new ways to manipulate the gut microbial

community and gain key insights into how the gut microbes affect aging. Manipulating gut microbes

to resemble a community found in young individuals could be a strategy to delay the onset of age-

related diseases.

DOI: 10.7554/eLife.27014.002

Smith et al. eLife 2017;6:e27014. DOI: 10.7554/eLife.27014 2 of 26

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.27014.002
http://dx.doi.org/10.7554/eLife.27014


proliferation. Here we provide the first evidence that acute gut microbiota transfer in the context of

normal aging can significantly prolong life span in a vertebrate, becoming a novel candidate life

span enhancing intervention. Our study also promotes the turquoise killifish as a highly suitable ver-

tebrate model system to study the crosstalk between intestine and gut microbiota during host

aging.

Results

The TK is a short-lived vertebrate with a complex GM
The TK is a naturally short-lived vertebrate, whose genome sequence has become available

(Reichwald et al., 2015; Valenzano et al., 2015) and that is amenable to genetic manipulations via

transgenesis or genome editing (Harel et al., 2015; Valenzano et al., 2011). Remarkably, this spe-

cies is characterized by a broad spectrum of aging phenotypes, including cancer, neurodegenera-

tion, and behavioral decline (Harel and Brunet, 2015; Kim et al., 2016). TK are adapted to living in

conditions of intermittent availability of water and to surviving during brief rainy seasons and long

dry seasons (Cellerino et al., 2016). In captivity, it lives between four to eight months, depending

on the strain (Valenzano et al., 2015). However, nothing is known about its associated commensal

microbes and whether its gut microbial complexity and taxonomic richness matches that of short-

lived invertebrate model organisms, such as worms and flies, or that of longer-lived vertebrate

model organisms, such as mice and zebrafish. To determine the TK’s gut microbial composition, we

sequenced the hyper-variable V3/V4 regions of the 16S rRNA gene amplicon from intestines of cap-

tive TK (n = 11, Materials and methods). We found that TK are characterized by a gut microbial taxo-

nomic diversity similar to other, longer-lived vertebrates, including zebrafish, mice and humans

(Kostic et al., 2013; Qin et al., 2010; Stephens et al., 2016) (Figure 1A, Figure 1—source data 1

and 2). This bacterial taxonomic diversity is an order of magnitude higher than the gut microbial

diversity present in invertebrate model organisms such as worms (Cabreiro and Gems, 2013) and

flies (Buchon et al., 2013) in the laboratory (Figure 1A). Remarkably, the four most abundant bacte-

rial phyla present in the TK’s gut, i.e. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes,

are also the four most abundant human gut bacterial divisions (Zoetendal et al., 2006) (Figure 1B

and Figure 1—source data 1 and 2), although in different proportions (Figure 1A). The unique com-

bination of a complex gut microbial composition, similar to that of other vertebrate aging model

organisms, and its naturally short life span, combined with a wide spectrum of aging phenotypes,

makes the turquoise killifish an ideal system to study the role of the gut microbiota during vertebrate

aging.

Wild and captive TK populations share a core GM
To assess whether the GM of captive TK was representative of the microbial communities associated

with wild populations, we sequenced 16S rRNA gene amplicons from individual fish that we col-

lected from different localities in the natural habitat of this species, ranging from the Gonarezhou

National Park in Zimbabwe to the Gaza region in Mozambique (Figure 2A, Figure 2—figure supple-

ment 1B, Figure 2—source data 1, Materials and methods). Sequencing these wild populations

confirmed that Proteobacteria was the dominant phylum also in most wild populations, similar to

laboratory fish (Figure 2B, Figure 2—figure supplement 1C). Individuals from all wild populations

had a more diverse GM than laboratory fish (Figure 2C, Shannon alpha diversity, Dunn Kruskal-Wallis

test, BH-adjusted p values < 0.05). While standard frequency-based diversity measures of observed

bacterial taxonomic units (OTUs) (Simpson’s and phylogenetic alpha diversity across the whole tree,

observed OTUs, Figure 2—figure supplement 1A) were higher in wild populations, Chao1 alpha

diversity, which gives more weight to rare bacterial OTUs, was higher in laboratory fish (Figure 2—

figure supplement 1A). These results possibly reflect the fact that laboratory fish are dominated by

few, high-abundance OTUs, hence resulting in having more ‘rare’ bacterial taxonomic units com-

pared to wild populations. Differences in OTU abundance between laboratory-raised and wild fish

might reflect ecological differences between the standardized laboratory conditions and the more

heterogeneous wild environment, characterized by fluctuations in temperature, nutrients as well as

other biotic and abiotic factors (Blažek et al., 2017). To test whether differences in ecology across

distinct wild fish populations influenced bacterial diversity levels, we ran a regression model between
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diversity indexes and different recorded ecological factors, including altitude, pond size, maximum

pond depth, vegetation, water conductivity, water temperature and water turbidity (Figure 2—

source data 2). None of the recorded factors was significantly correlated to alpha diversity levels

(data not shown). This suggests that other parameters, such as food availability, fish genetics, and

presence of parasites or additional biotic or abiotic factors might be the key determinants of fish

GM composition in the wild.

Although microbiota diversity in wild populations was higher than in laboratory-raised fish, the

microbial composition of laboratory fish was not separated from the species-specific bacterial com-

position in wild fish, and was contained within the natural microbial variation of the species

(Figure 2D). Importantly, one wild population (M1) had a divergent composition from all other pop-

ulations, possibly due to over-representation of Planctomycetes (Figure 2B and D, Figure 2—figure

supplement 1C and E). Within-group diversity measures (beta diversity) showed that, while labora-

tory fish’s bacterial diversity was lower than in the wild populations, between-group bacterial diver-

sity was higher between population M1 and all the other populations, including laboratory fish

(Figure 2E–F). These results indicate that population M1 had a more divergent microbial diversity of

all the tested populations, and that the laboratory fish were not an outlier group (Figure 2D). Based

on this, laboratory fish share a core microbiota with wild populations, despite the differences in cul-

turing conditions between the laboratory and the wild, similar to what is seen in zebrafish

(Roeselers et al., 2011). Thus, while wild turquoise killifish populations differ from one another in

terms of microbial composition – possibly in association with ecological differences among different
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Figure 1. TK as a model to study aging of the GM. (A) Above: relative bacterial OTU composition (pie charts) and diversity (y-axis of upper plot) across

different aging model organisms (Figure 1—source data 1 and 2). Below: maximum life span (logarithm of days) in six model organisms, data from the

AnAge longevity database (http://genomics.senescence.info/species/). (B) Heatmap of ranked relative abundance of OTU composition at the phylum-

level for different model organisms (Figure 1—source data 1). Bacterial phyla are ordered by their relative abundance in the TK. The ranked

abundance is color-coded, with higher ranks (red) indicating greater relative abundance and lower ranks (blue) indicating lower relative abundance.

White cells mark phyla that are not detected in the respective model organism.

DOI: 10.7554/eLife.27014.003

The following source data is available for figure 1:

Source data 1. Ranked abundance of bacterial phyla shared among turquoise killifish (TK), zebrafish, mouse and human (Materials and methods).

DOI: 10.7554/eLife.27014.004

Source data 2. Relative phylum abundance of bacterial phyla shared among turquoise killifish (TK), zebrafish, mouse and human (Materials and methods).

DOI: 10.7554/eLife.27014.005
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Figure 2. Core microbiota is conserved between wild and captive TK. (A) Map location of wild populations collected in Zimbabwe (Z) and Mozambique

(M1 and M2). ZW: Zimbabwe; MZ: Mozambique; SA: South Africa. (B) Relative abundance of bacterial phyla in wild populations and laboratory fish. (C)

Shannon Index alpha diversity in laboratory and wild fish (L = laboratory, derived from individuals originally collected in Zimbabwe). (D) PCoA of the

Weighted UniFrac beta diversity distance for wild and laboratory fish. Adonis test: L vs. all groups: p value < 0.001, M2 vs. M1: p value < 0.001, Z vs. M1

and M2: p value < 0.05. (E) Dotplot of the Weighted UniFrac distance values to visualize beta diversity within (purple background) and between (green

background) the different populations. Single dots represent comparisons between individual fish. Red horizontal line indicates the median for each

comparison. (F) Heatmap of the Weighted UniFrac distance among wild populations and laboratory fish.

DOI: 10.7554/eLife.27014.006

The following source data and figure supplement are available for figure 2:

Source data 1. Collection points of the wild fish populations.

DOI: 10.7554/eLife.27014.007

Source data 2. Ecological factors associated with wild fish populations.

DOI: 10.7554/eLife.27014.008

Figure 2 continued on next page
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localities – laboratory fish recapitulate the core gut microbiota of wild populations, making them ide-

ally suited to study how a complex microbiota influences host physiology.

Aging in the TK is associated with loss of microbial diversity and
decreased expression of genetic markers of gut health
An important question is what changes in the gut microbial population occur during aging in verte-

brates. To gain insight into the changes in GM composition occurring throughout aging in the TK,

we performed 16S rRNA gene amplicon surveys in the gastrointestinal tract of 6-week-old young-

adult and 16-week-old individuals raised in captivity (Figure 3A, n = 16 young and 14 old fish). We

found that bacterial taxonomic diversity (alpha diversity) significantly decreased between 6-week-old

and 16-week-old fish, while bacterial abundance measured from stool was not changed (Figure 3B,

Figure 3—figure supplement 1A and B). This indicates that, similar to humans (Claesson et al.,

2012), aging in the TK is characterized by a significant reduction in gut bacterial richness. Bacterial

composition was also significantly altered between young and old fish guts (Figure 3C), including an

age-dependent decrease in Firmicutes (Kruskal-Wallis test, p value = 0.002) and Actinobacteria

(Kruskal-Wallis test, p value = 0.013). Young and old fish GM had significantly different community

structures (Figure 3C, Unweighted UniFrac p value < 0.001; Bray-Curtis p value < 0.001, Adonis

test, Figure 3—figure supplement 1C). While individual fish GM diversity was higher in young than

in old fish (Figure 3B), differences among old fish GM were more pronounced compared to young

fish (Unweighted UniFrac beta diversity, Bonferroni-corrected p value = 6.7E-06; Bray-Curtis p

value = 0.003; Figure 3—figure supplement 1D and E). This indicates that although aging in the TK

was associated with decreased bacterial taxonomic diversity within each fish’s gut, distinct old fish

guts had highly divergent bacterial communities. While young fish guts were significantly enriched

for Bacteroidetes, Firmicutes and Actinobacteria, old fish were dominated by Proteobacteria

(Figure 3D). We next investigated the predicted functional metagenome biomarkers associated with

young and old fish’s guts using PICRUSt (Langille et al., 2013) and LEfSe (Segata et al., 2011).

While young fish had GM associated with glycolysis and polysaccharide metabolism, old fish’s GM

was depleted of bacteria associated with carbohydrate, nucleotide and amino acid metabolism, and

was enriched for bacteria associated with pathogenesis, transport and catabolism (Figure 3E). In

particular, bacterial motility and flagellar assembly was strongly increased in GM from old fish. These

terms are associated with increased virulence in bacteria (Josenhans and Suerbaum, 2002), sup-

porting that old fish had a higher prevalence of potentially pathogenic bacteria.

To examine whether metagenomic biomarkers from bacterial taxonomic diversity (i.e. OTU) data

were consistent with host responses, we asked which were the transcriptional changes in the gut

associated with young and old status. To this end, we performed an RNA-Seq analysis of whole gut

in four 6-week-old and four 16-week-old fish (Figure 3F and G, Figure 3—figure supplement 2 and

Materials and methods). Young fish had a distinct expression signature of active proliferation

(Figure 3G, Figure 3—figure supplement 2), consistent with the bacterial metagenomic signature

of replication. Old fish, on the other hand, had significant Gene Ontology terms associated with

immune and defense responses against pathogens as well as inflammation, consistent with the bac-

terial metagenome signatures associated with host disease and overall virulence. Together, these

results strongly support that in old individuals both changes in bacterial composition and gut tran-

scriptome are consistent with a markedly pathological gut environment, while young fish are charac-

terized by a molecular signature of healthy gut and a commensal bacterial community.

Young GM transfer prolongs life span and delays age-dependent motor
decline
Interventions aimed at directly modifying the complex microbial composition in experimental organ-

isms and patients have been mostly focused on treating diseases such as Clostridium difficile infec-

tions (Dodin and Katz, 2014; Lee et al., 2016), as well as obesity and type two diabetes

Figure 2 continued

Figure supplement 1. Bacterial diversity measures in captive and wild turquoise killifish populations.

DOI: 10.7554/eLife.27014.009
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Figure 3. Changes in GM and gut transcriptome between young and old fish. (A) Representative 6-week-old (young) and 16-week-old (old) male TK. (B)

Alpha diversity changes in observed OTUs in young (6 weeks) and old (16 weeks) TK. N = 16 6-week-old fish and 14 16-week-old fish. The groups are

compared using the Mann Whitney U test; ** indicates a p value < 0.001. (C) Beta diversity microbiota analysis separates samples based on age.

Above: Bray-Curtis analysis, below: Unweighted UniFrac analysis. TW: tank water control. Adonis test, p value < 0.001 in both comparisons between 6-
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(Kootte et al., 2012; Turnbaugh et al., 2006). However, the impact of a young GM in modulating

aging and life span has not been explored to date in vertebrates (Clark et al., 2015). To test

whether resetting a young-like GM in middle-age could impact aging and affect life span, we treated

middle-age fish (9.5-week-old) overnight with an antibiotic cocktail (VMNA, i.e. vancomycin, metroni-

dazole, neomycin, ampicillin) (Figure 4A, Figure 4—figure supplement 1A and Materials and meth-

ods). The antibiotic treatment significantly reduced gut microbial content compared to pre-

treatment levels (Figure 4—figure supplement 1B). Antibiotic-treated fish were then exposed for

12 hr to the following conditions: 6-week-old donor fish gut content (Ymt), 9.5-week-old fish gut

content (Omt) and sham (Abx) (Figure 4A and Figure 4—figure supplement 1A). After antibiotic

treatment and 12 hr acute gut recolonization, fish were reintroduced in the water recirculation sys-

tem in individual tanks and were subjected to regular feeding (Materials and methods). Their survival

under the different experimental conditions was then scored (Figure 4—source data 1 and Fig-

ure 4—figure supplement 1D for the replicates of the survival experiments). Ymt fish underwent

dramatic life span prolongation compared to three control groups, which received: (i) antibiotic-only

(Abx) (21% life span increase in median life span, Logrank test p value = 5.89E-05), (ii) antibiotics

and same-age (i.e. 9.5 weeks) gut content (Omt) (41% increase in median life span, Logrank test p

value = 5.08E-06), or (iii) no-treatment (wt) (37% increase in median life span, Logrank test p

value = 4.04E-09) (Figure 4B and Figure 4—figure supplement 1D). Noteworthy, acute antibiotic

treatment alone was sufficient to increase fish life span compared to the wt group (14% median life

span increase, Logrank test p value = 0.0129) (Figure 4B). However, Omt fish did not live longer

than the control, wt group (Figure 4B). Since Abx outlived Omt and wild-type fish, while Ymt fish

outlived Abx fish, it is plausible that middle-age GM composition might be primed to induce dam-

age in the host and that its removal is therefore beneficial. However, as the recolonization of mid-

dle-age individuals with young fish gut content after antibiotic treatment prolongs life span even

more, this implies that young GM, per se, has beneficial effects on host physiology that are additive

to the effects of the antibiotic treatment.

We then asked whether treating young fish with old fish GM could also affect life span. Com-

pared to fish that received either the same-age GM or to untreated control fish, 6-week-old fish

receiving 16-week-old fish’s GM after antibiotic treatment did not have a different life span (Fig-

ure 4—figure supplement 1C). Additionally, unlike middle-age fish treated with antibiotics, young

fish receiving antibiotic treatment did not live longer than untreated control fish (Figure 4—figure

supplement 1C, Figure 4—source data 2). These results suggest that the timing of GM transfer is

critical to inducing systemic effects and modulating life span.

It was shown in previous work that spontaneous exploratory behavior in TK decreases with age

(Genade et al., 2005; Valenzano et al., 2006b). We therefore asked whether treating middle-age

fish with young fish GM after antibiotic treatment could improve exploratory behavior performance,

considered as an integrated measure of individual health. Using an automatic video-tracking system

(Materials and methods), we assayed spontaneous locomotor activity. Young, 6-week-old fish, were

significantly more active than 16-week-old fish (Figure 4—source data 3 and Figure 4C, Kruskal-

Wallis chi-squared = 10.752, df = 1, p value = 0.00104). Remarkably, Ymt were more active at 16

weeks of life than Omt and wt fish at the same age, resembling younger fish performance

Figure 3 continued

week and 16-week-old fish. (D) Cladogram representing microbial taxa enriched in young (green) versus old (red) individuals. (E) Predicted

metagenome function in young (green) and old (red) groups (LEfSe), representing functions with p value < 0.001. The x-axis indicates the Linear

Discriminant Analysis score for all the significant metabolic functions. (F) Expression heatmap for the twenty top differentially expressed genes (DEGs)

between young and old fish (n = 4 for each group). Blue to red color represent low to high expression. Top 20 genes are highly expressed in old fish,

the bottom 20 are highly expressed in young fish. (G) Top 20 Gene Ontology (GO) terms of the DEGs between young and old fish. Enrichment values

(bars) and the negative natural logarithm of p values (black dots) are shown.

DOI: 10.7554/eLife.27014.010

The following figure supplements are available for figure 3:

Figure supplement 1. Aging in the GM: bacterial diversity.

DOI: 10.7554/eLife.27014.011

Figure supplement 2. RNA-Seq analysis of young and old fish intestines.

DOI: 10.7554/eLife.27014.012
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Figure 4. Transferring young GM to adult fish prolongs life span and delays motor decline. (A) Schematic representation of the microbial transfer

experiment (Materials and methods). Experimental group legend, Abx: fish receiving only antibiotic treatment at 9.5 weeks without direct

recolonization. Omt: fish receiving same-age GM transfer after antibiotic treatment at 9.5 weeks. Wt: wild-type, untreated fish. Ymt: fish receiving 6-

week-old fish GM transfer after antibiotic treatment at 9.5 weeks. VMNA: antibiotic cocktail of vancomycin, metronidazole, neomycin and ampicillin. (B)

Survival analysis. Statistical significance is calculated by Logrank test. * indicates a p value < 0.05; *** indicates a p value < 0.001. (C) Exploratory

behavior in different treatments. Y-axis indicates average distance (in meters) covered in 20 min. Young and old wild-types are compared with a

Kruskal-Wallis test (left), the remaining groups are compared using a Dunn Kruskal-Wallis test for multiple comparisons, and the p values are adjusted

based on BH correction. Statistical significance: * indicates a p value < 0.05; ** indicates a p value < 0.01; *** indicates a p value < 0.001.

DOI: 10.7554/eLife.27014.013

The following source data and figure supplement are available for figure 4:

Source data 1. Survival data for transfer experiment after antibiotic treatment at 9.5 weeks of age.

DOI: 10.7554/eLife.27014.014

Source data 2. Survival data for transfer experiment after antibiotic treatment at 6 weeks of age.

Figure 4 continued on next page

Smith et al. eLife 2017;6:e27014. DOI: 10.7554/eLife.27014 9 of 26

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.27014.013
http://dx.doi.org/10.7554/eLife.27014.014
http://dx.doi.org/10.7554/eLife.27014


(Figure 4C, Dunn Kruskal-Wallis multiple comparison test, BH-adjusted p value = 0.004). Addition-

ally, all groups except Ymt underwent a significant decrease in spontaneous locomotor activity from

a week post transfer to 16 weeks of life. This suggests that the transfer of young fish gut content

had long-lasting effects on a global measure of physiological health, influencing individual survival

and spontaneous exploratory behavior. Thus, depleting middle-age individuals from their resident

GM was beneficial when acutely recolonized by young-associated GM (Ymt), and in part also when it

was not followed by any acute recolonization (Abx). On the other hand, acutely recolonizing the gut

with same age GM after antibiotic treatment did not lead to differences compared to the untreated

control group. These results establish gut microbial recolonization as a powerful life span enhancing

intervention, which leads to significant effects also on behavioral performance.

Acute GM transfer affects microbial composition at old age
To assess the extent to which one acute transfer reset the GM in recipient fish after VMNA antibiotic

treatment, we performed 16S rRNA gene amplicon surveys in fish that underwent microbial transfer

at 9.5 weeks of age. Untreated 6-week-old (6wk) and 16-week-old (16wk) fish were also included in

the analysis. One week post transfer there were no significant differences in alpha diversity metrics

among treatment groups (Figure 5—figure supplement 1A and B). Remarkably, the GM of 10-

week-old wild-type fish (10wk) was intermediate between 6wk and 16wk fish (Figure 5—figure sup-

plement 1A–D). However, at one-week post transfer, Ymt and Omt fish had already significantly dif-

ferent gut microbial population diversity (Unweighted UniFrac and Bray-Curtis distances, Figure 5—

figure supplement 1C and D and Figure 5—source data 1). Seven weeks after the microbial trans-

fer (16 weeks of age, corresponding to the median life span for this species in captivity), Ymt fish

had significantly higher bacterial richness compared to wild-type, 16-week-old fish (Figure 5A, Dunn

Kruskal-Wallis test, BH-adjusted p value = 0.009). This shows that one acute transfer had long-lasting

effects on GM diversity. Bacterial OTU abundance at 16 weeks was higher in Ymt fish compared to

Omt fish (Figure 5A), but lower than 6-week-old wild-type fish (6wk).

GM community structure in Ymt fish was also significantly altered compared to Omt and 16wk

(Figure 5B and Figure 5—figure supplement 1E); however, it did not statistically differ from young

wild-type fish, i.e. the 6wk group. Furthermore, based on hierarchical clustering, Ymt fish clustered

preferentially with 6wk fish (Figure 5C), showing that the GM-transfer from young donors signifi-

cantly reset a young-like GM.

Young fish (6wk), as well as fish treated with young GM (Ymt), were more enriched with members

of the Bacteroidetes and Firmicutes (Figure 5D) and with the genera Carnobacterium, Arthrobacter,

Exiguobacterium, Planococcus, Psychrobacter, Enterococcus and Halomonas (Figure 5E). Addition-

ally, analyzing the correlation between bacterial genera abundance and the group-specific median

lifespan, we identified a set of bacterial genera whose abundance is highly correlated with group-

specific longevity (Figure 5—source data 2).

We then used predicted functional metagenome analysis from GM composition to compare

experimental fish groups receiving same-age GM transfer and no-treatment controls to young fish

and fish receiving young gut content. The latter group was enriched for increased saccharolytic

potential, DNA repair and recombination among other functions (Figure 5—figure supplement 1F),

which are functional terms associated with a younger, healthy-like physiological state. Together,

these results show that gut microbial recolonization from young killifish resulted in increased micro-

bial diversity and a persistence of a young-like bacterial community until old age, whose composition

could be at least in part responsible for the life span prolongation.

Figure 4 continued

DOI: 10.7554/eLife.27014.015

Source data 3. Spontaneous locomotor activity (cm/20 min).

DOI: 10.7554/eLife.27014.016

Figure supplement 1. Experimental design and consequences of gut microbiota transfer protocol.

DOI: 10.7554/eLife.27014.017
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Figure 5. Microbiota transfer at 9.5 weeks influences microbial composition at 16 weeks. (A) Alpha diversity measured by number of observed OTUs in

experimental groups at 16 weeks (16wk, Abx, Omt, Ymt) and young controls (6wk). Dunn Kruskal-Wallis test for multiple comparisons. The p values are

adjusted based on BH correction. Statistical significance: ** indicates a p value < 0.01. (B) Microbiota community analysis using Bray-Curtis (above) and

Unweighted UniFrac (below) separates samples based on young vs. old GM treatment (significant p values are shown, Adonis test). (C) Hierarchical

Figure 5 continued on next page
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Microbial transfer determines bacterium-to-bacterium connectivity at
old age
To investigate whether gut recolonization affected bacterium-to-bacterium association in different

experimental groups, we harnessed OTU co-occurrence to generate bacterial connectivity networks

(Agler et al., 2016; Biagi et al., 2016). Significantly co-occurring genera within each group com-

posed a network, whose nodes were single bacterial genera. Bacterium-to-bacterium connections

(edges) were established based on r-square values (Materials and methods). Using this analysis, we

found that Proteobacteria had higher connectivity in the shorter-lived 16wk and Omt groups com-

pared to 6wk, Ymt and Abx (Figure 6A). Overall, 6wk and Ymt fish had the largest networks and a

higher number of highly-connected nodes (hub nodes), showing that a few genera of bacteria signifi-

cantly co-occurred with a large set of other bacterial genera (Figure 6B and C).

We then tested whether the relation between age of the host and bacterial connectivity observed

in TK guts was also conserved in mammals. To this end, we analyzed a published mouse 16S ampli-

con survey from an aging cohort (Langille et al., 2014). Similar to what we found in TK, young mice

GM had more significantly connected nodes and a higher number of bacterial hubs compared to

middle-age and old mice (Figure 6B, inset).

The identification of wild-type specific young and old-related hub bacterial genera enabled us to

study whether Ymt, Omt and Abx shared hub bacterial genera with either young or old fish groups.

Two hub bacterial clusters were identified in Ymt fish (Materials and methods). Strikingly, one was

composed of bacterial genera that were also hub-bacteria in young wild-type fish (6wk) and included

Exiguobacterium, Planococcus, Propionigenium and Psychrobacter (Figure 6C, Ymt network, green

nodes), while the other was composed of hub bacteria from old wild-type fish (16wk) hub and

included Propionibacterium, Delftia, and Citrobacter (Figure 6C and Figure 6—source data 1).

Remarkably, the bacterial hubs identified in Omt and Abx overlapped exclusively with the old wild-

type group (16wk) (Figure 6C, orange nodes, and Figure 6—source data 1). These results support

that bacterial network topology reflects host age both in fish and mice, with younger biological age

associated with larger networks. Acute microbiota transfers significantly affect gut microbial popula-

tion topology and subsets of bacterial genera are identified as hub nodes in young-like and old-like

microbial communities. Therefore, not only bacterial composition, but also bacterium-bacterium co-

occurrence carries a key signature of host life span and network topology depends on a few key bac-

terial hubs.

Microbial transfer affects expression of host genes associated with
defense to bacteria, Tor pathway and extracellular matrix
Because acute microbial transfer dramatically changed GM composition by resetting a young-like

microbial community in Ymt fish, we asked whether young GM transfer could also reset the host

transcriptome towards a young-like status. To this end, we performed host intestine RNA-Seq in

wild-type young (6wk) and old (16wk) fish, as well as in Omt and Ymt fish at 16 weeks of age

(Figure 7A and B, Figure 7—figure supplement 1 and Materials and methods). Interestingly, while

young GM transfer reset a young-like GM environment in aged fish, host gene transcripts separated

based on fish age, and all the transcriptomes obtained from 16 week old fish groups (16wk, Omt,

Figure 5 continued

clustering on OTU data. Significant clusters are highlighted by red rectangles. P values: au = approximately unbiased; bp: bootstrap probability. (D)

Cladogram of bacterial taxa enriched in young wild-type (6wk) and Ymt groups versus 16wk and Omt. (E) Boxplots of selected bacterial genera relative

abundance in experimental groups. Bacterial genera are those represented in Figure 5D, filtered by r-square value larger than 0.8, based on the

correlation between bacterial genus abundance vs. median life span in each individual group (Figure 5—source data 2).

DOI: 10.7554/eLife.27014.018

The following source data and figure supplement are available for figure 5:

Source data 1. Beta diversity significance at one-week post-transfer.

DOI: 10.7554/eLife.27014.019

Source data 2. Regression between lifespan and genus abundance.

DOI: 10.7554/eLife.27014.020

Figure supplement 1. Effects of gut microbiota transfer on OTU composition and metagenome.

DOI: 10.7554/eLife.27014.021
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Ymt) clustered together (Figure 7A). However, comparing transcriptomes in Omt and Ymt revealed

a distinct signature of defense response to bacteria in Ymt and increased expression of genes associ-

ated with hyaluronic acid metabolism in Omt (Figure 7B and C). Comparing the expression levels of

all groups to the 6wk group, we identified a set of genes whose expression in the gut was signifi-

cantly changed comparing 16wk and Omt with 6wk; comparing 16wk and Ymt, but unchanged

between Ymt and 6wk (Fisher exact test, Benjamini-Hochberg FDR = 0.1). These were genes associ-

ated with the TOR-pathway (DEPTOR) and with cell adhesion and extracellular matrix composition

(DSCAM) (Figure 7D), suggesting a potential difference in cell adhesion and gut permeability

between 16wk and Omt from one side, and Ymt and 6wk on the other side. Since we generated

OTU abundance tables for individual fish and we also sequenced intestinal transcripts for the same
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Figure 6. Bacterial co-occurrence connectivity. (A) Phyla composition of the bacterial co-occurrence networks in experimental groups at 16 weeks

(16wk, Ymt, Omt, Abx) and at 6 weeks (6wk) (Materials and methods). (B) Cumulative sum of degree distribution in co-occurrence networks of all

analyzed TK experimental groups (black: 6wk; dashed black line: 16wk; green: Ymt; red: Omt; blue: Abx) and a mouse cohort from (Langille et al.,

2014) (inset, green: young mice; orange: middle-age mice; red: old mice). X-axis shows the degree count and y-axis the cumulative sum of nodes with
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increases with degree count and circle color corresponds to 6wk hubs (green) or 16wk hubs (orange).

DOI: 10.7554/eLife.27014.022

The following source data is available for figure 6:

Source data 1. Network hubs of OTU-based networks.

DOI: 10.7554/eLife.27014.023
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Figure 7. Transcriptional changes in host intestine after acute GM transfer. (A) Cluster analysis of gut RNA-Seq from intestines from 6-week-old fish

(6wk) and 16-week-old fish (16wk, Omt (red) and Ymt (green)). (B) Expression heatmap for the 80 top differentially expressed genes (DEGs) between

Ymt and Omt fish (n = 4 for each group). *HAMP is the best protein blast hit in Danio rerio of the TK gene NFURG05812010005 (Figure 7—source

data 1). (C) Gene Ontology (GO) analysis of the DEGs between Ymt and Omt fish. Enrichment values (bars) and the negative natural logarithm of p

Figure 7 continued on next page
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individuals, we then generated an OTU-to-host transcripts correlation matrix (Figure 7—source

data 2). Taking advantage of this resource, we could identify the transcripts that were highly corre-

lated with the hub genera that are shared between Ymt and young fish (6wk) networks (Figure 6C,

Figure 7E and Figure 7—figure supplement 2). Remarkably, these genes include Jak2, an impor-

tant gene involved in cellular proliferation and differentiation, and several genes encoding S and L-

ribosomal proteins (RPS and RPL genes) (Figure 7—figure supplement 2), whose expression in

other species has been strongly associated with aging and longevity (Steffen et al., 2008). Thus,

while transfer of young GM to middle-age fish maintained a young-like GM community throughout

old age, the gene-expression signature associated with host gut at 16 weeks of age did not indicate

overall rejuvenation. However, enhanced defense response against bacteria in Ymt compared to

Omt is compatible with an increased capacity to resist to the attack of pathogenic gut bacteria,

which could provide the basis for longer life span. Remarkably, hyaluronic acid metabolism, altered

between the experimental groups receiving young and old gut contents, has been associated with

increased inflammation, deregulated immune response and risk for cancer (Cho et al., 2017;

Tian et al., 2013), all of which could provide the basis for life span modulation. Finally, we provide a

dataset that allows to associating OTU levels in individual fish to intestinal transcripts, enabling to

investigate on how GM and host gene expression are mutually regulated. This resource suggests

that transfer of young gut microbiota to middle-age individuals might be affecting host gut

proliferation and differentiation, as well as ribosomal biogenesis.

Discussion
Key aims of research on aging are to understand the molecular mechanisms behind the phenotypic

changes that occur during aging and to identify novel life span enhancing interventions. Using the

TK as a naturally short-lived vertebrate model system, we report the characterization of the changes

in GM composition occurring during aging and the discovery of a novel life span enhancing interven-

tion achieved by acutely transferring young GM to middle-age individuals after antibiotic treatment.

This intervention resulted in the maintenance of an overall healthier physiological status, a highly

diverse and young-like gut microbial community at late age and in an enhanced transcriptional signa-

ture of defense responses to bacteria.

Our results show that TK are characterized by a complex GM community, more species-rich than

worms and flies in laboratory conditions and of the same order of magnitude of mammals, both in

abundance and composition. Indeed, the four most abundant bacterial phyla observed in the TK are

also the four most abundant phyla found in humans and mice. However, unlike mammals, Proteobac-

teria is the most abundant gut bacterial phylum found in killifish, similarly to other aquatic species,

such as zebrafish (Roeselers et al., 2011). Since it is the shortest-lived vertebrate to date

Figure 7 continued
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The following source data and figure supplements are available for figure 7:

Source data 1. Best hits from zebrafish pBlast on DEGs not annotated in the Valenzano et al., 2015 genome paper.

DOI: 10.7554/eLife.27014.025

Source data 2. Bacterial OTU to host transcripts correlation matrix.

DOI: 10.7554/eLife.27014.026

Figure supplement 1. Volcano plots from the RNA-Seq data in the experimental groups.

DOI: 10.7554/eLife.27014.027

Figure supplement 2. OTU-transcript correlations between hub-genera.

DOI: 10.7554/eLife.27014.028
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reproduced in captivity, the TK can become an ideal model to dissect the links between GM diver-

sity and host aging.

Intriguingly, we show that while the gut bacterial diversity of captive-raised TK is lower than that

of wild-caught populations, captive fish still recapitulate the core microbial diversity of wild TK. Lab-

oratory-raised fish are not represented by distinct gut bacterial communities, but are rather domi-

nated by a few high-abundance bacterial taxa that are already present in wild killifish populations.

This supports the conclusion that fish raised in captivity have a GM community that is representative

for the species in nature. Additionally, we found that wild populations of TK show large between-

population gut bacterial diversity, with the emergence of population-specific high-abundance taxa.

This is plausibly caused by locality-specific differences in ecological conditions, including climate, soil

composition, parasites and diversity of food sources (Nezhybová et al., 2017; Reichard et al.,

2017).

Analyzing the changes in GM composition between young and old fish, we found that young fish

are characterized by a large taxonomic bacterial diversity. Old fish are less OTU-rich, similar to what

is observed in human cohorts from different age classes (Claesson et al., 2012). Intriguingly, while

individual bacterial diversity (alpha diversity) is higher in young individuals, old fish are more dissimi-

lar from one another, that is, while each individual old fish has a more homogeneous GM composi-

tion than young fish, any two old individuals have more divergent bacterial communities compared

to young individuals. This result raises the possibility that the changes in composition and relative

abundance in GM communities from young to old individuals could be a function of (i) initial individ-

ual GM composition, (ii) differences in individual immune system composition and function or (iii) a

combination of initial individual GM composition and host immune function.

Aging in this experimental model was not only associated with reduced bacterial species richness,

but more specifically with loss of bacterial taxonomic units involved in carbohydrate, nucleotide and

amino acid metabolism, which in mice are associated with aging (Langille et al., 2014). These same

changes have been associated in humans with unhealthy aging (Claesson et al., 2012;

Rampelli et al., 2013), as well as with chronic conditions such as obesity, type two diabetes and

insulin resistance (Neis et al., 2015). The shift in microbial composition between young and old fish

was consistently characterized by a higher prevalence of Proteobacteria in old individuals, while

young individuals were significantly more enriched in Firmicutes, Actinobacteria and Bacteroidetes.

Additionally, functional metagenome analysis showed that young fish had GM associated with carbo-

hydrate metabolism, replication and repair, as well as DNA repair, indicating the young GM’s ability

to protect itself against assault and thus maintain homeostasis. On the other hand, bacterial patho-

genicity in the gut is associated with the accumulation of mutations over time, induced by the failed

capacity to repair them (Leimbach et al., 2013). Old GM was enriched in potentially pathogenic

bacteria, associated with dysbiosis. Additionally, functional metagenome analysis on the bacterial

communities present in old fish guts indeed found them to be associated with host disease. Consis-

tently, while young gut transcriptomes were associated with high expression of host genes involved

in cell cycle activity, likely associated with proliferation and differentiation, old gut transcriptomes

were associated with host immune responses to pathogenic bacteria, reflecting the prevalence of

more pathogenic bacterial taxa.

Although GM transfers from young, healthy donors have found applications in the clinic to treat

acute gut infections such as those associated with Clostridium difficile (Lee et al., 2016) and have

been proposed to treat obesity, metabolic syndrome and even neurodegenerative diseases

(Marotz and Zarrinpar, 2016; Xu et al., 2015), the application of this methodology as an anti-aging

intervention has not been explored to date. Remarkably, despite single associations of different bac-

terial diets have shown to significantly affect life span in invertebrate model systems such as Caeno-

rhabditis elegans (Zhao et al., 2013), a functional test of the role of a complex GM community

associated with young age as an intervention aimed at modulating the recipient’s life span has not

yet been carried out to date. By acutely exposing middle-age individuals to young fish GM content –

after antibiotic treatment – we could prolong life span and retard the age-dependent decline in

exploratory behavior, which we showed to decline during normal aging. Noteworthy, our results

exclude that the effects of the interventions depend on repopulating the intestine with any GM com-

munity or that antibiotic treatment alone, delaying dysbiosis, was sufficient to explain the full extent

of life span increase achieved via transfer of young GM.
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Additionally, life span was not affected in young fish exposed to GM from old, young, and sham

control fish after antibiotic treatment. These results are compatible with a scenario where the age-

associated decline of immune function might be responsible for the progressively decreased capac-

ity of the host to (i) maintain the healthy portion of the GM community and (ii) counteract the prolif-

eration of potentially pathogenic gut bacteria. Since we observed that young fish receiving 16-week-

old gut microbiota content did not live significantly shorter than young, control fish, it is plausible

that dysbiosis, in the context of a young gut immune function, does not lead to increased mortality.

Fish treated with young GM after depletion of their own resident GM community not only main-

tained a more diverse microbial community at old age compared to wild-type, age-matched control

fish, but their microbial community remained more similar to that of young fish. This raises the possi-

bility that bacterial consortia associated with young fish can contribute to increased life span and

enhanced individual health status. Based on functional metagenomic analysis, young fish and fish

treated with young GM were enriched for bacteria associated with carbohydrate metabolism and

DNA repair, both importantly associated with host metabolism, health and longevity.

Young fish, as well as fish treated with young GM, had a high number of bacterial taxa that fre-

quently co-occurred with one another, de facto contributing to a young-associated bacterial net-

work. On the other end, old wild-type controls (16wk), as well as old fish treated with same age GM

(Omt), had smaller bacterial networks, possibly resulting from the higher inter-individual variation in

GM composition associated with these groups. Remarkably, applying our analyses to a published

mouse cohort (Langille et al., 2014), we extended this finding to mammals, confirming that net-

works built on GM OTU abundance are associated with host’s chronological age. Our network analy-

sis enabled us to identify a subset of highly frequent taxa associated with a young-like status and

with prolonged life span in fish treated with young GM. These involved the genera Exiguobacterium,

Planococcus, Propionigenium and Psychrobacter, which are key bacterial genera responsible for

structuring a healthy GM community in TK. Interestingly, species belonging to each of these genera

have been associated with energy metabolism and potential health benefits. Specifically, species of

Exiguobacterium and Propionigenium are able to metabolize cellulose and ferment carbohydrates

to produce short chain fatty acids, which are known anti-inflammatory mediators and can modulate

the immune system. Planococcus species can hydrolyze gelatin to produce essential amino acids for

use by the host and certain Psychrobacter species are capable of producing omega-fatty acids.

Taken together, these key bacterial genera can produce metabolites capable of maintaining immune

system health and having anti-inflammatory effects on the host, both of which have been associated

with longevity.

While GM transfers significantly affected the GM composition of experimental fish, their overall

gut transcriptional profile showed that old fish clustered together regardless of the treatment. This

could be a consequence of the down-regulation of the transcriptional programs associated with

growth in all 16-week-old fish groups. However, transcripts involved in defense against pathogens,

extracellular matrix components and the Tor pathway, are dramatically different among experimen-

tal groups receiving young or same-age gut content, suggesting that these key aspects might ulti-

mately be fundamental modulators of organismal life span and health. Generating a correlation

matrix between bacterial abundance and gut transcripts, we could isolate host transcripts whose

expression was significantly correlated with specific OTUs. In particular, bacterial genera associated

with a healthier and longer life span, such as Psychrobacter and Exiguobacterium, had strong co-

occurrence with host genes importantly associated with aging modulation.

The lack of a generalized transcriptional gut rejuvenation in long-lived fish treated with young

GM, together with the fact that antibiotic-only treated fish live longer than control, untreated

groups, suggest that a delayed onset of dysbiosis could benefit the host and explain, at least in

part, the effects on survival. However, since fish receiving young GM live longer and have a young-

like locomotor performance compared to the antibiotic-only treated group, it is likely that, indepen-

dent from dysbiosis, young GM could directly benefit host physiology, possibly influencing metabo-

lism and immune function. Therefore, young GM could possibly lead to beneficial effects on host

survival and behavior performance both via delayed dysbiosis and direct favorable effects of subsets

of young microbes. Future work will help shed light on what specific aspects of the aging process

can be affected by resetting a young-like gut microbiota in aged individuals and whether this inter-

vention can be more broadly applied to other organisms, including mammals.
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Our results indicate that improving the ecological diversity of the GM in old individuals helps to

restore health and prolongs life span. Our approach could provide a key to slowing aging and

retarding the onset of age-associated diseases by specifically targeting the GM. Given its large bac-

terial taxonomic diversity and the shortest life span for a vertebrate species raised in captivity, the

TK could become a key experimental species which will help to shed light on the functional connec-

tion between GM dynamics and aging in vertebrates.

Materials and methods

Wild fish samples
The wild fish samples were collected in 2015 during an expedition in the Gonarezhou National Park

in(Permit No.: 23(1) (C) (II) 30/2015) and Mozambique (DPPM/069/710/11). Intestines were collected

at each location and preserved in pure ethanol. Sampling locations coordinates are listed in Fig-

ure 2—source data 1.

Fish husbandry and survival scoring
Fish (GRZ strain) used for microbiota analysis and scored for survival were individually housed from

week 4 post-hatching in single 2.8L tanks connected to a water recirculation system receiving 12 hr

of light and 12 hr of dark every day. Water temperature was set to 28˚C and fish were fed blood

worm larvae and brine shrimp nauplii twice a day during the week and once a day during the week-

end. Dead fish were removed daily from the tanks, weighed and stored in 95% ethanol.

DNA extraction, 16S rRNA gene amplification and sequencing
All dissected intestinal samples were collected at the same time prior to morning feeding and flash

frozen in liquid nitrogen. For DNA isolation, frozen intestines were placed into autoclaved 2 ml screw

caps tubes containing 1 ml of lysis buffer (80 mM EDTA, 200 mM Tris (pH 8.0) and 0.1M NaCl in

PBS) and 0.4 g of a mixture of 0.1 mm zirconia/silica and 1.4 mm stainless steel beads (Biospec Prod-

ucts). Samples were bead-beaten for 3 min at 30 Hz (TissueLyzer II, Qiagen). Following the bead

beating step, SDS (10% final concentration) and RNase A (PureLink, Invitrogen) were added and

samples were incubated for 30 min at 55˚C. DNA was then isolated using phenol:chloroform:isoamyl

alcohol (Invitrogen) as per manufacturer’s instructions with an additional chloroform step to remove

excess phenol.

DNA was then used in one of two, two-step PCR methods designed to target the V3-V4 region of

the 16 rRNA gene (Klindworth et al., 2013). For the first method, initial primers consisted of a 5’-

to-3’ primer-pad and linker (Caporaso et al., 2012) and the V3/V4 gene specific forward or reverse

primer sequences. The second step PCR used primers complementary for the primer pad and linker

followed by standard Illumina adaptors. The reverse primer for the second step also contained a 12

bp Golay barcode (Caporaso et al., 2012). For the second method, initial primers consisted of (5’ to

3’) Illumina overhang adaptor sequences and the V3/V4 gene specific primer sequences followed by

a second step PCR using the Nextera XT Index kit (Illumina). For both amplification methods cycling

conditions were the same and the first round of PCR was performed in triplicate with approximately

equal amounts of DNA template (250 ng/reaction). PCR reactions were carried out with a two-min-

ute denaturation step at 98˚C, followed by 25 cycles of 98˚C for 30 s, 55˚C for 30 s and 72˚C for 30

s. Triplicate reactions were then pooled and cleaned using the Wizard SV Gel and PCR Clean-up Kit

(promega). The cycling conditions for the second step PCR were the same as the first step, except

annealing was performed at 60˚C with only eight cycles. Both PCR steps used KAPA HiFi Hotstart

ReadyMix (KAPA Biosystems) and 1 mm of primers in 25 ml total volume. Second-step PCR products

were run on a 1.2% agarose gel and DNA products between 500–700 base pairs were excised and

cleaned up as in step 1. PCR products were quantified by Qubit (Life Technologies), diluted to 4 nm

and combined in equal volumes. The combined amplicon libraries were then sequenced on the Illu-

mina MiSeq, V3 reagents, 2 � 300 bp paired-end reads.

Antibiotic treatment and fish microbiota transfer
Microbiota transfer experiments were based on those developed in zebrafish (Pham et al., 2008).

Recipient fish were removed from main water recirculating system and housed in 9L tanks at a
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density of 10 fish per tank. Recipient fish (6wk or 9.5wk) were treated overnight with a combination

of Vancomycin (0.01 g/L), Metronidazole (0.5 g/L), Neomycin (0.5 g/L) and Ampicillin (0.5 g/L) to

diminish the resident bacterial community. Following antibiotic treatment, recipient fish were

washed twice for 10 min with autoclaved tank water. Concurrently, whole intestines were isolated

from donor fish and placed into 10 cm petri dishes containing sterile PBS on ice. Intestines were

then opened longitudinally, the intestinal contents scraped out and then further cut into 0.5 cm

pieces to facilitate the release of bacteria. The collected intestinal contents were washed once in

cold PBS and added to the fish tanks containing autoclaved tank water and recipient fish at a ratio

of 1 donor fish intestine/2 recipient fish. Fish were incubated overnight with the donor fish intestinal

contents before being returned to the main recirculating system and individually housed, where they

were regularly fed according to standard husbandry.

Microbial community analysis
Fastq files from paired end reads were joined, demultiplexed and subjected to quality filtering with

QIIME 1.8 (Q � 20) as previously described (Caporaso et al., 2012). For microbial community analy-

sis, QIIME was used to identify OTUs by open-reference picking using UCLUST (97% similarity) and

taxonomy was assigned with the Greengenes 13.8 database (DeSantis et al., 2006; Edgar, 2010). A

minimum OTU count of 5 was used to minimize spurious OTUs. Representative OTU sequences

were aligned with PYNAST (Caporaso et al., 2010a) and FastTree 2 (Price et al., 2010) was used to

build a phylogenetic tree. For diversity analyses, OTU tables were rarefied to at least 5000 sequen-

ces, which allowed the majority of samples to be kept. QIIME and R were used to calculate alpha

and beta diversity metrics and generate plots. To identify bacteria associated with specific groups,

OTU tables were further filtered for presence in at least 25% of samples with a collective abundance

of greater than 100 reads. Significant changes in relative OTU abundance were identified with linear

discriminant analysis effect size (LEfSe [Segata et al., 2011]) and visualized using GraPhlAn

(Asnicar et al., 2015). For metagenomics analysis, rarefied OTU tables were generated by closed

reference picking and the PICRUSt tool was used to normalize by 16S copy number and predict the

metagenome content of samples from 16S rRNA profiles. KEGG pathway functions were then cate-

gorized at level 2 or 3 and LEfSe was used to identify significant changes among classes. The accu-

racy of PICRUSt predictions was determined by nearest sequenced taxon index (NSTI).

Bacterial diversity among model organisms
To compare the overall bacterial diversity among different species, sequences were downloaded

from the European Nucleotide Archive (ENA), the NCBI Short Read Archive (SRA) or MG-RAST and

subjected to closed reference OTU picking. Taxa summary and alpha diversity measures were com-

puted using QIIME 1.8. Samples were chosen which used Illumina sequencing of the V4 region of

the 16 rRNA gene. Accession numbers. Human: ERR561021UK, ERR560915UK, ERR560902UK,

ERR560855UK, mgm4489670, mgm4489628, mgm4489516, mgm4489454, mgm4538473,

mgm4538468, mgm4538264, mgm4538259, mgm4538238. Mouse: SRR1820108, SRR1820074,

SRR1820073, SRR1820072, SRR1820071, ERR706143, ERR706142, ERR706141. Zebrafish:

SRR1581750, SRR1581753, SRR1581759, SRR1581763, SRR1581766, SRR1581889, SRR1581890,

SRR1581891. Drosophila: SRR989472, SRR989473, SRR989474, SRR989469, SRR989467,

SRR952981.

Bacterial load quantification
To determine bacterial load, DNA was isolated from freshly collected faecal pellets as described

above. Real-time quantitative PCR was performed with DyNAmo Color Flash SYBR green master mix

(Thermo Scientific) and run with the BioRad CFX384 Real-Time System. Samples were normalized to

amount of input faecal material and graphed as 1/Ct value. Primers targeting the 16S gene were

described previously (Caporaso et al., 2010b). For: 5’ TCCTACGGGAGGCAGCAGT 3’ and Rev: 5’

GGACTACCAGGGTATCTAATCCTGTT 3’.

Quantitative analysis of spontaneous locomotor activity
To measure total swimming distance, fish were placed in rectangular (16 � 90 cm) tanks filled with 8

liters of water and allowed to acclimate for 30 min. The room and water temperature and water
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quality were kept as similar to the fish’s’ normal environment as possible. The fish were then filmed

for 20 min with an overhead mounted camera and data were analyzed using EthoVision XT11 (Nol-

dus Information Technologies).

Co-occurrence networks
The OTU table was filtered by a minimum total count of 5509 per individual, based on the rarefac-

tion value (see Microbial community analysis). Subsequently, the table was divided into subsets cor-

responding to the treatment groups. Normalization was achieved through dividing the OTU sample

count by the total sample count, scaled to 1000.

Co-occurrence networks were produced by applying the SparCC program (Friedman and Alm,

2012), a network inference tool specifically developed for analysis of correlations in compositional

data, such as 16S microbiome analyses. To avoid unreliable correlations for very rare OTUs, the OTU

tables were filtered for bacteria that were present in at least 25% of samples of each group.

The SparCC pipeline was used to first calculate OTU-OTU correlations averaged over 20 itera-

tions (Friedman and Alm, 2012). We then tested the significance of these correlations by computing

pseudo p values against 1000 bootstrap simulations, applying the same parameters. All OTU-OTU

correlations with a p value lower than 0.05 were considered significant and were included into net-

work preparation. Nodes without any edges after filtering by significant p values were removed

from the network. To analyze the network properties we used the igraph package in R, version 1.0.1

(Csardi and Nepusz, 2006). For each group we generated an undirected network, weighted by cor-

relation magnitude. For biological interpretation we only focused on positive correlations. To iden-

tify network size and composition, we calculated the negative cumulative degree distribution and

the percentage of genus present in the network belonging to different phyla. The main clusters of

each network were identified with two different clustering algorithms of the igraph package

(Csardi and Nepusz, 2006). The first algorithm ‘k-core’ clusters based on the degree, with each

member of the maximal subgraph has at least a degree count of k. The second algorithm ‘infomap

community’ searches for community structures that minimize in the length of a random walker trajec-

tory. We used the overlap of the largest clusters within the two cluster algorithms to identify the

main clusters in each group. The members of clusters from young fish (6wk) and old fish (16wk) were

used to identify young-like or old-like clusters in the main clusters of the transfer groups (Ymt, Omt

and Abx).

To compare our findings to a different model organism, we used a published data set

(Langille et al., 2014). We scaled the relative frequencies from young, middle-age and old mice to

1000 and excluded bacteria not present in at least 25% of samples. Additionally, we excluded sam-

ple Y7.August14, because we included the same sample from 15th of August (Y7.August15). Follow-

ing the same approach to the previous analysis, we calculated the negative cumulative degree

distribution.

RNA extraction
Intestines from four young (6-weeks-old), four old (16-weeks-old), four old fish receiving 6-week-old

donor fish gut content (Ymt) and four old fish receiving 9.5-week-old fish gut content (Omt) were dis-

sected. Trizol (15596018, Thermo Fisher Scientific, USA) was used to isolate total RNA, following

manufacturer’s instructions. Residual genomic DNA was removed by DNaseI treatment (AM2222,

Thermo Fisher Scientific, USA) and 1.5 mg of total RNA was used as a template for reverse transcrip-

tion (11754050, Thermo Fisher Scientific, USA).

RNA sequencing
We sequenced four individuals of groups 6wk, 16wk, Ymt and Omt. Each sample sequenced with

100 bp paired end with 30 million reads. All samples were mapped to the African Turquoise Killifish

Genome (Valenzano et al., 2015) using STAR version 2.4.1 c (Dobin et al., 2013) with the default

parameters, except for splice junction and chimeric junction parameters set to 15 base-pairs, as well

as allowing for only five mismatches over the whole fragment and removing all reads that map to

more than two locations.
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Differential gene expression
The differential gene expression was performed using featureCounts (Liao et al., 2014) and the

edgeR package (Robinson et al., 2010) version 3.16.5. featureCounts was used to generate raw

counts using the mapped reads and the annotation file from Valenzano et al. (2015). The edgeR

package was used to identify differentially expressed genes between any of the groups resulting in

six pairwise comparisons. Additionally, we identified young-like genes that are differentially

expressed between (i) 6wk and both, 16wk and Omt; (ii) Ymt and 16wk; but are not differentially

expressed between (iii) Omt and 16wk; (iv) Ymt and 6wk. All edgeR runs were performed using

TMM normalization, followed by tagwise dispersion and an exact test (Robinson et al., 2010). We

considered only genes that had a counts-per-million value above 0.7 in at least 50% of compared

samples. The resulting p values were multiple testing corrected with the Benjamini-Hochberg

method. Only genes with a FDR smaller or equal than 0.1 were considered as differentially

expressed. Gene enrichment analyses were performed using the GOrilla software (Eden et al.,

2009).

Functional analysis of target genes
To gain insights into the function of genes differing between young and old fish as well as genes dif-

fering between fish of long or normal lifespan we used the GOrilla software (Eden et al., 2009),

which performs enrichment tests. We used the zebrafish database for annotation and the available

reciprocal blast information (Valenzano et al., 2015). If top differentially expressed genes were not

found to have a zebrafish ortholog in this resource, we used blastp (Altschul et al., 1990) to identify

the corresponding zebrafish ortholog (Figure 7—source data 1). First, all genes were mapped to a

GO-Term. The statistical enrichment test uses a hypergeometric distribution to test for enrichment

in the ratios of target genes associated with a GO-Term, and the ratio of background genes associ-

ated with the same GO-Term to identify pathways or GO-Terms that have a significantly larger

amount of target genes than expected. Here, we used all genes that were found to be expressed in

the intestine of the experimental groups as background. The GOrilla results were visualized with the

ggplot2 package in R.

Correlation between individual OTU and gut transcripts
Individual fish OTU tables and log2-transformed transcripts were used as a source to identify signifi-

cant correlations using Pearson’s correlation.

The python code used to perform this analysis was saved on github (Valenzano, 2017). A copy is

archived at https://github.com/elifesciences-publications/publications.
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Reichard M, Janáč M, Polačik M, Blažek R, Vrtı́lek M. 2017. Community assembly in Nothobranchius annual
fishes: Nested patterns, environmental niche and biogeographic history. Ecology and Evolution 7:2294–2306.
doi: 10.1002/ece3.2851, PMID: 28405293

Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens
M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma V, Kraus JM, Schmid F, et al.
2015. Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell 163:
1527–1538. doi: 10.1016/j.cell.2015.10.071, PMID: 26638077

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics 26:139–140. doi: 10.1093/bioinformatics/btp616,
PMID: 19910308

Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF. 2011. Evidence for a
core gut microbiota in the zebrafish. The ISME Journal 5:1595–1608. doi: 10.1038/ismej.2011.38,
PMID: 21472014

Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru
V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian
SK. 2016. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease.
Cell 167:1469–1480. doi: 10.1016/j.cell.2016.11.018, PMID: 27912057

Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ, de Boer JD, Hoogendijk AJ, de Beer R, de
Vos A, Belzer C, de Vos WM, van der Poll T, Wiersinga WJ. 2016. The gut microbiota plays a protective role in
the host defence against pneumococcal pneumonia. Gut 65:575–583. doi: 10.1136/gutjnl-2015-309728,
PMID: 26511795

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic
biomarker discovery and explanation. Genome Biology 12:R60. doi: 10.1186/gb-2011-12-6-r60, PMID: 21702
898

Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF. 2012. Microbiota regulate
intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host & Microbe 12:277–288. doi: 10.
1016/j.chom.2012.08.003, PMID: 22980325
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